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Abstract

Background: In the past decade, stem cells, with their ability to differentiate into various types of cells, have been
proven to be resourceful in regenerative medicine and tissue engineering. Despite the ability to repair damaged
parts of organs and tissues, the use of stem cells still entails several limitations, such as low differentiation efficiency
and difficulties in guiding differentiation. To address these limitations, nanotechnology approaches have been recently
implemented in stem cell research. It has been discovered that stem cells, in combination with carbon-based functional
materials, show enhanced regenerative performances in varying biophysical conditions. In particular, several studies have
reported solutions to the conventional quandaries in biomedical engineering, using synergetic effects of nanohybrid
materials, as well as further development of technologies to recover from diverse health conditions such as
bone fracture and strokes.

Main text: In this review, we discuss several prior studies regarding the application of various nanomaterials
in controlling the behavior of stem cells. We focus on the potential of different types of nanomaterials, such
as two-dimensional materials, gold nanoparticles, and three-dimensional nanohybrid composites, to control the

differentiation of human mesenchymal stem cells (hMSCs). These materials have been found to affect stem cell
functions via the adsorption of growth/differentiation factors on the surfaces of nanomaterials and the activation of
signaling pathways that are mostly related to cell adhesion and differentiation (e.g., FAK, Smad, Erk, and Wnt).

Conclusion: Controlling stem cell differentiation using biophysical factors, especially the use of nanohybrid materials to
functionalize underlying substrates wherein the cells attach and grow, is a promising strategy to achieve cells of
interest in a highly efficient manner. We hope that this review will facilitate the use of other types of newly
discovered and/or synthesized nanomaterials (e.g., metal transition dichalcogenides, non-toxic quantum dots,
and metal oxide frameworks) for stem cell-based regenerative therapies.

Keywords: Graphene, Two-dimensional materials, Gold nanoparticles, Three-dimensional graphene composites,
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Background

Recently, a wide variety of stem cells have been investi-
gated for their extensive utility in biomedical applications,
owing to their abilities to differentiate into specific cell
lineages, and to generate more stem cells. Mesenchymal
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stem cells (MSCs), which are multipotent stromal stem
cells, have been extensively investigated for their accessi-
bility, versatility, and low risk of teratoma formation.
Their multipotency allows them to differentiate into
several specific cell types (e.g. adipocytes, osteoblasts,
chondrocytes), to form fat [1], bone [2], and cartilage
tissues [3]. Traditionally, the process of stem cell dif-
ferentiation has been controlled using media containing
specific regulator proteins and biomolecules (e.g., dexa-
methasone, ascorbic acid, and p-glycerophosphate) [4].
However, since cells actively interact with the underlying
substrates/surfaces wherein they attach and grow, a
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method for controlling their functions including prolifera-
tion, migration, and differentiation, via biophysical factors,
instead of induction media or the combination of two, has
been recently proposed [5-7]. Such biophysical stim-
uli are induced by modifying the substrate/surface
with cell-matrix interactions, which ultimately influ-
ence both cytoskeletal mechanics and cellular gene/
protein expression [8, 9].

Until now, a variety of nanomaterials, including carbon
nanotube (CNT) [10], fullerenes, and graphene [11],
have been reported to guide stem cell differentiation
with or without the presence of soluble differentiation
factors. Among such materials, graphene and its deriva-
tive, graphene oxide (GO), have gained attention as
unique materials to induce the physical stimulation re-
quired for stem cell differentiation. It has been reported
that these features of amphiphilicity, surface chemistry,
and honeycomb structures of GO [12, 13] affect cyto-
skeletal dynamics of cells adhered to the GO surface,
which ultimately result in the changes of cell spreading,
morphology and proliferation [14-16].

