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Abstract

Background: The Basic Local Alignment Search Tool (BLAST) from NCBI is the preferred utility for sequence
alignment and identification for bioinformatics and genomics research. Among researchers using NCBI's BLAST
software, it is well known that analyzing the results of a large BLAST search can be tedious and time-consuming.
Furthermore, with the recent discussions over the effects of parameters such as -max_target_seqs’ on the BLAST
heuristic search process, the use of these search options are questionable. This leaves using a stand-alone parser as
one of the only options of condensing these large datasets, and with few available for download online, the task is
left to the researcher to create a specialized piece of software anytime they need to analyze BLAST results. The
need for a streamlined and fast script that solves these issues and can be easily implemented into a variety of
bioinformatics and genomics workflows was the initial motivation for developing this software.

Results: In this study, we demonstrate the effectiveness of BLAST-QC for analysis of BLAST results and its desirability
over the other available options. Applying genetic sequence data from our bioinformatic workflows, we establish
BLAST_QC's superior runtime when compared to existing parsers developed with commonly used BioPerl and
BioPython modules, as well as C and Java implementations of the BLAST_QC program. We discuss the ‘max_target_
seqs’ parameter, the usage of and controversy around the use of the parameter, and offer a solution by
demonstrating the ability of our software to provide the functionality this parameter was assumed to produce, as
well as a variety of other parsing options. Executions of the script on example datasets are given, demonstrating
the implemented functionality and providing test-cases of the program. BLAST-QC is designed to be integrated into
existing software, and we establish its effectiveness as a module of workflows or other processes.

Conclusions: BLAST-QC provides the community with a simple, lightweight and portable Python script that allows
for easy quality control of BLAST results while avoiding the drawbacks of other options. This includes the uncertain
results of applying the -max_target_seqs parameter or relying on the cumbersome dependencies of other options
like BioPerl, Java, etc. which add complexity and run time when running large data sets of sequences. BLAST-QC is
ideal for use in high-throughput workflows and pipelines common in bioinformatic and genomic research, and the
script has been designed for portability and easy integration into whatever type of processes the user may be
running.
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Background

The Basic Local Alignment Search Tool (BLAST) from
NCBI has been a popular tool for analyzing the large data
sets of genetic sequences that have become common
when working with new generation sequencing technolo-
gies. BLAST has been the preferred utility for sequence
alignment and identification in bioinformatics and genom-
ics research and workflows for almost 30 years [1]. One of
the main challenges for researchers utilizing the NCBI
BLAST is interpreting the huge amount of output data
produced when analyzing large numbers of input se-
quences. While BLAST does allow for multiple output
formats as well as limiting the number of top hit results
(using -outfmt and -max_target_seqs, respectively) [2], for
some purposes such as pushing results down a workflow
or pipeline, these tools may not be enough to ensure re-
sults that can be meaningfully and reasonably interpreted.
The controversy raised by Shah et al. [3] in their 2018
paper outlining a bug in the functionality of the -max_tar-
get_seqs parameter has started a discussion in the BLAST
community over the usage and potential for misuse of the
parameter. NCBI published a response stating that the
utility of this parameter is simply misunderstood by the
community and that the bug seen by Shah et al. was the
result of “overly aggressive optimization” introduced in
2012, and patched the issue following the release of
BLAST+2.8.1 in 2018 [4]. However, follow up test cases
and posts, including those by Peter Cock [5], have shown
that this issue is much more complex than simply “BLAST
returns the first N hits that exceed the specified e-value
threshold”. While the update 2.8.1 fixed 9/10 of Shah
et al’s test cases, according to the post by Peter Cock, 1/10
remained invalid, due to an error with the internal candi-
date sequence limit introduced by -max_target_seqs 1.
This is because, as was stated by Shah et al. [3], the -max_
target_seqs parameter is applied much earlier in the
search, before the final gapped alignment stage. This
means that the use of this parameter can change the num-
ber of sequences processed as well as the statistical signifi-
cance of a hit if using composition-based statistics [2].
This is contrary to the popular assumption that the par-
ameter is simply a filter applied post search [6]. This intu-
ition is false, and may lead to errors in the resulting data
of a BLAST search if the value of -max_target_seqs is too
small. The use of -max_target_seqs in this way is not ad-
vised. As a result of the misinformation and confusion
over ‘-max_target seqs’ and other intricacies of the
BLAST heuristic search and filtering process, there has
been a push towards more detailed documentation of
these processes and effects of parameters on the BLAST
algorithm [6], with NCBI adding a warning to the BLAST
command-line application if the value of -max_target_seqs
is less than 5 [7]. The community has also moved towards
better methods of narrowing the results of a large search,
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as opposed to using BLAST parameters that may affect
the actual search process. These methods include re-
sources like Bio-Perl and BioPython that can be used to
create scripts to parse and filter result files. A few commu-
nity written scripts can be found available online, such as
the Perl script created by Dr. Xiaodong Bai and published
online by Ohio State [8], a version of this script produced
by Erin Fichot [9], and a XML to tabular parser by Peter
Cock [10]. While all of these scripts (and others like them)
can potentially be very useful for parsing BLAST XML re-
sults into a concise tabular format, most have drawbacks
that leave much to be desired. First and most importantly,
for Bai and Fichot, the programs require Perl and Bio-Perl
modules which can be unwieldy and slow for use in high-
throughput workflows and pipelines, especially those which
are built on a modern python framework. Furthermore,
both scripts contain a bug, found on lines 77 and 93 re-
spectively, that causes the query frame value to be lost
through the parsing process, setting the value to 0. Our
team sought to correct this and other errors and to provide
a verified solution that can be soundly applied for research
purposes. Secondly, the team saw a need for increased
functionality, particularly the ability to filter results by
threshold values input by the user. The only program that
implements a threshold other than BLAST-QC is the script
by Fichot, but only a bit score threshold is implemented.
Our team sought to provide a single solution that would let
researchers determine the best combination of values that
would be optimal for any given experiment without the
need to change parsers between runs. The team’s central
motivation was to pursue creating a dedicated piece of
quality control software for use in research workflows, find
a solution that solely utilizes Python 3, streamlines the
process, and reduces run times for parsing large data sets of
BLAST results. Implementation:

BLASTQC has been implemented in a single python
file, requiring only that Python3 be installed for all func-
tionalities to be used. The team felt that an implementa-
tion in Python was important for the simplicity and ease
of use that comes with the Python environment. Python
is also one of the most popular and well understood lan-
guages for research purposes, and thus is a perfect
choice for a tool that is designed for portability and inte-
gration into other research processes. Python is also cap-
able of very fast runtimes when compared to other
interpreted languages, such as Perl, and while it may be
slower than a compiled language like C, the benefits in
ease of use and portability outweigh the minor increase
in runtimes. For example, C requires the use of depend-
encies like libxml2 for parsing, requiring a higher level
of knowledge to make modifications to source code, and
as such is less desirable as a simple addition to bioinfor-
matic workflows already built within the Python frame-
work. With Python 3 the parsing step of the workflow is
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simplified to a single file. Furthermore, the use of a stan-
dalone script rather than the use of a command line
sorting option such as GNU sort not only provides a
great increase in possible functionality, as implementing
filtering parameters in bash on the command line can be
cumbersome, but also allows for a better user experience
for researchers who don’t want to memorize long sort
commands that need to be changed constantly as experi-
ment goals change. The BLAST-QC script implements
thresholds on e-value, bit-score, percentage identity, and
the number of ‘taxids’ (level of taxonomic or functional
gene detail) in the definition of a hit (<hit_def>in
BLAST XML results). It is also possible for the user to
choose which of these values the output should be or-
dered by and how many top matches should be returned
per query sequence in the input. Thus, the behavior of
the -max_target_seqs parameter may be implemented
with ease without altering the search process. Addition-
ally, if the researcher decides that a higher bit-score is
more important for a certain experiment, it is trivial to
change the parsing process to return the highest bit-
score hit, whereas max_target_seqs only supports
returning top hits by e-value. Further, the Python script
is also capable of setting a range on the threshold values,
and selecting those sequences that produced a more de-
tailed hit definition within that range. This is useful for
researchers because it avoids the problem of finding a
high scoring sequence that provides no relevant infor-
mation, as there may be little use in knowing that a hit
accurately matches an unknown sequence. For example,
a BLAST search may return a hit sequence with a taxid
of “protein of unknown function DUF1680”. This may
not be a useful result for a study on the function of a
specific protein, regardless of how low the evalue of the
hit. BlastQC allows researchers to define the reasonable
evalue for their application using input parameters, and
returns hits with more informative taxids that still fit
within the chosen parameters. Increased definition infor-
mation is useful for narrowing the taxonomy of a species
(for BLAST nucleotide) or the type/functionality of a
protein sequence in a protein BLAST query. The team
also found an issue in many of the available community
parsers regarding the number of HSPs (high scoring
pairs) per hit. In some cases BLAST may return multiple
HSPs per hit sequence, and the BLAST-QC script han-
dles this by considering it a separate hit that retains the
same id and definition. This case was not covered in any
of the scripts the team encountered online, causing hits
with multiple HSPs to lose any data from the additional
HSPs. The BLAST-QC Python script is compatible with
all BLAST types (BLASTP, BLASTN, BLASTX, etc.) as
well as both the tabular and XML output formats
(—outfmt 6 and -outfmt 5, respectively) and reports all
relevant data produced in a BLAST results file: query
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name, query length, accession number, subject length,
subject description, e-value, bit-score, query frame,
query start, query end, hit start, hit end, percent identity,
and percent conserved (gseqid, sseqid, pident, length,
mismatch, gapopen, gstart, qend, sstart, send, evalue, bit-
score and salltitles (optional) for tabular output). Infor-
mation on these values can be found in the BLAST
glossary and manual [2, 11], and the two percentage values
(percent identity and percent conserved) have been calcu-
lated using the identity (Hsp_identity), positive (Hsp_posi-
tive) and align length values (Hsp_align-len). Percent
identity is defined as the percent of the sequences that
have identical residues at the same alignment positions
and is calculated by the number of identical residues di-
vided by the length of the alignment multiplied by 100
(100*(hsp_identity/hsp_align-len)). Percent conserved
(positive) is defined as the percent of the sequences that
have ‘positive’ residues (chemically similar) at the same
alignment positions and is calculated by the number of
positive residues divided by the length of the alignment
multiplied by 100 (100*(hsp_positive/hsp_align-len)).
Additionally, BLAST-QC supports parallel processing of
results, using Python’s multiprocessing module. The num-
ber of concurrent BLASTQC processes defaults to the
number of CPU cores present on the machine, but this
value may be adjusted using the -p command line option.
If sequential processing is desired, the number of pro-
cesses may be set to 1 using “-p 1”7. This along with the
ability to pipe input from stdin allow for replication of
some of GNU sort’s main features.

