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Abstract

Background: One of the central objectives of microbial ecology is to study the distribution of microbial communities
and their association with their environments. Biogeographical studies have partitioned the oceans into provinces and
regions, but the identification of their boundaries remains challenging, hindering our ability to study transition zones
(i.e. ecotones) and microbial ecosystem heterogeneity. Fuzzy clustering is a promising method to do so, as it creates
overlapping sets of clusters. The outputs of these analyses thus appear both structured (into clusters) and gradual (due
to the overlaps), which aligns with the inherent continuity of the pelagic environment, and solves the issue of defining
ecosystem boundaries.

Results: We show the suitability of applying fuzzy clustering to address the patchiness of microbial ecosystems,
integrating environmental (Sea Surface Temperature, Salinity) and bacterioplankton data (Operational Taxonomic Units
(OTUs) based on 165 rRNA gene) collected during six cruises over 1.5 years from the subtropical frontal zone off New
Zealand. The technique was able to precisely identify ecological heterogeneity, distinguishing both the patches and
the transitions between them. In particular we show that the subtropical front is a distinct, albeit transient, microbial
ecosystem. Each water mass harboured a specific microbial community, and the characteristics of their ecotones matched
the characteristics of the environmental transitions, highlighting that environmental mixing lead to community mixing.
Further explorations into the OTU community compositions revealed that, although only a small proportion of the OTUs
explained community variance, their associations with given water mass were consistent through time.

Conclusion: We demonstrate recurrent associations between microbial communities and dynamic oceanic features.
Fuzzy clusters can be applied to any ecosystem (terrestrial, human, marine, etc) to solve uncertainties regarding the
position of microbial ecological boundaries and to refine the relation between the distribution of microorganisms and
their environment.
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Background

Nature is not uniform but is comprised of patches [1].
Identifying the boundaries between ecosystems and their
characteristics remains a fundamental challenge for bio-
geographers and ecologists ([2, 3] for a review). Informa-
tion on the spatial distribution of communities and
ecosystems is key to understand community dynamics
[4], and local and global diversity patterns [5] as well as
guiding conservation strategies and ecosystem risk as-
sessment protocols [6]. Initial qualitative assessment of
boundaries within or between ecosystems can be done
to direct sampling effort [7], but this approach is re-
stricted to environments where delineations are clear
(e.g. forest patches, [8], seagrass meadows, [9], agricul-
tural land, [10]). Many ecosystems challenge such -
priori designs by presenting no obvious patchiness [11,
12], gradualness [13, 14], by being dynamic [15, 16], be-
cause the kind of organisms under consideration are too
small for visual assessment [17, 18], or a combination of
all or some of the above. In these cases, the selection of
threshold values, or the definition of arbitrary boundar-
ies, is often required to classify the different components
of the ecosystems. The definition of thresholds may be
arguable [19, 20] and these values can vary as much as
the system they define [21, 22]. Together, these uncer-
tainties reduce the potential comparability between stud-
ies [23] and opportunities for broader investigations
across ecosystems.

The marine pelagic environment and its microbial
communities offer an important example of this prob-
lem. On one hand, advances in satellite imagery [24] and
recent sampling cruises [25, 26] reveal a patchy and dy-
namic ocean, with associated difficulties in the detection
and delineation of water masses and ecosystems [11, 12].
On the other hand, the constant growth of sequencing
techniques produces increasingly complex microbial
data sets that challenge ecological and statistical inter-
pretation [27].

Despite the challenges, microbial communities de-
mand attention since they fulfil key functions in the
oceans, including as nutrient and carbon recyclers [28].
Approximately one-half of the carbon fixed by marine
autotrophs is directly processed by bacteria [28, 29]. Bac-
teria also facilitate the regeneration of nitrogen and
phosphorus [30] and the release of iron [31], processes
crucial to primary productivity [32]. Identifying spatial
patterns in marine bacterial assemblages have the poten-
tial to reveal heterogeneity in oceanic productivity or
biogeochemical patterns [33]. Recent studies did high-
light associations between bacterioplankton communi-
ties and oceanographic features in the pelagic oceans
[17, 18, 34-38] and in coastal waters along estuarine to
marine transitions [39, 40]. Consistently identifying these
associations requires methods to place the boundaries of
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ecosystems and to characterise the transitions between
them (see [41, 42]). Transition zones between ecosys-
tems, or ecotones, can play important ecological roles.
They have been advocated as harbouring higher levels of
productivity or diversity ([43] for a list of ecotone prop-
erties and further definition of ecotones) and to regulate
the links between neighbouring systems [44, 45].