Several studies have reported the application of two-
dimensional materials including graphene and its deriva-
tives for productive differentiation of stem cells into
desired lineages. Particularly, graphene oxide micropat-
terns, graphene nanopatterns, graphene, and nanomater-
ials hybrid platforms have been reported to promote the
differentiation of hMSCs into osteocytes, adipocytes, and
chondrocytes [17-22]. This is also attributed to unique
surface properties such as absorption/repulsion of spe-
cific differentiation factors, and the enhancement of cell
adhesion through interactions between the cell mem-
brane and the surface of the carbon materials [23, 24].
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On the other hand, other nanomaterials have been
tested for drug delivery and other stem cell therapeutic
applications [25-27]. Their particle size, large surface
area, and an ability to translocate into cells have shown
promising prospects in noble biomedical utilizations
[28-30]. Gold nanoparticles (AuNPs), a representative
material in biomedical research, are best known for rela-
tively low cytotoxicity, biocompatibility, and versatility
on surface modification [31-33]. Moreover, efforts have
been made to apply three-dimensional structures to cell
culture experiments [34—36]. Henceforth, this study fo-
cuses on the following three categories: (i) controlling
the hMSCs using carbon-based materials, (ii) differenti-
ation of hMSCs through nanomaterials, and (iii) effects
of bionano platform on cell behaviors. We have narrowed
our focus to bionano hybrid platform to two-dimensional
materials, AuNPs, RGD peptide (arginyl-glycyl-aspartic
acid), and silica nanoparticles, all of which are known to
be good for cell adhesion. (Fig. 1).

Main text

Mesenchymal stem cells behaviors on two-dimensional
materials

hMSCs have been shown as a promising source for stem
cell therapies and regenerative medicine due to their
ability to self-renew and differentiate toward various
types of cells, such as osteocytes, adipocytes, and chon-
drocytes [37-40]. In addition, they can be easily isolated
from the bone marrow, fat, and umbilical cord, and suc-
cessfully expanded in vitro [41, 42]. However, several
carbon-based materials have been lauded as versatile
tools for establishing the future generation of biomate-
rials [43-45]. Although each carbon-based material,
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such as fullerene, carbon nanotubes, and graphene, pre-
sents its own advantages and disadvantages, graphene
and its derivatives in particular have been used to guide
the behavior of hMSCs [21, 46—48]. Graphene has sev-
eral features that are advantageous for biomedical appli-
cations, owing to unique physiochemical properties,
from its surface chemistry, amphiphilicity, and specific
carbon structures [49]. Subsequently, graphene and GO,
once fully exploited, would drastically influence the
spreading, morphology, and proliferation of stem cells,
and become prospects for osteogenic differentiation of
hMSCs [50, 51].

Generally, carbon-based materials are prepared by
chemical vapor deposition (CVD), which ensures high
quality and high volume production, before being
transferred to a variety of substrates [24, 52]. For in-
stance, graphene is usually functionalized in order to
enhance the bioactivity of hybrid composite before
being used as a surface coating on biomaterial sub-
strates [53]. Many researches have reported that gra-
phene has the ability to guide osteogenic
differentiation of hMSCs. For example, Nayak et al.
found that graphene induces osteogenic differentiation
when cultured without BMP-2, a common growth fac-
tor in bone formation [11] (Fig. 2). The stark differ-
ence in alizarin red s (ARS) data between Fig. 2b and
¢ show that calcification in graphene is higher even
in the absence of BMP-2, and Fig. 2e-h show that
osteogenesis differs depending on the presence or ab-
sence of graphene and BMP-2.
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On the other hand, Lee et al. [4] discovered that the
binding ability of graphene with several osteogenic dif-
ferentiation factors could enhance the differentiation of
hMSCs into the osteogenic lineage. They conducted an
experiment wherein they cultured hMSCs on the CVD
graphene. Several osteogenic differentiation factors, such
as dexamethasone, ascorbic acid, and -glycerophosphate,
were used in the culturing process. The result showed that
graphene had the ability to promote osteogenesis of
hMSCs within 12 days, which was 9 days shorter than the
prior studies. It indicates that osteogenesis in the presence
of graphene could be achieved earlier than with conven-
tional substrates.

In addition, Suhito et al. compared the osteogenic dif-
ferentiation of hMSCs on graphene oxide and other
graphene-like 2D materials such as molybdenum sulfide
(MoS,), tungsten sulfide (WS,), and boron nitride (BN)
[54]. Figure 3 visualizes osteogenic and adipogenic dif-
ferentiation in hMSCs using the 2D materials mentioned
above. As shown in Fig. 3 (a), (c), and (d), the osteogenic
differentiation was confirmed on each substrate, and
most of the hMSCs grown on each substrate were
fully differentiated. However, the results from optical
microscopy, ARS, and qPCR showed that the best dif-
ferentiation rate was obtained at the GO concentra-
tion of 50 pg/mL.

