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Abstract 

Background:  Sports-related concussion (SRC) is common in collision sport athletes. There is growing evidence that 
repetitive SRC can have serious neurological consequences, particularly when the repetitive injuries occur when the 
brain has yet to fully recover from the initial injury. Hence, there is a need to identify biomarkers that are capable of 
determining SRC recovery so that they can guide clinical decisions pertaining to return-to-play. Cerebral venous oxy-
gen saturation (SvO2) and cerebral blood flow (CBF) can be measured using magnetic resonance imaging (MRI) and 
may provide insights into changing energy demands and recovery following SRC.

Results:  In this study we therefore investigated SvO2 and CBF in a cohort of concussed amateur Australian Football 
athletes (i.e., Australia’s most participated collision sport). Male and female Australian footballers (n = 13) underwent 
MRI after being cleared to return to play following a mandatory 13-day recovery period and were compared to a 
group of control Australian footballers (n = 16) with no recent history of SRC (i.e., > 3 months since last SRC). Despite 
the concussed Australian footballers being cleared to return to play at the time of MRI, we found evidence of signifi-
cantly increased susceptibility in the global white matter (p = 0.020) and a trend (F5,21 = 2.404, p = 0.071) for reduced 
relative CBF (relCBF) compared to the control group. Further, there was evidence of an interaction between sex and 
injury in straight sinus susceptibility values (F1,25 = 3.858, p = 0.061) which were decreased in female SRC athletes 
(p = 0.053). Of note, there were significant negative correlations between straight sinus susceptibility and relCBF sug-
gesting impaired metabolic function after SRC.

Conclusions:  These findings support the use of quantitative susceptibility mapping (QSM) and relCBF as sensitive 
indicators of SRC, and raise further concerns related to SRC guidelines that allow for return-to-play in less than two 
weeks.
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Key Points

•	 Cerebral venous oxygen saturation (SvO2) and cer-
ebral blood flow (CBF) can be measured using MRI 
and may provide insights into changing energy 
demands and recovery following sports related con-
cussion (SRC).
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•	 Although clear to return to play at the time of MRI, 
we found significant changes in CBF and susceptibil-
ity suggesting increased cerebral vulnerability in ath-
letes following SRC.

•	 These findings raise further concerns related to SRC 
guidelines that allow for return-to-play in less than 
2 weeks.

Background
Sports-related concussion (SRC), like other mild trau-
matic brain injuries (mTBI), is caused by the rapid accel-
eration or deceleration of the brain which stretches the 
cytoskeleton and initiates a cascade of ionic fluxes and the 
indiscriminate release of the excitatory neurotransmit-
ter glutamate. An energy crisis ensues as ATP-powered 
membrane pumps attempt to restore the ionic balance 
[1]. Acute hyperglycolysis is followed by a hypometabolic 
period that can last for days after injury—potentially 
increasing the risk of exacerbated neurological outcomes 
following a subsequent injury [2]. As such, athletes are 
now held out of play until they are at least asymptomatic 
to mitigate risk, although there is still no consensus on 
how long is required for, or whether symptom status 
accurately reflects, neurobiological recovery [3].

A number of promising biomarkers have been devel-
oped with the aim of objectively determining recovery. 
Magnetic resonance imaging (MRI) techniques includ-
ing magnetic resonance spectroscopy [4] and diffusion 
weighted imaging [5–8] have been used to investigate 
a range of often subtle physiological cascades that fol-
low SRC. Quantitative susceptibility mapping (QSM) is 
a comparatively new technique that utilizes MR phase 
images to map tissue susceptibility (χ) [9]. QSM is sen-
sitive to diamagnetic and paramagenetic biomaterials 
including, among others, ferritin, hemosiderin, myelin 
and calcium [9, 10] and has shown promise in assessing 
grey and white matter susceptiblity changes acutely fol-
lowing SRC [11, 12].

