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Abstract 

Antisense oligonucleotides (ASOs) are an important tool for the treatment of many genetic disorders. However, similar 
to other gene drugs, vectors are often required to protect them from degradation and clearance, and to accomplish 
their transport in vivo. Compared with viral vectors, artificial nonviral nanoparticles have a variety of design, synthesis, 
and formulation possibilities that can be selected to accomplish protection and delivery for specific applications, and 
they have served critical therapeutic purposes in animal model research and clinical applications, allowing safe and 
efficient gene delivery processes into the target cells. We believe that as new ASO drugs develop, the exploration for 
corresponding nonviral vectors is inevitable. Intensive development of nonviral vectors with improved delivery strate‑
gies based on specific targets can continue to expand the value of ASO therapeutic approaches. Here, we provide an 
overview of current nonviral delivery strategies, including ASOs modifications, action mechanisms, and multi‑carrier 
methods, which aim to address the irreplaceable role of nonviral vectors in the progressive development of ASOs 
delivery.
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Introduction
In human disease treatment, antibody-based and con-
formation-corrected therapies that focus on the clear-
ance of certain proteins associated with genetic diseases 
are being developed [1, 2], particularly because the bulk 
of therapeutic candidate target genes for genetic diseases 
are not the targets of the vast majority of small-molecule 
drugs. Accordingly, nucleic acid-based therapeutics have 
attracted the attention of researchers, and antisense 
technology is now beginning to deliver on its promise 
to treat diseases by targeting RNA [3, 4]. However, even 
though a wide selection of RNA sources, including pre-
cision duplex silencers RNA (siRNA), microRNAs, mes-
senger RNA (mRNA), and RNA aptamers, are available 
for therapeutic use, the efficiency of the final conversion 

to reliable drugs is not ideal, and the current output of 
new drugs is limited [5, 6]. In contrast, short oligonucleo-
tides that localize to the nucleus and provide a pathway 
for gene silencing by the RNase H pathway offer a more 
direct and reliable option.

Antisense oligonucleotides (ASOs) are synthetic small 
single-stranded nucleic acid polymers (approximately 
18 ~ 30 nucleotides) with diverse chemical properties that 
can be employed to regulate gene expression via various 
mechanisms. Unlike small-molecule drugs, antisense 
drugs work through Watson–Crick base pairing with the 
target RNA sequence [7]. This difference is believed to be 
the underlying reason for the excellent performance of 
ASOs in treating a variety of genetic disorders for which 
small-molecule drugs are not available [8]. Meanwhile, 
compared to RNAs which tolerate only limited modifica-
tions to remain RNA-Induced Silencing Complex (RISC) 
compatibility, one of their critical advantage is higher 
affinity, as the development of chemical modifications 
increases affinity, selectivity, and reduces toxicity due to 
off-target effects [9]. Since Fomiviren was approved by 
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the FDA in 1998 for the treatment of retinitis caused by 
cytomegalovirus (CMV) infection in immunocompro-
mised AIDS patients [10], several single-stranded anti-
sense oligonucleotide (ASO) drugs belonging to multiple 
companies administered by four different routes have 
been approved for commercial use (Table  1), and even 
more ASOs with varying mechanisms of action and 
routes of administration are in preparation [4]. However, 
the extent of drug exploitation using vectors to deliver 
ASOs is still quite primitive, and this is one of the pri-
orities for the future drug development of ASOs. This 
review provides an overview of the potentially valuable 
delivery strategies of ASOs based on nonviral vectors, the 
graphical overview is presented in Fig. 1.

Modifications of antisense oligonucleotide structure
ASOs are synthetic oligonucleotides or oligonucleotide 
analogs that can be designed to bind to protein-coding 
RNAs as well as noncoding RNAs. They regulate RNA 
function through a variety of different mechanisms, 
depending on the types of chemical modifications, modi-
fication sites, and binding sites by which they target 
RNAs. Moreover, ASOs can be designed to regulate the 
processing of RNA molecules, including the regulation of 
RNA splicing and the selection of polyadenylation sites 
[11, 12], to disrupt the structure of RNAs used to inhibit 
the translation of proteins [13], and to promote the deg-
radation of bound RNA by endogenous nucleases [14].

Due to hindered cell uptake [15, 16], off-target effects 
[17, 18], undesirable on-target effects [19], short half-
life, immune clearance, and other disadvantages that free 
ASOs cannot avoid in  vivo, researchers have proposed 
a variety of modifications to improve the stability and 
extend the half-life of ASOs [20, 21]. Phosphorothioate 
allows the nonbridging oxygen of the phosphate group in 
ASOs to be replaced by a sulfur group, resulting in the 
formation of a phosphorothioate bond, which is resist-
ant to nuclease-based degradation [22]. In addition, the 
phosphorodiamidate morpholino modification increases 
the water solubility of ASOs [23], a peptide nucleic acid 
is an artificial mimic capable of self-assembly to form a 
backbone structure [24], and a locked nucleic acid is 
more commonly used today and can greatly increase the 
stability of ASOs [25], and 2′-O-methoxyethyl-(2′-O-
MOE) and 2′-O-[2-(methylamino)-2-oxoethyl] improve 
the binding affinity of ASOs and provide resistance to 
enzymatic degradation [26].

