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Epidemiology of Astrovirus, Norovirus 
and Sapovirus in Greek pig farms indicates 
high prevalence of Mamastrovirus suggesting 
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Abstract 

Backround:  Astrovirus, Norovirus and Sapovirus exhibit a wide distribution in swine pig herds worldwide. However, 
the association of porcine Astrovirus (PAstV), porcine Norovirus (PoNoV) and porcine Sapovirus (PoSaV) with disease 
in pigs remains uncertain. In this study, we investigated the prevalence of PAstV, PoNoV and PoSaV in Greek pig farms 
using both conventional RT-PCR and SYBR-Green Real-time RT-PCR in an effort to compare the sensitivity of the two 
methods. We examined 1400 stool samples of asymptomatic pigs originating from 28 swine farms throughout Greece 
in pools of five.

Results:  PAstV was detected in all 28 swine farms examined, with an overall prevalence of 267/280 positive pools 
(95.4%). Porcine Caliciviruses prevalence was found at 36 and 57 out of the 280 examined samples, by the conven-
tional and SYBR-Green Real time RT-PCR, respectively. Sequencing and phylogenetic analysis of the positive samples 
revealed that the detected PAstV sequences are clustered within PAstV1, 3 and 4 lineages, with PAstV3 being the 
predominant haplotype (91.2%). Interestingly, sequencing of the Calicivirus positive samples demonstrated the pres-
ence of non-target viruses, i.e. Sapovirus, Kobuvirus and Sapelovirus sequences and one sequence highly similar to 
bat Astrovirus, while no Norovirus sequence was detected.

Conclusions:  The high prevalence of PAstV in Greek pig farms poses a necessity for further investigation of the 
pathogenicity of this virus and its inclusion in surveillance programs in case that it proves to be important. To our 
knowledge, this is the first epidemiological study of these viruses in pig farms in Greece.
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Background
Astrovirus, Norovirus and Sapovirus are small, round-
structured, single-stranded, positive sense RNA viruses. 
They are considered as enteric pathogens that can cause 
diarrhea in a wide variety of animals, such as humans, 

pigs, dogs, cats, mink and a lot of avian species [1–5]). 
They have a worldwide distribution, whereas Noroviruses 
(NoVs) and Sapoviruses (SaVs) have been characterized 
as the most common cause of viral gastroenteritis in 
humans worldwide [2].

Norovirus and Sapovirus are members of the fam-
ily Caliciviridae. They are both non-enveloped, single-
stranded, positive-sense RNA viruses of 7.3 to 8.5 kb in 
size [6]. Based on the genome structure, the Caliciviridae 
can be further differentiated into two groups [7]. In the 
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first, including the Norovirus, the open reading frame 
1(ORF1) is separated from ORF2 and ORF3 near the 3’ 
end, whereas an ORF4 (comprised within ORF2) encodes 
the virulence factor, VF1. In the second, containing the 
Sapovirus, there is a large ORF1 and a standard ORF2 
(equivalent to the ORF3 of the Norovirus), whereas 
an ORF3 has been suggested as equivalent to ORF4 [7] 
Norovirus and Sapovirus are classified into genogroups 
and genotypes based on the major structural capsid pro-
tein (VP1) sequence. Norovirus is organized into at least 
seven genogroups (GI-GVII), three of which, i.e. GI, 
GII and GIV viruses, have been detected in humans [8]. 
Sapovirus is classified in 19 genogroups (GI-GVIII), four 
of which (GI, GII, GIV and GV) have been detected in 
humans [9, 10]. Porcine Sapoviruses (PoSaVs) belong to 
the genogroup GIII (strain A, B and C) and GVII [10]. 
Porcine Noroviruses belong to the genogroup GII and 
more specifically to three distinct GII P-types i.e. GII.
P11, GII.P18 and GII.P19 [11–27]).

In swine, porcine Sapovirus has proved to cause intes-
tinal disease by experimental infection [28, 29]. Sapovi-
ruses have been detected in swine farms in numerous 
pig herd studies worldwide, both in asymptomatic and 
symptomatic pigs with diarrhea [20, 30–37]). More spe-
cifically, the highest prevalence was seen among piglets 
aged between 2 and 8 weeks, and there was no signifi-
cant difference in the proportion of sapovirus-positive 
findings for healthy animals and animals with diarrhea. 
In Axel Mauroy’s et al. [20], the presence of Norovirus 
and Sapovirus in pigs in Belgium was investigated by 
examining 43 swine faecal samples from a veterinary 
diagnostic laboratory. PoSaVs were detected in 5/43 
stool samples of both diarrhoeic and asymptomatic pig-
lets, while Porcine NoVs were only detected in 2 pigs 
without clinical signs. PoNoV strains were detected 
in younger pigs (16–20  weeks). In Ilaria Di Bartolo 
et  al. [15] in Italy, 201 fecal specimens from asympto-
matic and 89 speciments from pigs with diarrhea were 
examined for the presence of porcine Caliciviruses and 
PoSaV was detected in 6.9% of the asymptomatic pigs 
and in, 18/89(20%) of the symptomatic, while PoNoV 
was detected in 1 asymptomatic pig. The highest preva-
lence of PoSaV was detected in the United States, were 
in a study of 621 fecal samples (11 with diarrhoea and 
the rest clinically normal) from pigs of various ages 
PoSaV was detected in 62% of the pigs with the highest 
rate being observed in nursery pigs and lowest in suck-
lingpigs [26]. In the same study, PoNoV was detected 
in 20% of the finisher pigs. The lowest PoSaV preva-
lence has been observed in Taiwan, where the virus was 
detected in 0.57% (5/863) of asymptomatic pigs [16]. 
Thus, the role of Sapovirus in enteric disease in swine 
remains unclear. The worldwide presence of Sapovirus 

has been proved in many prevalence studies, but the 
detection rates vary a lot, ranging from 3 to 67% [19, 
26, 32, 35, 37, 38]. Generally, the highest prevalence of 
Sapovirus is detected in post-weaning pigs [30].