Recently, QSM has also been used to investigate cer-
ebral venous oxygen saturation (SvO2) and in doing 
so, potentially provide insights into changing energy 
demands following injury [13]. SvO2 is measured using 
quantitative susceptibility mapping (QSM) which uti-
lizes MR phase images to map tissue susceptibility (χ) [9]. 
During brain metabolism, the release of O2 from diamag-
netic (χ < 0) hemoglobin produces paramagenetic (χ > 0) 
deoxyhemoglobin. In mTBI, decreases in venous suscep-
tibility and hence increased SvO2 have been observed 
acutely following injury, potentially reflecting post-injury 
hypometabolism [13, 14].

Increased SvO2 may also reflect increased cerebral 
blood flow (CBF) that exceeds cerebellar energy demands 

[14]. Like SvO2, CBF can also be estimated non-invasively 
using MRI [15] and perturbations in CBF have been 
observed after mTBI, including SRC [16–19]. However, 
whether there is a relationship between decreased venous 
susceptibility (i.e., increased SvO2) and increased CBF 
has yet to be determined. Furthermore, previous SvO2 
and CBF studies in SRC have included limited sub-acute 
recovery times and have focused on North American 
sports (e.g., American football). No studies to date have 
examined SvO2 and CBF in Australian rules footballers 
(i.e., Australia’s most participated collision sport), and an 
understanding of sub-acute recovery at approximately 
two weeks post-SRC is of particular relevance to return 
to play decisions (i.e., has the brain recovered) consider-
ing that professional and amateur Australian rules foot-
ball leagues mandate a minimum 12-day recovery time. 
Therefore, here we acquired QSM and CBF images in a 
cohort of amateur Australian rules football athletes to 
test the hypotheses that tissue susceptibility changes and 
increased SvO2 would be present at 13  days post-SRC, 
and that SvO2 and CBF would be correlated.

Methods
Ethics Approval and Consent to Participate
Study procedures were approved by the Melbourne 
Health Human Ethics Institutional Review Board 
(#2015.012), were in accordance with The Code of Eth-
ics of the World Medical Association (Declaration of 
Helsinki) for experiments involving humans, and all par-
ticipants provided written informed consent prior to the 
study.

Participants
Amateur Australian Football athletes were recruited from 
clubs in Melbourne, Victoria, between 2018 and 2020. 
Control athletes (9 males, 7 females), with no recent SRC 
in the past 3  months, were compared to athletes with 
SRC (7 males, 6 females). Athletes were withheld from 
contact sports for 2  weeks following injury, and MRI 
scanning was performed on day 13 (the day before they 
returned to play). Athletes were interviewed to deter-
mine their history of concussion (HoC), neurosurgery, or 
major psychiatric disturbances.

SRC Diagnosis
SRC was diagnosed by the team physician based on 
sideline and/or postgame assessment that included the 
Sports Concussion Assessment Tool (SCAT). When 
available, video evidence was also reviewed for immedi-
ate signs of SRC.
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MRI Acquisition and Processing
Neuroimaging was performed with a Siemens 3 T Prisma 
MRI. 3D T1-weighted images were acquired using an 
MPRAGE sequence with repetition time (TR) = 2400 ms, 
echo time (TE) = 2.24 ms, inversion time (TI) = 1060 ms, 
flip angle = 8°, and resolution = 0.8 × 0.8 × 0.8  mm3. 
T2

*-weighted multi-echo images were acquired 
with TR = 24  ms, TE = 4.26  ms, ΔTE = 2.31  ms; flip 
angle = 20°; resolution = 0.83 × 0.83 × 0.83 mm3 and 
flow compensation turned on. Relative CBF (relCBF) 
was measured using a 2D PICORE pulsed arterial spin 
labeling (PASL) product sequence with TR = 2500  ms, 
TE = 11  ms, PICORE Q2T perfusion mode with 101 
dynamics (50 pairs of tag and control measurements 
and one M0 image), bolus duration = 1600  ms, inver-
sion time = 1800 ms, in-plane resolution = 3 × 3 mm2, 14 
slices of thickness = 6 mm with slice spacing 7.5 mm and 
motion correction turned on. This commercially availa-
ble sequence has good within and between session repro-
ducibility [20] and has been selected as the Siemens MRI 
sequence for a large-scale multisite study of concussion 
[21].