Mechanism of action of antisense nucleotides
ASOs are theoretically designed to regulate the transfer 
of genetic information to proteins specifically, but the 
mechanisms by which ASOs induce biological effects are 
subtle and complex (Fig. 2). Based on the mechanism of 
action, two major classes of ASOs can be discerned: (a) 
Degradation by the RNase H and Argonaute 2 (the most 
widely be adopted two strategies) or some other elements 
(Fig.  2A), (b) Steric-blocker oligonucleotides, which 

Table 1 FDA‑approved ASO therapeutics

SC Subcutaneous, IV Intravenous

The data are extracted from the US-FDA official website: https:// www. fda. gov/

Generic Name Drug Administration Route Approval Year Target Indication Applicant

VITRAVENE Fomivirsen Intravitreal injection 1998 Cytomegalovirus Cytomegalovirus retinitis IONIS Pharmaceuticals

MACUGEN Pegaptanib Intravitreal injection 2004 Vascular endothelial 
growth factor

Macular degeneration EYETECH PHARMS

KYNAMRO Mipromersen SC injection 2013 Apo B‑100 synthesis Heterozygous familial 
hypercholesterolemia

KASTLE THERAPS LLC

SPINRAZA Nusinersen Intrathecal injection 2015 Mutations in chromo‑
some 5q

Spinal Muscular Atrophy BIOGEN IDEC

DEFITELIO Defibrotide IV infusion 2016 P38 mitogen‑activated 
protein kinase

Sinusoidal obstructive 
syndrome

JAZZ PHARMS INC

EXONDYS 51 Eteplirsen IV infusion 2016 Exon 51 of the dystro‑
phin gene

Duchenne muscular 
dystrophy

SAREPTA THERAPS INC

TEGSEDI Inotersen SC injection 2018 Vascular endothelial 
growth factor

Macular degeneration AKCEA THERAPY

VYONDYS 53 Golodirsen IV infusion 2019 Exon 53 of the dystro‑
phin gene

Duchenne muscular 
dystrophy

SAREPTA THERAPS INC

VILTEPSO Viltolarsen IV infusion 2020 Exon 53 of the dystro‑
phin gene

Duchenne muscular 
dystrophy

NIPPON SHINYAKU

AMONDYS 45 Casimersen IV infusion 2021 Exon 45 of the dystro‑
phin gene

Duchenne muscular 
dystrophy

SAREPTA THERAPS INC

https://www.fda.gov/


Page 3 of 23Huang et al. Biomaterials Research           (2022) 26:49  

physically block or inhibit the progression of splicing or 
translation mechanisms (Fig. 2B, C).

Regulation by degradation and steric blockage together
ASOs bind to target RNA to form a conjugate that 
recruits RNase H to degrade RNA for silencing [27, 28]. 
Degradation mediated by RNase H is the most stable and 
reliable mode of ASO action and is almost unaffected by 
the multiple modifications imposed on the ASOs them-
selves. Most FDA-approved ASO drugs work in this way. 
In addition, ASOs form double strands with the target 
RNA and then bind to the Argonaute 2 (Ago 2) enzyme 

to form the RISC. RISC moves to the complementary 
mRNA region where the Ago 2 enzyme breaks down the 
mRNA and exerts its gene silencing effect [29].

Regulation by steric blockage only
ASOs with steric blockage function are designed to bind 
to target transcripts with high affinity. Still, they do not 
induce degradation of the target transcripts due to their 
lack of RNase H recruitment capacity [30, 31]. This action 
is most commonly seen in phosphorodiamidate mor-
pholino antisense-modified oligomers (PMOs), a class 
of antisense nucleic acid drugs that typically interfere 

Fig. 1 Overview of nonviral delivery systems for antisense oligonucleotide therapeutics