To examine ecosystems and their transitions in the pe-
lagic environment, we used fuzzy clustering [46, 47], a
technique that creates overlapping sets of clusters. A
graphical explanation of the type of output generated by
fuzzy clustering algorithms, in comparison to the more
common k-means clustering, is given in Fig. 1. In fuzzy
set theory, observations (usually sample sites in ecology)
are assigned membership values in each fuzzy cluster in
the range (0, 1), which expresses the degree to which the
observation meets the definition of each cluster centroid
[48]. In other words, the fuzzy cluster centroids corres-
pond to the archetypical composition of the different
communities [2], and each site is given membership
values for each of the cluster, depending on how well
the site composition reflects the centroid composition.
Once plotted against the spatial dimensions of the gradi-
ent, the membership grades for a given cluster usually
present a plateau surrounded by two declining edges,
corresponding to a community core surrounded by two
ecotones. As a consequence, the outputs of the analyses
appear both structured (into clusters) and gradual (due
to the overlaps), which aligns with the inherent continu-
ity of natural systems, and particularly of the pelagic en-
vironment. Although not new, fuzzy logic approaches
have been bypassed in ecological studies, where other
types of gradient analyses prevail [10, 49]. However, rare
applications have produced useful results [2, 50, 51].
The efficiency of fuzzy sets to describe ecological data
has already been proven, when compared to ordinations
such as canonical correspondence analysis (CCA) and
distance-based redundancy analysis (DB-RDA) [48].

Here, fuzzy clusters were applied for the first time in
the pelagic environment. We used the Munida Microbial
Observatory Time Series (MOTS), a pelagic transect (for
details see: Munida transect, [52, 53] for chemistry [17,
38, 54];), to explore the spatial associations of microbial
communities (from OTUs based on 16S rRNA gene)
and the surrounding oceanic structures (Sea Surface
Temperature and Salinity) with a focus on ecotones.

Materials and methods

Study Site & Sampling

The sampling was done along the Munida Microbial
Observatory Time Series (MOTS, Fig. 2a). MOTS is a
coastal transect crossing the subtropical front off the
East Coast of the South Island, New Zealand. This 65
km long transect crosses multiple major oceanic
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Fig. 1 a Typical outputs of K-means clustering (2 clusters). The separation between the two clusters is crisp, as observations can only belong to
one cluster, regardless of their actual distance to the cluster centroids. b Typical outputs of fuzzy clustering (same 2 clusters). Each observation
now belongs to both clusters, according to their degree of similarity with each cluster centroid. This translates in their membership grades (e.g.
65% in cluster 1 and 35% in cluster 2). There is no strict boundary between the two clusters, as they now overlap. ¢ Schematic representation of
the membership grade profile of a single cluster over the spatial dimensions of the sampling. d Schematic representation of the overlap between
the two clusters membership grade profiles over the spatial dimensions of the sampling
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Fig. 2 a Map of the sampling area. The red dots present the positions of the eight stations of the Munida transect. The grey shaded line marks
the approximate location of the Southland front. b Sea Surface Temperature (orange lines) and Salinity (blue lines) were recorded directly inboard
during each sampling cruise (right panels) along the whole transect (in kilometres from the shore) for each of the sampling month (January 2014,
June 2014, July 2014, December 2014, March 2015 and April 2015)
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features: neritic waters (NW), subtropical waters (STW),
the subtropical front (FRONT), and sub-Antarctic waters
(SAW). For this reason, it has been continuously investi-
gated for almost two decades. The position and the width
of these water masses are dynamic throughout the year
and the subtropical front in particular has been extensively
surveyed [22, 55]. It displays seasonal variations, being far-
ther offshore during winter and closer inshore during
summer (around 43 km and 27 km respectively, estimated
from [22]). It is also narrowest during winter (15.07 km)
and broadest during spring (23.88 km), with an average
width of 8.36 km [56] or 18 km [22].

Sampling took place between January 2014 and April
2015 on the RV Polaris (see Fig. 2b for the 6 sampling
months: January 2014, June 2014, July 2014, December
2014, March 2015 and April 2015). Continuous sea surface
temperature (SST) and sea surface salinity (SSS) data were
measured using a Sea Bird SBE45 thermosalinograph and
associated SBE38 remote temperature sensor, with position
information appended from the vessel GPS system.

