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Abstract

Obesity-related oxidative stress, the imbalance between pro-oxidants and antioxidants (e.g., nitric oxide), has been
linked to metabolic and cardiovascular disease, including endothelial dysfunction and atherosclerosis. Reactive
oxygen species (ROS) are essential for physiological functions including gene expression, cellular growth, infection
defense, and modulating endothelial function. However, elevated ROS and/or diminished antioxidant capacity
leading to oxidative stress can lead to dysfunction. Physical activity also results in an acute state of oxidative stress.
However, it is likely that chronic physical activity provides a stimulus for favorable oxidative adaptations and
enhanced physiological performance and physical health, although distinct responses between aerobic and
anaerobic activities warrant further investigation. Studies support the benefits of dietary modification as well as
exercise interventions in alleviating oxidative stress susceptibility. Since obese individuals tend to demonstrate
elevated markers of oxidative stress, the implications for this population are significant. Therefore, in this review our
aim is to discuss (i) the role of oxidative stress and inflammation as associated with obesity-related diseases, (ii) the
potential concerns and benefits of exercise-mediated oxidative stress, and (iii) the advantageous role of dietary
modification, including acute or chronic caloric restriction and vitamin D supplementation.

Key Points

� Acute exercise is a small source of oxidative stress,
while chronic exercise elicits protective adaptations
against oxidative damage.

� Chronic ingestion of energy-rich foods may
contribute to obesity, while acute ingestion may also
elicit potentially adverse metabolic responses
including oxidative stress.

� Caloric restriction may attenuate oxidative stress
and serve as a beneficial weight loss intervention for
obese individuals.

Review
Introduction
The prevalence of obesity continues to increase in the
USA, with recent reports indicating over 64.1 % of
American women and 72.3 % of American men are

categorized as overweight and/or obese [body mass
index (BMI) ≥ 25 kg/m2] [1]. Obese individuals have
demonstrated markers indicative of oxidative stress, in-
cluding elevated measures of reactive oxygen species
(ROS) [2] and diminished antioxidant defense, which is
associated with lower antioxidant enzymes [3]. Oxidative
stress is associated with systemic inflammation, endothe-
lial cell proliferation and apoptosis, and increased vaso-
constriction, and thus a noteworthy contributing factor
to endothelial dysfunction. In concert, this evidence sup-
ports the relationship between oxidative stress, endothe-
lial dysfunction, atherosclerosis, and cardiovascular
disease (CVD) [4].
Oxidative stress is a general term for cellular damage

caused by an imbalance between pro-oxidants such as
ROS and/or reactive nitrogen species (RNS) antioxi-
dants. ROS are oxidizing agents generated during cellu-
lar metabolism when the chemical reduction of oxygen
forms unstable free radicals, characterized by an un-
paired electron [4]. ROS are essential for physiological
functions such as gene expression, cellular growth, in-
fection defense, and modulating endothelial function
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[4–6]. However, to maintain a physiologically beneficial
level of ROS within cells, antioxidants are necessary.
Antioxidants are enzymatic and nonenzymatic mole-
cules which significantly delay or prevent the oxidizing
damage of ROS through the inhibition of ROS forma-
tion and action or by repairing cells which have been
damaged by ROS [5].
Furthermore, obesity-induced inflammation is fre-

quently associated with increased oxidative stress
(Fig. 1). Specifically, leptin, an adipocyte-derived hor-
mone, is elevated in obese individuals and can induce
oxidative stress [7] and plays a key role in mediating a
pro-inflammatory state in obesity [8]; and Korda et al.
[7] indicated that this physiological link may help to ex-
plain the relationship of obesity, oxidative stress, and
inflammation. Additionally, the chronic ingestion of
lipid-rich meals can also enhance oxidative stress, lead
to weight gain, and facilitate the development of insulin
resistance [9]. These negative effects can be attenuated
with specific nutrient intake strategies including caloric
restriction (CR) and the consumption of exogenous an-
tioxidants. Finally, oxidative stress is elevated during
physical activity, but likely serves to instigate a positive
antioxidant adaptation [10, 11]. In this review, MED-
LINE and PUBMED records were searched using the
terms obesity, oxidative stress, inflammation, exercise/
physical activity, diets, and antioxidants to identify the
studies published in the past 10 years pertaining to two

factors that impact obesity-related oxidative stress:
physical activity intervention and diet manipulation.
Therefore, in this review our aim is to discuss (i) the
role of oxidative stress and inflammation as associated
with obesity-related diseases, (ii) the potential con-
cerns and benefits of exercise-mediated oxidative
stress, and (iii) the advantageous role of dietary modifi-
cation, including acute or chronic CR and vitamin D
supplementation.