Results

The objective of the development of BLAST-QC was to
provide BLAST users with a method of quality control
that ensures accuracy of results, posts superior runtimes,
and provides configurations for many types of analysis
processes, while remaining streamlined and simple to
use and modify. In order to establish BLAST-QCs effect-
iveness as compared to other quality control options, we
have compared BLAST-QC python to implementations
of the program in compiled languages, both C and Java,
to the community available parsers by Bai, Fichot and
Cock, and to a standard approach to parsing for some
researchers, GNU sort commands.

We demonstrate the ability of BLAST-QC to correct
the issue with ‘max_target _seqs’, using the dataset pro-
vided in the case study from Shah et al. [3]. This dataset
is available on Shah’s github page, ‘https://github.com/
shahnidhi/BLAST_maxtargetseq_analysis’. As shown in
Fig. 1, BLAST-QC was able to correctly identify the low-
est e-value hit for the same query sequence while
BLAST with ‘-max_target_seqs = 1” was not. This result
illustrates the potential for errors to be introduced into
BLAST data by the use of this parameter, and we
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Command One:
Command Two:
Sequence One:
Sequence Two:
Sequence Three:

$50_7242:pb_10cov_000M-001M
$208_335:pb_10cov_001M-002M
$216_4030:pb_10cov_001M-002M

ID

Sequence One 1
Sequence One -

Command One:
Command Two:

Command One:
Command Two:

Sequence Two 1
Sequence Two -

Command One:
Command Two:

Sequence Three il
Sequence Three -

blastn -query infile.fasta -out outfile.xml -max_target_seqgs 1
blastn -query infile.fasta | BLAST-QC.py -ff XML-tn-n1ore

Fig. 1 Demonstration of max_target_seqs error and correction (BLAST 2.8.0 or earlier) on the test cases presented by Shah et al. in 2018 [3].
Command 1 demonstrates the usage of BLASTN to produce only 1 top e-value hit per query sequence, using -max_target_segs 1. Command 2
demonstrates the usage of BLAST-QC to parse the top e-value hit from the standard BLAST output, using -or e -n 1" to order by e-value and
return only 1 top hit per query. These commands are executed for 3 separate query sequences (represented in the respective commands by
infile fasta), sequences 1, 2 and 3. As the e-values in figure show (column 5), BLAST-QC is able to extract the top e-value hit from these test case
examples, while max_target_seqs is not. This error has been corrected in BLAST 2.8.1, but we show this example for compatibility with those who
might be running older versions of BLAST or have older BLAST results datasets

= 2.40E-135 s_15833:C0G0185

1 0 s_1013:COG0088

5.90E-164 s_6114:COG0087
1 0 s_9883:C0G0088
= 2.33E-145 s_401:COG0088
il 0 s_9886:C0G0090

encourage researchers to seek more information on its
usage and application [6, 11]. To use BLAST-QC to rep-
licate the function of ‘-max_target_seqs’ leave the par-
ameter set to default while using BLAST to locate
matching sequences, then run BLAST-QC on the result-
ing data, ordering output by e-value and setting a limit
of 1 hit per query using the syntax shown at the bottom
of Fig. 1. Although the issue with max_target_seqs has
been corrected in BLAST 2.8.1, it is still not well under-
stood by the BLAST community and, being a popular
parameter, we felt that it was important to show this use
case in order to demonstrate a safe way of achieving the
desired effect, as well as to promote compatibility with
older versions of the BLAST software. We also demon-
strate the runtime of BLAST-QC as compared to exist-
ing parsers, two developed with the commonly used
BioPerl modules, one written by Xiaodong Bai from
Ohio State and an improved version of the same script
developed by Erin Fichot [9], an XML to tabular conver-
sion script published by Peter Cock [10], implementa-
tions of the BLAST-QC parser in both Java and C, as
well as a standard GNU sort command. The implemen-
tations in C and Java were necessary to compare
BLAST-QC Python to both compiled and interpreted
languages, as both Python and Perl are interpreted lan-
guages. The sort command used for the runtime bench-
marking is “sort -k1,1 -k11,11 blast.tab”, as this
replicates ordering the hit sequences for each query se-
quence by evalue, BLAST-QCs default mode. Thus, we
sort by query name first, then by evalue. All runtime data
was gathered using a system with a 28 core Intel Xeon
E5-2680 @ 2.4GHz and 128GB of RAM. All sample data-
sets used for figures were produced using nucleotide

sequences extracted for use in another one of our teams
bioinformatic workflows [9]. The BLAST command used
to produce the result data was: ‘ncbi-blast-2.10.0+/bin/
blastn -query Aug2013_metaG_12142016-34108099_Ex-
perimentl_layerl.fasta -db SILVA_132_SSURef Nr99_
tax_silva_trunc -outfmt (5 and 6) -num_threads 28’. Result
datasets were then split into 5 files containing 103, 10
10°, 10° and 10 query sequences respectively. As the
datasets used for the runtime tests are very large (the lar-
gest being ~60gb for 10" query sequences), we have
hosted the datasets on our team’s HPC server. For access
to the exact data used for all test cases, please submit a re-
quest at: https://sc.edu/about/offices_and_divisions/div-
ision_of_information_technology/rci/.

