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Abstract

The Pseudomonas fluorescens strain UM270 was isolated form the rhizosphere of wild Medicago spp. A previous work
has shown that this pseudomonad isolate was able to produce diverse diffusible and volatile compounds involved in
plant protection and growth promotion. Here, we present the draft genome sequence of the rhizobacterium P.
fluorescens strain UM270. The sequence covers 6,047,974 bp of a single chromosome, with 62.66 % G + C content and
no plasmids. Genome annotations predicted 5,509 genes, 5,396 coding genes, 59 RNA genes and 110 pseudogenes.
Genome sequence analysis revealed the presence of genes involved in biological control and plant-growth promoting
activities. We anticipate that the P. fluorescens strain UM270 genome will contribute insights about bacterial plant
protection and beneficial properties through genomic comparisons among fluorescent pseudomonads.
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Introduction
Plant pathogens cause diverse crop plant diseases result-
ing in drastic economic losses around the world. An al-
ternative to the use of chemicals to control plant
pathogens is the employment of eco-friendly bacterial
agents [1, 2]. An ideal bacterial biocontrol agent would
be one with the additional capacity to directly stimulate
plant growth [3]. Here, we report the draft genome se-
quence of the novel strain Pseudomonas fluorescens
strain UM270. This strain was previously isolated and
characterized for its excellent capacities for biocontrol of
phytopathogens and plant growth promotion [4].
In a previous report, our group showed that the P.

fluorescens strain UM270, among other three pseudomo-
nad strains, was the best in promoting the growth of
Medicago truncatula Gaertn. plants by significantly in-
creasing biomass and chlorophyll content. During con-
frontation assays, strain UM270 inhibited the growth of
agro-economically important fungal phytopathogens
such as Botrytis cinerea, Rhizoctonia solani, Diaporthe

phaseolorum, and Colletotrichum lindemuthianum [4].
In biocontrol experiments, the strain UM270 protected
M. truncatula plants from B. cinerea infection, reducing
general stem disease symptoms, root browning and ne-
crosis [4].
Importantly, the strain UM270 exerted these activities

through the emission of either diffusible compounds
(such as phenazines, cyanogens, 1-aminocyclopropane-
1-carboxylate deaminase, siderophores, proteases and
indole-3-acetic acid) or volatiles (like dimethyl disulfide
and dimethylhexadecylamine) [4], revealing that the
strain UM270 contains direct and indirect mechanisms
to promote plant growth [5].

Organism Information
Classification and features
P. fluorescens strain UM270 is a Gram-negative, non-
sporulating, motile, rod-shaped bacterium belonging to
the Order Pseudomonadales and the Family Pseudomo-
nadaceae (Fig. 1). The strain exhibits the general and
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common features of a Pseudomonas species phenotype
(Table 1) [6].
The UM270 strain was isolated from the rhizosphere

of Medicago spp. located in an agricultural field in
Morelia, Michoacán, México. As mentioned above, this

bacterium was further characterized and found to
produce several diffusible and volatile compounds in-
volved in biocontrol against several fungal pathogens,
particularly effective against the grey mold disease
caused by Botrytis cinerea [4]. Recent work in our lab

Fig. 1 Images of P. fluorescens strain UM270 using scanning electron microscopy (left and right) and phase-contrast (center)

Table 1 Classification and general features of Pseudomonas fluorescens strain UM270

MIGS ID Property Term Evidence codea

Current classification Domain Bacteria TAS [14]

Phylum Proteobacteria TAS [15]

Class Gammaproteobacteria TAS [16, 17]

Order Pseudomonadales TAS [18, 19]

Family Pseudomonadaceae TAS [18, 20]

Genus Pseudomonas TAS [18, 21]

Species Pseudomonas fluorescens TAS [18, 22]

Strain UM270 TAS [4]

Gram stain Negative TAS [6]

Cell shape Rod-shaped TAS [6]

Motility Motile NAS [6]

Sporulation None NAS

Temperature range Mesophilic IDA

pH range; Optimum 6-8.5;7-8 IDA

Optimum temperature 28 °C IDA

Carbon source Heterotroph IDA, [6]

Energy source Chemoorganotroph NAS

MIGS-6 Habitat Rhizospheric soil TAS [4]

MIGS-6.3 Salinity NaCl 1-4 % IDA

MIGS-22 Oxygen Requirement Aerobic IDA

MIGS-15 Biotic relationship Medicago spp. root associated TAS [4]

MIGS-14 Pathogenicity Non-pathogenic TAS [4]

MIGS-4 Geographic location Morelia, México TAS [4]

MIGS-5 Sample collection March, 2012 NAS

MIGS-4.1 Latitude 19° 46’ 6” N TAS [4]

MIGS-4.2 Longitude 101° 11’ 22” W TAS [4]