Obesity: a Link between Oxidative Stress and
Inflammation
One of the earliest subclinical stages in the atheroscler-
otic process is an impairment of endothelium-dependent
vasodilation, also known as endothelial dysfunction [12].
A mediator of obesity-induced endothelial dysfunction is
the level of oxidative stress. Oxidative stress is an imbal-
ance between antioxidants [e.g., superoxide dismutase
(SOD) and glutathione peroxidase (GPX)] and reactive
oxygen species [e.g., superoxide (O2

−), hydrogen peroxide
(H2O2), and hydroxyl radical (OH−)] [13]. Under normal
physiological conditions, nitric oxide (NO) is a critical
homeostatic regulator of the vessel wall and plays a role
in the maintenance of vascular tone and reactivity [14].
However, when ROS production is elevated, the process
of cell damage occurs and can possibly facilitate the de-
velopment of CVD [15] which is largely attributed to
oxidation of low-density lipoprotein (LDL) [16]. Several

Fig. 1 The link between obesity-induced inflammation and oxidative stress. Increased pro-inflammatory response and leukocyte infiltration in
obese populations promote the formation of ROS, resulting in oxidative stress. NADPH nicotinamide adenine dinucleotide phosphate, NF-kB nuclear
factor kappa B, TNF-α tumor necrosis factor, IL-6 interleukin-6, CRP, C-reactive protein, OH−, hydroxyl radical, O2− superoxide, H2O2 hydrogen peroxide,
ROS reactive oxygen species
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oxidative enzymes such as myeloperoxidase (MPO) and
lipoxygenases have been shown to involve in LDL oxida-
tion [17, 18] and are associated with the development of
obesity along with inflammation and insulin resist-
ance [19, 20]. Furthermore, increased endogenous ac-
tivity of antioxidants such as SOD and GPX can
decrease the potential for CVD development by
regulating ROS and NO production [21, 22]. Import-
antly, the vascular response to shear stress in obese
individuals has been shown to be attenuated [23].
This subsequent attenuation of shear stress has been
shown to reduce the activation of endothelial NO
synthase (eNOS), resulting in the reduction of NO
[24]. The primary sources of ROS in the vasculature
are nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase, xanthine oxidase, and uncoupled
eNOS [25]. Particularly, NADPH oxidase has been
found to be the most potent source of O2

− in the hu-
man vasculature [26] and could be activated by LDL
and high levels of free fatty acid [27, 28]. Thus, this
would help explain the reduced endothelial function
in obesity.
More specifically, obese individuals demonstrate ele-

vated markers of ROS, including urinary 8-isoprostanes
[2] and decreased antioxidant defenses, represented by
lower antioxidant enzymes (e.g., SOD and catalase) [3].
Furthermore, in obese insulin-resistant individuals, the
effect of insulin on eNOS is impaired and inducible NO
synthase (iNOS) is stimulated, resulting in NO overpro-
duction [29]. Evidence has demonstrated that when
expressed iNOS is fully active, it can generate large
amount of NO to react with O2

−, resulting in elevated
peroxynitrite (ONOO−), a powerful reactive oxidant
[30]. These findings are further supported by Perticone
et al. [31] who demonstrated that abdominal fat distri-
bution and insulin resistance are negatively correlated
with forearm blood flow in response to acetylcholine
infusion in obese individuals.
Although the mechanisms for obesity-induced oxida-

tive stress remain unclear, leptin, an adipocyte-derived
hormone, has been considered as an important contribu-
tor. Leptin is responsible for regulating energy intake
and expenditure and is also known to play a key role in
mediating pro-inflammatory state in obese individuals
[8]. Korda et al. [7] have shown that elevated leptin in-
duces oxidative stress (e.g., reduced NO and increased
O2

− and ONOO−) in both human endothelial cells and
the endothelium of obese mice. Yamagishi et al. [32]
have further demonstrated that leptin can increase intra-
cellular ROS generation in microvascular endothelial
cells. Thus far, two possible mechanisms have been pro-
posed for the leptin-induced oxidative stress: (i) the
stimulation of mitochondrial oxidation of fatty acids [33]
and (ii) the elevation of pro-inflammatory cytokines [34].

