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Abstract

We introduce our active experts’ communications and reviews (Part II) of 2015 Korea-China Joint Symposium on
Biomimetic Medical Materials in Republic of Korea, which reflect their perspectives on current research trends of
biomimetic medical materials for tissue regeneration in both Korea and China. The communications covered three
topics of biomimetics, i.e., 1) hydrogel for therapeutics and extracellular matrix environments, 2) design of electrical
polymers for communications between electrical sources and biological systems and 3) design of biomaterials for
nerve tissue engineering. The reviews in the Part II will cover biomimetics of 3D bioprinting materials, surface
modifications, nano/micro-technology as well as clinical aspects of biomaterials for cartilage.

Introduction
An invitation-based, bilateral symposium on biomimetic
medical materials was held from October 22 to 26 in
Seoul, Korea, towards building strong relationships
among established leaders and emerging young scientists
in Korea and China. Numerous breakthrough achieve-
ments in biomedical materials and nano-biotechnology
research on regenerative medicine have been made in
the two countries throughout successful series of the
previous Korea-China Joint Symposium on Biomaterials
and Nano-biotechnology pioneered by professors Inseop
Lee in Yonsei University of Korea and Fu-Zhai Cui in
Tsinghua University of China over more than 10 years.
Biomaterials science and technology have recently

evolved into a new stage of tissue engineering research
through the modeling of characteristics of the extracellu-
lar matrix (ECM) of defect tissues as well as the ad-
vancement of new fabrication methods of 3D bio-
printings of functional biomaterials. The symposium fo-
cused on recent scientific progress on biomimetics and
regenerative medical materials for tissue engineering,

particularly bone, cartilage and nerve, and provided a
platform for the academic cooperation between Korea
and China.
During the discussion session about two countries’ sci-

entific collaboration led by key scientists, diverse issues
were mainly discussed on how to upgrade our scientific
relationship of this new research area. Other topics also
raised how to contribute to improve the relationships
among the National Research Foundation (NRF) of
Korea and the National Natural Science Foundation of
China (NSFC), Korean Society for Biomaterials (KSBM)
and Chinese Society for Biomaterials (CSBM) and how
to improve partnerships in research and industrial
aspects.
The key members of both Korean and Chinese Soci-

eties for Biomaterials agreed on holding a biannual ex-
change forum of young scientists during each society’s
annual meeting. The first forum was held on November
20, 2015 in Hainan, China, and the second one is sched-
uled to be held in Korea in 2016.
Herein, we introduce our active experts’ communica-

tions and reviews, which reflect their perspectives on
current research trends of biomimetic medical materials
for tissue regeneration. The communications covered
three topics of biomimetics, i.e., 1) hydrogel for thera-
peutics and extracellular matrix environments, 2) design
of electrical polymers for communications between
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electrical sources and biological systems and 3) design of
biomaterials for nerve tissue engineering. The reviews
will cover biomimetics of 3D bioprinting materials, sur-
face modifications, nano/micro-technology as well as
clinical aspects of biomaterials for cartilage.

Biomimetic medical materials trends: polymeric
hydrogels
Polymeric hydrogels have received substantial attentions
in various biomedical applications due to their structural
similarities to the native extracellular matrix (ECM) as
well as multi-tunable properties. Up to date, various
kinds of polymeric hydrogels have been developed
through physical- or chemical-cross linking mechanisms,
which can be applied as either therapeutic implants or
therapeutic vehicles for controlled drug delivery and tissue
regeneration [1]. Specifically, the engineered polymeric
hydrogels have been widely used either as therapeutic de-
livery carriers that facilitate tissue regeneration and repair
or as an artificial extracellular microenvironment that sup-
port 3D cells or organs growth [2, 3]. Here, we briefly dis-
cuss the emerging trends in polymeric hydrogel materials
for biomedical research fields.