(See figure on next page.)
Fig. 2 The main mechanisms of ASO regulate genes. A Downregulation mechanism of degradation and steric blockage simultaneously; ①. The 
ASO‑mRNA double strands as a substrate recruit RNase H1, leading to degradation of the target transcript. ②. ASOs enter the RISC including a 
part in Ago 2, and become the guide strand. Then direct the RISC to mRNA. B Downregulation mechanism of steric blockage; ③. ASOs bind to 
pre‑mRNA to alter polyadenylation position, and decrease mRNA stability and levels. ④. ASOs bind to the most 5ʹ region of mRNAs to avoid the 
binding of translation initiation factors, inhibiting translation. C Upregulation mechanism of steric blockage; ⑤. ASOs inhibit miRNA function to 
increase the expression of their target mRNA. ⑥. ASOs can enhance translation by inhibiting upstream open reading frames (uORFs), a translation 
suppression element
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Fig. 2 (See legend on previous page.)
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with the expression of target genes by binding and spa-
tially blocking the assembly of the translation machinery 
[32]. Unlike classical phosphorothioate oligonucleotides 
(PS-ODNs), PMOs do not induce RNase H activity, they 
bind to target RNA sequences and spatially block ribo-
some assembly or intron–exon splice junction sites, 
leading to translation arrest or splicing alteration. PMO-
modified ASOs have different chemical properties from 
ASOs with other modifications: they are usually neutral 
rather than carrying charges [33]. Differences in chemi-
cally modified structures may lead not only to different 
mechanisms of action but also unique pharmacokinetics 
and biosafety of the ASO via steric blockade. As oligonu-
cleotides that do not affect RNA integrity, steric-blocking 
ASOs have irreplaceable long-term potential and value 
in nucleic acid pharmaceuticals [34]. Other approaches 
include that ASOs modulate RNA function to attenuate 
or augment the translation of corresponding proteins in 
the cytoplasm. Moreover, ASOs can be designed to affect 
RNA splicing and polyadenylation site selection to regu-
late the processing of RNA molecules [35, 36]. In addi-
tion, ASOs designed to disrupt translation-suppressing 
RNA structures, block upstream AUG codons, or bind to 
microRNA can increase protein translation [13, 37].

Promising delivery system for antisense oligonucleotides
Lipid‑based delivery systems
To deliver ASOs to the target site by different routes of 
administration, nanocarriers of cationic polymers are 
usually preferred because of their ability to form poly-
electrolyte complexes by facilitating ionic interactions 
between the positively charged functional groups and the 
negatively charged phosphate fraction [38]. The form of 
nucleic acids in nanocarriers is complex. ASOs can be 
encapsulated in the matrix of the nanocarrier or attached 
to the surface of the carrier by covalent or ionic bond-
ing. Lipid-based nanoparticle (LNP) systems are one of 
the most promising colloidal nanocarriers for bioactive 
organic molecules. LNPs for the delivery of ASOs (LNPs-
ASOs) typically consist of ionizable cationic lipids, 
phospholipids, polyethylene glycol (PEG) lipids, and cho-
lesterol due to the negatively charged nature of nucleic 
acids [39–41]. PEG-series materials are structurally simi-
lar, but each has a specific structure and unique function 
(Fig. 3). The LNP-based delivery platform is appreciated 
as an advanced virus-free delivery system for ASOs for 
the treatment of a range of diseases [42]. Hitherto three 
LNP-based RNA drugs have been approved by the FDA, 
including two COVID-19 mRNA vaccines that play an 
irreplaceable role in preventing the spread of epidemics 
[43, 44].

LNPs have a suitable particle size (diameter range of 
10–500  nm) combined with their own biocompatible 

and biodegradable lipids, which enables LNPs-ASOs to 
escape uptake by the mononuclear phagocyte system 
(MPS), subsequently prolonging the circulation time of 
LNPs-ASOs and allowing the particles to passively and 
efficiently target cells through an enhanced permeability 
and retention effect to release ASOs [45–47]. They also 
improve cell-to-ASO uptake by inducing lipid fusion 
between the membranes of LNPs and target cells during 
structure phase transitions [48–50], and help ASOs travel 
to target genes by promoting endosomal escape after cel-
lular uptake [50, 51]. Examples of lipid-based delivery 
systems that effectively deliver ASOs are summarized in 
Table 2.

Several prior studies have reported LNPs to be poten-
tially exploitable. Although some studies have not used 
LNPs as traditional formulations of nucleic acid drugs, 
the addition of lipid components alone reduces positive 
charge toxicity and can significantly improve biocompat-
ibility [47]. However, the optimal composition of LNPs 
applicable to ASOs will vary, as will the key to success-
ful delivery mechanisms[52, 53]. Hiroki et  al. initially 
hypothesized that the optimal composition of ssPalmO-
Phe/Chol for siRNA delivery could be applied to ASOs, 
but it was revealed that  LNPssPalmO-Phe containing ASOs 
are highly unstable and susceptible to aggregation [54]. 
With an improved lipid composition and lipid/ASO ratio, 
an LNP system that could efficiently transport ASOs was 
obtained.

