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Abstract

Bacillus thuringiensis is the most widely used biological pesticide in the world. It belongs to the Bacillus cereus sensu
lato group, which contains six species. Among these six species, B. thuringiensis, B. anthracis, and B. cereus have a
low genetic diversity. B. thuringiensis strain HD521 shows maroon colony which is different from most of the B.
thuringiensis strains. Strain HD521 also displays an ability to inhibit plant sheath blight disease pathogen (Rhizoctonia
solani AG1 IB) growth and can form bipyramidal parasporal crystals consisting of three cry/ genes. These crystals
have an insecticidal activity against Henosepilachna vigintioctomaculata larva (Coleoptera). Here we report the
complete genome sequence of strain HD521, which has one chromosome and six circular plasmids.
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Introduction

The B. cereus sensu lato group has low genetic diversity
when they are measured by multilocus sequence typing
and 16S sequencing and some gene contents [1-3].
B. thuringiensis, B. anthracis, and B. cereus are con-
sidered one lineage of the B. cereus group [4]. The
classification of these organisms is based on the dif-
ferences in their phenotypes and in their pathological
effects. The virulence genes are generally located on the
plasmids, which obtained them through horizontal gene
transfer. These genes give them different phenotypes and
pathologies [1]. B. thuringiensis is a rod-shaped, Gram-
positive, spore-forming bacterium. It produces parasporal
protein crystals that show different insecticidal activ-
ities against multifarious insect larvae, and some of
them exhibit cytocidal activity against cancer cells [5, 6].
B. thuringiensis can also produce antibiotics such as
Zwittermycin A, which is used to enhance its insecticidal
activity and inhibit pathogens fungi, oomycetes, and simi-
lar organisms [7-9]. The complete antibiotic biosynthesis
gene cluster was first identified in the strain B. cereus
UW85 [10]. The specific pathology against insects makes
B. thuringiensis a mainstay of microbial insect control.
Although 42 B. thuringiensis strains have been sequenced,
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gapless chromosomes and plasmids have only been
obtained from 15 strains’ [11]. Here the complete
genome sequence of B. thuringiensis strain HD521 is
reported and an annotation and description of its
genome features is provided. This may provide
insight into the genomic diversity among B. thuringiensis,
B. anthracis, and B. cereus and the mechanism by which
the Zwittermycin A gene cluster was transferred between
B. cereus and B. thuringiensis.

Organism information

Classification and features

B. thuringiensis strain HD521 was first isolated from soil
sample of the United States [12]. It was obtained from
Bacillus Genetic Stock Center (BGSC). Strain HD521
likes the majority of the B. thuringiensis strains, cells are
Gram-positive and rod-shaped [5]. It is an aerobic, facul-
tative anaerobic, motile and spore-forming bacterium,
with growth temperatures from 10 to 48 °C and optimal
growth at 28-35 °C and pH 4.9-8.0 with an optimal
pH 7.0 [12-15]. Baumann [16] showed that B. thurin-
giensis strain HD521 utilizes D-glucose, D-ribose, trehal-
ose, pyruvate, glycerol and L-serine and produces
extracellular of amylase and gelatinase. Hydrolysis study
shows that it has ability to hydrolyze starch, gelatin,
glycogen and N-acetyl-glucosamine [17]. It exhibits
maroon colonies and produces bipyramidal parasporal
crystals during the stationary phase of its growth cycle,
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which consisted of three cry7 genes (Fig. la). Strain
HD521 showed an ability to inhibit R. solani AG1 1B
growth (Fig. 1b). SDS-PAGE analysis of spores and crys-
tals mixtures showed the strain HD521 expression a major
protein band of 130 kDa, which is consistent with the fol-
lowing analysis of its parasporal crystal gene (Fig. 1c). The
key features of HD521 are showed in Table 1.