Therapeutic vehicles
In the past decade, polymeric hydrogels have been used
as a carrier to deliver therapeutic agents (e.g., growth
factors, cells or other bioactive molecules) for tissue re-
generation [4]. Recently, researchers have focused on de-
veloping advanced hydrogel materials that allow much
finer control over the spatial and temporal delivery of
the therapeutic agents to improve the therapeutic effi-
cacy. These engineered hydrogel materials can play a
role not only as delivery vesicles for the therapeutic
agents, but also to direct stimulate tissue regeneration
and repair through physicochemical interactions be-
tween the materials and the host tissues. Park and his
colleagues have developed a micro/nanogel composed of
in situ crosslinkable gelatin-based microgel and self-
assembled heparin-based nanogels, which can serve as
an injectable growth factor delivery carrier for the urethral
muscle regeneration [5]. Interestingly, they noticed that
incorporating a growth factor -encapsulated heparin-
nanogels into a gelatin matrix allowed the hydrogel com-
posites to release the therapeutic agent continuously up to
4 weeks, resulting in enhanced urethral muscle regener-
ation and recovery of their biological function. More
recently, Park and Gerecht have developed hypoxia-
inducible hydrogels that can provide artificial hypoxic
microenvironment when injected into the body, showing
facilitating vascular tissue regeneration and tissue aug-
mentation [6]. These innovative approaches have consid-
erable values, and therefore hold great potential for tissue
regenerative medicine.

Artificial extracellular microenvironments
Recently, many researchers are interested in utilizing the
artificial extracellular microenvironment using bio-
mimetic hydrogel materials to support cell growth. These
engineered cellular microenvironments are created by tai-
loring the polymeric backbone with cellular response mol-
ecules (e.g., cell adhesion peptides or proteolytic-cleavable
peptides), which are critical for supporting 3D cell growth
[7]. In addition, it is well known that the native cellular
microenvironment contains spatial-gradients in various
physicochemical properties, including matrix proteins,
oxygen gradients, mechanical strength, and microstruc-
ture properties [8, 9]. Combining these parameters, the
synthetic microenvironments have been utilized either to
create three dimensional tissue constructs for tissue re-
generation or to generate engineered disease models (e.g.,
engineered tumor, vascular, skin, and liver models) for a
better understanding of basic cellular/molecular biology
and clinical outcomes. More recently, the engineered tis-
sue constructs have been designed by a combination of
polymeric hydrogels with micro-/nano-fabrication tech-
niques (e.g., microfluidics and 3D printing) to more accur-
ately recapitulate the complexity of the native cellular
environments [10–12].

Biomimetic medical materials trends: design of
electrical polymers for biomimetics
Tissues and cells in our body are strongly affected by
electrical signals, such as electrical field and current, and
at the same time utilize electrical signals as important
factors that control physiological conditions [13]. For ex-
ample, embryonic body development and tissue regener-
ation are known to involve electrical signals [14]. The
simple examples include electrically excitable cells, such
as neurons, cardiomyocytes, myoblasts, utilize electrical
signals for the inherent functions [15]. Surprisingly, re-
cent studies have revealed that other types of cells, such
as stem cells, also respond to electrical stimulation and
exhibit various cell behaviors [16]. Accordingly, there
have been growing attentions to an effective way to de-
liver or record electrical signals to or from biological
systems. To effectively mediate electrical signals between
electrical sources (e.g., electrodes) and biological sys-
tems, materials that possess good electrical conductivity
are required. Various conductive materials, including
metals, metal oxides, carbon nanomaterials, and con-
ductive polymers, have been extensively utilized to con-
struct conductive interfaces. Among them, electrically
conductive materials, polypyrrole (PPy), polythiophene
(PT), and PEDOT, are conductive organic materials [17].
Compared to other conductive materials, these conduct-
ive polymers offer some important advantages, such as
biocompatibility, ease in modification, lower rigidity, and
redox activity. Consequently, these conductive polymers
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have been widely used as a whole materials or compo-
nents in tissue scaffolds, sensors, biolectrodes, and so
forth.
Native tissue and its environments are highly orga-

nized and their properties are harmonized to permit
cues modulating biological activities. Depending on the
physiological and pathological states, native environ-
ments actively respond and dynamically change their
composition, structures, and bioactivities [18]. There-
fore, profound effects have been made to incorporate
the properties of the native environments such as ECM
into biomaterials to create ‘artificial’ environments, of
which strategy is known as ‘biomimetics’. Likewise, elec-
trically conductive polymers can be tailored to delivery
additional cues that the native tissues present. This ap-
proach will benefit the production of effective materials
for a wide range of applications, such as regenerative
medicine and long-term biocompatibility of the im-
plants. In addition to electrical activity, important factors
to be considered in fabricating biomimetic conductive
biomaterials include mechanical rigidity, structures, and
bioactivities. Note that biomimetic conductive materials
should be designed and fabricated to achieve the best re-
sponses depending on the target biological system.
First, in comparison with the rigidity of conductive