Figure 3 (b) and (e), represent the oil red O (ORO)
staining, which stains lipids when hMSCs are differenti-
ated into adipocytes, demonstrating the adipogenetic cap-
acity of hMSCs. Upon quantification, it was confirmed
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Fig. 2 Enhancement of osteogenic differentiation on graphene substrates with/without BMP-2. (a) Optical image of graphene-coated Si/SiO, substrate.
The boundary is shown for the graphene-coated part. (b) Osteocalcin (OCN) staining, a marker of osteogenic differentiation. Green = OCN, Blue = DAPI.
(¢, d) Alizarin Red S (ARS) quantification graphs during 15 days on substrates with/without graphene. (e-h) polyethylene terephthalate (PET) substrate stained
with ARS, showing calcium deposits due to osteogenic differentiation. Reprinted with permission from [11]. Copyright (2011) American Chemical Society
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that the rate of adipogenesis in other substances was
much higher than that in GO. Moreover, Fig. 3 (f) shows
that the gene expression level of the hMSCs grown on BN
substrates was the highest among the test substrates.

In addition, it is also known that graphene oxide
nanoribbon (GONR) and reduced graphene oxide
nanoribbon (rGONR) grids influence the osteogenic
differentiation and proliferation of hMSCs, regardless
of the presence or absence of differentiation inducing
factors [18].

When osteogenic factors were present, the fastest
osteogenic differentiation of hMSCs in rGONR grids
was found to occur in about 7 days. The rapid osteo-
genic differentiation in rGONR was thought to be due
to the high adsorption of differentiation inducing

substances by rGONR and the physical properties in-
duced by the surface characteristics of the nanogrids.

Moreover, many studies have confirmed the effects
of graphene on the differentiation of other stem cells
as well as hMSCs. For example, Chen et al. [55] re-
ported the biocompatibility of G and GO toward
long-term culture of induced pluripotent stem cells
(iPSCs). Interestingly, iPSCs cultured on G and GO
showed imbalance in differentiation tendencies. Espe-
cially, in the endodermal lineages, G interrupted
spontaneous differentiation. On the other hand, GO
promotes the differentiation of iPSCs most promin-
ently along the ectodermal pathway, but differenti-
ation into ectoderm and mesodermal is similar to
iPSC incubated in both G and GO.
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Consequently, it was found that graphene, GO, and
other two-dimensional materials with their unique chem-
ical and physical characteristics, enhance and guide the
osteogenic or adipogenic differentiation of hADMSCs. In
addition, we could confirm that 2D materials have various
effects on the differentiation of hMSCs as well as other
types of stem cells. This demonstrated that carbon-based
materials were potential materials not only for regenera-
tive medicine but also for the biomedical fields.

The effect of gold nanoparticles (AuNPs) on hMSCs growth
and differentiation

Another type of nanomaterial with broad potential in
biomedical application is gold nanoparticles (AuNPs). As
mentioned already, AuNPs have been proposed as an at-
tractive material for regenerative medicine, owing to
their favorable physical properties, including biocom-
patibility arising from their low cytotoxicity, and abun-
dant control over the particle size [56—58]. Numerous
studies have investigated their application in biomedical
fields such as biological imaging, chemical sensing, drug
carriers, and disease treatments [59-63]. Most import-
antly, the negative charge on the surface of AuNPs
makes gold nanoparticles more easily modifiable than
the other NPs, such that the AuNPs can be functional-
ized by a wide range of biomolecules, drugs, DNA, anti-
bodies, and functional peptides/polymers for favorable
biomedical research and therapy [64].