MIGS-4.3 Depth 10-20 cm NAS

MIGS-4.4 Altitude 1800 M.A.S.L. NAS
aEvidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable
Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal
evidence). These evidence codes are from the Gene Ontology project
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Fig. 2 Phylogenetic tree showing the close relationship of P. fluorescens strain UM270 with P. fluorescens Pf0-1, as well as with other Pseudomonas species
based on aligned sequences of the 16S rRNA gene. Phylogenetic analyses were performed using SeaView and edited in iTol. The tree was built using the
maximum likelihood method. Bootstrap analysis (1000 replicates) was performed to assess the support of the clusters. E. coli was used as an outgroup

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality High-quality draft (Full genome
representation)

MIGS-28 Libraries used 3 libraries of 400–450 bp, 600 bp
and 1,000 bp.

MIGS 29 Sequencing platforms Illumina MiSeq

MIGS 31.2 Fold coverage 45.0 ×

MIGS 30 Assemblers Newbler v. 2.9

MIGS 32 Gene calling method NCBI Prokaryotic Genome,
Annotation Pipeline

Locus Tag RL74

Genbank ID JXNZ00000000

GenBank Date of Release 2014-12-09

GOLD ID Gb0118948

BIOPROJECT PRJNA269735

MIGS 13 Source Material Identifier UM270

Project relevance Agriculture, Plant-Bacteria
Interaction, Biocontrol

Table 3 Genome statistics

Attribute Value % of total

Genome size (bp) 6,047,974 100.00

DNA coding (bp) 5,284,158 87.00

DNA G + C (bp) 3,772,331 62.00

DNA scaffolds 524 100.00

Total genes 5,509 100.00

Protein coding genes 5,396 98.00

RNA genes 59 -

Pseudo genes 110 1.90

Genes in internal clusters NA -

Genes with function prediction 4,490 82.00

Genes assigned to COGs 3,821 68.00

Genes with Pfam domains 4,297 78.00

Genes with signal peptides 5 0.09

Genes with transmembrane helices 30 0.50

CRISPR repeats 0 -
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has demonstrated that this strain is highly competitive
and an efficient root and rhizosphere colonizer, as
well as an inducer of ISR (Induced systemic resist-
ance) in plants [Rojas-Solis and Santoyo, Unpublished
results]. The Minimum Information about the Gen-
ome Sequence of P. fluorescens strain UM270 is sum-
marized in Table 1. Its phylogenetic position is shown
in Fig. 2, where the 16S rRNA gene of P. fluorescens
strain UM270 is 99 % similar to that of P. fluorescens
strain Pf0-1 [7–9].

Genome sequencing information
Genome project history
The P. fluorescens strain UM270 was selected among
other pseudomonads for its higher ability to control fun-
gal pathogens and protect Medicago truncatula Gaertn.
from B. cinerea infection [4], for being highly competi-
tive, an excellent root and rhizosphere colonizer of

maize plants and for inducing ISR in plants (Rojas-Solis
and Santoyo, Unpublished results). A high-quality draft
sequence of the genome has been deposited at DDBJ/
EMBL/GenBank. A summary of the project information
is shown in Table 2.

Growth conditions and genomic DNA preparation
From a single colony culture the P. fluorescens strain
UM270 was inoculated on 50 ml of King’s B medium
[10], grown overnight at 28 °C with in agitation
(250 rpm). One milliliter of the culture was serially
diluted to be analyzed further. We confirmed the
morphology and antibiotic-resistance phenotype of the
strain. From the culture, 20 ml were taken to isolate
the genomic DNA by using the Wizard® Genomic
DNA Purification Kit following manufacture’s instruc-
tions (Promega). DNA samples were subjected to an
additional purification step with the same Wizard®

Fig. 3 Graphical map of the P. fluorescens strain UM270. Numbers represent Megabases (Mb). From outside to the center: Genes on forward
strand (blue), Genes on reverse strand (red), RNA genes (rRNAs black color, tRNAs red color) G + C% (green and gray), G + C skew (purple and
yellow). To display the P. fluorescens strain UM270 draft genome we ran a blastn comparison using the contigs as query, against the genome
sequence of P. fluorescens strain Pf0-1 as target reference. We then used these results to order the contigs following the matching coordinates of
the reference genome. Contigs not matching the reference genome were ordered from largest to smallest and appended to the contigs
matching the genome of reference. The ordered contigs were joined with 50 bp of “N” to draw this figure using the DNA plotter software
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Genomic DNA Purification Kit (Promega). The quality
and quantity of the final DNA sample were evaluated by
agarose gel electrophoresis and by using a NanoDrop
1000 Spectrophotometer (Thermo Scientific).