Porcine Noroviruses (PoNoVs) have been detected 
mainly in asymptomatic adult pigs [25, 39]). GII PoNoVs 
have been detected in pigs in the USA, in Latin America, 
and in several European countries, in both symptomatic 
and asymptomatic animals [11, 17, 18, 20, 21, 40]. GI and 
GII NoVs have been detected in swine fecal samples, as 
well as in retail and imported raw meat samples [16, 41, 
42]. This fact has raised public health concerns regard-
ing the zoonotic potential of porcine NoVs and the role 
of swine in the epidemiology of this infection, owing to 
the possibility of emergence of new viral recombinant 
strains that can be transmitted directly to humans [40, 
41, 43, 44]. So far, the association of swine NoVs with 
human infections remains unclear and further research is 
needed in order for this virus infection to be elucidated 
or controlled [39].

Astroviruses belong to the family Astroviridae. They 
are small, approximately 28–30  nm in diameter, non-
enveloped, and contain a + ssRNA genome approxi-
mately 6.4–7.7 kb in length [44]. The family Astroviridae 
is divided into two genera, Mamastrovirus (19 species) 
and Avastrovirus (3 species) [45]. Members of the genus 
Mamastrovirus infect various mammals, including 
human [46], bovine [47], feline [48], porcine [49] and 
mink [50]. Members of the genus Avastrovirus mainly 
infect avian species such as chicken, turkey, and duck 
[51–53].

Porcine astroviruses (PAstVs) belong to the Mamastro-
virus genus. The first identification of PAstV took place 
in 1980, from fecal samples of diarrheal pigs, by the 
means of electron microscopy [54]. To date, five geno-
types of PAstVs have been identified [55]. The genome 
of PAstV encodes for three open reading frames (ORFs), 
namely ORF1a, ORF1b, and ORF2 [56]. ORF1a and 
ORF1b encode the non-structural proteins and an RNA-
dependent RNA polymerase (RdRp), while ORF2 encodes 
for the viral capsid structural proteins [45]. PAstVs are 
responsible for gastrointestinal disease, mainly in young 
individuals and have been detected in the intestines and 
faeces of pigs. Regarding the age group detection, the 
highest detection rate of PAstV across different studies 
has been noted in boars (82%), followed by nursery pigs 
(67%), 59% in finisher pigs, 36% in gilts, 37% in sows, 
and 22% in suckling piglets [57]. However, some porcine 
astroviruses have been detected in pigs with extra-intes-
tinal manifestations, such as respiratory and neurological 
signs [58]. Additionally, PoAstVs have been detected in 
asymptomatic pigs [59]. Thus, the role of PAstV in dis-
ease remains unclear.
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The main goal of the present study was to examine 
the epidemiology of Astrovirus, Norovirus and Sapo-
virus in pig farms throughout Greece  (Fig. 1). For this 
purpose, the faeces of 1400 pigs originating from 28 
Greek swine farms were investigated for the presence 
of these three viruses applying molecular assays. Also, 
a secondary scope was to investigate the different five 
age groups, i.e. suckling, nursery, grower, finishing pigs 
and sows. All samples originated from asymptomatic 
animals. The samples were divided in totally 280 pools 
of five samples from the same pig farm each pool. In 
an effort to evaluate two different molecular techniques 
in terms of sensitivity, two different RT-PCR methods 
were used: a conventional and a SYBR-Green real-time 
RT-PCR, in order to compare their sensitivity and spec-
ificity in the detection of these 3 RNA viruses. Finally, 
scoping to phylogenetically analyze the positive sam-
ples, sequencing was performed that was followed by 
the construction of phylogenetic trees.

Results
Astrovirus
Both methodologies applied, RT-PCR and real time RT-
PCR, detected 267 positive pools out of the 280 (95.4%) 
samples examined (Fig. 2). Thus, concerning sensitivity, 
the two different methods were of equal sensitivity. At 
farm level, all farms investigated were positive to Astro-
virus (28/28, 100%). The distribution of the virus on the 
different porcine age groups was the following: 100% 
(56/56 pools) of the nursery and grower pigs, 96.4% 
(54/56 pools) of the suckling piglets, 94.6% (53/56) of 
the finishing pigs, and 98.2% (55/56) of the sows were 
positive to the virus.

Norovirus and Sapovirus
Caliciviruses were detected in 36/280 (12.9%) posi-
tive pools of the pigs using universal calici-primers 
p289-p290 with the method of conventional RT-PCR 
and in 57/280 (20.4%) of the pigs with the method of 
SYBR-Green real time RT-PCR, indicating a greater 
sensitivity SYBR-Green real time RT-PCR. The age 
group distribution of these viruses based on conven-
tional RT-PCR results is the following: 6/56 (10.7%) at 
suckling pigs, 5/56 (8.9%) at nursery pigs, 7/56 (12.5%) 
at grower pigs, 17/56 (30.4%) at finishing pigs and 
1/56 (1.8%) at sows. On the other hand, based on the 
results of the SYBR-Green real time RT-PCR, Calici-
viruses were detected in 9/56 (16.1%) of suckling pigs, 
5/56 (8.9%) of nursery pigs, 6/56 (10.7%) of grower pigs, 
36/56 (64.3%) of finishing pigs and 1/56 (1.8%) of the 
sows.