The pro-inflammatory state of the vessel can negatively
impact oxidative stress and play a crucial role in the
pathogenesis of obesity-related diseases. Elevated pro-
inflammatory cytokines such as tumor necrosis factor
(TNF-α) have been shown to downregulate the expression
of eNOS (diminishing the dilatory response) in human
aortic endothelial cells [34]. Specifically, TNF-α is a potent
activator for activation of NADPH oxidase, resulting in
the formation of ROS [35]. Picchi et al. [36] also examined
the effects of TNF-α administration on oxidative stress
response and found that higher O2

− levels with reduced
NO bioavailability in the coronary artery of Zucker obese
rats compared to controls.
Interestingly, research has also shown that higher levels

of leptin are associated with elevated pro-inflammatory
cytokines (e.g., TNF-α and interleukin-6 [IL-6]) [37]. For
example, in vitro a high dose of leptin has been found to
elicit a great amount of TNF-α and IL-6 secretion from
activated human peripheral blood mononuclear cells
(PBMCs) [38]. In addition, macrophages play a vital role
in regulating obese inflammation by the ability to shift T-
helper (Th) cell differentiation toward the Th1 subtype, a
pro-inflammatory condition [39]. Within the Th1 immune
response, the most potent trigger for macrophage-induced
ROS production is interferon-gamma (IFN-γ) [40]. In-
creased ROS such as O2

−, H2O2, and OH− released by
macrophages also provides a positive feedback to upregu-
late Th1 cell activation [41]. Importantly, leptin has been
shown to serve as an immunological adjuvant to effi-
ciently promote Th1 cell response [42]. Thus, inflam-
mation and its subsequent impact on oxidative stress
may play a crucial role in the pathogenesis of obesity-
related diseases [43, 44].

Oxidative Stress and Physical Activity
Exercise-Induced Oxidative Stress
Exercise-induced oxidative stress has been shown to be
dependent upon a number of factors including the mode
[the form or type of exercise being utilized (cycling, jog-
ging, and swimming)], intensity [percentage of maximal
exercise capacity (VO2max)], and duration (total time
exercising at a given percentage of VO2max) of exercise
being performed [45–49]. For example, concentrations
of circulating oxidative stress markers were increasingly
elevated at greater exercise intensities (25 vs. 50 vs. 75 %
VO2peak) following 30 min stationary cycling [45, 46] as
well as at longer durations (120 vs. 60 vs. 30 min) fol-
lowing stationary cycling at 75 % VO2peak [47]. Add-
itionally, the characteristics of the participant (fitness
or training levels, gender, and clinical disease status)
can impact the resultant amount of oxidization that oc-
curs [50, 51].
Research has shown that both acute aerobic [52–54]

and anaerobic [55–57] exercise can result in increased
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free radical production, propagating a potential increase
in oxidative stress. Further, for oxidative stress to occur,
the ROS and RNS produced during exercise must ex-
ceed the levels of the antioxidant available for cellular
defense, thus resulting in oxidative damage to specific
biomolecules [58]. As demonstrated in ironman com-
petitors, the level of antioxidant defenses appear to be
adequate to mitigate ROS/RNS production which oc-
curs as a result of high-intensity, but shorter-duration
exercise bouts (half ironman competitors), whereas in
increasing intensity and/or duration of the acute bout
(full ironman competitors), antioxidant defenses can no
longer be maintained at sufficient levels, thereby result-
ing in oxidative damage to surrounding tissues [59].
Both single bouts of aerobic and anaerobic exercises
(including resistance-type exercise) can induce oxida-
tive stress, as indicated by the presence of oxidized
molecules in a variety of tissue types, especially skeletal
muscle [56, 57]. While acute bouts of exercise will lead
to associated oxidative stress, these increases seem to
be necessary in order to allow for an upregulation in
endogenous antioxidant defenses, thus providing bene-
ficial effects to the individual engaged in chronic exer-
cise [60].
Interestingly, the mechanism for increased oxidative