polymers (> MPa), the most tissues are softness with a
few Pa (brain tissues) to kPa except bone [19]. This
mechanical mismatch not only causes poor direction of
cellular responses but also inflammatory tissue reactions
[20]. For example, cells and tissues, especially stem cells,
generally exhibit the fast and specified growth and differ-
entiation when cultured with the materials present simi-
lar mechanical properties to the native tissues [21].
Hence, this indicates the needs of developing softer and
flexible conductive materials. To this end, composite hy-
brid materials were fabricated by mixing or growing
conductive polymers with elastic materials or hydrogels.
Interestingly, conductive hydrogels can mimic the mech-
anical softness of the native soft tissues by presenting
tens of kPa of Young’s modulus [22]. Yet, lowering the
rigidity accompanies the impairment of electrical con-
ductivities, which has to be overcome in the future
studies. Still, since some biomedical applications need
small currents, the conductive hydrogels will be useful.
Another important property is a structure, which can

serve as biomimetic features of extracellular matrices in-
cluding porosity, nano-/micro-structures, and orientation
[23]. Advances in technologies enable the fabrication of
such structurally effective conductive materials, which
allow for the production of biologically important subcel-
lular scaled features. For example, electron beam litho-
graphic patterns of PPy could facilitate the polarization of
embryonic hippocampal neurons [24]. Also, various fi-
brous structures of conductive polymers could be

obtained by direct electrospinning, phase separation, and
nano-coating of nanofibrous mats [25]. Interestingly, re-
cent studies done by Hardy et al. demonstrated the en-
hanced osteogenesis of human mesenchymal stem cells
cultured on PPy-silk nanofibers by electrical stimulation
[26], suggesting the cooperative or additive roles of topo-
graphical cues and electrical cues as biomimetic functional
materials. Likewise, a variety of conductive nanofibers
have been produced for different types of cells.
Lastly, various biological active molecules are to be

immobilized in/or conductive polymers by physical or
chemical fashions. Since the effect interactions are often
mediated by receptor-ligand binding, it will be critical to
fabricate biologically active conductive materials by immo-
bilizing ECM proteins, polysaccharides, and growth factors.
In particular, anioinic proteins and mucopolysaccharides
can be doped into oxidized conductive polymers, which
can be easily produced during polymerization processes of
conductive polymers [27]. Covalent immobilization of
ECM proteins and growth factors enables prolonged inter-
actions with cells without substantial consumption and sig-
nal regulation via binding with integrins and tyrosine
kinase receptors, respectively. These signaling pathways fi-
nally affect gene expression levels of various genes related
with proliferation, survival, and differentiation. For ex-
ample, nerve growth factor immobilization onto conductive
polymers have been attempted to enhance neural cell differ-
entiation [28]. Interestingly, growth factors and electrical
stimulation through conductive scaffolds could act together
to induce the neurite formation and elongation. In addition,
various ECM-derived peptides (e.g., Arg-Gly-Asp) were also
incorporated into conductive polymer scaffolds to better
mimic the native ECM, which could support attachment,
growth and differentiation of various cells, such as neural
cells [29], endothelial cells [30], cardiac cells [31], and
fibroblasts [32]. For example, cell membrane mimicking
conductive polymer having IKVAV (Ile-Lys-Val-Ala-Val)
peptide and phosphorylcholine promoted neurite out-
growth and protein secretion on neural cells [33].
In summary, biomimetic conductive polymers can

offer great promise to actively modulate biological sys-
tems. Still, better mimicry of characteristics of the target
tissues and their demonstration will be desirable. High
performance conductive polymer-based biomaterials will
be greatly beneficial for applications of tissue engineer-
ing, drug delivery, and biocompatible bioelectrodes.