Sequencing results
Astrovirus
Ninety-five out of the 267 positive samples were sent 
for sequencing comprising a representative subsample 
towards validation of the results, as well as in the direc-
tion of phylogenetic analysis. Of these, 91 sequences had 
over 90% similarity with Astrovirus strains based on the 
blast tool. In 83/91 (91.2%) of the sequenced samples a 
sequence similarity over 90% with Mamastrovirus type 
3 strain was revealed. In 2/91 (2.2%) of the sequenced 
samples, sequence similarity greater than 97% with 
Astrovirus type 4 strains was estimated. In two sam-
ples, sequences of approximately 95% sequence similar-
ity with Astrovirus type 1 were determined based on the 
blast tool usage for genetic similarity assessment. The 95 
sequences defined 42 haplotypes that were deposited in 
the GenBank database (Accession Numbers: OK066007–
OK066048, Additional file  1), the phylogenetic relation-
ships of which, in comparison with haplotypes retrieved 
from GenBank are shown in Fig.  3. Additionally, evolu-
tionary relationships of these haplotypes are shown in 
the median-joining network of Fig.  4. The network was 
occupied by a central haplogroup, arranged in a star-like 
manner, with multiple reticular linkages connecting the 
central haplotypes, probably constituting the common 
ancestors of the Astrovirus strains.

Norovirus and Sapovirus
Of the 36 Calicivirus-positive samples (with the 
method of conventional RT-PCR), 10 samples resulted 
in sequences that had a similarity with certain viruses 
(Sapovirus, Kobuvirus and Sapelovirus) when assessed 
with the blast tool, and eventually defined 8 haplotypes 
(see Fig. 5). These sequences were deposited in the Gen-
Bank database and assigned the accession numbers 
OK086794-OK086801. Two sequences shared approxi-
mately 95% similarity with porcine Sapovirus GVII and 
GIII. In 5 samples there were detected sequences that 
based on blast searches had over 95% similarity with 
Kobuvirus. Among the three remaining samples, 2 were 
very closely related with Sapelovirus sequences, whereas 
in one sample a sequence similarity of 92% with bat 
Astrovirus was determined. Phylogenetic relationships of 
those haplotypes with corresponding ones obtained from 
the GenBank database are shown in Figs. 5, 6 and 7. No 
sequence of porcine Norovirus was detected.

More specifically, the two Sapovirus sequences 
detected by sequencing were compared using the 
BLAST tool in order to search for similar sequences 
from other studies. One Sapovirus sequence 
(X23AP10, GB acc. number OK086800) showed high 
similarity with Porcine sapovirus isolate PoSaV_
VIRES_NM01_C3 polyprotein gene (MK379007, 
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Fig. 5). The second Sapovirus sequence detected in our 
study (X13PRO2, GB acc.number OK086801) showed 
93% similarity with Porcine enteric Sapovirus strain 
swine/GVII.1/SUI-101/2008/PA/BRA RNA dependent 
RNA polymerase gene (KF241967).

Discussion
Astrovirus
In the present study we investigated the presence 
of Astrovirus in 1400 pigs of 5 different age groups 

originating from 28 different pig farms around Greece. 
The primer pair PAstVDF-R was selected for the detec-
tion of porcine Astrovirus due to its ability to simulta-
neously detect all of the five porcine Astrovirus types. 
As noted previously, these primers target a conserved 
region within ORF1b of Astrovirus genome, allowing in 
this way the detection of all PAstV types. In Xiao ‘s et al. 
[60] research, five different TaqMan probes (one for 
the detection of each of the five Astrovirus types) were 
used along with the primers in two different multiplex 

Fig. 1  Map of Greece containing the areas of sample collection, indicated with red dots
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qRT-PCR assays, one with probes for Astrovirus type 1 
and 2 and one with the probes for Astrovirus type 3, 4 
and 5. In our research, a different approach was followed. 
The PAstVDF-PAstVDR primers were used in conven-
tional and SYBR-Green real time RT-PCR for the detec-
tion of porcine Astrovirus and the positive samples were 
sequenced in order to validate the results, determine the 
Astrovirus type, strain and phylogenetically characterize 
the position of the strains. Both RT-PCR methods used 
for the detection of PAstV showed similar sensitivity, 
with the SYBR GREEN RT-PCR being slightly more sen-
sitive. The melting temperature of PAstV- positive sam-
ples was approximately 85 °C (Fig. 2).

More specifically, based on the conventional and SYBR-
Green real time RT-PCR results, we see that Astrovirus 
is widely distributed in Greek swine farms (100% of the 
farms were positive to the virus). Porcine Astrovirus was 
detected in all five age groups examined with similar pro-
portions i.e. 100% of the nursery and grower pigs, 96.4% 
of the suckling, 94.6% of the finishing pigs and 98.2% of 
the sows. PAstV prevalence varies a lot from county to 
country and at different studies within the same country, 
with a detection rate ranging from 2.82% in China [61] 
to 94.4% (in healthy pigs) in Slovakia [62]. With respect 
to the different age groups, the frequency of detection of 

PoAstVs ranges from 0 to 100% in pigs of all ages, from 
suckling to adults [37, 55, 58, 61, 63–72].