Advanced Normalisation Tools (ANTs) was used to 
create a study-specific template image from each sub-
ject’s T1-weighted image [22]. The template image was 
registered to MNI space to facilitate segmentation with 
regions of interest (ROIs) defined by the Harvard–
Oxford Subcortical Structural Atlas (included as part of 
the FMRIB Software Library). Intra-subject registration 
of motion corrected ASL and T2

*-weighted images to the 
T1-weighted image was performed using an affine regis-
tration, also with ANTs and the Harvard–Oxford Sub-
cortical Structural Atlas transformed into subject space. 
Atlas images and Siemen’s reconstructed relCBF images 
were read into MATLAB (R2021a, MathWorks, Natick, 
Massachusetts) and the mean value determined for 5 
ROIs: the right and left cerebral cortex, the right and left 
white matter, and the basal ganglia (comprising bilateral 
caudate, putamen, accumbens and pallidum regions).

QSM images were reconstructed from Siemen’s magni-
tude and phase images using nonlinear dipole inversion 
[23] and MATLAB. To investigate for brain-wide changes 
in gray matter and white matter susceptibility we gen-
erated global gray and white matter masks based on an 
automated method that incorporates a stability mask [11, 
12]. Global grey and white matter masks were generated 
by first excluding voxels with R2

* less than 1  ms−1 and 
greater than 65 ms−1 to remove large vessels such as the 
straight sinus from the final gray matter mask. A stability 
mask was then constructed by computing coefficients of 
variability with an upper threshold of 0.8. White and gray 
matter were subsequently defined as χ < − 0.03 ppm and 

χ > 0.05 ppm, respectively and mean susceptibility values 
were then calculated for each [11, 12].

QSM images were also used to assess SvO2. Maximum 
intensity projection (MIP) images were reconstructed 
over 10 sagittal slices and the mean susceptibility meas-
ured in the straight sinus, a vessel known to be affected 
after mTBI [13]. Finally, correlations were performed 
between straight sinus susceptibility and relCBF values 
to assess for a relationship between regional CBF and 
increased SvO2 (i.e., decreased susceptibility), as well as 
between symptom number and symptom severity and 
regional measures of relCBF, global grey and white mat-
ter QSM values and SvO2.

Statistical Testing
Participant demographics were assessed using a 2-way 
ANOVA for age, education, participation in collision 
sports, and previous concussions with injury and sex as 
between subject factors. Statistical testing of symptom 
number and symptom severity, relCBF, and whole-brain 
gray and white matter susceptibility measures, were per-
formed with a 2-way multivariate ANOVA (MANOVA) 
with injury and sex as between subject factors. Statisti-
cal testing of a history of multiple concussions was per-
formed with a χ2 test. Susceptibility measures in the 
straight sinus were analyzed using a two-way ANOVA, 
with injury and sex as between subject factors. Bonfer-
roni corrected post-hoc comparisons were performed 
when appropriate. To investigate the relationship 
between symptom number and severity scores and the 
measured relCBF and susceptibility values, and between 
straight sinus susceptibility and relCBF values, Pearson 
correlation analyses were performed. All statistical test-
ing was performed using SPSS software (version 27.0, 
IBM Corp, Armonk, NY) with significance set at p < 0.05. 
Multiple comparison correction of correlation analyses 
were performed using the Benjamini–Hochberg false dis-
covery rate correction set to 10%.