Previously, AuNPs, functionalized with polymers such
as chitosan-conjugated AuNPs, were developed to
achieve advanced differentiation of human mesenchymal
Stem Cells (hMSCs) [65]. Chitosan, a type of aminated
polysaccharide that has been utilized in bone tissue en-
gineering, shows similarity to glycosaminoglycan, which
plays an important role in extracellular matrix (ECM)
interaction during cell adhesion. Moreover, further in-
vestigation discovered that chitosan polymers can pro-
mote osteogenic differentiation through Wnt/p-catenin
signaling pathway [66, 67]. However, AuNPs themselves
have been found to promote osteogenic differentiation
of hMSCs by their stimulation through protein kinase
38 (p38) mitogen-activated protein kinase (MAPK) path-
way. The difference in charge and the moiety of AuNPs
have been shown to induce a series of cell responses to-
wards osteogenesis [33]. Hence, Yi et al. studied the use
of AuNPs as a novel biomaterial to enhance the osteo-
genic differentiation of hMSCs and the associated mo-
lecular mechanisms [33].

Figure 4 illustrates the role of AuNPs in terms of gene
regulation through osteogenesis of hMSCs. The AuNPs
would attach to the hMSC membrane and bind to pro-
teins in the cytoplasm. This is followed by internaliza-
tion via endocytosis, which induces mechanical stress in
the cell. It has been revealed that several signaling
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molecules play an important role in signal transduction.
A hypothesis stated that AuNPs may serve as mechan-
ical stimulator for hMSCs in terms of the activation of
MAPK signaling pathway in the cells, thus, inducing
their preferential differentiation. The stimulation of p38
MAPK signaling mechanism leads to an up-regulation of
transcription factors that are related to osteogenic differ-
entiation, such as RUNX2. It then subsequently triggers
several marker genes for osteogenesis, such as Col I and
BMP-2 at the early stages, and ALP and OCN at the
later stages of differentiation. According to other type of
hMSC differentiation such as adipogenesis, the activa-
tion of p38 MAPK pathway delivers to the down-
regulation of adipogenic marker genes, e.g., PPARy and
C/EBPa [68, 69]. Therefore, AuNPs could inhibit the
adipogenic differentiation of hMSCs.

Based on the results shown in Fig. 5a, the assessment
of ALP activity from hMSCs cultured on 7, 10, and
14 days effectively demonstrates the effect of AuNPs to-
ward osteogenesis. These data represent the increase in
ALP activity due to stronger promotion of osteogenic
differentiation of hMSCs followed by the increase in
AuNP concentration, especially on day 14. In addition,
ARS staining assay was performed to account for the
mineralization in osteoblasts. In Fig. 5b, the AuNPs
showed similar promotive effects on mineral formation
in hMSCs. The ARS quantitative data referring to the
mineralized-nodules in osteoblasts upon AuNPs treat-
ment was significantly increased in a dose- and time-
dependent manner. At day 21, the mineralization in the
presence of 1 nM AuNPs was 45% higher than those of
other groups (see Fig. 5b) [33].

Therefore, it can be concluded that AuNP surface
functionalization with biomolecules is an effective strat-
egy to enhance stem cell growth and differentiation. Al-
though the use of AuNPs is highly promising in the field
of stem cells for regenerative and therapy, further studies
are needed to examine and develop the compatibility of
various molecules in terms of nanoparticles conjugation
for biological research.

Controlling differentiation of hMSCs using modified 3D
graphene-based platform

In terms of controlling the differentiation of hMSCs,
various attempts have been made using a modified
platform. Especially, a platform that modified three-
dimensional (3D) graphene-based substrates has been
currently in spotlight due to its similarity with the 3D
microenvironment ECM in human body [70-75]. It has
been shown that the transport behaviors of cytokines,
chemokines, and growth factors are significantly differ-
ent in 2D and 3D microenvironments, which would con-
sequently influence signaling transduction, cell-cell
communications, and tissue development [9, 76—80]. To
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Fig. 4 lllustration showing molecular mechanism of the modulation of osteogenic differentiation of hMSCs by AuNPs through p38 MAPK signaling
pathway. Reprinted with permission from [29]. Copyright 2017 American Chemical Society
.