While each script is designed to operate on a BLAST
output file, they all differ in functionality and implementa-
tion. All versions of BLAST-QC (Python, Java, C) can op-
erate on both XML and tabular BLAST outformats, while
the scripts by Bai, Fichot and Cock only operate on XML
output, whereas GNU sort only functions on a tabular
outformat. These scripts were chosen for comparison as
they replicate many of the possible use cases for BLAST-
QC, both direct tabular conversion of results as well as
the application of filtering thresholds to provide quality
control. Both scripts by Bai and Cock do not provide any
quality control or threshold functionality, they simply
function as XML to tabular format converters for BLAST
results, while Fichot implements a bit-score threshold and
support for both protein and nucleotide databases. All ver-
sions of BLAST-QC implement the ability to operate on
both BLAST output formats, the ability to input various
filters to narrow results to the highest quality sequences,
and support for both protein and nucleotide databases.
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Figure 2 plots runtime vs number of query sequences for
all four programs that operate on tabular format, using
the same dataset of BLAST result files. As the figure de-
picts, BLAST-QC C version is the fastest program,
followed by Python, GNU sort then Java. While the C ver-
sion is certainly faster, it requires the use of external li-
braries libxml2, requires more knowledge than python to
operate and maintain, and is only marginally faster. Most
notably, BLASTQC Python outperforms a GNU sort of
the dataset at ordering hits by evalue. Many researchers
choose GNU sort as a standard approach to parsing
BLAST results as it is a widely available solution, but as
the figure shows, it does not perform as well as the standa-
lone parser. Furthermore, more complex QC tasks require
a strong knowledge of GNU sort’s syntax and creates add-
itional runtime, making standalone parsers much more
functional for complex parsing tasks (eg. replicating
-max_target_seqs). Lastly, the Java parser performed the
worst of the four parsers in the tabular benchmark, des-
pite the fact that Java is a compiled, rather than inter-
preted, language. This is most likely due to the high
memory overhead required by the Java Virtual Machine
(JVM), which takes up memory bandwidth that is needed
for parsing the large BLAST files. Figure 3 plots runtime
vs number of query sequences for all 6 programs that op-
erate on XML format, using the same dataset of BLAST
result files. Both Bioperl parsers performed worst out of
all the XML parsers, with Fichot’s script being somewhat
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of an outlier in the dataset (over 4 h to parse a file with
10° query sequences). This is most likely due to the com-
bination of the cumbersome BioPerl modules and the
more involved parsing of Fichot’s script as compared to
the script by Xaiodong Bai, as well as the fact that Perl is
an interpreted language. The C parser had the fastest run-
time in the XML benchmark, followed by the blastxml_
to_tabular. The blastxml_to_tabular script simply converts
the data from XML to tabular, so no real computations
are required. In both Figs. 2 and 3, we plot runtimes for
both sequential (1 core) and parallel processing modes (28
cores) of the BLAST-QC python application, to demon-
strate the effect of the parameter on runtime. While the
parallel processing takes more time for a lower number of
query sequences, at a value of approximately 5.055 x 10°
query sequences for XML out format, and 5.354 x 10° for
tabular, the program running in parallel achieves a faster
runtime than that of the sequential program. This is due to
the fact that opening each separate process and facilitating
communication creates more overhead than the parallelization
can scale for smaller inputs, but over a larger number of query
sequences the efficiency of parallelization decreases the overall
runtime, despite the overhead of the required process man-
agement. In Figs. 4-6 we demonstrate some of the various
functionalities of BLAST-QC and provide the results of their
application to a sample dataset. In Fig. 4 the range functional-
ity is demonstrated using an e-value range of .0005. This
means that BLAST-QC will consider hits found that fall

Runtime vs. Number of Query Sequences (Tabular)

10° 10°
Number of Query Sequences

107

Fig. 2 Plot of runtime vs number of query sequences in a BLASTN tabular (—outfmt 6) results file. The graph is a linear-log plot, the number of
query sequences is shown on a log scale, due to the exponential nature of runtime data and the large numbers of sequences involved. Each of
the scripts were run against BLAST tabular files containing 10°,10% 10°, 10° and 107 query sequences, respectively. All versions of BLAST QC were
run using default parameters (no command line options specified), which is to order hit sequences for each query by e-value. To replicate this
behavior using GNU sort, the command ‘sort -k1,1 -k11,11', was used as this orders the rows in the tabular output by query id then e-value (the

5000
—— BLASTQC-Python (Sequential)
—— BLASTQC-Python (Parallel)
—— BLASTQC-Java
40007/ prasTqc-c
—— GNU Sort
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Runtime vs. Number of Query Sequences (XML)