Furthermore, based on the sequencing results, 
Mamastrovirus type 3 is the predominant Astro-
virus type in the Greek swine farms (91.2%). How-
ever, sequences of Astrovirus type 1, and 4 were also 
detected (Fig.  3). Based on the blast tool for genetic 
similarity assessment as well as the phylogenetic 
analysis, we see that the sequences obtained from the 
samples of our study show close genetic similarity 
with PAstV sequences from Italy (PAstV3), Hungary 
(PAstV2, Wild Boar Astrovirus 1) and Japan (PAstV4) 
(Fig. 3). This is peculiar considering that breeding ani-
mals in Greece are rarely imported from Hungary or 
Italy and definitely never outside European Union e.g. 
Japan. Therefore, direct transmission by pig transport 
from such countries can be surely excluded. Neither 
wild boars from these countries are expected to move 
for such long distances. It cannot be excluded though 
that pigs imported from other main supplier coun-
tries (e.g. France, Germany, Denmark, Holland) did 
not carry this microorganism from the country of ori-
gin. Nor it can be excluded that imported feed ingre-
dients included in large quantities in animal feeds 
(e.g. soybean) could be infected with such viruses at 

Fig. 2  Melting curve profiles of the examined porcine samples. Each peak indicates one different analysed amplicon

(See figure on next page.)
Fig. 3  Phylogenetic analysis of nucleotide sequences from the ORF1b gene (183-bp fragment) of 47 PAstV strains detected in this study and 5 
PAstV reference sequences. The sequences that correspond to PAstV3, detected in the present study, are indicated with pink triangles ( ). The 
sequences of PAstV1 detected in the present study are indicated with green rhomb ( ) and the sequences of PAstV4 are indicated with blue 
circles ( ). GenBank accession numbers are shown on the tree
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 OK066034 Mamastrovirus3 Pig Greece

 OK066045 Mamastrovirus3 Pig Greece

 OK066037 Mamastrovirus3 Pig Greece

 OK066018 Mamastrovirus3 Pig Greece

 OK066044 Mamastrovirus3 Pig Greece

 OK066032 Mamastrovirus3 Pig Greece

 OK066041 Mamastrovirus3 Pig Greece

 OK066033 Mamastrovirus3 Pig Greece

 OK066046 Mamastrovirus3 Pig Greece

 OK066009 Astrovirus3 Pig Greece

 OK066010 Astrovirus3 Pig Greece

 OK066042 Mamastrovirus3 Pig Greece

 OK066016 Astrovirus4 Pig Greece

 OK066024 Mamastrovirus3 Pig Greece

 OK066012 Mamastrovirus3 Pig Greece

 OK066015 Mamastrovirus3 Pig Greece

 KR007761 Mamastrovirus3 Pig Italy

 OK066014 Mamastrovirus3 Pig Greece

 LC201607 Astrovirus4 Pig Japan

 OK066022 Mamastrovirus3 Pig Greece

 GU562296 Astrovirus2 Pig Hungary

 OK066048 Mamastrovirus3 Pig Greece

 OK066007 Astrovirus3 Pig Greece

 OK066047 Astrovirus1 Pig Greece

 OK066008 Astrovirus1 Pig Greece

 JQ340310 Astrovirus1 Wildboar Hungary

 OK066023 Astrovirus1 Pig Greece

 OK066021 Mamastrovirus3 Pig Greece

 OK066028 Mamastrovirus3 Pig Greece

 OK066011 Astrovirus4 Pig Greece

 OK066027 Astrovirus4 Pig Greece

 OK066031 Astrovirus4 Pig Greece

 OK066035 Astrovirus4 Pig Greece

 OK066013 Mamastrovirus3 Pig Greece

 OK066039 Mamastrovirus3 Pig Greece

 OK066038 Mamastrovirus3 Pig Greece

 OK066029 Mamastrovirus3 Pig Greece

 OK066036 Mamastrovirus3 Pig Greece

 OK066026 Mamastrovirus3 Pig Greece

 OK066030 Mamastrovirus3 Pig Greece

 OK066017 Mamastrovirus3 Pig Greece

 OK066020 Mamastrovirus3 Pig Greece

 KR007768 Mamastrovirus3 Pig Italy

 OK066040 Mamastrovirus3 Pig Greece

 OK066019 Mamastrovirus3 Pig Greece

 OK066025 Mamastrovirus3 Pig Greece

 OK066043 Mamastrovirus3 Pig Greece
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Fig. 3  (See legend on previous page.)
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Fig. 4  Median-joining haplotype network of the Astrovirus sequences. Circle sizes are proportional to the frequency of each haplotype, whereas 
the unlabeled dots indicate interval missing haplotypes, potentially not sampled, known as median vectors