Liposomes
Liposomes are used in the pharmaceutical and cosmetic 
industries to transport a wide range of molecules. They 
are spherical vesicles composed of phospholipids and 
sterols, usually in the size range of less than 500 nm [61]. 
Liposomes are classified into several types based on the 
addition of PEG and ligands [62, 63]. PEG is arguably the 
most critical component of liposomes, which limits the 
adsorption of serum proteins and effectively prolongs 
blood circulation time [64]. While PEG has a recognized 
effect of improving the pharmacokinetic properties of 
nucleic acids, it is posing other challenges. The first is 
the hindrance of tissue penetration, cellular uptake, and 
endosomal escape behavior [65, 66]. The second is the 
repeated use of polyethylene glycol-modified liposomes, 
which inevitably leads to faster serum clearance and 
severely compromises subsequent therapeutic efficacy 
[67–69]. Despite the apparent disadvantages of PEG, 
there is still a lack of proven and reliable substitutes.

Liposomes are potentially more enriched in the liver 
and spleen than other carriers, so it is essential either 
to develop different types of liposomes to counteract 
this property or to take advantage of this property to 
deliver ASOs that are expected to work in these organs 
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[70, 71]. The lipid component of the liposome stabilizes 
proteins on the surface, making it more advantageous 
to apply protein modifications. Guan et  al. functional-
ized liposomes with a tumor-homing and -penetrating 
peptide, iRGD, as a carrier of an ASO against androgen 
receptor (AR) for prostate cancer treatment, and these 
iRGD-liposomes markedly improved the ASO efficacy 
in suppressing the growth of tumor [72]. The modifica-
tion of liposomes with targeting antibodies improves the 
affinity of liposomes for cancer cells and optimizes the 
intratumoral penetration of ASOs [73].

Polymer‑based delivery systems
Polymers have been one of the most widely used drug 
delivery systems since being discovered. In addition to 
proteins and small molecules, polymer-drug systems are 
also essential for the delivery of nucleic acid drugs [74, 
75]. The classification of polymer systems is also highly 

complex with numerous categories according to the 
structural differences of the components. Examples of 
polymer-based ASO delivery systems are summarized 
in Table 3. The unique advantage of the polymer system 
is its stability. Because polymeric materials mostly have 
rigid shapes, polymeric nanoparticles can retain the 
ASOs carried in the central cavity of the nanoparticle 
even after a variety of operations such as long storage, 
lyophilization, concentration, and so on [76–78]. Here, 
we refer to the traditional classification method and 
divide them into four categories: early linear polycations, 
dendrimers, polymeric nanoparticles, and natural poly-
mers [74]. One study claims that cationic micelles offer 
both the properties of cationic polymers and the benefits 
of micelles, with the added benefit of reduced toxicities 
[79]. The molecular structure of several classic materials 

Fig. 3 Chemical structure of Common PEG materials. (A) ethylene glycol, (B) linear polyethylene glycol, (C) DMG‑PEG 2000, (D) DSG‑PEG 2000, (E) 
DSPE‑PEG(2000) carboxy NHS, (F) DSPE‑PEG(2000) maleimide, (G) DOTAP(chloride salt), (H) DOPE, (I) DOPC, (J) DODMA, (K) branched PEG
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and the structure of the carriers obtained by assembling 
them were shown in Fig. 3.

Early linear polycations
Linear cationic compounds have long been shown to 
be effective in delivering nucleic acids. In the 1960s, 
these polycationic derivatives of dextran were shown to 
enhance the transfection of viral RNA and DNA [88, 89]. 
The advantages of Deae-dextran are chemical simplic-
ity, reproducibility, and low cost, but the disadvantages 
are low transfection efficiency, cytotoxicity, and inhibi-
tion of cell growth in  vitro, which limit its use in  vivo. 
The discovery of linear polycations was of epoch-making 
significance, but linear polycations were soon replaced 
by dendritic polycations with complex and variable 
structures due to the insurmountable defects mentioned 
above.

Micelles
Micelles, self-assembled from block copolymers, have 
a unique core–shell structure with a size distribution in 
the range of 10–100  nm [90–92]. Although most avail-
able cationic polymers can coalesce DNA, they interact 
weakly with DNA. Thus, the polymers formed in physi-
ological fluids, which contain serum components and 
salts that tend to break down these complexes, are not 
very stable. Therefore, they are not the best materials to 
form micelles for the delivery of ASOs [93, 94]. Further-
more, the synthesis of high molecular weight cationic 
polymers (e.g. dendrimers) is usually labor intensive and 
costly, greatly hindering their biomedical applications 
[95]. The self-assembly of amphiphilic polymers into 
micelles makes them excellent gene carriers. Amphiphilic 
cationic polymers such as polylysine (PLL) [96], PEI [97, 
98], polyamidoamine (PAMAM) [99], and polydimeth-
ylaminoethyl methacrylate (PDMAEMA) [100, 101] are 
commonly used to construct cationic micelles [102, 103].