Microbial communities were determined at each of
the 8 stations of the MOTS from surface samples (2 m
below the surface) and collected in 51 acid-rinsed plastic
bottles and then filtered (0.5-0.81) through 0.22 um
polycarbonate filters (Millipore). Duplicate samples for
DNA extractions were taken together with samples for
chlorophyll-a (Chl-a) analysis from each station [17, 38].

DNA was extracted separately from each filter using a
PowerSoil® DNA Isolation Kit (MoBio, Carlsbad, CA,
USA) and the manufacturer’s protocol. Bead beating was
performed using a Geno/Grinder for 2x15s and the
final elution was done using 50 pL of solution C6 (sterile
elution buffer, 10 mM Tris). DNA concentration was
measured using a Nanodrop Spectrophotometer from
Thermo Fisher. Amplicon libraries were generated using
the Earth Microbiome Project barcoded primer set (V4
Primer 806R) and conditions [57]. All samples (inde-
pendent replicates) were run on an Illumina Miseq run.

All amplicon data was processed using QIIME 1.9.1
and quality filtered using default parameters [57] with all
fragments kept being 151 bp. Samples with less than 10,
000 sequences were removed. Sequences were grouped
into operational taxonomic units (OTUs) at 97% similar-
ity. Open-reference OTU picking was carried out using
the SILVA 119 release reference library and UCLUST
[58]. Taxonomic assignments were performed using
BLAST and the SILVA reference database. Multiple rar-
efactions (10) were performed to a depth of 10,000 se-
quences per sample and the files were merged to create
an averaged OTU table. All data in the merged biom file
were rounded prior to downstream analysis using the
phyloseq package [59] in R (R Core Team 2019, [60]).
Relative abundance (%) was calculated as the number of
reads matching a particular OTU relative to the total
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number of reads. The data were then averaged for each
of the sampling station (8 stations per month over 6
months) according to their positions along the transect
(expressed in kilometres from the coastline) in order to
build the microbial community matrices used for the
statistical analysis.

Statistical analysis

Fuzzy clusters (Fuzzy C-Means (FCM)) were constructed
independently based on either the continuous temperature
and salinity data (for water mass identification) or the mi-
crobial OTU data (for microbial communities identifica-
tion) (fanny function, cluster package, [61], complemented
by the vegclust function of the vegclust package, [47], to ex-
tract the fuzzy clusters centroid composition). The final
number of clusters was chosen through an iterative process,
with regard to the normalized partition coefficient and the
normalized partition entropy [47]. Due to mathematical
limitations, the number of fuzzy clusters cannot exceed n/
2 -1, where n is the total number of observations. This
limitation meant that it was not possible to compute more
than 3 fuzzy clusters out of the 8 sampled stations for the
microbial communities. We therefore could not test for the
existence of a fourth (or more) cluster in the OTU data.

First and second derivatives were calculated for each
cluster from the regression of membership score on dis-
tance along the transect. The local maximum of the first
derivative was used to pinpoint the location of the transi-
tions between main environmental or community types
and to assess the abruptness of these transitions (max-
imum slopes). The interval between two local maxima or
minima was used as a proxy for the width of the environ-
mental or community types. The widths of the transitions
were assessed as being the interval between two local
maxima of the second derivatives. We extracted these
values for each of the sampling months and each of the
clusters and compared the values grouped per month, sea-
sons and water masses or communities. The statistical sig-
nificance of the differences between groups was assessed
by non-parametric Kruskal-Wallis tests followed by
Dunn’s test for multiple pairwise comparisons and Bonfer-
roni p-values adjustments (dunn.test package, [62]).

We extracted the fuzzy cluster centroids compositions
(with the vegclust package) for each of the community
clusters. These centroids correspond to the prototypical
vector of the clusters in the multidimensional space of
species abundances and can be used to represent com-
munity types ([47] and references therein). Every “spe-
cies” in the dataset is present in the cluster centroids,
and the most representative ones can be kept to describe
the taxonomic composition of the clusters [2]. We com-
pared the evolution of the fuzzy clusters at increasing
taxonomic resolutions (from phyla to OTUs, Fig. SI1.2).
Further analyses on community composition were then
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conducted at the OTU level, to achieve a finer level of de-
scription [63]. Due to the high number of sampled OTUs,
these results are presented as networks (qgraph package,
[64]), in which the links correspond to the number of
shared OTUs (OTU identities) between clusters. In order
to avoid arbitrary decisions, a range of different thresholds
was used to select the most representative OTUs in each
cluster (ranging from 25 to 1% most representative, see
supplementary information, Fig. SI.3A-3F). Networks
often have several and equally correct graphical represen-
tations (in terms of where the nodes and edges should be
drawn). We used the spinglass algorithm (repeated over
1000 networks, igraph package, [65]) to determine the ac-
tual number of communities in the network.