stress is somewhat different for aerobic and anaerobic
activities. During aerobic exercise, mitochondrial respir-
ation has been purported to produce ROS and RNS;
whereas during anaerobic exercise and resistance train-
ing, it has been suggested that increases in free radical
production may be tempered by enzymatic reactions,
prostanoid metabolism, and/or altered calcium homeo-
stasis [48, 49]. It has further been suggested that anaer-
obically induced oxidative stress may also result from the
ischemia/reperfusion cycle of muscle contraction and/or
immune system responses following muscle damage that
occurs with anaerobic exercise [49, 55, 61]. Similar to
aerobic exercise, the results of anaerobic investigations are
currently unclear whether the observed increases in ROS
and RNS represent a necessary stimulus for adaptation or
a detrimental event. While the specific underlying factors
that dictate the differences in responses between aerobic
and anaerobic physical activities vary, the endpoint of both
types of exercise is similar, an elevation in ROS and RNS
[48, 62]. An elucidation of the distinct mechanisms may
support proposals for different remediation strategies or
interventions to limit oxidative stress.

Obesity-Related Oxidative Stress
Pro-inflammation has also shown to exert a negative oxida-
tive effect in the skeletal muscle of obese individuals. Obese
population exhibit decreased skeletal muscle strength and
function compared to healthy weight subjects [63], as well
as impaired skeletal muscle mitochondrial respiratory

function which contributes to increases in mitochon-
drial ROS production [64]. Specifically, obese individuals
present higher ratios of type II to type I skeletal muscle
fibers which have shown to generate two- to threefold
more ROS production than type I fibers [64, 65]. Further-
more, Plomgaard et al. [66] demonstrated that TNF-α is
solely expressed by type II muscle fibers and serves as a
catalyst in skeletal muscle-derived oxidative stress [67].
Additionally, systemic TNF-α administration has been
shown to diminish skeletal muscle force production in
animal models [68] and directly promotes muscle protein
loss [67] via oxidative activation of TNF-α/NF-κB signal-
ing [69]. Interestingly, TNF-α-induced skeletal muscle
oxidative stress has been shown to be prevented by
antioxidant treatment [67], suggesting that TNF-α may
provide a vital target toward correcting obesity-related
oxidative stress.
Of special interest is the fact that exercise-induced oxi-

dative stress is exacerbated in obese populations, which
has been shown in response to both acute aerobic and
resistance exercises. Specifically, the total antioxidant sta-
tus (TAS) in obese subjects decreased by 8.6 and 17.6 % in
response to a single bout of aerobic and resistance exer-
cises, respectively, whereas increases were observed in
normal-weight individuals [50]. Furthermore, greater thio-
barbituric reactive acid substances (TBARS), a marker of
systemic oxidative stress, and lipid hydroperoxide (PEROX)
increases were noted in obese subjects [50, 51]. Addition-
ally, despite similar increases in PEROX levels in response
to acute aerobic exercise in healthy obese and obese
subjects with type 2 diabetes mellitus (T2DM), those with
T2DM demonstrated greater decreases in TAS following
exercise [70], suggesting a synergistic effect of metabolic
dysfunction in further diminishing oxidative stress resist-
ance. The authors suggested these outcomes may be the
result of decreased availability of plasma vitamins C and E,
elevated systolic blood pressure which may exacerbate vas-
cular production of ROS during exercise, or greater mech-
anical and metabolic stress imposed by excessive adiposity;
however, definitive reasoning remains yet to be elucidated.
Finally, a number of assay techniques for the total antioxi-
dant capacity have minimal sensitivity and specificity, thus
the results for this measure have limited generalizability.

Physical Activity Intervention
Dietary CR as well as aerobic exercise, anaerobic exer-
cise, and resistance training in association with weight
loss has been shown to be advantageous in ameliorating
oxidative stress and alleviating inflammation in obesity
[71–77]. Specifically, overall oxidative stress, as indicated
by TBARS and total PEROX, was reduced in healthy
obese adults following 24 weeks of resistance-type circuit
training [72], potentially due to increases in maximal oxy-
gen consumption and fat-free mass and/or decreases in
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total fat mass [73]. Additionally, Oh et al. [75] demon-
strated that 12 weeks of moderate- to high-intensity aer-
obic training decreased TBARS and body weight in obese
individuals, while baseline levels of the antioxidant GPX
were increased following 6 months of aerobic training in
obese women [78]. More importantly, following exercise
intervention, acute exercise-induced increases in the oxida-
tive stress marker malondialdehyde (MDA) were attenuated
while SOD and GPX levels were increased compared to
acute exercise-induced responses pre-training [78].
In the absence of weight loss, 3 months of aerobic