 KF241967 Sapovirus Pig Brazil

 KF241973 Sapovirus Pig Brazil

 KF241966 Sapovirus Pig Brazil

 KF241965 Sapovirus Pig Brazil

 KF241974 Sapovirus Pig Brazil

 KF241972 Sapovirus Pig Brazil

 OK086801 Sapovirus Pig Greece

 KT895952 Sapovirus Pig China

 OK086800 Sapovirus Pig Greece

 MK379007 Sapovirus Pig China100

27

66

40

52

0.05

Fig. 5  Phylogenetic tree based on partial RNA dependent RNA polymerase coding region (331 bp) of porcine Sapovirus strains identified in this 
study and porcine Sapovirus reference strains. The tree was created with maximum likelihood method of MEGA program. The strains that were 
detected in our study are indicated with blue trianges ( ). GenBank accession numbers are shown on the tree
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their collection point. Soybean, for instance, is mainly 
imported in EU from USA, although substantial quan-
tities are imported from Brazil and China as well. 
Besides, viruses with many hosts are expected to exhibit 
low levels of genetic distance and thus may not repre-
sent really different strains. As these microbes were not 
associated so far with the occurrence of any disease, no 

thorough investigation for such microorganisms has 
been performed. The genetic homogeneity and absence 
of genetic isolation by distance, nor geographic struc-
turing, is also in line with previous analyses of the same 
viruses, as indicated by the retrieved sequences from 
the Genbank database that originate from different 
countries indicating a genetic admixture pattern. This 

 OK086795 Kobuvirus Pig Greece

 OK086798 Kobuvirus Pig Greece

 OK086794 Kobuvirus Pig Greece

 OK086796 Kobuvirus Pig Greece

 OK086797 Kobuvirus Pig Greece

 MH184664 Kobuvirus Pig Belgium

 MH184669 Kobuvirus Pig Belgium

 LC210609 Kobuvirus Pig Japan

 MH184673 Kobuvirus Pig Belgium

 KP202709 Kobuvirus Pig Italy

 MF506730 Kobuvirus Pig USA

100

99

83

77

37

91

55

0.010

Fig. 6  Phylogenetic analysis of porcine Kobuvirus sequences detected with primers p289-p290, targeting the RdRp region of porcine Caliciviruses. 
The sequences detected in the present study are indicated with green triangles ( ). Porcine Kobuvirus reference sequences obtained from 
GenBank were included in the phylogenetic tree. GenBank accession numbers are shown on the tree

 MF440640 SapelovirusA Pig China

 MF440637 Sapelovirus Pig China

 OK086799 SapelovirusA Pig Greece

 KX354742 SapelovirusA Pig China

 AY392556 Sapelovirus1 Pig Germany

89

97

0.050

Fig. 7  Phylogenetic analysis of porcine Sapelovirus sequences detected with primers p289–p290, targeting the RdRp region of porcine 
Caliciviruses. The sequences detected in the present study are indicated with yellow squares ( ). Porcine Sapelovirus reference sequences 
obtained from GenBank were included in the phylogenetic tree. GenBank accession numbers are shown on the tree
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pattern of dispersal over large distances and no barri-
ers to gene flow, suggests that the majority of the Astro-
virus strains share a common origin, as demonstrated 
by the haplotype network of Fig. 4 as well, with several 
central haplotypes linked to each other.

In Xiao et al.’s [60] study, PAstV4 was the main Astro-
virus type detected (62.3%), while PAstV3 was detected 
in solely 1.2% of the samples (the lowest percentage of 
all the other PAstV types). At Yifeng Qin et  al.’s study 
(2019) [73], PAstV2 was the dominant Astrovirus type 
(44.4%), while PAstV3 was detected in the smallest per-
centage as well (only 1.4%). Moreover, at Zhou et  al.’s 
study (2016) [74] including pigs from five European 
countries, PAstV4 was the only PAstV type detected. 
Nevertheless, our findings are in accordance with Rawal 
et  al. [75], where three cross-sectional studies were 
carried out on sow farms located in the United States, 
with and without PAstV3-associated neurologic dis-
ease in the downstream nursery. In this study, PAstV3 
was detected in very high rates varying from 66 to 90%, 
depending on the different age groups (highest fre-
quency in sows and piglets). PAstV3 has been occasion-
ally molecularly detected in swine nervous tissue [64, 
68, 70, 71, 76–78] however, the neuropathogenic role of 
the virus remains to be clarified. Interestingly, in some 
of our samples mixed detection of Sapovirus, Kobu-
virus or Sapelovirus was observed. It should be also 
emphasized that since all samples were collected from 
asymptomatic animals, they did not cause any decrease 
in productivity and the main risk associated with their 
detection is the implication as intermediate host for 
other animals to which the viruses are more harmful 
and cause illness. Particularly, the clinical significance 
of the detection of these viruses remains uncertain, as 
no specific clinical signs were noticed in the pig popu-
lations that we examined. Further investigation of the 
pathogenicity of this virus e.g. by challenge laboratory 
trials to investigate any deleterious effect on the pigs 
may be necessary in order to determine the importance 
of this virus. Thereafter, due to the predominant pres-
ence of PAstV in the Greek pig farms, systematic sur-
veillance is recommended for this pathogen. It should 
be considered that PAstV is an RNA virus and therefore 
has a great ability to mutate, as well as new, more path-
ogenic strains could emerge, with zoonotic possibility.