Results
Participant Demographics Revealed Significant Sex 
and Injury Effects
Analysis of participant demographics revealed that males 
had played more years of collision sport (p = 0.002) 
and had a greater number of previous concussions 
(p = 0.027), than their female counterparts. There were 
significant interactions between sex and SRC for both 
symptom number and symptom severity. While male 
SRC athletes tended to have more symptoms and greater 
symptom severity, the opposite was true in females. In 
this cohort, female control athletes had both a greater 
number of symptoms (p = 0.016) and symptom severity 
(p = 0.031) than their SRC counterparts.
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A Trend Towards Persisting Hypoperfusion After SRC
Representative relCBF images are shown in Fig. 1A. We 
measured mean relCBF in 5 ROIs including the right 
and left cerebral cortex, the right and left white matter, 
and the basal ganglia (Table  1). Registered Harvard–
Oxford Subcortical Structural Atlas ROIs (left side only) 
are shown overlaid on the left hemisphere of one repre-
sentative subject in Fig. 1B. Two-way MANOVA demon-
strated a trend for decreased relCBF in athletes with SRC 
(F5,21 = 2.404, p = 0.071, Wilks’ Λ = 0.636, Fig. 1C). There 
was no interaction between sex and injury and no main 
effect of sex (both, p > 0.05) (Table 2).

There were Significant Differences in Whole‑Brain White 
Matter QSM Values
Figure  2 presents the mean control subject QSM 
image in study template space (A) and the correspond-
ing coefficient of variability image (B). The coefficient 
of variability image provides an estimate of reliable 
susceptibility within each voxel, or MRI data point. 

Voxels with a value below 0.8 (depicted as dark blue in 
Fig.  2B) were selected for further analysis and catego-
rized as either white matter (χ < − 0.03  ppm) or gray 
matter (χ > 0.05  ppm) as shown in Fig.  2C [16]. Two-
way MANOVA demonstrated a significant main effect 

Fig. 1  Decreased relative cerebral blood flow (relCBF) 14 days after SRC. A Representative relCBF images from one male control (mCon), female 
control (fCon), male SRC (mSRC), and female SRC (fSRC) athlete. Four slices are shown for each representative athlete. Colorbar shows relCBF 
values and ‘L’ indicates left side of brain. B Representative relCBF image overlaid with co-registered Harvard–Oxford Subcortical Structural Atlas. C 
Median relCBF values plotted for 5 ROIs. Two-way MANOVA revealed a significant main effect of injury with concussed athletes having significantly 
decreased relCBF (p = 0.039). relCBF = relative cerebral blood flow, SRC = sports related concussion

Table 1  Participant demographics

Mean (± SEM) shown. Participant demographics were assessed using a 2-way ANOVA for age, education, participation in collision sports, and previous concussions. 
Statistical testing of symptom number and symptom severity were performed with a 2-way MANOVA while statistical testing of a HoMC was performed with a χ2 test

HoMC history of multiple concussions, SRC sports related concussion

Male Female p value

Control SRC Control SRC Sex SRC Sex × SRC

n 9 7 7 6

Age 24.67 ± 0.83 22.14 ± 1.08 24.29 ± 1.77 24.17 ± 1.85 0.359 0.930 0.770

Education (years) 17.00 ± 0.37 15.57 ± 0.72 15.29 ± 0.52 15.33 ± 0.95 0.134 0.284 0.253

Participation in collision sport (years) 14.11 ± 1.45 12.17 ± 1.05 6.00 ± 2.09 7.17 ± 2.46 0.002 0.835 0.407

Athletes with a HoMC (n) 5 4 2 0 0.237

Previous concussions 2.22 ± 0.55 1.71 ± 0.64 1.29 ± 0.47 0.17 ± 0.17 0.027 0.135 0.567

Symptom number 1.25 ± 0.73 4.43 ± 1.69 5.00 ± 1.54 0.33 ± 0.21 0.920 0.805 0.016

Symptom severity 2.25 ± 1.61 6.14 ± 2.50 6.86 ± 2.28 0.33 ± 0.21

Table 2  Mean (± SEM) relCBF values for each region

relCBF = relative cerebral blood flow, SRC = sports related concussion

Male 
control

Male SRC Female 
control

Female SRC

R. Gray mat-
ter

67.39 ± 3.01 62.57 ± 2.97 72.35 ± 4.75 66.60 ± 6.04

L. Gray mat-
ter

69.64 ± 3.52 64.45 ± 3.09 72.41 ± 5.08 74.85 ± 7.76

R. White 
matter

29.12 ± 1.32 25.99 ± 1.56 30.80 ± 2.45 29.28 ± 3.21

L. White 
matter

30.89 ± 1.66 26.63 ± 1.61 31.17 ± 2.39 32.24 ± 4.17

Basal ganglia 45.16 ± 1.68 40.33 ± 2.37 48.51 ± 2.89 45.68 ± 4.29
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of injury (F2,24 = 3.567, p = 0.044, Wilks’ Λ = 0.771, 
Fig. 2D). Pairwise comparisons with Bonferroni correc-
tion revealed that athletes with SRC had significantly 
increased susceptibility in the global white matter 
(p = 0.020).