Biomimetic medical materials trends: design of
biomaterials for nerve tissue engineering
The design of optimal biomaterials for regenerating in-
jured human tissues and organs plays a crucial role in
tissue engineering and regenerative medicine, especially
for highly complex nerve system [33, 34]. Biomimetics, a
science of mimicking natural phenomena of a biological
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system in terms of its composition, structure and func-
tion as a model for engineering new materials and sys-
tems, has been a promising strategy for inspiring the
design and fabrication of novel biomaterials for tissue
engineering and regenerative medicine. From the view-
point of biomimetics, new generation of biomaterials
should serve as not only structural support, but also arti-
ficial microenvironments that mimic the natural stem
cell niches to deliver stem-cell-regulatory signals to pur-
posefully stimulate specific cellular responses at the mo-
lecular level for mediating the regeneration of living
tissues with full restoration of normal structure and
function [33–35]. Biomaterial properties, such as the
material architecture, mechanical properties, surface
topographies, chemical properties, and biological ligands
have been widely proven to exert influences as regula-
tory cues on stem-cell fate both in vivo and in vitro.
Previous studies indicate that biophysical properties of

biomaterials are very important design parameters in
preparing artificial regenerative niche for nerve regener-
ation. For example, the stiffness/elasticity of the under-
lying substrate could direct stem cell fate and even
regulate their lineage differentiation [36, 37]. Adult
neural stem cells exhibited promoted neuronal differen-
tiation on soft substrates (100–500 Pa), while stiffer sub-
strates (1,000–10,000 Pa) led to glial differentiation.
Besides, it has been suggested that mesenchymal stem
cells (MSCs) fate can also be directed by matrix elasticity
of 0.1 ~ 1 kPa toward neural differentiation. Therefore,
the biomaterials designed for neural tissue regeneration
should have lower stiffness to mimic the soft ECM of
the neural tissue, which has positive effects on spontan-
eous neural differentiationof endogenous and/or exogen-
ous stem cells. Furthermore, it has been widely accepted
that aligned microstructures of biomaterials are of vital
importance in nerve tissue engineering based on bio-
mimetic ideas. Natural nerve tissues, not like most of
other living tissues, have hierarchically oriented structures
from a single neural axon to nerve fibers that are closely
related to the directional transmission of nerve impulses.
Previous studies have shown that the aligned structure
was extensively identified in designing nerve conduits due
to their ability of promoting alignment and elongation in
regenerating axons, and regulating preferential neural dif-
ferentiation of stem cells [38–40]. Beyond that, aligned fi-
brous structures provided a topographical cue to stimulate
the elongation and enhanced neuronal differentiation of
both adult neural stem cells [41] and MSCs [42] compared
to random fibers. However, most of the previous studies
applied 2-dimensional (2D) aligned fibrous membranes or
meshes in cell culture that actually have a prominent dif-
ference on the stiffness of nerve tissues. Therefore, a suit-
able biomaterial for nerve regeneration should be soft
with lower elasticity resembled natural neural matrix, and

at the same time has 3-dimensional (3D) aligned
structures.
In our study, a hierarchically aligned fibrillar fibrin

hydrogel that was fabricated through electrospinning
and the concurrent molecule self-assembly process
mimics the soft and oriented features of nerve tissue
simultaneously, thus providing hybrid biophysical cues
to instruct cell behavior in vitro and in vivo. We found
that the low elasticity and aligned topography of AFG
had co-effects on promoting the neurogenic differenti-
ation of human umbilical cord mesenchymal stem cells
(hUMSCs), and also inducing dorsal root ganglions neu-
rons to project numerous long neurite outgrowths longi-
tudinally along the fibers rapidly for total migration
distance of 1.96 mm in three days without the supple-
ment of neurotrophic factors. Moreover, the aligned fi-
brin hydrogel implanted in a rat T9 dorsal hemisection
spinal cord injury model was found to promote en-
dogenous neural cells fast migration and axonal invasion
along the fibers constructing aligned tissue cable in vivo.
Our results suggest that matrix stiffness and aligned top-
ography could synergistically instruct stem cell neuro-
genic differentiation and rapid neurite outgrowth,
providing great promising in biomaterials design for ap-
plications in nerve regeneration.
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