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Solar irradiance monitoring network design
using the variance quadtree algorithm
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Abstract

Our aim is to determine the optimal placement of solar irradiance monitoring stations for renewable energy
integration into electricity grids. Hourly SUNY satellite-derived irradiance over a rectangular grid of 34° to 44° N, 100°
to 110° W with a 0.1° resolution are used in this work. The variance quadtree algorithm is used to identify the regions
with high spatio-temporal variations. The densities of monitoring stations over different regions therefore follow the
empirical variation. The network design is compared to the results from the so-called “L-method”. A discussion based
on the network’s predictive performance is also presented. We show that the unique design solution obtained using
the L-method cannot capture the spatio-temporal variations embedded in irradiance random fields. A robust design
should consider both the design requirements and functionalities of the monitoring network.

Keywords: Variance quadtree; Kriging; Ground-based monitoring network

Background
With an increasing penetration of renewable energy into
the electricity grid, monitoring becomes more and more
important in resource assessment, system design, energy
planning, and grid management. A major aim of set-
ting up monitoring networks is to predict values of an
attribute of interest, such as solar or wind resources, at
unobserved locations using the observed data at known
locations (Yang et al. 2013). To sample complex wind or
irradiance spatial distributions, for example, ideally one
seeks to deploy as many sensors as possible. However,
to minimize costs, an optimal number and placement of
monitoring equipment is critical.
The simplest monitoring network has a regular grid.

The network therefore has only one design parameter, the
inter-station spacing. Kriging (a geostatistical interpola-
tion method) is used to determine the optimal spacing
(McBratney et al. 1981; van Groenigen et al. 1999). As the
optimal interpolator, kriging has been used in solar energy
applications, mostly to estimate and plot the insolation

*Correspondence: yangdazhi.nus@gmail.com
1Solar Energy Research Institute of Singapore (SERIS), National University of
Singapore, 7 Engineering Drive 1, Block E3A, #06-01, Singapore 117574,
Singapore
2Department of Electrical and Computer Engineering, National University of
Singapore, 4 Engineering Drive 3, Block E4, #05-45, Singapore 117583,
Singapore

maps of an area (McKenney et al. 2008; Moreno et al.
2011; Righini et al. 2005). The core idea of kriging is to
estimate the process value z(s0) at an unknown location s0
based on a linear combination of weighted values at other
observed locations:

ẑ(s0) − μ(s0) =
n∑

i=1
wi [z(si) − μ(si)] (1)

where function μ(s0) denotes the spatial trend at s0, and
symbol ˆ denotes the estimated value. The weights wi can
be calculated by minimizing the variance of the estimator:
var

[
ẑ(s0) − z(s0)

]
. In this application, we consider the

measurements to be accurate. Rigorously, in hierarchical
models, measurement uncertainties must be considered,
see (Cressie and Wikle 2011) for details.
The semivariogram, kriging variance, and standard

errors provide valuable information about the predictabil-
ity of the designed network. However, these techniques
are often used in purely spatial sampling problems such
as designing a network for groundwater monitoring (Yang
et al. 2008).
For spatio-temporal data such as solar irradiance ran-

dom fields, the temporal evolution brings an additional
dimension into network design. In other words, at each
spatial location, a time series of the attribute of interest
can be observed. Observations sharing neighboring spa-
tial locations with similar temporal characteristics should
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be grouped together so that a single sensor can represent
the group. It is therefore intuitive to use clustering as
the design tool. The temporal observations are used as
features of the clustering.

Fundamentals and limitations of the classic k-means
algorithm
A common goal of clustering is finding groups of objects
such that the objects in a group will be similar to one
another and different from the objects in other groups.
The monitoring will thus take place in each cluster.
Many approaches have been used in the literature for
robust clustering, and the k-means algorithm (MacQueen
1967) can be considered as one of the most foundational
methods. The classic k-means algorithm is outlined as
follows:

1. Select k points as the initial centroids.
2. Repeat : Assign all points to the closest centroid to

form k clusters. Recompute the centroid of each
cluster.