5000
—— BLASTQC-Python (Sequential)
—— BLASTQC-Python (Parallel)
—— BLASTQC-Java
40001(— B asTQC-C
—— Xiaodong Bai - BioPerl
—— Erin Fichot - BioPerl
% 3000 - Peter Cock - Python
()
E
=1
c
=]
& 2000 1
1000 A
0 ,__—H-.-gz—_{ﬁf

103 104 10° 106

Number of Query Sequences
Fig. 3 Plot of runtime vs number of query sequences in a BLASTN XML (—outfmt 5) results file. The graph is a linear-log plot, the number of
query sequences is shown on a log scale, due to the exponential nature of runtime data and the large numbers of sequences involved. Fach of
the scripts were run against BLAST XML files containing 10°, 10, 10°, 10° query sequences respectively. We did not include a run of 10" XML
query sequences as the file size became impractical for our system, taking up all 128Gb of ram (this resulted in a outOfMemoryException on the
Java parser). All versions of BLAST QC were run using default parameters (no command line options specified), which is to order hit sequences
for each query by e-value. Fichot's BioPerl script was also run using default parameters with no thresholds implemented. Both the BioPerl script

parameters are required

by Xiaodong Bai and the Python script by Peter Cock only function as XML (outfmt 5) to tabular format (outfmt 6) converters, so no input

within that range of the lowest e-value hit, if the target se-
quence provides an increase in the quality of the hit definition
(taxids in <Hit_def > or salltitles). As depicted in Fig. 5 the se-
quence returned by simply returning the lowest e-value hit
provides a definition that may not be useful for research ana-
lysis, while the top hit using a range value provides an
insightful description of the sequence while maintaining a rea-
sonable e-value within that range. In BLAST-QC, range values
are implemented on e-value, bit-score, and percent identity.
Figure 5 depicts the ordering functionality of BLAST-QC, and
ordering by e-value, bit-score, percent identity and hit defin-
ition is implemented. For example, when ordering by defin-
ition, as in Fig. 5 [1], the hit that has the highest quality of hit
definition that fits input thresholds will be returned. Figure 6
demonstrates the threshold capability of the BLAST-QC

program. The first sequence is returned when ordering by e-
value with the number of hits set to one (replicating max_tar-
get_seqgs). The second employs a bit-score threshold to find a
matching sequence with the highest e-value that also has a
bit-score above the threshold. Threshold values are imple-
mented on e-value, bit-score, percent identity and hit defin-
ition. All of the resources needed for the BLAST-QC software
are available for download from the BLAST-QC GitHub re-
pository: https://github.com/torkian/blast-QC. Additional test-
cases and usage information for the program are located on
the page as well.

Discussion
BLAST-QC was developed using Python 3, and is de-
signed for usage within a script or larger workflow, but

Command One:  BLAST-QC.py -f outfile.xml-tp-n1-ore
Command Two: ~ BLAST-QC.py -f outfile.xml -t p-n 1 -or e -er .0005
Sequence One:  M01535:64:000-AYEHH:1:1101:12986:1498
Seq. ID Hum_Hits(QC)  E-Value Range (QC)  Order By (QC) E-value (BLAST)  Bit-score (BLAST) Hit Definition(BLAST)
Command One: ~ Sequence One 1 N/A E-Value 0.0015 324 protein of unkown function DUF1680
Command Two: ~ Sequence One 1 0.0005 E-Value 0.002 455 efflux RND transporter permease subunit ...

Fig. 4 Demonstration of range parameters of BLAST-QC. Command 1 depicts the usage of BLAST-QC to return a single top hit per query
sequence. Command 2 depicts the same command with an additional range parameter, -er .0005". This will return a hit within this e-value range
(+.0005 from the top e-value hit) that has the most taxids present. Thus, as the figure shows, the result of command 2 is a hit with a e-value that
is .0005 more than the first top hit returned in command 1, but with more informative taxids

~N
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Command One: BLAST-QC.py -f outfile.xml -t p-n1-ore
Command Two: BLAST-QC.py -f outfile.xml -t p-n1-ori
Sequence One: MO01535:64:000-AYEHH:1:1101:12986:1498