training in previously sedentary healthy obese adults
resulted in significant reductions in skeletal muscle-
specific oxidative stress, as indicated by the urinary ex-
cretion marker 4-HNE and systemic 8-isoprostane and
increased concentrations of mitochondrial antioxidants
[79]. Utilizing a similar protocol, Derives et al. [80] re-
ported similar alterations in systemic oxidative stress;
however, no change in skeletal muscle 4-HNE expression
was observed, suggesting that oxidative stress improve-
ments also occur in other tissue sources. Furthermore,
Youssef et al. [81] demonstrated that 12 weeks of moder-
ate aerobic training in the absence of weight loss was also
sufficient to attenuate exercise-induced increases of oxi-
dized LDL (ox-LDL) and MPO following an acute bout of
maximal aerobic exercise in overweight and obese adoles-
cent girls compared to pre-training responses. Conversely,
exercise without weight loss was not sufficient to im-
prove any markers of oxidative stress in obese adoles-
cents as result of 8-week exercise training, despite
utilizing higher intensities of exercise [82]. In addition,
none of the aforementioned protocols elicited improve-
ments from a pro- to anti-inflammatory state in obese
populations at baseline, suggesting that in obese popu-
lations: (i) exercise-induced improvements of systemic
or skeletal muscle-specific oxidative stress may be the
result of intensity and/or duration of the intervention,
and (ii) weight loss may be necessary to alter inflamma-
tory profiles.

Dietary Intervention
Although exercise training independent of weight loss
beneficially increases antioxidant defenses and decreases
oxidative stress at baseline and in response to exercise,
previous studies suggest at least a 10 % reduction in
body weight is necessary to reverse pro-inflammatory
parameters which contribute to oxidative stress during
obesity [71, 82, 83]. Dramatic weight loss (i.e., gastric by-
pass surgery) in previously obese men and women has
been shown to decreases oxidative stress and vital inflam-
matory markers, such as IL-6, C-reactive protein, and
TNF-α, suggesting that weight loss independently can re-
duce oxidative stress and inflammation [84, 85]. This
strategy may not be feasible or advisable to the general

population; however, CR serves as an effective alternative.
In animal models, 12 weeks of high-fat feeding increased
NADPH oxidase, an important marker in the generation
of oxidative stress, and accelerated the pathogenesis of
endothelial dysfunction [86]. However, following high-
fat diet, rodents underwent an additional 12 weeks of
CR with and without exercise training, demonstrating
a normalization of NADPH oxidase levels and reversal
of the pathological progression of endothelial dysfunc-
tion. Furthermore, weight reductions of 10 % following
3 months of dietary restriction (500–1000 kcal/day
energy deficit) in obese women resulted in increased
glutathione reductase [87], while 6 months of hypoca-
loric diet elicited weight reductions of nearly 20 %
which was sufficient to increase GPX and reduce 8-
isoprostane, IL-6, and triglyceride levels in a manner asso-
ciated with BMI reductions [88]. Additionally, alternate-day
dietary restriction (20 %) resulted in a significant reduction
in body weight and serum 4-HNE and 8-isoproponate
while increasing antioxidant concentrations in obese adults
[77]. TNF-α concentrations were also reduced after only
4 weeks, results which persisted throughout the 8-week
study [77], potentially contributing to reduced production
of cellular ROS [67]. Taken together, research suggests that
significant weight fluctuations can directly dictate oxidative
stress, inflammatory, and antioxidant enzyme profiles, pro-
cesses which can be ameliorated through dietary weight
lose intervention.
In obese individuals, 6 months of dieting coupled with

aerobic exercise training designed to elicit a 10 % reduc-
tion in body weight also decreased overall oxidative
stress [76]. Interestingly, Roberts et al. [89] reported de-
creases in oxidative stress accompanied with increases in
TAS after only 3 weeks of combined strict dietary inter-
vention and daily aerobic training. Despite no significant
reductions in body weight, short-term diet and exercise
intervention reduced in vitro expression of intracellular
adhesion molecule (ICAM), a cellular adhesion marker
which serves as an independent marker of CVD and vas-
cular health. Furthermore, monocyte-derived monocyte
chemoattractant protein-1 (MCP-1) production was at-
tenuated, results which suggest that macrophage recruit-
ment and exacerbation of the inflammatory response
may be improved fairly quickly in response to lifestyle
modifications in obese individuals.
Whether aerobic exercise may have a synergistic influ-