3. Until : The centroids are stable.

Among many strengths of the algorithm, k-means has
many known limitations. The algorithm is very sensitive
to initial centroids selection and the outliers. It cannot
handle the data with non-spherical shaped clusters. Most
importantly, it is incapable of clustering data with ‘true
clusters’ that are of different sizes and/or densities. If we
aim to cluster the geographical areas using the spatio-
temporal solar irradiance random fields so that the moni-
toring stations can be placed within each clustered region;
these limitations are applicable with no exception. Two
recent studies (Zagouras et al. 2013, 2014) demonstrate
applications of k-means algorithm in solar irradiance
monitoring network design. The technique (see below)
shown in these works requires long-enough datasets,
which are not universally available, especially for countries
and regions that need monitoring network design. There-
fore, a design algorithm that uses minimal data is needed.
The k-means-based algorithm presented in (Zagouras et
al. 2013) does not consider geographical structure of the
data; instead, only the geometrical structure is considered.
This may result in a geographically scattered network; it
is therefore difficult to discern the clusters (Minasny et al.
2007). In addition, a monitoring network design algorithm
which considers the local variations is desired. The den-
sity of the monitoring stations should be higher within
the regions/areas with higher spatio-temporal variations.
Lastly, the predictive performance of the design network
is not tested in (Zagouras et al. 2013).
We therefore seek a network design tool with the fol-

lowing attributes: i) small data requirement, ii) consid-
ers both geographical and geometrical structures of the
data, iii) considers local variation, and iv) good predictive

performance. We introduce the variance quadtree algo-
rithm as a tool for solar irradiance monitoring network
design.

Data
The State University of New York (SUNY) gridded
satellite-derived data is used in this work. The data
is freely available at ftp://ftp.ncdc.noaa.gov/pub/data/
nsrdb-solar. The dataset covers hourly estimates of global,
diffuse, and direct irradiance over a 10 km (about 0.1° in
latitude and longitude) grid for all states in the United
States except for Alaska where satellite cannot resolve
cloud cover information for 1998 to 2005. The SUNY
dataset was created using the model developed by Perez
et al. (2002) through Geostationary Operational Environ-
mental Satellites (GOES) imagery. It has been used and
verified numerous times in the literature (Vignola et al.
2007), and its accuracy can be considered as sufficient for
our study here. As the dataset carries a large amount of
information and is in a continental scale, we only select a
subset of data, namely, a 10° by 10° square over the state
of Colorado and part of its surrounding states, from years
2004 and 2005. Colorado is notable for its diverse geogra-
phy, thus it is a suitable area for our study. Figure 1 shows
the area of study.
There are several points to take note before the dataset

can be used. The selected region crosses two different
timezones in the US, namely, the Mountain timezone and
the Central timezone. As the data is recorded at local
time, it is important to make the time synchronizations
among all the pixels. To achieve this, a shape (.shp) file
of the world timezones is used to identify each pixel
for its respective timezone. The shape file is download-
able at http://efele.net/maps/tz/world/. The SUNY data
is derived from two satellites, namely, GOES-East and
GOES-West. The image capturing of these two satellites
take place at 15mins past an hour and on the hour, respec-
tively. Although the SUNY gridded data is shifted in time
(using interpolation) for consistency, we find the hourly
readings from two adjacent pixels (within the same time-
zone but obtained using different satellites) can be very
different. To further stabilize the variance in the temporal
data, the daily global horizontal insolation (Wh/m2/day)
is converted into daily clearness index, which is the ratio
between the global horizontal insolation and the extrater-
restrial insolation (the sum of hourly extraterrestrial irra-
diance). The hourly extraterrestrial irradiance for each
pixel is calculated using the Solar Positioning Algorithm
(SPA), a c program developed by the National Renewable
Energy Laboratory (2008). The daily clearness index is
used as input for the network design algorithms. The total
data processing time is around 8 h using a typical personal
computer. Through the data processing, a 10,000 (100 ×
100 pixels) by 731 (2 years with one of them being a leap
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Figure 1 SUNY gridded satellite-derived data. Daily clearness index on 4 September 2004 is shown. The area of interest covers a 10° by 10°
square over the state of Colorado and part of its surrounding states.

year) matrix of daily clearness index is produced. Figure 1
shows the daily clearness index on 4 September 2004.