Dendrimers
Synthetic polycations such as PEI and PAMAM dendrim-
ers, and some other polycations, such as poly(amine-co-
ester) (PACE) are included in this category [104–106] 
(Fig. 4A-C). Due to their extrinsic positive charge, ASO 
nanocarriers based on electrostatic adsorption are usu-
ally prone to nucleic acid leakage through the formation 
of polyelectrolyte aggregates and induce excessive posi-
tive charge-related cytotoxicity and non-specific interac-
tions with serum or plasma proteins, but most of them 
have been used successively to deliver siRNA and mRNA 
with good results, however, only a few of which have 
been used to attempt the delivery of ASOs.

Marcel developed a nanoparticle-based delivery sys-
tem for ASOs targeting the antibiotic resistance of 

methicillin-resistant Staphylococcus aureus (MRSA): the 
system was prepared by the sequential modification of 
gold nanoparticles with PEI and maintained antibacte-
rial ability with reduced low cytotoxicity [107]. Yoshida 
succeeded in solving the problem of poor intracellular 
uptake by target cells by using superparamagnetic iron 
oxide (SPIO) nanoparticles coated with PEI as a delivery 
vehicle for ASOs [108].

PAMAM is another cationic dendrimer used to deliver 
ASOs. A co-delivery system is based on a cationic den-
drimer core that encapsulates fluorouracil and oligo-
nucleotides within a hydrophobic lumen, modified 
with hyaluronic acid and cell-penetrating peptides. The 
codelivery complex showed efficient cellular uptake and 
consequently improved intracellular distribution and 
enhanced cytotoxicity on cells [87, 109].

Polymeric nanoparticles
Polymeric nanoparticles, due to their tunable architec-
ture (10–1000  nm), nontoxicity, biocompatibility, and 
controlled drug release are promising options for tar-
geted drug delivery platforms [80, 110]. Widely used bio-
degradable synthetic polymers include poly(lactic acid) 
(PLA), poly(glycolic acid) (PGA), and copolymers such as 
poly(lactic acid-glycolic acid) (PLGA) [111]. PLGAs have 
been approved by the FDA for certain transport applica-
tions. These materials are difficult to use for nucleic acid 
delivery because unlike cationic polymers, they cannot 
rely on charge dominance to hold the nucleic acid [112, 
113]. Therefore, PLGA is often used in conjunction with 
the cationic polymers PEI and PAMAM. The advantage 
of this is that not only does it rely on the electrical charge 
to achieve a higher nucleic acid loading, but also the addi-
tion of PLGA results in lower surface charge compared 
to the cationic polymer particles in isolation, resulting in 
lower toxicity and a lower rate of removal, which facili-
tates the sustained release of cargo [114]. In addition to 
dendrimers, other cationic polymers have been used 
in blends with PLGA, such as Poly-beta-amino-ester 
(PBAE), which has positively charged groups that can 
interact with nucleic acids and are simple to synthesize 
and more readily degraded in vivo [115, 116]. In the blend 
of PBAE and PLGA, cytotoxicity decreased with the ratio 
of PBAE to PLGA [117]. PACEs are another commonly 
used class of cationic polymers with the unique advan-
tage of lower toxicity that results from lower charge 
density [118, 119]. PACE is more closely associated with 
plants than the compounds mentioned above, and a 
variety of PACEs are now derived indirectly or directly 
from plant-derived components [120]. Cui loaded solid 
PACE nanoparticles (PACE-NPs) with oligonucleotides 
designed to knockdown Nogo-B, a protein that has been 
implicated in the progression of alcoholic liver disease 
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and liver fibrosis, and demonstrates that PACE-NPs can 
effectively deliver oligonucleotides therapeutics to the 
liver to mediate protein knockdown in vivo [121].

The synthesis reactions of polymers are quite mature, 
so chemical precision and flexibility in designing syn-
thetic strategies are considerable; accordingly, a highly 
functionalized nucleic acid polymer (HFNAP) library is 

usually designed as needed, and the target compounds 
are screened by parallel experiments [122, 123]. In addi-
tion to the ability to design synthesis methods based on 
the desired chemical structure, hydrophilicity/hydropho-
bicity, charge density, and functional domains and struc-
ture, it is even possible to select suitable polymers based 
on the delivered nucleic acid sequence [124, 125].

Fig. 4 Chemical structure of polymer materials and schematic representation of different 11 particle forms. (A) PEI, (B) PAMAM, (C) PACEs, (D) 
chitosan, (E) α‑cyclodextrins, (F) polyplexes, (G) nanocapsules, (H) micelles, (I) dendrimers, (J) nanoparticles
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Natural polymer‑based delivery systems
Naturally derived structural proteins and polysaccha-
rides, such as cationic collagen derivatives, cyclodextrins 
(CDs), and chitosan, have been developed as gene car-
riers [126–129]. Collagen, an important component of 
bone tissue, has a complex structure that makes it avail-
able as an artificial scaffold material with an innate drug 
retentive function. Natural collagen exists in two forms: 
as a swollen hydrogel and as sparse fibers in lattice-like 
tissues [130]. When targeting RNA delivery to bone-
related cells, collagen should be the first candidate con-
sidered as a carrier material that provides good and stable 
sustained release [131]. In addition to scaffolds, collagen 
can be used in conjunction with polymers and lipids, 
as with other organic materials, to make nano prepara-
tion suitable for local injection with a slow-release, low 
systemic circulating drug concentration, and excellent 
specificity.