Segq. ID Hum_Hits(QC) Order By (QC)
Command One: Sequence One 1 Definition
Command Two: Sequence One il Percent Identity

table above

E-value (BLAST Percent Identity Hit Definition(BLAST)

Fig. 5 Demonstration of the order by function of BLAST-QC. Command 1 depicts the usage of BLAST-QC to order a BLAST results file by e-value,
while command 2 depicts the usage of BLAST-QC to order results by percent identity. The result of each respective command is shown in the

0.002
0.023

57.80%
94.70%

protein of unkown function DUF1680
efflux RND transporter permease subunit ...

also offers a headless command-line interface for use
with smaller datasets. Usage information has been docu-
mented in this paper, and additional documentation, as
well as all test-cases and datasets used in this paper can
be found in the BLAST-QC GitHub repository, at
https://github.com/torkian/blast-QC. Our team seeks to
standardize researchers’ approach to analyzing BLAST
result datasets. Many researchers opt to apply ‘max_tar-
get_seqs’ as a quality control parameter in their research
workflows (over 400 Google Scholar papers reference
the value) [12—14], even though it has been shown that
this parameter can cause issues with the search process
and resulting data, and is simply not intended for this
purpose. Those who use a standalone script are exchan-
ging gains in the accuracy of results and greater func-
tionality and control over parameters for increased bulk
and runtime, which add up when running large datasets
of sequences. With the added functionality and superior
runtime that BLAST-QC provides over an option like
GNU sort or max_target_seqs, the BLAST-QC script
provides a practical option for parsing of BLAST result
files, especially as with the use of Python, the task can be
simplified to a single file. While there are other standa-
lone quality control and filtering options available for
BLAST results, BLAST-QC python takes a novel ap-
proach to the task, eliminating the necessity for other
dependencies and allowing researchers to have increased
control over the level of definition of results, while also
providing greatly decreased runtimes when compared to
other language and parsing options. We encourage the
community to consider available options when seeking

analysis of BLAST results, and to help contribute to and
improve on our source code by submitting a pull request
on the BLAST-QC GitHub page.

Conclusions

BLAST-QC provides a fast and efficient method of qual-
ity control for NCBI BLAST result datasets. It offers
greater functionality for controlling the desired QC pa-
rameters when compared to existing options and outper-
forms them in terms of runtime. We suggest that it is
BLAST-QC’s Python 3 framework that allows it to out-
perform dense BioPerl and BioPython modules, while it
also provides much higher functionality than GNU
sort or even -max_target_seqs. Furthermore, BLAST-
QC provides seamless integration into larger work-
flows developed with Python 3. With the increase in
popularity of high-performance computing and new
generation sequencing, novel approaches to BLAST
quality control and other bioinformatic computational
processes are needed to handle the increasing size of
datasets, but also to take advantage of the increasing
capacity of computing to provide solutions to these
problems. Our team also sought to increase awareness
of the controversy surrounding the application of the
‘max_target_seqs’ parameter in BLAST, and to pro-
vide a sound solution that replicates the function of
the parameter and ensures the highest quality results.
The BLAST-QC software and all other documentation
and information can be located at BLAST-QC’s
GitHub page.

Command One:
Command Two:
Sequence One:

BLAST-QC.py -f outfile.xml -t p-n 1-or e
BLAST-QC.py -f outfile.xml -t p-n 1 -or e -b 60
M01535:64:000-AYEHH:1:1101:12986:1498

value of .005, but with a bitscore of 66.5

Seq. ID Hum_Hits(QC)  Bit-score Threshold (QC) Order By (QC)
Command One:  Sequence One 1 N/A E-Value
Command Two:  Sequence One 1 60 E-Value

Fig. 6 Demonstration of threshold functionality of BLAST-QC. Command 1 demonstrates the usage of BLAST-QC to return the top e-value hit per
query, while command 2 depicts the usage of BLAST-QC to return the top e-value hit per query with a bitscore threshold of 60 (—b 60). The
results of command 1 return a hit with an e-value of .0015, while the hit's bitscore is only 32.40. the results of command 2 return a hit with an e-

E-value (BLAST)  Bit-score(BLAST) Hit Definition(BLAST)
0.0015 32.40 protein of unkown function DUF1680
0.005 66.50 efflux RND transporter permease subunit ...
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