Methods
The variance quadtree algorithm (VQA) is applied on
the SUNY dataset described above. VQA was originally
designed for purely spatial sampling of the normalized
difference vegetation index, an index for the observable
live green vegetation over an area (Minasny et al. 2007).
We transfer this application into a spatio-temporal frame-
work. In VQA, the spatial or spatio-temporal data is split
into many strata with each one having a similar degree
of variation within the stratum. This is suitable for spatial
or spatio-temporal sampling of solar irradiance as some
areas may experience larger variations than the others due
to geographical and meteorological reasons.

Introduction to the VQA
In a purely spatial framework, the VQA is designed as
follows:

1. Frame the spatial data in a rectangle.
2. Split the encapsulated rectangle into four equally

partitioned strata. For each stratum h, a dispersion
measure called stratum variance, Qh is calculated:

Qh =
√
n2h × γ̄(Ah,Ah) (2)

where Ah is the area of the stratum h and γ̄(·) is the
average semivariance of the stratum. For discrete
points si, with i = 1, 2, · · · , nh, the average
semivariance is calculated by:

γ̄(Ah,Ah) = 1
n2h

nh∑
i=1

nh∑
j=1

γ(si − sj)

= 1
n2h

nh∑
i=1

nh∑
j=1

[ z(si) − z(sj)]2 (3)

where z(·) is the variable of interest, in our case the
clearness index.

3. Select the stratum with the largest Qh value. The
selected stratum is further split into four strata. We
can therefore say that at iteration i, the number of
strata is 3i + 1.

4. Repeat step 3 until the algorithm stops. The stopping
criterion can be either when a fixed number of
iteration is reached or when the maximum Qh for all
strata is smaller than a threshold, say ε, i.e.,
max(Qh) < ε, ∀h. Other stopping criterion can be
used, tuning to the application.
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Figure 2 The variance quadtree algorithm. Evolution of the variance quadtree algorithm for SUNY Colorado data on 4 September 2004. The
background color scheme displays the daily clearness index across Colorado. At iteration i, the number of strata is given by 3i + 1. The black dots are
the centers of the strata.

To demonstrate the purely spatial sampling selec-
tion using VQA, SUNY satellite-derived irradiance over
Colorado on 4 September 2004 is used. Figure 2 shows the
evolution of VQA through iterations. Iteration steps 1, 2,
3, 6, 12, and 25 are selected for display. We can visually
identify from iteration 1, the upper left stratum has the
largest variance; thus, it is selected for iteration 2. At iter-
ation 25, a total of 3 × 25 + 1 = 76 strata are defined. It
is clear that at iteration 25, the quadtree has already iden-
tified some areas with larger spatial variations than the
rest.

VQA for spatio-temporal data
As introduced earlier, we aim to extract the spatio-
temporal similarities among the pixels (locations) of the
SUNY satellite-derived data. A natural progression of a
purely spatial VQA is to add subsequent data into the
algorithm. Daily clearness index data from year 2004 are
used. The algorithm thus considers 366 temporal images,
as year 2004 is a leap year.
Solar insolation received each day may be significantly

different from the previous day. To capture the temporal
variations at each pixel, the arithmetic mean is used,

Qh = 1
T

T∑
j=1

Qhj (4)

i.e., the stratum variance Qh for each stratum h is the
average of the stratum variance Qhj for each time stamp j
ranging from 1 to T .

An alternative to the summation operation is to use dis-
similarity measures. A dissimilarity measure Dij describes
the difference between time series collected at si and sj.
For instance, the spatio-temporal dispersion defined in
(Sampson and Guttorp 1992) as:

Dij = d2ij = var
[
z(si, t) − z(sj, t)

]
, t ∈ 1 · · ·T (5)

can be used. However, given the large dataset, such
statistics (using softwares such as MATLAB and R)
will contribute significantly to computation time and
random access memory usage, due to the subtraction
operator prior to the variance calculation. To reduce
the computation complexity, correlation is used. Cor-
relation/covariance is defined as similarity measures.
Following

Dij = ζ − Sij (6)

where ζ is a constant of choice, the similarity Sij is trans-
formed to dissimilarities. We define the dissimilarity as
follows:

Dij = 1 − cor
[
z(si, t), z(sj, t)

]
, t ∈ 1 · · ·T (7)

where cor[ ·] denotes correlation and ζ = 1. The stratum
variance Qh for spatio-temporal data is thus expressed as
follows:

QST
h =

√√√√ nh∑
i=1

nh∑
j=1

Dij (8)

where superscript ST denotes spatio-temporal, and the
definition of Dij follows Equation 7. We note that the
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inclusion of the square root is not necessary for the
algorithm.