Results

Water masses and Bacterioplankton communities

The continuous retrieval of temperature and salinity
data allowed for a precise recording of the main water
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parameters along the Munida transect. The positions of
the water masses could be directly approximated from
the evolutions of SST and salinity (Fig. 2b) according to
several thresholds ([55] for a complete list of values).
The environmental fuzzy clusters, based on these two
parameters, consistently described these water masses
(Fig. 3a and Fig. SI. 1), and mean values for SST and SSS
could be extracted from the fuzzy cluster centroids. Ner-
itic waters (NW), characterised by high temperatures
and low salinities (13.15+1.25°C, 34.32 +0.28 PSU),
were the first to be crossed by the transect and finished
between 9 and 19 km offshore depending on the sam-
pling month. Subtropical waters (STW), characterised by
higher temperatures and salinities (12.32+0.93°C,
34.67 +0.08 PSU), were next and continued until 27 to
32km offshore. The subtropical front itself was de-
scribed as a separate cluster by the FCM (11.30+
0.88°C, 34.42 +0.13 PSU), with a width between 11 km
and 22km (for an average of 17km), and occurred
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Fig. 3 Example of the evolution of the fuzzy membership grades along the Munida transect (in kilometres from the shore) in January 2014. a The
clusters based on environmental parameters (Surface temperature and Salinity) describe the different water masses: Neritic waters (red), Sub-
Tropical waters (brown), Front (yellow) and Sub-Antarctic waters (orange). b Evolution of the microbial community clusters (based on OTUs)
along the transect. The environmental clusters are kept in shades of grey for easiness of comparison. The evolution of the fuzzy membership
grades for the other sampling months can be found in the S, Fig. 1A to F
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between the end of the STW and the beginning of the
sub-Antarctic waters (SAW), which began between 41
and 53 km offshore. The low temperatures and salinity
values, characteristic of the SAW (10.78 +1.32°C,
34.31 +£0.06 PSU), then continued until the end of the
transect. The values given here are intervals, to account
for the shape of the FCM and the monthly variability.
We could not depict any clear seasonal patterns in the
positions of the water masses (see supplementary infor-
mation, Fig. SI. 1A-1F).

The FCM also described a spatial segregation of bac-
terioplankton communities along the transect (Fig. 3b
and Fig. SL. 1). Due to the number of sampling stations
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and to computational constraints, the number of pos-
sible clusters was limited to three. Nevertheless, they
were spatially organised and their positions coincided
with the position of particular water masses. As such, it
was possible to associate the bacterioplankton communi-
ties with the water masses in which they occurred. The
STW and SAW could always be linked to a distinct mi-
crobial community, however the NW (present in July,
March and April) and the subtropical front (present in
January, June and December) inconsistently fluctuated
between distinct and shared community clusters with
bordering water masses. The relative positions of the
fuzzy clusters did not vary dramatically depending on
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the taxonomic accuracy, but their spatial fit with the en-
vironmental clusters seemed to improve with increasing
taxonomic resolution (Fig. SI. 2). The phylum compos-
ition of the fuzzy cluster centroids varied between
months (Fig. 4). Some phyla (e.g. Euryarchaeota, Verru-
comicrobia, Planctomycetes and Bacteroidetes) were con-
sistently scoring intermediate values in each cluster,
indicating ubiquitous distribution. Other phyla were
more consistently associated with a single cluster at a
time (e.g. Latescibacteria and Tenericutes, in NW or
STW) and their spatial distribution therefore coincided
with distinct water masses.

The overlaps and shapes created by the evolution of
the FCM membership grades formed overlaps and areas
of more or less mixed conditions between the different
clusters. This representation offers a straightforward way
to visualise the spatial organisation — or patchiness — of
the environment from multivariate data. The status of
boundary data, i.e. of data located in the outer part of
the clusters, can therefore be more easily addressed.
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Transition patterns

The characteristic (i.e., abruptness and the extent, here
measured as slope and width) of the environmental transi-
tion zones along the transect were estimated (Fig. 5a-b).
Overall, the transitions between the STW and the sub-
tropical front were steeper and shorter than the transition
from the subtropical front to the SAW (respectively x 1.69
steeper and x 2.29 km shorter on average, assessed with
Kruskal-Wallis rank sum test, p-value <0.05, n=12),
whereas the characteristics of the transitions between the
NW and the STW did not significantly differ from the
transitions between the STW and the subtropical front.
All these values were subjected to important variations
form 1 month to the other but did not reveal any strong
seasonal trends.