ence on long-term diet-induced improvements in oxida-
tive stress and inflammatory profiles remains unclear.
Wycherley et al. [74] demonstrated that while both diet
and diet with aerobic exercise improved oxidative stress
and NO availability and significantly reduced body weight,
no difference between interventions was observed after
12 weeks in obese individuals with T2DM. Conversely,
Ozcelik et al. [90] reported that hypocaloric diet coupled
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with the weight loss supplement orlistat or aerobic exer-
cise resulted in significant decreases in body weight; how-
ever, the diet plus exercise group exhibited significant
decreases in oxidative stress while no difference was
observed in the diet plus orlistat group.
Both aerobic and anaerobic activities possess the po-

tential to result in increased ROS and RNS production
and subsequent oxidative stress. While obesity has been
shown to exacerbate the oxidative stress response, diet-
ary manipulation and exercise training may serve as an
effective intervention to ameliorate oxidative stress pro-
files. Whether exercise training improves oxidative stress
and inflammatory profiles in the absence of weight loss
remains unclear; however, strict CR alone or coupled
with physical activity intervention demonstrates promise
in alleviating oxidative stress in obese individuals when
accompanied with weight reduction.

Macronutrient-Specific Postprandial Oxidative Stress
Increasing evidence suggests that postprandial metabolic
responses along with biomarkers of oxidative stress may
provide important information regarding an individual’s
susceptibility and/or progression of type 2 diabetes as
well as other diseases [91, 92]. This is significant since
the ingestion of calorie-rich meals may be associated
with obesity [93]; however, the ingestion of energy-dense
feedings may also elicit potentially deleterious metabolic
responses that are independent of chronic weight gain.
Several investigations have shown that both the amount
[9] and composition [94–96] of macronutrient intake
can affect postprandial oxidative stress responses. For
example, the ingestion of moderate (75 g) and high
(150 g) amounts of dextrose results in minimal oxidative
stress as quantified by MDA and H2O2 [9]. However, the
ingestion of 66 g of fat resulted in a significant increase
of these two oxidative stress biomarkers [9], which was
likely associated with postprandial superoxide produc-
tion [97]. Varying results were reported following the
ingestion of 33 g of fat [98], indicating that not only the
source but also the amount of macronutrient distribu-
tion can have an effect on postprandial oxidative stress
responses. Investigators have also been reported significant
increases in postprandial triglycerides (TAG), MDA, H2O2,
and nitrate/nitrite following ingestion of a lipid meal com-
pared to iso-caloric meals of varying macronutrient compo-
sitions [94]. Lipid-induced postprandial oxidative stress is
likely explained by mitochondrial oxygen leakage and ROS
generation [97, 99]. These results suggest potential “stress”
associated with the ingestion of lipid-rich meals. It is
important to note, however, that these responses can be
affected by sex [100, 101]. Goldfarb and colleagues have
suggested that this may be related to elevated glutathione
status in women compared to men [102].

Interestingly, the magnitude of oxidative stress result-
ing from the ingestion of a lipid-rich meal has been
shown to be greater than that resulting from strenuous
exercise [103]. McCarthy et al. [103] was the first to in-
vestigate and compare oxidative stress responses from
high-fat meals and acute bouts of strenuous exercise.
Considering that the subjects in this study were exercise
trained, it is possible that a training induced upregulated
antioxidant defenses that contributed to the nonsignifi-
cant increase in oxidative stress in response to the
strenuous exercise [103]. The potentially adverse effects
associated with chronic ingestion of lipid-rich meals are
apparent (weight gain) and may also be associated with
additional ill health, including the development of insu-
lin resistance [9]. Appropriate lifestyle modification (e.g.,
exercise and/or dietary interventions) seem to diminish
oxidative stress and may positively influence diabetes
[104] and vascular functioning [105].