Conventional VQA stopping criteria
Two types of stopping criteria are commonly used,
namely, the fixed iterations criterion and the maximum
variance criterion. In solar monitoring network design,
the economical considerations are important. If the finan-
cial budget is the primary concern, the fixed iterations
criterion should be adopted. For example, if the maximum
number of sensors allowed is ns, the VQA should stop
after the �(ns − 1)/3� iterations, where �·� is the floor
operator.
More often, the designers are concerned with the sam-

pling efficiency of the network. In this case, the maximum
variance criterion should be used. Maximum variance
criterion means that the algorithm stops when the maxi-
mum for all the stratum variance is less than a threshold.
To demonstrate this, we use the method described pre-
viously. SUNY daily clearness index data from year 2004
are used, i.e., the number of temporal observations at each
pixel, T , in Equation 7, is 366. We perform the VQA iter-
atively; at each step, the mean, maximum, and minimum
QST
h is noted. The results are plotted against the itera-

tion. From Figure 3, it is clear that after 21 iterations, the
decrease in maximum Qh saturates. Thus for Colorado
data, 64 stations shall be a reasonable design.

Results
L-method and benchmarking
The maximum variance criterion discussed above is used
by Minasny et al. (2007). The idea is to identify a par-
ticular iteration where the decrease in stratum variance
Qh becomes small in all subsequent iterations. In other
words, the decrease in stratum variance is expected to sat-
urate through the iterations. Therefore, we seek to identify
the knee of the curve shown in Figure 3. A so-called ‘L-
method’ can be used here. The L-method was originally
designed for the detection of anomalies in time series
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Figure 3 VQA convergence. Stratum variance Qh versus number of
iterations of the VQA. Maximum Qh is stable after 21 iterations (see
the blue dash line and the zoomed view).

(Salvador and Chan 2005). In this section, we apply the L-
method following the network design procedure using the
SUNY data.
The L-method can be described using the following

equation:

RMSEc = c − 1
b − 1

× RMSE(Lc) + b − c
b − 1

× RMSE(Rc) (9)

Suppose the total number of points in a scatter plot is
b, see Figure 4a, b = 80. For every choice of c, we can
separate the data into two parts, namely, the sequence of
points on the left side of c, Lc, with indices i = 1, · · · , c and
the sequence of points on the right, Rc, with indices i =
c+1, · · · , b. Two linear regression lines are fitted using the
two sets of points, respectively; their fitting root-mean-
square errors (RMSE) are denoted by RMSE(Lc) and
RMSE(Rc). The total fitting error can thus be expressed by
Equation 9. Figure 4b shows the RMSEVQA for all possible
c values.When c = 7 iterations, i.e., 3×7+1 = 22 stations
give the minimum RMSEVQA, thus can be considered as
the best design following the L-method. The two regres-
sion lines at c = 7 is shown in Figure 4c. In what follows,
we verify the estimation using a former method used by
Zagouras et al. (2013).

Network design using the k-means clustering
In (Zagouras et al. 2013), k-means clustering was used
together with principle component analysis (PCA) and
the L-method to design the solar irradiance network for
Greece. In that work, an instantaneous cloudmodification
factor (CMF) map over Greece is derived from the daily
images collected by the Spinning Enhanced Visible and
Infrared Imager (SEVIRI) on theMeteosat Second Gener-
ation (MSG) at 10:30 UTC each day. Following the outline
of that paper, we apply the techniques using the SUNY
dataset.
The data matrix used here has a dimension of 10000 ×