The shapes of the transitions between the microbial
clusters were congruent with those between the environ-
mental clusters (Fig. 4c-d). The transitions between the
communities in the STW and the subtropical front were
x 1.78 steeper and x 1.59 shorter than the transitions
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between the communities in the subtropical front and
the SAW. These differences were statistically significant
(Kruskal-Wallis rank sum test, p-value < 0.05, n=6),
meaning that the environmental transitions and eco-
tones between the STW and the subtropical front were
sharper and shorter than the ones between the front and
the SAW. The transitions between the NW and the
STW were not statistically different from the transitions
from the STW and the subtropical front.

System dynamic and relations between water masses and
microbial communities

As mentioned above, the variations in the positions and
width of the microbial clusters matched those of the
water mass (i.e. environmental) clusters. A network ana-
lysis (Fig. 6a) showed that these spatial associations also
corresponded to a higher relatedness of the microbial
communities that were representative of a particular
water mass throughout the sampling period. As such,
the links between the microbial communities that
belonged to the same water masses were stronger than
the links uniting water masses of different origins.
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A visual analysis of the network structure reveals three
different groups (i.e., the NW, STW and SAW associated
communities), whereas the subtropical front communities
are poorly linked with each other but draw a gap between
the NW and STW communities on one side and the
SAW communities on the other. Nevertheless, the spin-
glass algorithm only detected 2 statistical communities in
the network (one comprised of the NW and STW com-
munities and the other of the SAW and frontal communi-
ties), with the rare occurrence of the subtropical front
community in June as a third isolate (>1% of the net-
works). Although not in a different group, the STW com-
munity in December often appeared slightly apart from
the other STW communities.

Importantly, the number of OTUs that were present in
each cluster centroid only accounted for a small portion
of the total number of OTUs. Such proportions are indi-
cative of the degree of uniqueness in the microbial com-
munities, as only a fraction of the OTUs played a role in
linking the clusters (number of common OTUs between
cluster centroids presented in Fig. 6b). Each month har-
boured an average of 41.1% (+ 4.7%) of the total number

A.
December

Fig. 6 a Unweighted network representation of the relationship between the fuzzy community cluster centroids (defined for this network as the
pool of OTUs that have a membership grade of 0.85 or more inside the cluster). The nodes have been coloured according to the water masses.
The width of the links is proportional to the number of shared OTUs, which are reported on the correlation matrix (panel b)
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of OTUs over the whole sampling period, and shared
51.5% (+ 4.5%) of these remaining OTUs with other
months. In the example network presented here
(threshold value of 0.85, Fig. 6a), an average of 16.3%
(+ 5.3%) of the total number of OTUs/cluster cen-
troid were above the threshold and considered as rep-
resentative of a community. The remaining OTUs
were therefore too ubiquitous to be kept in one par-
ticular cluster centroid. Among the representative
OTUs of each cluster, an average of 6.4% (+ 1.0%)
were shared. The majority of the OTUs were there-
fore either too ubiquitous to represent a particular
cluster, or too specific to be found in more than one
cluster.

Discussion

Method considerations, suitability and efficiency

In this study, we used a fuzzy clustering approach for
the first time to unravel the patchiness and the associ-
ated ecotones of microbial communities in the pelagic
environment. We demonstrate that fuzzy clustering pro-
vides an efficient tool to unravel the heterogeneity of ap-
parently continuous environments, particularly when the
use of multivariate data is required, as it is the case for
water masses (temperature and salinity) and microbial
communities. There are three main advantages. First,
the obtained graphical representation respects the con-
tinuity of the original data. It thus avoids arbitrary deci-
sions regarding the assignation of spatial boundaries
between clusters [66]. Second, FCM can be applied both
on species (here OTU) and environmental data, with
similar graphical outputs, which highlight spatial associ-
ations and makes comparison more straightforward. Fi-
nally, information from the cluster centroids can be
extracted. These sets of vectors can be interpreted as
biological description of the clusters [2, 47] or as repre-
sentative values in the case of environmental variables.
By keeping the ecosystem description structured in
patches, it offers the possibility to bring together studies
centred on ecosystem cores and research on ecotones,
two approaches that have often been treated separately,
despite their relation to understand landscapes as dy-
namic and networked entities [67, 68]. Recognising that
patches can grade into each other aligns with more re-
cent ecological theories, such as network theory [69] and
complexity theory [67], that recognise that exchanges,
links and continuity between entities are crucial for the
description and functioning of ecosystems. Moreover,
several quantitative metrics can be extracted from the
shape of the fuzzy clusters, such as the extent and
strength of the mixing area (here measured as widths
and rate of change). Modelling studies suggest that the
sharpness of the environmental transition is a major fac-
tor in controlling the characteristics of the ecotone,
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however, there is still a lack of empirical data to calibrate
these models [4]. Using FCM along gradients may pro-
vide some of the metrics needed to progress in this field
and prove useful for the parameterisation of statistical
models that aim to account for fluxes and exchanges be-
tween compartments [70].