There was a Trend Towards Altered Straight Sinus SvO2 
Values Following SRC
To assess straight sinus QSM values, we generated 
sagittal MIP images for each subject (Fig.  3A). Two-
way ANOVA showed a trend towards a significant 
sex × injury interaction in mean susceptibility val-
ues (F1,25 = 3.858, p = 0.061, Fig.  3B). This trend was 
driven by female SRC athletes who tended to demon-
strate decreased straight sinus susceptibility following 
SRC (p = 0.053). Mean (± SEM) values were: male con-
trol = 0.109 ± 0.009 ppm; male SRC = 0.117 ± 0.007 ppm; 
female control = 0.114 ± 0.010  ppm; and female 
SRC = 0.086 ± 0.010 ppm.

Neither QSM Values, nor relCBF Values, Correlated 
with Symptom Number or Severity Scores
We investigated for potential relationships between 
symptom number and symptom severity scores and both 
QSM values and relCBF values. There were no significant 
correlations within the SRC athletes only, nor were there 
any significant correlations when all study participants 
were included following Benjamini–Hochberg false dis-
covery rate correction (Table 3).

Straight Sinus QSM Values Correlate Negatively with relCBF 
Values
Analysis of straight sinus SvO2 measures and relCBF in 
study participants revealed a significant correlation in 
the left grey matter (r27 = − 0.466, p = 0.011, Fig.  4A) 
and left white matter (r27 = − 0.415, p = 0.025, Fig.  4B). 
These regions also showed trends in the right hemisphere 
(p = 0.052 and p = 0.085, respectively).

A second analysis including just the SRC athletes 
revealed a relationship between straight sinus sus-
ceptibility (SvO2) and relCBF in the basal ganglia ROI 
(r11 = − 0.631, p = 0.021, Fig.  4C), however this did not 
satisfy Benjamini–Hochberg false discovery rate correc-
tion (p < 0.02).

Discussion
There is widespread concern regarding the impact of 
repeated SRCs. Evidence from both animal [24] and 
human [5, 11, 18, 19] neuroimaging studies suggests 
that clinical recovery, i.e. the absence of symptoms, may 
precede physiological recovery. Here, male and female 
Australian rules footballers diagnosed with a recent SRC 
underwent MRI after being cleared to return to play fol-
lowing a mandatory 13-day recovery period. Austral-
ian rules football is a collision sport with tackling a key 

Fig. 2  Analysis of global white and gray matter susceptibility values. A Mean control QSM image in study template space. Colorbar indicates 
susceptibility values in ppm. B Map of coefficient of variability. C Masks of global white (red, χ < − 0.03 ppm) and gray (orange, χ > 0.05 ppm) 
matter were generated by thresholding reliable QSM values (i.e. those voxels with coefficient of variability < 0.8) from the mean control image. 
D Two-way MANOVA revealed a significant effect of injury (p = 0.044, *) with post-hoc comparisons showing that SRC athletes had significantly 
increased susceptibility in the global white matter (Bonferroni corrected p = 0.020). QSM = quantitative susceptibility mapping, SRC = sports related 
concussion

Fig. 3  Straight sinus susceptibility as a measure of SvO2. A 
Representative maximum intensity projection (MIP) image for one 
participant with the straight sinus manually delineated in magenta. 
B Mean susceptibility values for the straight sinus for all participants. 
Statistical testing with 2-way ANOVA revealed a trend towards a main 
effect of injury (p = 0.061). SvO2 = Cerebral venous oxygen saturation
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component of the game and played without compulsory 
protective equipment. Similar rules apply to men and 
women leagues, and it has one of the highest rates of SRC 
in Australia (80 per 100,000 participants) [25, 26].