731, containing 2 years of daily clearness indices at all
pixels. PCA is used to identify the principle compo-
nents (PCs). We reduce the 731 initial dimensions down
to 144 eigenvectors of PCA that preserve a portion of
up to 90% of the initial variance. A k-means clustering
algorithm is then applied repeatedly to perform the clus-
tering using the reduced PCs. The reason for multiple
k-means is to avoid the problem of the initial centroids.
Unlike the VQA, the number of clusters using the k-
means algorithm needs to be predefined. We evaluate the
algorithm using a number of clusters ranging from 5 to
70. Twenty k-means runs are performed at each number
of clusters. Two evaluation indices, the Davies-Bouldin
(DB) (Davies and Bouldin 1979) index and the Caliński-
Harabasz (CH) (Caliński and Harabasz 1974) index are
used for clustering validation. Figure 4d,e,f shows the
evaluation graphs using the DB index and Figure 4g,h,i
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Figure 4 L–method benchmarking. Evaluation graphs for determining the optimal number of clusters using the stratum variance, Davies-Bouldin
(DB) index, the Caliński-Harabasz (CH) index, and the L-method. (a) shows the mean stratum variance Qh at each iteration. (b) shows the overall
root-mean-square error using the L-method for each possible separation. (c) shows the best fit partition of 7 iterations (i.e., 22 stations). (d) shows
the best DB index for different number of clusters over a total of 20 repeats of the k-means clustering. (e) and (f) show RMSEDB and the best fit
L-method partition given by the DB index, respectively. Twenty-four clusters give the smallest RMSEDB. Subplots (g-i) show the respective plots for
the CH index. Twenty-three clusters give the smallest RMSECH.

shows the graphs for using the CH index. The results
give 24 and 23 clusters as the optimal choice, respectively.
The estimations on the number of monitoring stations
using the earlier methods agree with our estimation using
the VQA.
The solar irradiance monitoring network designs shown

above identified final networks of approximately 23 sta-
tions. Considering the similarities between the SUNY
dataset and the SEVIRI dataset, our result agrees with the
earlier estimates of using 22 stations for irradiance mon-
itoring in Greece (Zagouras et al. 2013). However, the
internal validation indices such as the DB index and CH
index only measure the goodness of a clustering struc-
ture without respect to external information. It is almost
obvious in these applications that 20+ stations are far
too sparse to sample the highly-variable irradiance spatio-
temporal random fields in the US and/or Greece.
Perez et al. (2012) simulated that for 15-min along-wind

irradiance measurements, the de-correlation distance is
around 10 km at a mid-latitude site. A de-correlation
distance is the distance which the irradiance measure-
ments at two locations are first becoming uncorrelated.
In a later work, Lonij et al. (2013) verified the de-
correlation distance using actual power output data from

80 rooftop PV systems over a 50 by 50 km area in Tucson,
Arizona. In general, if correlations in all directions
(instead of considering only the along-wind direction)
are considered, de-correlation distance is usually not
observed (Murata et al. 2009); the distance can then be
referred to as the threshold distance (Yang et al. 2014).
The estimated threshold distance in Singapore is about
10 km. In every case, the inter-station distances of the
designed monitoring networks are much larger than both
the de-correlation distance and the threshold distance. In
other words, network design using the L-method alone
does not warrant good spatio-temporal predictability.

Predictive performance validation
A monitoring network should have good predictability
at the unobserved locations. Kriging and other spatial
interpolation techniques are suitable tools in assessing
the spatial predictability of a network. In this section,
SUNY data from the year 2005 is used to assess the
predictive performance of the designed networks. There-
fore, all predictions are true out-of-sample predictions.
Three interpolation methods are used, namely, Thiessen
polygon interpolation, inverse distance weighted interpo-
lation, and simple kriging.
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Let z(sj) denote the spatial process observed at point sj,
where j = 1, 2, · · · , n are n observation points or monitor-
ing stations; the general setup of spatial interpolation is as
follows:

z(s0) =
n∑

j=1
wjz(sj) (10)

where wj is the weight of sampling point sj. For simplicity,
we write z(s0) as z0 and z(sj) as zj hereafter.