Norovirus and Sapovirus
The general Calicivirus primers p289–p290 allow the 
detection of a broad range of infections caused by Cali-
civiruses. This primer pair has been used for the detec-
tion of Caliciviruses in a wide variety of animals, such 
as swine, dogs, cats, chicken, turkeys, as well as humans 
[79–83]. However, p289–p290 lack specificity. This 

means that all positive RT-PCR samples with the conven-
tional RT-PCR need sequencing in order to confirm the 
virus detected. In the present study, approximately 13% 
and 20% of the examined pools were positive to Calici-
viruses with the conventional and SYBR Green RT-PCR, 
respectively. These results indicate an increased sensi-
tivity of the SYBR-Green RT-PCR method, which is in 
agreement with the results of Mauroy’s et al. (2012) study 
[79]. The worldwide presence of Sapovirus has been 
proved in a lot of prevalence studies, but the detection 
rates vary a lot, ranging from 0.57 to 62% [16, 19, 26, 32, 
35, 37, 38]. Our findings indicate a detection rate within 
those threshold values and particularly place the Sapovi-
rus prevalence in Greek pig farms approximately on the 
average of the previous reports. Generally, the highest 
prevalence of Sapovirus is detected in nursery pigs [32]. 
More specifically, in Reuter et al.’s study (2010) [32], 1.050 
swine fecal samples were examined for the presence of 
PoSaV, deriving from 88 pig farms in six European coun-
tries. PoSaV was detected in 7.6% of the samples. On 
the other hand, the lowest PoSaV detection rates were 
observed in China, where the virus was detected in 3.42% 
of 146 diarrheic stool samples of one-month-old piglets 
[84].

No sequence of Norovirus was detected in our samples. 
Interestingly, sequencing results in our study showed 
that primer pair p289–p290 also amplified viruses other 
than those of the Caliciviridae family. Particularly, apart 
from Sapovirus, a wide range of viruses was detected, 
including Astrovirus, Kobuvirus and Sapelovirus, the 
latter two of which were non-target microorganisms in 
our study. Kobuviruses (KoVs) are members of the family 
Picornaviridae, the order Picornavirales, and the genus 
Kobuvirus, one of 8 genera of the family. They are small, 
non-enveloped, round, single-stranded positive-sense 
RNA viruses with one large open reading frame encoding 
for a single polyprotein [85]. Within the genus Kobuvi-
rus there are three distinct clusters. Aichivirus A (AiV-
A) includes human AiV-1, canine KoV-1, and murine 
KoV-1. Aichivirus B (AiV-B) includes bovine KoV-1 and 
sheep KoV-1. Aichivirus C (AiV-C) includes porcine 
KoV-1 (PKoV/AiV-C) [85]. Porcine kobuvirus (PKoV) is 
a suspected cause of diarrhea in young piglets. PKoV has 
been found in feces from ill pigs, however, co-infection 
with other enteric viruses is common and may play a role 
in the clinical signs observed [86]. KoVs present a health 
hazard for humans. They have been isolated from shell-
fish, clams, oysters, and groundwater and are identified as 
a cause of foodborne illness [87]. No zoonotic infections 
have been reported; however, cross-species transmission, 
co-infection with multiple PKoV strains, and viral recom-
bination events have all been documented [85, 88].
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Porcine sapelovirus (PSV) is a non-enveloped, pos-
itive-sense single-stranded RNA virus that belongs to 
the genus Sapelovirus in the family Picornaviridae. PSV 
is most closely related to members of the Enterovirus 
genus and was formerly known as porcine enterovirus 8 
(PEV-8), classified as porcine enterovirus A (PEV-A) [89]. 
PSV commonly results in asymptomatic infection of the 
gastrointestinal tract [90–93]. Pathogenic infections can 
lead to a variety of clinical syndromes including diarrhea, 
respiratory disease, reproductive disorders and polioen-
cephalomyelitis [94–96].

Based on the blast tool for genetic similarity assess-
ment and the phylogenetic analysis, we see that the 
Sapovirus sequences detected in our study show great 
similarity with Sapovirus sequences from Brazil and 
China (Fig.  5). The Kobuvirus sequences detected in 
our study, show close genetic relationship with Por-
cine Kobuvirus sequences from Belgium, Japan, Italy 
and USA (Fig.  6), while the Sapelovirus sequence that 
we obtained is closely genetically related with Sapelo-
virus A sequences from China and Germany (Fig.  7). 
As in the case of PAstV, these observations indicate the 
absence of barriers to gene flow of those virus strains, 
supporting a genetic admixture pattern for which 
similar explanations may also apply for the detec-
tion of strains that are closely genetically related with 
Sapovirus, Kobuvirus and Sapelovirus strains from 
those countries. Kobuvirus and Sapelovirus belong 
to the family Picornaviridae. This is not the first study 
where Kobuvirus, Sapelovirus and Astrovirus have 
been detected with p289-p290 primer pair. In Gábor 
Reuter et  al. [97], Kobuvirus was detected in porcine 
stool samples examined for Caliciviruses with prim-
ers p289–p290. This study revealed that the conserved 
3D motif of the YGDD amino acid (for which reverse 
primer p289 was designed) is also present in Kobuvi-
ruses. Based on the electrophoresis results, Sapovirus 
and Norovirus can be differentiated from Kobuvirus 
by the size of the amplicon. Sapovirus amplicons with 
p289–p290 primer pair have a size of 331 bp, Norovirus 
amplicons have a size of 319 bp, while Kobuvirus ampli-
cons are sized 1065 bp. In Tibor Farkas et al. research 
in 2012 [82], Picornaviruses were accidentally detected 
in chicken and turkeys with the same primer pair. In 
Gábor Reuter et al. [98], detection of porcine Astrovi-
rus and Kobuvirus with p289-p290 was also described. 
The RT-PCR product corresponding to Astrovirus was 
720 bp sized. Comparison of p289 with the Astrovirus 
detected showed that the conserved region RdRp of 
the amino acid of YGDD motif of Caliciviruses (which 
primer p289 targets) is also common in Astroviruses. 
The results of all the aforementioned studies, are in line 
with the results in our study regarding the detection of 

Kobuvirus, Sapelovirus and Astrovirus with the primer 
pair p289-p290. The need for sequencing of the con-
ventional RT-PCR amplicons is also confirmed by our 
results.