n|
Col

address these issues, we highlighted the various develop-
ments that have been made to differentiate the hMSCs
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properties of graphene mentioned above (see Table 1).
First of all, 3D graphene foams (GFs) were utilized as an
hMSCs cultivation substrate [81]. It is known that 2D
graphene sheets can accelerate the differentiation of
hMSCs in presence of osteogenesis induction media
[11, 24]. Crowder et al. hypothesized that a 3D GF would
accelerate differentiation of hMSCs more effectively than

a 2D graphene sheet. Based on previous studies, 3D GFs
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battery technology and electrochemical sensing [82, 83].
However, the authors investigated that 3D GFs are capable
of being used as novel culture substrates for cell growth
and inducing spontaneous osteogenic differentiation of
hMSCs. Figure 6a-c show SEM images of hMSCs cultured
on GFs for 4 days. Interestingly, the protrusion of the cells
spread across large pores in the GF and interact with the
GF surface. We discovered that the 3D GFs were highly

01
Concentration (nM)

Fig. 5 The effects of gold nanoparticles (AuNPs) on osteogenesis of human mesenchymal stem cells (hMSCs). (a) Effects of AuNPs on the ALP
activity of hMSCs. Results are mean + SD of triplicate experiments: (¥) p < 0.01. (b) Effects of AuNPs on the mineralized nodule formation of hMSCs.
Mineralization quantitated by elution of Alizarin Red S from stained mineral deposits. Results are mean + SD of triplicate experiments: (*) p < 0.05,
(**) p<0.01. NaF at T uM used as a positive control for both experimental data. Reprinted with permission from [29]. Copyright 2017

A
70000 +
60000
-
40000 4
i
20000 +
Yo
04
American Chemical Society




Kang et al. Biomaterials Research (2018) 22:10 Page 7 of 12
Table 1 Summary of studies using 3D graphene-based substrate for differentiation of MSCs
3D platform Type of carbon-based material Type of cells Outcomes Reference
GFs Graphene foam hBMMSCs GFs promoted osteogenic differentiation without [81]
the use of chemical inducers.
rGO-Collagen Reduced Graphene Oxide rBMMSCs PADM-rGO promoted the differentiation of MSCs [102]
hybrid (PADM-rGO) into neural cells after 7 days under neural
differentiation condition.
GC Graphene hBMMSCs The graphene / calcium silicate (GC) composite [94]
coating promoted adhesion and osteogenic
differentiation of hMSCs and greatly increased the
expression of genes involved in differentiation
HAp Reduced Graphene Oxide hMSCs rGO - coated HA not only significantly enhanced [51]
osteogenic differentiation capacity of hMSC in
osteogenic medium, but also significantly increased
differentiation ability in basal medium.
GO-PEDOT Reduced Graphene Oxide hBMMSCs GO-PEDOT controlled osteogenic differentiation [99]

of hMSCs through electrical stimulation.

hBMMSC human bone-marrow mesenchymal stem cell, GF graphene foam, GC graphene/calcium silicate, HAp hydroxlyapatite, PEDOT poly (3, 4-ethylenedioxyphene)

porous, with individual pore sizes exceeding 100 mm, and
that the hMSCs had sensed and spanned across the pores.
In Fig. 6d, hMSCs morphology seems significantly differ-
ent on GFs compared with the tissue culture polystyrene
(TCPS). As the GFs have a highly porous 3D structure, as
shown in Fig. 6e, the attachment of hMSCs cultured in
GF was observed to be much lower than that on TCPS.
However, the cells were spontaneously stimulated into
osteogenic differentiation (Fig. 6f), even though the cell
culture media did not contain osteogenetic inducers. In

addition, due to the physical properties of GFs, such as
flexibility and conductivity [84, 85], GFs have been studied
for effective proliferation and differentiation of human
neural stem cells (hNSCs) in the presence of electrical
stimulation [86]. Akhavan et al. discovered that hNSCs,
grown on the GF with electrical stimulation, resulted in a
much higher rate of proliferation and accelerated differen-
tiation into neurons.