Due to the poor specificity, low stability, and low per-
meability of ASOs through cell membranes, an effec-
tive nucleic acid carrier system for most studies usually 
requires cationic materials. Chitosan is a strong candi-
date due to its cationic properties, biodegradability, and 
excellent biocompatibility [132]. Chitosan is a linear 
polymer formed by α (1 → 4)-linked-2-amino-2-deoxy-
β-d-glucopyranose [133]. Various functional groups 
or molecules can be affixed with chitosan to guarantee 
the desired function with the nanocarrier system [134]. 
Kolonko et al. developed a nonviral delivery system based 
on the natural aminopolysaccharide chitosan (CS) for the 
transport of ASOs against ENaC to specifically address 
Na + hyperabsorption and confirmed the successful 
uptake of the nanocomplex by human airway epithelial 
cells, demonstrating the possibility of targeted transport 
of ASOs with chitosan [135].

Extracellular vesicle‑based systems
The naming of extracellular vesicles is extremely chaotic. 
Extracellular vesicles (EVs) are vesicles that are released 
from cells into the extracellular space, and can be subdi-
vided into microvesicles (100 nm to 500 nm in diameter) 

or exosomes (30  nm to 100  nm in diameter) by their 
specific diameter [136, 137], EVs are vesicles that carry 
nucleic acids and proteins that are secreted by almost all 
cells into the extracellular fluid and body fluids such as 
blood, urine, tears, and milk. Because of the propensity 
of EVs to transfer to recipient cells and the compositional 
advantages in biocompatibility, they are naturally used as 
vehicles for the delivery of nucleic acids. Seven classes of 
exosome isolation strategies have been reported, includ-
ing stepwise ultracentrifugation (Fig.  5A), gradient den-
sity ultracentrifugation (Fig. 5B), ultrafiltration (Fig. 5C), 
size-exclusion chromatography (Fig.  5D), microfluidic 
techniques (Fig.  5E), polymer precipitation (Fig.  5F), 
and immunoaffinity capture (Fig. 5G), each of which has 
unique advantages and disadvantages. EVs are potent 
cell-derived nanovesicles that can mediate intracellular 
communication to achieve nondestructive and efficient 
delivery.

The ASO is usually loaded into the exosome by elec-
troporation [138, 139]. The drug loading rate depends on 
the specific experimental conditions and the type of vesi-
cles, but in general, it is relatively low compared to that 
of artificial carriers. Although more studies are report-
ing that EVs carrying ASOs can achieve good therapeutic 
effects, the mode of administration of the studies appears 
to be limited to injection, and in one study where ASOs 
was administered by oral delivery of bovine extracellular 
vesicles, no significant decrease in target gene expression 
was seen in  vivo [140]. In addition to EVs produced by 
normal cellular secretion, EVs obtained by various arti-
ficial intervention methods have also been used to carry 
ASOs. Compared to exosomes, apoptotic bodies (ABs) 
can be produced with much higher efficiency [141].

Biomimetic vesicle‑based systems
While delivery systems for artificial materials are not 
immune to compatibility and clearance problems, bio-
logical vesicles represented by exosomes are not immune 
to another challenge: low nucleic acid loading rates and 
the potential safety threat of carrying their own nucleic 
acids. The loading of nucleic acids onto vectors is low 

Fig. 5 Schematic diagram of various schemes for collecting extracellular vesicles. A The cell supernatant was separated by repeated multiple 
ultracentrifugations to obtain EVs. B The supernatant was subjected to sucrose density gradient centrifugation, and EVs with different particle sizes 
were distributed in different concentrations of sucrose solution. C The separation of exosomes by rotary ultrafiltration technology is based on the 
principle that the pore size of the ultrafiltration membrane allows and intercepts substances of different relative molecular masses, filtering solvents 
and some small molecules to the other side of the membrane while retaining substances with high relative molecular mass that are larger than the 
membrane pore size on the ultrafiltration membrane, thus achieving separation. D Exclusion chromatography separates EVs of different particle 
sizes due to their different peak emergence times after passing through the column. E The microfluidic technique achieves exosome isolation, 
concentration, and analysis. F Particles of different sizes are subjected to differentially sized acoustic radiation and viscous forces in the microfluidic 
acoustic field. Under the combined effect of acoustic radiation and viscous force, particles of different sizes move to different exits, thus achieving 
separation. G Highly hydrophilic polymers interact with water molecules around exosomes to form a hydrophobic microenvironment, which leads 
to exosome precipitation. H EVs have specific markers on their surface and are adsorbed onto magnetic beads encapsulated with anti‑marker 
antibodies that bind to exosome vesicles after incubation