As far as the age groups in which Caliciviruses were 
detected are concerned, we see that finishing pigs was the 
main age group affected (based on both conventional and 
SYBR Green RT-PCR results).

Conclusions
Molecular diagnosis of Astrovirus, Norovirus and Sapovi-
rus is very challenging due to the great genetic variability 
of these RNA viruses. Due to this fact, the use of univer-
sal primers that target conserved regions of the viruses is 
necessary. Primer pairs PAstVDF-R and p289-p290 met 
these criteria. Comparison of conventional and SYBR 
Green RT-PCR methods showed that SYBR Green RT-
PCR excels in terms of sensitivity. Therefore, SYBR Green 
RT-PCR can be a reliable tool for the first screening of 
samples in routine molecular detection of these RNA 
viruses, giving rapid, sensitive and specific results, espe-
cially in samples with extremely few viral load. Our study 
demonstrated the wide presence of Astrovirus in swine 
of all ages in Greece, as well as the presence of Sapovirus, 
mainly in finishing pigs, and Kobuvirus and Sapelovirus 
in suckling piglets and grower pigs respectively. Due to 
the fact that these viruses were detected to great extend 
in asymptomatic pigs, further research needs to be con-
ducted in order to investigate the role of these viruses in 
disease from other viruses (in case of mixed infections) 
or their contribution to growth performance of swine. 
The wide presence of PAstV in swine population in 
Greece poses a necessity for investigating its pathogenic-
ity as well as its surveillance potential. It should always 
be kept in mind that virus’s ability to mutate and the 
close contact of these animals with humans could trigger 
a zoonotic event in the future. From the present study it 
can be also concluded that all examined viruses occur in 
higher prevalence in fattening pigs. Further analysis is in 
progress to see the precise prevalence of the viruses in 
each age group. To our knowledge, this is the first molec-
ular epidemiological study regarding Astrovirus, Norovi-
rus and Sapovirus in pigs in Greece.

Methods
Sample collection
The population of pigs in Greece is estimated to approxi-
mately 1.3 million, with about 95% of them being bred 
intensively in 300 farrow-to-finish (FTF) pig farms 
with a size of more than 100 sows (Bouras personal 
communication).

For the purpose of the study, 24 pig herds were ran-
domly selected from the entire Greek territory (8.0% of 
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the Greek farms) based on their size (half smaller and 
half larger than 300 sows) in order to obtain representa-
tive data from the population herds. In addition, 4 estab-
lishments with less than 100 sows had been sampled.

During 2019, a total of 1400 stool samples were col-
lected from different farms around Greece, including 
Region of Thrace, Macedonia, Epirus, Thessaly, Sterea 
Hellas, Peloponesse, and Crete (Fig. 1). From each farm, 
we collected 50 samples of faeces from pigs from five 
different age groups: suckling, post-weaning (nursery), 
growers, finishing pigs and sows. Ten samples (deriv-
ing from 10 different pigs housed in different pens) were 
essentially collected from each age group. The samples 
were collected with the use of swabs, which after the 
sampling were placed in disposable, sterile 1.5 ml Eppen-
dorf (EP) tubes and transferred to the lab in isothermic 
boxes imbedded in ice. Each sample was re-suspended in 
1  ml of phosphate-buffered saline (PBS), then vortexed 
for 5  min. After centrifugation at 12.000  g for 10  min, 
40  μl of each supernatant was collected in pools of 5 
(200  μl total volume), which were placed in new sterile 
1.5 ml eppendorf tubes and stored at −80 °C until further 
processing. In this way, 280 pools were created from the 
original 1400 individual samples. Each pool contained 
samples from the same age group (2 pools from each 
age group per farm or 10 pools per farm). Thus, 56 pools 
were created in total for each age group.

RNA extraction
Viral RNA was extracted from a volume of 200  μl per 
pooled sample, following the instructions of the RNA 
extraction kit “Cador pathogen kit” (Qiagen, Germany). 
After the RNA purification, the quantity and purity of the 
acquired RNA was measured using a Spectrophotometer 
(Eppendorf ). The extracted RNA was stored at −80  °C 
until use (approximately two weeks).

Reverse transcription PCR (RT‑PCR)
Astrovirus
For the detection of porcine Astrovirus using conven-
tional RT-PCR, the primers PAstVDF (5’-GAAKCRCT-
SYAT​GGG​AAR​CTC​CT-3’) and PAstVDR (5’-CTT​TGG​
TCCKCCC​CYC​CAAA-3’) were used [60]. These prim-
ers target a conserved region within ORF1b of Astro-
virus genome and produce an amplicon of 183 base 
pairs (bp). They are capable of detecting all five PAstV 
types. The QIAGEN OneStep RT-PCR Kit was used for 
the conventional PCR. Briefly, 4  μl of template RNA 
from each pooled sample were added to a mix of 10  μl 
5 × QIAGEN OneStep RT-PCR Buffer, 2  μl dNTP Mix 
(final concentration 400 μM of each dNTP), 3 μl of each 
primer (final concentration 0.6  μM), 2  μl of QIAGEN 

OneStep RT-PCR Enzyme Mix, and 26 μl of RNase free 
water. Therefore, the total volume for the reaction was 
50 μl. The conditions of the RT-PCR were the following: 
Reverse transcription was carried out at 50 °C for 30 min. 
Then the initial PCR activation step took place at 95  °C 
for 15 min followed by 40 cycles of denaturation for 30 s 
at 94 °C, annealing at 60 °C for 30 s and extension at 72 °C 
for 1 min. A final extension then took place at 72 °C for 
10 min.