We assessed QSM and relCBF measures in athletes 
with recent SRC, comparing their results to a cohort 
of control AFL athletes with no SRC in at least the past 
three months. Our findings build on previous studies at 
acute time points [11, 12], demonstrating global suscep-
tibility differences at 13 days post-injury—when athletes 
were cleared to return to play. We showed trends for per-
sisting hypoperfusion and increased SvO2 in recent SRC 
athletes and furthermore, significant negative correla-
tions between SvO2 and relCBF measures.

A known limitation of QSM is that susceptibility values 
are dependent on the orientation of axons in the applied 
magnetic field and less reliable outside the deep grey and 
white matter structures [11]. As such, we assessed the 
variation in susceptibility between control subjects and 
only included those voxels that met previously defined 

criteria for reliability. Consistent with earlier work, we 
found that susceptibility was significantly increased 
in the global white matter and unchanged in the global 
grey matter following SRC [11]. This may reflect the 
increased vulnerability of white matter fibre bundles to 
the rotational forces seen in SRC although the underly-
ing pathology driving increases in susceptibility remains 
to be elucidated [5, 6, 11, 12]. One interpretation is that 
increased white matter susceptibility reflects transient 
cytotoxic edema [5, 11, 12].

Hypoperfusion following mTBI [27] and SRC [16, 21, 
28, 29] has been reported previously, although hyper-
perfusion has also been observed [14, 17, 30]. We meas-
ured relCBF values in five brain regions and found no 
significant differences, and only a non-significant trend, 
for hypoperfusion in SRC athletes compared to non-
concussed controls. Meier et al., 2015 reported decreased 
relCBF in male athletes 1 day and 1 week after SRC com-
pared to non-concussed controls [16]. Our results here 
suggest that hypoperfusion persists beyond the acute 

Table 3  Reported r and p values for each of the correlations between symptom number and severity and the measured relCBF and 
QSM values in each region

No results survived Benjamini–Hochberg false discovery rate correction
a One subject did not report symptom number or severity

RelCBF χ

Right gray 
matter

Left gray 
matter

Right white 
matter

Left white 
matter

Basal ganglia Global white 
matter

Global gray 
matter

Straight sinus χ

All participants (n = 28a)

 Symptom 
number

− 0.029, 0.885 − 0.051, 0.797 − 0.033, 0.867 − 0.006, 0.975 0.033, 0.869 − 0.377, 0.048 0.222, 0.256 0.117, 0.554

 Symptom 
severity

0.054, 0.787 0.012, 0.951 − 0.024, 0.902 − 0.009, 0.965 0.094, 0.633 − 0.271, 0.163 0.127, 0.518 − 0.001, 0.994

SRC athletes only (n = 13)

 Symptom 
number

− 0.305, 0.311 − 0.331, 0.269 − 0.288, 0.341 − 0.276, 0.361 − 0.353, 0.237 − 0.570, 0.042 0.113, 0.713 0.375, 0.207

 Symptom 
severity

− 0.371, 0.212 − 0.357, 0.232 − 0.409, 0.165 − 0.369, 0.215 − 0.366, 0.219 − 0.456, 0.118 − 0.003, 0.992 0.257, 0.397

Fig. 4  Straight sinus susceptibility values correlated with relCBF in the left hemisphere. Across all participants relCBF in the left A grey and B white 
matter correlated negatively with susceptibility values in the straight sinus—a measure of SvO2. C Although not reaching significance, an analysis of 
the SRC athletes also revealed an inverse relationship between straight sinus susceptibility and relCBF in the basal ganglia. relCBF = relative cerebral 
blood flow, SRC = sports related concussion, SvO2 = Cerebral venous oxygen saturation
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time point, consistent with a very recent study demon-
strating subacute decreases in CBF that were also evi-
dent 1 year after return-to-play [18]. As hypoperfusion is 
thought to contribute to increased cerebral vulnerability 
after SRC, and potentially exacerbated outcomes follow-
ing a successive concussion, these findings have impor-
tant implications in return to play decision making [31].