Guo et al. suggested a novel 3D scaffold for neural dif-
ferentiation of hMSCs. They used a 3D porcine acellular
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Fig. 6 The effects of 3D graphene foams (GFs) on the adhesion and osteogenic differentiation of human mesenchymal stem cells (hnMSCs). (a - ¢)
The SEM images of hMSCs cultured on 3D GFs for 4 days. The yellow arrows represent formed protrusions up to 100 mm in length that extended
from small cell bodies (black arrows). (d) Immunofluorescence images of hMSCs cultured on TCPS and 3D GFs for 7 days. (e) The average cell number
was quantified from Fig. 6d. (f) Immunofluorescence images stained with osteogenic markers, Osteocalcin and Osteopontin, for hMSCs cultured on
TCPS and GF for 7 days. Scale bar = 50 um. Copyright © 2013, Royal Society of Chemistry
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dermal matrix (PADM), mostly comprised of collagen I
as a base scaffold, and assembled a layer of reduced gra-
phene oxide (rGO). The fabricated PADM-rGO demon-
strated an effective electrical conductivity and a typical
porous structure (pores ranging from 50 to 150 pm in
size). The hMSCs were then cultured on PADM and
PADM-rGO for 24 h and underwent live/dead cellular
staining. The cells maintained the archetypal spindle
shape of hMSCs as seen in Fig. 7A a-f [9, 87, 88]. After
3 days of cultivation on each scaffold, the immunofluor-
escence images indicated that the density of cells on
PADM-rGO was slightly higher than that of the cells on
PADM (Fig. 7A g-i). As shown in Fig. 7B, the neural spe-
cific gene expression of cultured hMSCs for 7 days dem-
onstrated that PADM-rGO accelerated the differentiation
of hMSCs into neural cells.

Among numerous candidates, it has been previously
studied that composite coating with HA/CNTs
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presented higher durability and longer maintenance
period than the conventional HA coating [89-91]. In
this regard, graphene has received substantial attention,
which is composed of the same material as CNTs [92],
but has a higher surface area, thermal conductivity, and
flexibility. It is also well known for its high biocompatibil-
ity and harmlessness, which is considered to be important
for grafting [93]. In this regards, Xie et al. studied
graphene-reinforced calcium silicate coating (GC) tech-
nique, which was found be effective to generate a hier-
archical nano—/microstructured surface [94]. The hMSCs
were cultured on the GC. As a result, the wear resistance
was increased compared with the conventional CS coat-
ing, and the adhesion and proliferation of hMSCs in vitro
were enhanced when the GC coating was applied. In
addition, it was confirmed that gene expression related to
osteogenesis, alkaline phosphatase (ALP), osteocalcin
(OC), and osteopontin (OPN), was increased. In addition,
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Fig. 7 The effects of 3D porcine acellular dermal matrix (PADM) and PADM-reduced graphene oxide (PADM-rGO) on the adhesion and neuronal
differentiation of human mesenchymal stem cells (hnMSCs). (a) The cytocompatibilities of the two different scaffolds. The hMSCs were cultured on
the PADM (a, b, ¢) and PADM-rGO (d, e, f) for 24 h, Live/dead staining was performed. The live cells are stained green, and dead cells are red.
CLSM fluorescence morphologies of the actin cytoskeleton of the hMSCs cultured on the PADM (g) and PADM-rGO (i) scaffolds for 3 days. (h - j)
SEM images represent the cell attachment of hMSCs after 3 days on the PADM and PADM-rGO. (b) Quantification of gPCR analysis for neural marker
genes; Nestin, Tuj1, GFAP, and MAP2, expression of hMSCs. Copyright © 2015, Royal Society of Chemistry
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rGO exhibits exceptional properties, similar to properties
of graphene, as mentioned above. In addition, it has been
recently shown by many researchers that graphene has
the potential to guide osteogenesis of hMSCs [4, 11].
Hydroxylapatite (HA), in the form of microparticles,
forms a three-dimensional environment to enhance
cell adhesion and proliferation [95]. By employing the
advantages of these two materials, the authors de-
veloped rGO coated HA. Moreover, they demon-
strated the enhancement of osteogenic differentiation
of hMSCs when incubated in basal medium without
any osteo-inductive molecules [51]. In addition, the
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osteogenic activity of cells was further improved in
osteogenic medium. The researchers assumed that the
initial exposure of rGO-coated HA to cells facilitated
intracellular signaling via a more intricate pathway.
However, further research is required to explore the
actual mechanism.