Norovirus and Sapovirus
Detection of Norovirus and Sapovirus in porcine fecal 
samples was performed in an RT-PCR using the same kit 
(QIAGEN OneStep RT-PCR Kit) and the universal cali-
civirus primer pair p289-p290 (p290: 5’-GAT​TAC​TCC​
AAG​TGG​GAC​TCCAC-3’—p289: 5’-TGA​CAA​TGT​AAT​
CAT​CAC​CATA-3’, [83]), targeting a conserved region 
of the RdRp of Caliciviruses, that creates an amplicon of 
331 bp for Sapovirus and an amplicon of 318 bp for Nor-
ovirus. In this manner, simultaneous detection of both 
viruses was achieved. Briefly, 4 μl of template RNA from 
each pooled RNA purified sample were added in a mix 
containing 10  μl 5 × QIAGEN OneStep RT-PCR Buffer, 
2  μl dNTP Mix (final concentration 400  μM of each 
dNTP), 3 μl of each primer (final concentration 0.6 μM), 
2  μl of QIAGEN OneStep RT-PCR Enzyme Mix, and 
26  μl of RNase free water. The reaction was conducted 
under the following conditions: The reverse transcription 
at 50 °C for 30 min was followed by an initial PCR activa-
tion step at 95 °C for 15 min and then by 40 cycles of 30 s 
at 94  °C, 1 min at 50  °C and 1 min at 72  °C, and a final 
extension step at 72 °C for 10 min.

PCR products of both PCR assays were stained with 
ethidium bromide and visualized after electrophoresis on 
a 1.5% agarose gel using UV light.

SYBR‑Green Real time RT‑PCR
Astrovirus
SYBR-Green real time RT-PCR for the detection of por-
cine Astrovirus was performed with the same primer 
pair (PAstVDF- PAstVDR) utilized in the conventional 
RT-PCR. The Fast Gene IC Green One Step Mix kit (Nip-
pon Genetics) was used for the reactions. One μl of tem-
plate RNA was added to a mix of 10 μl of 2X FastGene® 
IC Green One Step Mix, 1 μl 20X FastGene® Scriptase, 
0.8 μl of each primer of concentration 10 μΜ, and 6.4 μl 
of RNase free water. The conditions of the PCR were the 
following: 10  min at 45  °C, 2  min at 95  °C, followed by 
40 cycles of 5 s at 95 °C and 1 min at 60 °C. Melt curve 
analysis was performed after these steps at a resolution 
from 55  °C to 95  °C with signal acquirement measure-
ment every 5 s.
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Norovirus and Sapovirus
The primer pair p289–p290 was also utilized in the 
SYBR-Green real time RT-PCR for the detection of Nor-
ovirus and Sapovirus in pigs. Their use in this method 
was as described in Mauroy’s et al. [79]. For the conduc-
tion of the PCR the same PCR kit was used (Fast Gene 
IC Green One Step Mix, Nippon Genetics). One μl of 
template RNA was added to a mix of 10 μl of 2X Fast-
Gene® IC Green One Step Mix, 1  μl 20X FastGene® 
Scriptase, 0.8  μl of each primer (400  nM final concen-
tration), and 6.4 μl of RNase free water. The conditions 
of the PCR were the following: 10  min at 45  °C, 2  min 
at 95  °C, followed by 40 cycles of 5  s at 95  °C and 30 s 
at 51 °C. Melt curve analysis was performed after these 
steps as described above.

Sequencing
In an effort to validate the positive Astrovirus and 
Caliciviruses samples as indicated by the method of 
conventional RT-PCR, as well as scoping to phyloge-
netically analyze these samples, a randomly selected 
subsample was sent for purification and sequencing 
to Eurofins Scientific (Luxembourg). Sanger sequenc-
ing was performed bidirectionally for each PCR prod-
uct in two runs, using forward and reverse primers of 
each PCR. Obtained sequences were read, edited and 
aligned in MEGA-X software package [99]. Nucleotide 
similarity with NCBI genetic database was assessed 
using the MEGABLAST search tool for highly similar 
sequences, embedded in the NCBI website (available 
at http://​www.​ncbi.​nlm.​nih.​gov/​blast/​Blast.​cgi). Phy-
logenetic relationships of the newly described haplo-
types in comparison with corresponding ones, closely 
genetically related as assessed by the BLAST tool, 
obtained from the GenBank database, were evaluated 
in MEGA-X software. Particularly, sequences from 
GenBank, with over 90% similarity with the newly 
described ones in the present study were included in 
the analysis. Phylogenetic trees were constructed by 
both neighbor-joining analysis and Maximum Likeli-
hood method. The confidence values of the internal 
nodes were calculated by performing bootstrap anal-
yses with 1000 iterations. Particularly for Astrovirus 
characterized sequences, evolutionary genealogy was 
additionally estimated and depicted in a median-join-
ing haplotype network, constructed in the software 
PopART [100].
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