(See figure on next page.)
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in efficiency and their functional activity may be com-
promised [143]. It was found that the number of nucleic 
acids loaded into EVs was limited [144]. Therefore, one 
study pretransfected ASOs into cells and then produced 
ASO-rich apoptotic vesicles by inducing apoptosis, and 

good genetic suppression was achieved with these apop-
totic vesicles (Fig. 6) [142]. Currently, cell and organelle 
membranes derived from various cell types have been 
developed as carriers to deliver ASOs (Fig. 7A). Moreo-
ver, we summarized other methods in nanofabrication 

Fig. 5 (See legend on previous page.)
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of artificial EVs, including extrusion (Fig.  7B), promot-
ing secretion (Fig. 7C), and fusion (Fig. 7D). Bionic car-
riers are a new type of drug delivery system that has been 
rapidly developed in recent years and has the potential 
to solve many long-existing challenges at once. Biomi-
metic vectors are usually composed of endocytic, pro-
tein, organelle, microbial or viral structures with artificial 
nanoparticle materials or individually [145–148]. The 
commercialization of biomimetic drug delivery systems 
presents quality control and ethical issues, but such drug 
delivery systems are promising in terms of therapeutic 
efficacy.

Metallic nanoparticles systems
Metal nanoparticles are widely used and recognized in 
the fields of biotechnology and bioengineering [149]. 
Currently, metal nanoparticles and conjugates of ligands, 
drugs, antibodies, peptides, and nucleic acids have been 
used for targeted drug delivery, diagnostics, and imaging. 

Among the most studied are gold, silver, and platinum 
nanoparticles [150, 151]. Gold nanoparticles are the 
most widely studied and stable, with negligible toxic-
ity and good imaging in vivo [152]. Anna Graczyk et al. 
invented a conjugate of gold nanoparticles and structural 
RNA that was successfully used as a tool for gene expres-
sion regulation successfully [153]. Gong et al. constructed 
MALAT1-specific ASO and nucleus-targeting TAT pep-
tide cofunctionalized Au nanoparticles, namely, ASO-
Au-TAT NPs, which stabilized fragile ASOs, enhanced 
nuclear internalization, and exhibited good biocompat-
ibility [154] (Fig. 8A). A multi-layer coated gold nanopar-
ticles (MLGNPs) delivering antisense oligonucleotides 
(ASOs) were shown to be efficiently internalized into 
various types of Gram-positive bacteria and may use with 
conventional antibiotics [107] (Fig.  8B). The biocom-
patibility of metal nanoparticles and the functionaliza-
tion of unrestricted nucleic acid structures offer a wide 
range of potential applications. They have emerged as an 

Fig. 6 The ASOs bound to the cationic material can be made available for cell uptake, and then apoptotic vesicles containing ASOs can be directly 
produced by cell induction of cells after uptake of the nucleic acid drug. Schematic diagram of the protocol for producing small apoptotic bodies 
and delivering ASOs into the brain. (Reprinted with permission from Ref [142].  Copyright © 2021 The Authors. Advanced Science published by 
Wiley‐VCH GmbH)
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Fig. 7 Biomimetic carriers for ASO delivery. A Components from a variety of cells and body fluids have been used to prepare biomimetic 
nanoparticles. B Cells can be forced to pass through membrane pores to form biomimetic nanoparticles. C Sulfhydryl‑blocking can lead to the 
release of small biomimetic nanoparticles from the cell; UV light can induce apoptosis and produce small apoptotic bodies. D Isolated natural EVs 
and liposome nanoparticles can be fused into hybrid EVs
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Fig. 8 Schematic illustration of two gold nanoparticle systems. (A) Schematic illustration of nucleus‑targeting by ASO‑Au‑TAT nanocarrier. (B) 
Schematic illustration for preparation of MLGNPs delivering ASO targeting antibiotic resistance and its application for combinatorial treatment 
of MRSA infections. (Fig. 8A reprinted with permission from Ref [154].  Copyright © 2019, American Chemical Society. Figure 8B reprinted with 
permission from Ref [107]. Copyright © 2021, Elsevier B.V.)
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outstandingly promising solution for ASO delivery and 
personalized nanomedicine in the future.