While scientists have traditionally relied on physical or
chemical methods to examine biological entities, certain
biological information (gene expression, differentiation,
proliferation) can be obtained and monitored using elec-
trical stimulation [96—98]. Hsiao et al. designed a novel
3D cell culture electrode with multifunctional graphene-

_____ I
Pevon) PR TR 1LYy
i S ot i
i Sascset @%% - .
- .- Photoresist
- ~. / ITO Glass
| 1ITO Glass | | 1ITO Glass | 0,00 Nt
0 Na*
Oxygen Plasma PEDOT:DEX materials HO “%:;
L A A J l M
1 ] -
| 1TO Glass | 1TO Glass DEX
g J
Device 1 i Device 2 Device 3
PLL-g-PEG
PEDOT:DEX PEDOT:PSS J ! |
|4=r_=cl ne s @ﬁl : e e
ITOGlass _1 ITO Glass ITO Glass
B rGO-PEDOT-100

rGO-PEDOT-50 rGO-PEDOT-20

w/ ES for DEX
drug releasing

ITO glass (I11)
[ PEDOT:PSS T i rGO
O DEXdrug @ PLLg-PEG

Fig. 8 The osteogenic differentiation of human mesenchymal stem cells (hnMSCs) induced by electrical release of differentiation factor, dexamethasone
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in hMSCs cultured on various sizes of rGO-PEDOT (rGO-PEDOT-20, rGO-PEDOT-50, and rGO-PEDOT-100). (c) Schematic representation for rGO-PEDOT
behavior. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. kGaA, Weinheim
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PEDOT microelectrode and successfully controlled the
osteogenic differentiation of hBMMSCs through elec-
trical stimulation [99]. Materials used in this platform
were electrically conductive indium tin oxide (ITO) glass
and poly (3, 4-ethylenedioxyphene) (PEDOT) [100]. In
addition, they used reduced graphene oxide (rGO),
which is known to promote differentiation of hMSCs, to
promote cell adhesion [95]. As a result, the researchers
created the platform illustrated in Fig. 8a. The PEDOT
pattern containing dexamethasone 21-phosphate diso-
dium (DEX), which is one of differentiation inducers re-
quired for hMSC osteogenesis, and the hMSC aligned
between them are cultured under the influence of the
rGO. Subsequently, the PEDOT released the DEX only
when an electric stimulation was provided (Fig. 8b).
Therefore, Hsiao’s platform is shown to easily control
the differentiation of hMSCs using only the electrical
stimulation.

Conclusively, we have highlighted several 3D graphene-
based platforms as a substrate for differentiation of
hMSCs in this Review. The biocompatibility of these
modified 3D scaffolds could be widely utilized for tis-
sue engineering applications such as bone regener-
ation therapy.

Conclusion

In this review, we focused on several studies that used
various nanohybrid materials for biomedical applications,
with a particular focus on the use of two-dimensional ma-
terials, gold nanoparticles, and three-dimensional gra-
phene composites [101].

Some of the prior reports have confirmed that two-
dimensional materials and nanomaterials in combination
with biological materials (e.g., growth factors, peptide,
and proteins) enhance a number of cellular behaviors in-
cluding cell adhesion, proliferation, migration and differ-
entiation. Interestingly, these materials were especially
excellent in performing as an attracting signal, not just
for the osteogenesis of hMSCs but also for the enhance-
ment of bone regeneration process.

In addition, three-dimensional carbon nanomaterials
also have been utilized as the platform to support stem
cell growth and differentiation. Unlike the two-
dimensional platforms, which turned out to be suitable
for controlling stem cells functions/behaviors in vitro,
the three-dimensional carbon nanomaterials were found
to be excellent in constructing 3D in vivo-like conditions
ex vivo. Such approaches were useful to mimic struc-
tures of human tissues/organs, which is critical for the
development of a new types of in vitro drug-screening
tool such as organ-on-a-chip, as well as to develop
tissue-biomaterial composites for the transplantation
purpose. Although the use of bionano platforms for
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tissue regeneration is still in its early stages of devel-
opment, certain biochemical and physical properties
of those platforms, which includes tunable physical
sizes, shapes, surface hydrophilicity, functional groups,
entail a promising future for its development in bio-
medical fields, especially for the stem cell-based re-
generative therapies.
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