Genome sequencing and assembly
Genomic DNA samples of P. fluorescens strain
UM270 were sent to a sequencing service at the
LANGEBIO-Irapuato, México. Genome sequencing
was performed using a MiSeq Sequencer (Illumina,
Inc.) generating three paired-end libraries (400–450 bp,
600 bp and 1,000 bp, respectively) with a coverage of
approximately 45×. The P. fluorescens strain UM270
draft genome we ran a blastn comparison using the
contigs as query, against the genome sequence of P.
fluorescens Pf0-1 as target reference. To order the
contigs we followed the matching coordinates of the
reference genome. Project information is shown in
Table 2.

Genome annotation
Genome annotation was carried out with RAST [11] and
the Prokaryotic Genome Annotation Pipeline tools [12].
Statistics for the genome assembly were calculated using
software Newbler v2.9 (Roche) and are shown in Table 2.
This Whole Genome Shotgun sequence project has been
deposited at DDBJ/EMBL/GenBank under accession
JXNZ00000000. The version described in this paper is
version JXNZ00000000.

Genome Properties
The total length of the assembled sequences ob-
tained was 6,047,974 bp belonging to one chromo-
some, with a G + C content of 62.66 %. The
sequenced fragments of the genome are predicted to
contain 5,509 genes, consisting of 5,396 coding se-
quences, 59 RNA genes, 110 pseudogenes and 14
frameshifted genes. Genome statistics are in Table 3
and a graphical map is represented in Fig. 3. The

Table 4 Number of genes associated with the 25 general COG functional categories

Code Value % of totala Description

J 159 2.94 Translation, ribosomal structure and biogenesis

A 0 0.00 RNA processing and modification

K 342 6.33 Transcription

L 117 2.16 Replication, recombination and repair

B 3 0.00 Chromatin structure and dynamics

D 32 0.59 Cell cycle control, cell division, chromosome partitioning

Y 0 0.00 Nuclear structure

V 55 1.01 Defense mechanisms

T 216 4.00 Signal transduction mechanisms

M 212 3.92 Cell wall/membrane biogenesis

N 142 2.63 Cell motility

Z 0 0.00 Cytoskeleton

W 0 0.00 Extracellular structures

U 55 1.01 Intracellular trafficking and secretion

O 150 2.77 Posttranslational modification, protein turnover, chaperones

C 244 4.52 Energy production and conversion

G 190 3.52 Carbohydrate transport and metabolism

E 434 8.04 Amino acid transport and metabolism

F 78 1.44 Nucleotide transport and metabolism

H 143 2.65 Coenzyme transport and metabolism

I 185 3.42 Lipid transport and metabolism

P 226 4.18 Inorganic ion transport and metabolism

Q 67 1.24 Secondary metabolites biosynthesis, transport and catabolism

R 364 6.74 General function prediction only

S 372 6.89 Function unknown

- 1,610 29.83 Not in COGs
aThe total is based on the total number of protein coding genes in the annotated genome
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Table 4 presents the number of genes associated
with the COG functional categories.

Insights from the genome sequence
The draft genome sequence reported here covers its full
genome and at first analysis reveals the presence of
multiple genes participating in the synthesis of diffus-
ible metabolites and volatile organic compounds pro-
duced by P. fluorescens strain UM270. Some of this
antimicrobial arsenal includes compounds like phena-
zine (phzFABCD), pyocyanin (pcnCDE), pyoverdine
(pvdPD), 2,4-diacetylphloroglucinol (phlACBD) and
the volatile hydrogen cyanide (hcnCB), important for
the biological control of several plant diseases caused
by phytopathogenic fungi, oomycetes, and bacteria [2].
Other plant-bacteria communication genes detected in
the strain UM270 genome are acdS and iaaMH, encoding
for an ACC deaminase (1-aminocyclopropane-1-carboxyl-
ate) protein and IAA (indole-3-acetic acid) biosynthesis.
The synergistic interaction of ACC deaminase and both
plant and bacterial auxin, IAA, is relevant for the optimal
functioning of PGPR to directly promote plant growth
and also protect plants against environmental stresses,
and bacterial and fungal pathogens [5]. Other genes such
as pcdQ, which codes for an Acyl-homoserine lactone acy-
lase, important for bacterial communication and biofilm
formation, were detected, as well as Secretion Systems
Type II to VI and orthologs of the toxin-antitoxin loci
vapBC-1 and vapXD. These last determinants are import-
ant for survival, competence and colonization of the
rhizosphere and root systems [13].

Conclusions
The strain UM270 was selected for genome sequencing
due to its biocontrol and plant growth promoting prop-
erties [4]. The plant beneficial mechanisms exerted by
this rhizobacterium involved direct and indirect mecha-
nisms. Here, the draft genome sequence of the P. fluor-
escens strain UM270 revealed further genetic elements
involved in plant-bacterial communication, as well as in
rhizosphere competence and colonization. We anticipate
that the genome of P. fluorescens strain UM270 will con-
tribute to new insights about biocontrol and plant bene-
ficial activities through genomic comparisons among
available complete genomes of pseudomonad strains.
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