Potent supporters: specific condition‑sensitive materials
Sensitive materials have a rich history of use in the treat-
ment of infections and tumors with superior results [155, 
156]. Since the approval of sodium polyphotodynamic 
therapy as the first photosensitizer (PS) for the treatment 
of bladder cancer in 1993, photodynamic therapy (PDT) 
has been widely used in antitumor and anti-infection 
therapy [157]. Photosensitizers have been tried in many 
nanoparticle systems [158, 159], and surprising results 
have been reported. In 2012, a study attempted to address 
the headache-inducing off-target effects of nucleic acid 

drugs by using a photosensitizer to trap the RNA carrier/
siRNA complex completely within the endosome [160]. A 
near-infrared (NIR) photocontrolled self-delivery of ASO 
was designed to suppress hypoxia inducible factor-1α 
(HIF-1α) and B-cell lymphoma 2 (Bcl-2) for gene therapy 
[161] (Fig.  9). This precise, light-dependent control will 
open new possibilities for cellular and molecular biology 
and therapy.

Thermosensitive materials can also help retain ASO 
in local tissues without a serious off-target effect 
[162]. As confirmed in a study, a type of PLGA-PEG-
PLGA thermosensitive hydrogel can increase the 
residence time of RNA nanoparticles in the eye to pro-
long the duration of action time of subconjunctival 

Fig. 9 Design of photolabile spherical nucleic acid (PSNA). (a) Illustration of the preparation of PSNA. (b) Schematic representation of the use of 
PSNA to deliver siRNA, pASO, and PS for combination cancer therapy. (Reprinted with permission from Ref [161].  Copyright © 2021, American 
Chemical Society.)
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administration [163]. pH-sensitive hydrophobic frag-
ments have been shown to promote the efficiency of 
oligonucleotide drug delivery by amphiphilic polyca-
tionic carriers [164]. The development of multifunc-
tional drug nanoparticles that combine oligonucleotide 
drugs with different release mechanisms including 
thermosensitive, photosensitized, ultrasound-respon-
sive [165], redox-responsive [166], and magnetic-
responsive material [167], may be useful for specific 
applications. Sensitive materials can be used in a vari-
ety of diseases, perform well in clinical evaluation and 
assessment, and offer exciting possibilities in moving 
from the laboratory to real-world use.

Challenges facing ASOs delivery
ASOs are readily degraded by nucleases in body fluids 
and are enriched in metabolic organs such as the liver 
and kidney, where they are rapidly cleared, and the half-
life of unmodified and unencapsulated ASOs is usually 
less than 10 min [168–170]. In addition, the lack of tar-
geting and the off-target effects of ASOs may lead to seri-
ous side effects and consequences, limiting both the dose 
administered and the therapeutic effect [171–174]. The 
negative electrical properties and high molecular weight 
of ASOs are also important factors, and the chemical 
structure of single nucleotide chains prevents their active 
uptake by the cell in any form and therefore makes it dif-
ficult to cross the cell membrane to enter the cell [173, 
175]. Internalized ASOs are transported out of the body 
by the endosomal and acidic lysosomal microenviron-
ments, making it difficult for them to enter the nucleus to 
act on target gene sites [176].

Although ASO drugs continue to come to market, 
safety has been a stubborn factor preventing them from 
expanding their impact [177]. An investigator from US-
FDA noted that adverse reactions among preclinical and 
clinical study volunteers tended to occur in those who 
took ASO drugs intravenously, possibly because the sys-
temic exposure to ASOs via this route was much higher 
than in other local ways [178]. Another challenge ASOs 
once got entangled with but now have tackled is that 
current approved ASO are limited to treating genetic 
diseases by causing alternative splicing in patients with 
loss-of-function mutations. Since the validation of new 
mechanisms of action enhances the versatility of anti-
sense technology [179–181].

The human system is way more complex than the 
in  vitro culture systems or even model animals [182, 
183]; delivery systems in the human body are not yet 
fully understood so far, so no surprises that many ASO 
delivery systems research cases perform well in vitro but 
poorly in clinical studies [184, 185]. And the accuracy and 

affordability of synthetic polymers, as well as the safety 
and stability of biological components, are challenges. 
Carrier systems demand not only safety, low cost, and 
ease of manufacturing, but also controllability and stabil-
ity to advance further toward the clinic [186–188]. Many 
delivery system formulations that perform well in labora-
tory studies may not always accomplish equally well under 
the harsh storage conditions of real-world applications, 
which hinders delivery systems from providing value.

Conclusions
At this time, no ASO drugs using drug delivery systems 
have been approved by the FDA for marketing, and there 
will be no substitute for ASO therapeutic technologies 
for rare diseases for a significant period. It is foreseeable 
that the emergence of ASO drugs delivered by carriers 
is inevitable, but the timing depends on innovations in 
delivery systems. This will require breakthroughs in the 
development of materials, evaluation systems, synthesis 
methods, ethical safety, and many other aspects. Given 
the rapid progress in this field, nonviral delivery systems 
will certainly play an irreplaceable role in the progres-
sive development of gene therapy.
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