Dietary Modifications and Oxidative Stress
Caloric restriction has been shown to be a successful
weight loss intervention that may also improve markers
of oxidative stress [106–109]. CR has been shown to
promote longevity [110] as well as attenuate morbidity
associated with several chronic diseases such as athero-
sclerosis, diabetes, cancer, autoimmune diseases, renal,
neurodegenerative, and respiratory diseases [111]. This
dietary modification has been shown to increase lifespan
in rodents [112, 113]; however, these findings may not
be universal among all animals. Further, a CR diet may
be compared to an ad libitum diet which may contribute
to excessive caloric intake and weight gain [114]. Hence,
the validity for CR to promote longevity in humans cur-
rently remains a question due to a lack of longitudinal
trials. Common approaches to CR include a relative
change of macronutrient intake such as decreased carbo-
hydrate or fat intake [115]. Both of which can be coupled
with an increase in dietary protein intake. Of these
approaches, a relative increase in dietary protein intake
may actually contribute to decreased caloric intake since
protein of various types (e.g., egg whites, dairy, lean meats)
has been shown to have satiating properties [116]. In
addition, although dietary fat is also known to induce sati-
ety, higher fat intakes that are commonly coupled with
low-carbohydrate diets [115] are potentially dangerous
since this can serve as one source of postprandial oxida-
tive stress [9, 94]. CR is usually practiced with a 20–40 %
reduction of ad libitum dietary intake [117]. This ap-
proach has been shown to reduce biomarkers of oxidative
stress such as H2O2, protein carbonyls, and nitrotyrosine
as well [106–109].
Two hypotheses have been proposed as potential

mechanisms behind the benefits of CR [98]. The horm-
esis hypothesis suggests that CR acts as a low-intensity
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stressor and thus, improvements in health and longevity
can result as a defense against the exposure [118]. In
addition, the oxidative damage hypothesis, which is sup-
ported in the literature, suggests that CR itself achieves
the same goal by decreasing oxidative stress [119, 120].
Dietary fasting has been shown to prevent atherogenesis
by improving NO bioavailability [121–123]. The Daniel
Fast [98, 110, 124] is one type of dietary fast involving a
plant-based feeding plan that restricts intake of animal
products, refined foods, white flour, preservatives, addi-
tives, sweeteners, caffeine, and alcohol. Bloomer et al.
[98] reported several benefits resulting from 21 days of
this ad libitum dietary intervention. Improvements of
oxidative stress biomarkers and antioxidant status were
noted which included a significant reduction in MDA,
an increase in nitrate/nitrite, and a 9 % increase in
Trolox equivalent antioxidant capacity [98]. Also re-
ported were improvements in blood lipids, glucose, insu-
lin, systolic blood pressure, and body weight [98].
Another dietary modification that may increase anti-

oxidant status, and thus protect against oxidative stress,
is the increased consumption of selected micronutrients
such as polyphenols [125, 126]. A wealth of data has sup-
ported the health benefits associated with increased fruit
and vegetable consumption [127–130] which is likely re-
lated to the polyphenol antioxidant content [125, 126, 131].
Some classes of polyphenols include anthocyanins, lignans,
flavonols, flavanones, flavanol monomers, proanthocyani-
dins, isoflavones, hydroxycinnamic acids, and hydroxyben-
zoic acids [126, 132]. Low consumption of fruits and
vegetables and excessive fat intake serve as a major risk
factor for an unfavorable imbalance between oxidants and
antioxidants [9] and the development of chronic diseases
contributing to morbidity and mortality [126].
Numerous studies have supported the link between

the consumption of isolated antioxidants with benefits
including improved antioxidant capacity [133], improved
glucose metabolism [134], improved vascular function
[135, 136], and attenuated LDL oxidation and progres-
sion of atherosclerosis [137]. Examples of these nutraceu-
ticals that have been shown to improve various markers of
oxidative stress include (but are not limited to) resveratrol
[135, 136, 138, 139], α-lipoic acid [133, 140], ubiquinone
(CoQ-10) [141], curcumin [134], quercetin [142], naringin
[143], and lycopene [144]. Resveratrol and quercetin have
been shown to activate sirtuin-1 (SIRT1) [145, 146]. Resver-
atrol is found in grapes and red wine [145] and is well
known for its anticancer properties [147–149]. Several
reports have investigated the SIRT1 activation activity of
resveratrol and reported antioxidant, anti-inflammatory,
antiapoptotic effects, as well as improvements in vascular
functioning [135, 136]. Additional reports demonstrate that
the deacetylase activity of SIRT1 is involved in proper
glucose metabolism [150], indicating a potential implication

for the importance of SIRT1 and related antioxidants for
the treatment of insulin resistance [151]. CR has also been
shown to upregulate SIRT1 activity [151] as well as in-
crease peroxisome proliferator activated receptor (PPAR)-
γ coactivator-1α (PGC-1α) activity, which was associated
with improved mitochondrial functioning as well as
improvements in oxidative stress, insulin resistance, meta-
bolic rate, and body composition [152]. These studies
demonstrate the cellular adaptations that occur in re-
sponse to CR that can impact oxidative stress.