One drawback of this approach is the determination of
the correct number of fuzzy clusters. Some mathemat-
ical indices have been developed to support this decision
process, but they sometime fail to indicate a clear
optimum [47]. The number of clusters is also con-
strained by the number of observations, which may be
limiting at low sampling intensity.

Water masses and microbial communities

The high variability we observed in the positions of the
different water masses between the successive cruises
describes the study area as a very dynamic system, with
a wide range of possible states. We do not report sea-
sonal trends in the position of the front, but the lack of
time averaging in this study may have captured ephem-
eral variations, such as eddies, plumes and meanders,
that can hide seasonal trends or associated cycles (as re-
vealed in longer time series, [22, 56]). Therefore, al-
though seasonality affects the average position of the
oceanic features in the area, the range of possible loca-
tions remains high throughout the year (as reported in
[22, 71, 72]). Here, this can be seen in the July data
where the temperature and salinity records were
disturbed.

FCMs offer an alternative approach in oceanography,
and contrast to existing techniques for oceanic jet detec-
tion in the oceans (that are mostly based on satellite im-
agery algorithms, the use of gradient thresholding
methods, probability density functions and contour
methods, see [72] for a review). These methods make
use of additional physical parameters such as Sea Surface
Height (SSH) that are further away from the field of bio-
logical oceanography. Although FCMs could also be ap-
plied on SSH data, the use of SST and SSS facilitate the
comparison of the subtropical front with surrounding
oceanic features, as salinity and temperature are the
most common descriptors to define water masses. These
descriptors are also ecologically meaningful [73, 74] and
the FCM do not exclude the possibility of including add-
itional ecological parameters to better understand the
drivers of species and community distribution.

Patterns of association between plankton and oceanic
circulation have been demonstrated at larger scales,
mainly through ocean colour imagery (Chlorophyll a,
but also with other pigments, proteins and lipids [18,
75-77]). The phylum composition of the different fuzzy
cluster centroids highlighted a ubiquitous distribution of
some of the phyla along the 60km of the transect,
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among which the Euryarchaeota (methanogens), Verru-
comicrobia, Planctomycetes, Bacteroidetes (known par-
ticle degraders, [78]) and SAR406. Many of these phyla
have been linked with anaerobic metabolisms in deeper
parts of the oceans [79]. Their presence in surface samples
may either indicate a strong mixing of the surface waters
with deeper layers, the ability of some of the members of
these phyla to live in more oxic conditions, or their associ-
ation with suboxic microhabitats in particles (see [80, 81]).
Other phyla were more consistently associated with a single
cluster at a time, e.g. Latescibacteria (NW in March and
April 2015, STW in June 2014), Tenericutes (NW July
2014, STW in June 2014 and April 2015). These particular
associations mostly happened in the nearshore sections of
the transect and could indicate that the subtropical front
and the SAW are poorly differentiated at the phylum level,
comparatively to the NW and STW. Information on the
basic metabolism and ecological properties of these micro-
organisms are still scarce [82] and drawing ecological con-
clusions from these patterns would still require too many
unsupported assumptions, particularly as microbial taxo-
nomic diversity may be a poor predicator of microbial func-
tional diversity [83]. The spatial segregation of the fuzzy
clusters was only slightly more pronounced at increased
taxonomic resolution (Fig. SI. 2), which may suggest that
members of the same phylum might share general eco-
logical strategies [84]. Ecological communities are shaped
by more than just the sum of individual responses to sur-
rounding environmental conditions. They are usually stabi-
lised by facilitative or mutualistic relationships (sometime
centred around a few key species [85]). Genomic studies
have suggested that many bacterial phyla, and in particular
those with small genome sizes could be obligate syn-
throphs, depending on larger bacterial hosts (e.g. in the
Candidate Phyla Radiation and TM6 [82, 86, 87]). Such mi-
crobial associations may introduce reinforcement loops in
the composition of microbial community, particularly at
taxonomic resolutions that capture more specialised rela-
tionships. Investigating the co-occurrence of particular taxa
in environmental datasets could help exploring these asso-
ciations [82].