In addition to altered cerebral perfusion, concussion also 
initiates cascades in cerebral metabolism [1, 2, 29]. Here, 
we assessed metabolic function (SvO2) using QSM. Taking 
advantage of the neuron’s almost exclusive dependence on 
aerobic metabolism we measured the change in suscep-
tibility due to the relative concentrations of diamagnetic 
hemoglobin and paramagnetic deoxyhemoglobin [13, 14]. 
We found a trend of decreased susceptibility and hence 
increased SvO2 in the straight sinus of female athletes after 
SRC but no change in male athletes.

Previous studies have also demonstrated decreased 
vessel susceptibility acutely following mTBI [13, 14]. 
Here, we found that susceptibility in the straight sinus 
correlated negatively with relCBF measured in the left 
grey matter and white matter ROIs. Further, when this 
analysis was limited to the recent SRC athletes, there 
was a significant negative correlation between straight 
sinus susceptibility and relCBF in the basal ganglia ROI. 
Decreased susceptibility of the straight sinus implies 
greater levels of diamagnetic hemoglobin of the blood 
(i.e. elevated SvO2) and, in the presence of decreased rel-
CBF, may suggest decreased oxygen consumption in the 
tissue [14]. Consistent with this, Champagne et  al. [29] 
reported post-SRC group reductions in CBF and resting 
cerebral metabolic rate of oxygen. As oxygen extraction 
fraction was unchanged these results suggested acutely 
impaired metabolic function after SRC.

A strength of this study is the well-matched samples 
of male and female athletes, imaged at the same time 
(i.e., 13 days) post-injury. Unlike other collision sports, 
male and female athletes play under similar rules and 
without compulsory head protection, and hence they 
represent a unique cohort for the study of SRC. How-
ever, the small cohort size, the reliance on self-reported 
HoC and symptoms, and the lack of control groups 
without a HoC or collision sports participation are 
limitations of the study. Our control group (i.e., Aus-
tralian footballers with a similar self-reported HoC but 
no recently diagnosed SRC in the past three months) 
is arguably the most clinically relevant in terms of 
assessing whether the proposed MRI biomarkers are 
sensitive to sub-acute SRC changes in this popula-
tion; however future larger scale studies would benefit 
from also including control groups without a HoC and 
without a history of collision sport participation to 
provide insights into the impact of these variables. 

Susceptibility quantification can be confounded by par-
tial volume effects on vessels from surrounding brain 
tissue, flow acceleration effects and the choice of QSM 
processing pipeline [32]. To best control for partial 
volume effects, we measured susceptibility over global 
gray and white matter segmentations based on a stabil-
ity mask of reliable control values. We also measured 
SvO2 in the straight sinus, a large vessel approximately 
5 mm in diameter [33], using maximum intensity pro-
jection images (MIPs). Furthermore, QSM images were 
reconstructed using nonlinear dipole inversion with 
Tikhonov regularization which has been shown to pro-
vide more accurate quantification of venous suscepti-
bility than other methods [32].

Conclusions
To mitigate the potential risk of repetitive SRC, athletes 
are typically withheld from competition and undertake 
a graded loading program, gradually increasing inten-
sity with progression guided by the continued absence of 
self-reported symptoms [3]. Mandatory recovery periods 
have also been introduced/suggested for many sports, 
although there is no consensus on timing [3]. For exam-
ple, in 2021, the professional Australian Football League 
(i.e., the AFL) updated their concussion guidelines, from 
a 6-day minimum recovery period to 12  days. The cur-
rent study indicates that SRC can result in abnormalities 
in brain tissue susceptibility, relCBF and cerebral SvO2 
that persist for at least 13 days and are present in play-
ers that have been cleared to return to play. Although 
these results are at a group level, and individual variabil-
ity should be accounted for in the management of SRC, 
they do raise further concerns pertaining to the length of 
mandatory recovery in Australian footballers.
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