The Potential of Vitamin D
Vitamin D insufficiency has shown to correlate with
endothelial dysfunction [153], decreased cardiorespira-
tory fitness [154], and impaired skeletal muscle health,
contributing to muscle weakness and decreased function
[155]. Furthermore, these conditions may be reversed
with vitamin D supplementation [156, 157]. Low vitamin
D levels may also serve as a mechanism contributing to
the exacerbation of oxidative stress during obesity, a
condition worsened by elevated levels of TNF-α [69];
however, research remains limited. In vivo, the active
vitamin D metabolite, 1,25(OH)2D3, has been shown to
downregulate ICAM-1 expression following peripheral
blood mononuclear cell following exposure to TNF-α
[158] while serving as an antioxidant at the cellular mem-
brane by decreasing PEROX [159, 160] and increasing
TAS as well as oxidative capacity in monocytes [161, 162].
Valcheva et al. [163] recently demonstrated that reactive
oxygen species production is enhanced in mice deficient
for the vitamin D receptor, while 12 weeks of supplemen-
tation decreases circulation markers of oxidative stress as
well as improved lipid profiles in type 2 diabetics [164]. In
addition, the risk of vitamin D insufficiency is elevated
during obesity [165, 166], potentially due to increased
sequestering of the steroid in adipose tissue [167]. In fact,
for each 1 kg/m2 increase in BMI, an estimated decrease
of 0.74 nmol/L of vitamin D has been observed [168].
Importantly, vitamin D has been shown to inhibit the pro-
duction of both TNF-α and IL-6 by downregulating the
NF-kB pathway [169, 170].
Tzotzas et al. [171] have provided evidence of the rela-

tionship of obesity to vitamin D. In their study, a 10 %
reduction in weight resulted in increased vitamin D con-
centrations in previously vitamin D-insufficient obese
individuals [171]. Furthermore, obese individuals supple-
mented with 3332 IU/day of vitamin D during weight
loss intervention resulted in larger decreases in plasma
TNF-α and IL-6 compared to placebo [172], while
1000 IU/day of vitamin D coupled with diet and exercise
resulted in greater increases in VO2max and weight loss
compared to either diet or exercise alone [173]. These
results suggest a potential attenuation of oxidative stress in
obese individuals supplemented with vitamin D, particularly

Huang et al. Sports Medicine - Open  (2015) 1:32 Page 7 of 12



during exercise. Of note, there are no studies that have in-
vestigated the potential role of vitamin D supplementation
to suppress oxidative stress in obese individuals during
weight loss interventions.

Conclusions
Aerobic exercise, utilized to reduce obesity, results in an
acute state of oxidative stress. However, it is likely that
chronic physical activity provides a stimulus for favor-
able oxidative adaptations and enhanced physiological
performance and physical health [13, 73]. Furthermore,
while the specific underlying factors that dictate the
differences in responses between aerobic and anaerobic
exercises vary, the result for both is an elevation in bio-
markers of oxidative stress [46, 62]. The mechanisms
that would explain the potential benefits from chronic
aerobic and anaerobic exercises have not been eluci-
dated. Some have documented that a training-induced
increases in endogenous antioxidant status may protect
individuals against oxidative stress [78]. Without greater
understanding of the distinct mechanisms, it is difficult
to propose a specific activity that would result in a spe-
cific benefit or outcome.
Numerous studies support the benefits of dietary modifi-

cation, including vitamin D supplementation, in alleviating
oxidative stress; however, the interaction of obesity and
physical activity has not been determined. Various meta-
bolic, inflammatory, and cardiovascular mechanisms likely
interact to explain the benefits of these interventions. Most
importantly, further mechanistic investigations are neces-
sary to determine the most effective intervention(s) for
distinct benefits. It does seem evident that weight loss is
significant in the alleviation of oxidative stress.
Oxidative stress is strongly associated with obesity, in-

flammation, vascular function, and diabetes [104, 105].
Appropriate lifestyle modifications can be taken (e.g.,
exercise training, dietary interventions) to alleviate oxi-
dative stress. A greater understanding of the mecha-
nisms associated with oxidative stress and disease can be
utilized in the development of targeted treatment strat-
egies to improve health.
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