To account for these microbial associations, the com-
munity networks were thus constructed at the highest
taxonomic resolution (OTU). The consistency of the links
that united the bacterial communities of a particular water
mass demonstrate the existence of biogeographic patterns
in pelagic microbial communities (see also [88, 89] for
bacterial communities), even at local scales over few kilo-
metres. These patterns may be driven by the dispersal lim-
itations induced by water masses circulation or by
“ecosystem filtering” (including biotic and abiotic filters).
We nevertheless recognise that these drivers unequally af-
fected the microbial communities. Many OTUs were ubi-
quitous in the study area and therefore unrelated to a
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particular cluster centroid, conversely many others were
too rare, i.e. occurring in only one cluster, to play a role in
the networks. Overall, only a small proportion of the
OTUs explained the community variance. An average of
41% of the total number of OTUs sequenced over the
whole sampling period were present per month and only
16.3% of that number were representative of a given clus-
ter (the other 83.7% were too ubiquitous to represent a
cluster). 6.4% were shared between clusters. These num-
bers can provide estimates for alpha and beta diversity (re-
spectively defined as the diversity in a single community
and the total dissimilarity between two or more communi-
ties, [90, 91]). If considered month per month, the high
percentage of ubiquitous OTU advocate for low beta di-
versity between the water masses and a high alpha diver-
sity in each water mass. Other microbial studies on land
have found patterns of low beta diversity and high alpha
diversity in microbial communities ([92] on soil micro-
biota), which is consistent with the results of this study.
However, we point out that the low percentage of OTUs
shared between the successive months suggests much
higher beta diversity over time. In the case of microorgan-
isms, their ability to evolve quickly may result in emergent
patterns of beta diversity [93] and may provide an explan-
ation for these findings. Inasmuch as we can tell from the
limited data of this study, we advocate that time alone
could be an important driver of microbial diversity
patterns (along with dispersal limitations and environmen-
tal filtering) and that its effect on microbial diversity
should be further isolated and explored, notably as it
might provide a link between the slow-evolving macro-
organisms and the fast-evolving microorganism diversity
patterns.

Considering the study area, higher numbers of shared
OTUs were reported between the microbial communi-
ties in the NW (and STW in a lesser extent) compared
to the offshore communities (subtropical front and
SAW, Fig. SI. 3), thus revealing more conserved commu-
nities over time. The strong influence of the Clutha
River in the region, with its consistent inputs of fresh-
water and sediments, is responsible for the existence of a
well differentiated NW, and is already known to support
higher levels of primary productivity [94]. These terres-
trial inputs may have had an additional stabilizing effect
on the particle degrading bacterioplankton communities
in the surface layers sampled in this study.

This study was indeed limited to the surface waters.
Depth influences the water mass characteristics ([95], for
New Zealand), and can drive microbial community dif-
ferentiation, particularly on both side of the euphotic
zone [96]. Mixing events however regularly occur and
can lead to a homogenisation of the water column down
to depths of around 100 m [22]. The conclusions of our
study thus mainly apply to these depths.



Bagnaro et al. Environmental Microbiome (2020) 15:16

Transition patterns, oceanic front and ecotone

It is generally accepted that water mass properties change
rapidly across the front, yet remain approximately con-
stant along the front [71]. As such, frontal areas have been
regarded as transition zones between water masses and
create potential ecotones [17, 38]. The FCMs were able to
isolate the front as a distinct environmental cluster. The
physical characteristics of the transitions between the dif-
ferent water masses and microbial communities along the
continental shelf revealed that the passing from the frontal
waters to the SAW were more gradual and over longer
distances than the other transitions, which is probably the
consequence of the sub-Antarctic origin of the subtropical
front that makes its composition more similar to the
SAW (90% SAW and 10% STW, according to [97]).