Thiessen polygon interpolation
Thiessen polygon (TP) interpolation is also called the
nearest neighbor method; it assumes that the attribute of
interest at an unobserved location is equal to the mea-
surements from its nearest observation points. Suppose
location s0 has a nearest neighbor si where the observa-
tions are made, the interpolation weights are as follows:

wj =
{
1 if j = i

0 if j �= i
(11)

Inverse distance weighted interpolation
Another commonly used interpolation method is the
inverse distance weighted (IDW) interpolation. IDW
assumes the interpolation weights follow

wj = f (d0j)
n∑

j=1
f (d0j)

(12)

where f (d0j) is a general function of d0j, the distance
between points s0 and sj. A commonly used f (·) is

f (d0j) = d−β
0j , β > 0 (13)

where β is a constant of choice. Here we choose β = 2 for
example.

Simple kriging
Simple kriging (SK), ordinary kriging, universal kriging,
and their variants are perhaps the most commonly used
geostatistical interpolation methods. We use only simple
kriging in this work as an example. Simple kriging aims to
minimize the variance of interpolation error z0 − ẑ0,

σ 2
e = var[ z0 − ẑ0]= var

⎡
⎣z0 −

n∑
j=1

wjzj

⎤
⎦ (14)

where ẑ0 denotes the estimates of z0. By expanding the
above, we have

σ 2
e = σ 2 −2

n∑
j=1

wjcov
(
z0, zj

)+
n∑

j=1

n∑
i=1

wiwjcov
(
zi, zj

)
(15)

where σ 2 is the variance of z0 and cov(·) represents the
covariance. By setting the first-order derivative (w.r.t. wj)
of the above expression to zero, we have

n∑
i=1

wicov(zi, zj) = cov(z0, zj), j = 1, 2, · · · , n (16)

If the homogeneity assumption can be satisfied,
Equation 16 can be written as

n∑
i=1

wicor
(
zi, zj

) = cor(z0, zj), j = 1, 2, · · · , n (17)

where cor(·) denotes correlation. Homogeneity means
that the standard deviation σi and σj are equal for all
i and j. One step further could be taken by assuming
isotropy in the spatial process, so that the correlation can
be written as a function of distance only, i.e.,

n∑
i=1

wiρ
(
dij

) = ρ
(
d0j

)
, j = 1, 2, · · · , n (18)

ρ(·) is a correlation function. The interpolation weights
can be obtained by solving this linear system of equations.
For our implementation, an exponential correlation func-
tion with a nugget effect

ρ(d) = (1 − ν)exp(−c · d) + νId=0 (19)

is used.

Validation results
All three selected interpolationmethods are used to assess
the predictive performance iteratively. At each iteration i,
VQA will output a particular design with 3× i+1 stratum
centers. Daily clearness indices from the year 2005 at these
centers are used to interpolate the clearness indices at all
other locations. For example, for the seventh iteration, 22
centers are produced by VQA, each interpolation method
will thus generate N = (10000 − 22) × 365 predictions.

Figure 5 VQA validation. Interpolation validation root-mean-square
errors as functions of number of stations. All three interpolation
methods, namely, Thiessen polygon (TP), inverse distance weighted
(IDW) interpolation, and simple kriging (SK), are used for number of
stations up to 661 (220 iterations).
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After the predictions of clearness index are made, these
predictions are adjusted back to daily insolation for error
calculation. The percentage RMSE

RMSE =

√
1
N

∑ (
Ĝ − G

)2
1
N

∑
G

× 100% (20)

is used on daily insolation G. Figure 5 shows the RMSE as
a function of the number of stations. It is evident from the
plot that earlier estimate of approximately 23 stations will
result in large errors when we use the designed network
for prediction.
Following the above discussions, it should be clear now

that the design of an irradiance monitoring network can
be subjective. Various termination criteria for VQA will
lead to different designs. The trade-off between the num-
ber of stations and the network’s predictive performance
needs to be considered. We do not recommend any ‘opti-
mal’ setting, instead, the object-oriented design should be
promoted.

Conclusions
Spatio-temporal variance quadtree algorithm is proposed
for solar irradiance monitoring network design. As the
algorithm itself is elegant and flexible, the termination
criterion becomes the focus. If we monitor the change
in stratum variance, 64-station setup provides a stable
stratum variance. When the L-method is used, the opti-
mal setup only consists of 23 stations. The small net-
work obtained through the L-method introduces large
spatial prediction errors. Therefore, both internal and
external validations are required for network design; a
properly designed network should consider its predictive
performance.
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