Despite this similarity with the SAW, the subtropical
front in this study often maintained specific microbial
clusters, comprising relatively low numbers of shared
OTUs with the surrounding water masses (Fig. SL. 3).
The origin of these few shared OTUs appeared to be
equally partitioned between the STW and the SAW, but
remained marginal in the cluster composition, highlight-
ing the emergence of a separate community. These par-
ticular microbial communities were especially evident
over the summer months, when stronger gradients in
nutrient concentrations and temperature prevail and
when phytoplankton blooms may occur [22, 52]. In
these conditions, phytoplankton dynamics may drive the
emergence of a distinctive microbial community [17, 38,
98, 99]. By contrast, a microbial community associated
with the less salty neritic waters replaced it during the
winter and autumn months, as the gradients associated
with the front weaken [22]. Nevertheless, the appearance
of a front-associated microbial cluster in June is at odds
with this interpretation and we cannot reject a detrimen-
tal effect of the limited number of possible microbial
fuzzy clusters.

The subtropical front did act as a clear separator be-
tween the STW and the SAW. Its position as an ecotone
or as a separate and distinct ecosystem remains debat-
able. Temporal — and possibly seasonal — patterns may
be the main drivers for whether or not the front har-
bours a separate community, or is an ecotone. Transient
ecotones have been reported in the terrestrial literature
[100]. This distinction is important, as the exchanges be-
tween the STW and the SAW are likely to be impacted
by the presence of a distinctive microbial community be-
tween them, as well as the capacity of the frontal area to
support higher levels of productivity [101] and attract
organisms belonging to higher trophic levels [102].

Our study revealed the existence of another ecotone
between the coastal NW and the STW, with the persist-
ence of a coastal microbial biome. The occurrence of
coastal front associated with freshwater inputs have
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already been reported [103] and linked with distinct
plankton communities [104]. Additionally, we demon-
strate its influence on microbial communities, which has
implications for primary productivity in coastal waters
[28, 105]. Microbial ecotones may represent gradients of
differing biochemical activities, where the frontal micro-
organism benefit from the combined access to different
sources of nutrients, and thus overcome potential
growth limitations. Oceanic fronts are usually presented
as areas of enhanced productivity [55, 106] and our abil-
ity to pinpoint and characterise the pelagic environment
as continuous and comprised of both patches and the
transitions between them might prove crucial to under-
stand the linkage between the different trophic levels in
the oceans, in turn improving our understanding of glo-
bal biogeochemical cycles [33, 107].

Conclusion

The use of fuzzy clustering offers a novel way of inte-
grating environmental and biotic entities in continuous
representations, thus bringing together both patches and
ecotones in ecosystem studies. Here, this technique
allowed us to reveal the water mass organisation along the
subtropical convergence zone off South New Zealand. In
particular, we report the subtropical front as a distinct
oceanic structure. Each water mass harboured distinctive
bacterioplankton communities with high alpha diversity
but low beta diversity although there was an important ef-
fect of time on microbial community composition. The
characteristics of the ecotones between these communities
matched the characteristics of the transitions between the
different water masses, indicating that the mixing of the
waters also resulted in the mixing of the microbial com-
munities. It is noteworthy, that a pelagic oceanic front was
used as a case study, but fuzzy clustering may be applied
to a wide range of ecological systems and proves a power-
ful asset to resolve uncertainties regarding the patchiness
along environmental gradients.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/540793-020-00363-w.
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Additional file 1. Fig. SI.1: Variations of the membership grades of the
environmental fuzzy clusters (in shades of black) and of the microbial
clusters (in red, blue and green) along the Munida transect (in kilometres
from the shore) for the different month of the sampling. The microbial
communities have been labelled according to the water mass that they
occupy. The computations of the two sets of clusters (environmental and
microbial) were independent thus their spatial correspondence is
incidental. Fig. SI.2: Evolutions of the fuzzy clusters at the different
sampling time (A to F) depending on the taxonomic resolution of the
microbial data. Taxonomic levels spans from Phylum (lowest resolution,
row 1) to OTUs (highest resolution, row 4), with order (row 2) and genus
(row 3) as intermediate taxonomic resolutions. The water masses fuzzy
clusters are presented in the background and are identical to Fig. SI.1.
The relative positions of the transitions between the microbial clusters
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are hardly affected by the taxonomic resolution. Their shapes, however,
are and the microbial clusters match the environmental cluster best at
increased taxonomic resolutions. Fig. SI.3: Network representations of the
number of shared OTUs between the microbial communities in
association to their water masses (colours) and the sampling month
(labels). The thicknesses of the links are proportional to the number of
shared OTUs. The exact numbers are reported on the matrix on the right
of each network. The coloured ellipse areas correspond to the 95%
probability region for the water masses in the networks. Note that the
higher the threshold, the weaker the links. For the highest thresholds
(0.95 and 0.99), some nodes are not linked to any others and their
positions should not be interpreted.
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