Fourteen strains and HD521 were chosen for phylo-
genetic analysis. They showed a sequence similarity of
more than 97 % based on blast analysis [18]. A 16 s
rRNA sequence from B. subtilis 168 was selected as out-
group. The maximum likelihood method was used to
construct the phylogenetic tree and the phylogenetic
relationship of these 15 strains is shown in Fig. 2. Phylo-
genetic tree shows that strain HD521 has a close genetic
relationship to strain HD771. The bootstrap value of this
Phylogenetic tree is very low because of the 16S rRNA
nucleotide sequence divergence of the chosen strains is
low which is accordance to the previous studies. Ash
showed that 16S rRNA nucleotide sequences among B.
cereus, B. thuringiensis and B. anthracis were high simi-
lar and exhibit more than 99 % similarity [19], and they
are considered as a single species [4, 20, 21].

Genome sequencing information

Genome project history

Studies of cytological and biological activity have pro-
vided three reasons to select it for sequencing of its
whole genome: 1) Strain HD521 produces maroon col-
onies, unlike most of the B. thuringiensis strains. It can
also form bipyramidal parasporal crystals and shows
insecticidal activity against the larva of Henosepilachna
vigintioctomaculata (Coleoptera). 2) Strain HD521 shows
an ability to inhibit the growth of the pathogenic fungus
R. solani AG1 IB and to provide information regarding
the mechanism of antibiotic gene cluster transfer between
B. thuringiensis and B. cereus. 3) Until now, the genomes
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of only 15 strains of B. thuringiensis have been completed.
No B. thuringiensis serovar Indiana strain has been fully
sequenced. The complete sequence of HD521 may con-
tribute to the evolution and comparative genomics of the
B. thuringiensis and Bacillus cereus sensu lato group. The
complete gapless chromosome sequence and sequences
of 6 plasmids sequence have been deposited in
GenBank under the accession numbers of CP010106,
CP010107, CP010108, CP010109, CP010110, CP010111
and CP010112. A summary of the genome sequencing
project information has been deposited in the Joint
Genome Institute with MIGS version 2.0 under the ID
of Gp0111431 [22]. The summary of the detail informa-
tion is shown in Table 2.

Growth conditions and DNA preparation

One colony was picked from LB plate medium and
growth in 50 ml LB fluid medium overnight at 180 rpm,
30 °C. Cells were collected by centrifugation and washed
with 20 ml cold TES buffer twice (30 mM Tris base,
5 mM EDTA, 50 mM NaCl; pH =8.0) and then resus-
pended in 7.2 ml TES buffer with 20 % sucrose, lysozyme
(20 mg/ml) and RNase A (1 pl/ml) and then incubated at
37 °C for 3—4 h. 7.2 ml TES with 8 % sodium dodecyl sul-
fate (SDS) was added in the spheroplast suspension and
incubated at 68 °C for 10 min. Then 3.6 ml of 3 M sodium
acetate (PH = 4.8) was added and the total suspension was
incubate at —20 °C for 30 min. The suspension was centri-
fuged at 18,000 x g for 20 min at 4 °C. Supernatant was
transferred into a new centrifuge tube and then centri-
fuged at 18,000 x g for 20 min at 4 °C again. Two volumes
of cold absolute ethanol were added to the supernatant
and incubated at —20 °C for about 12 h. DNA was pelleted
at 18,000 x g for 20 min at 4 °C and pellet was dissolved in
300 ul sterile double distilled water and stored at —20 °C
for further use. All of the operations were according to
the previous report [23].

of HD521: lane M, molecular mass standard; lane 1, HD521

Fig. 1 General characteristics of Bacillus thuringiensis strain HD521. a Scanning electron microscope (SEM) analysis of HD521 spores and parasporal
crystals. b Antagonism assay of HD521 against Rhizoctonia solani subgroup AG1 IB on PDA medium. ¢ SDS-PAGE analysis of spore-crystal suspension
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Table 1 Classification and general features of B. thuringiensis strain HD521 according to the MIGS recommendation [22]

MIGS ID Property Term Evidence code?
Classification Domain Bacteria TAS [36]
Phylum Firmicutes TAS [37]
Class Firmibacteria TAS [38, 39]
Order Bacillales TAS [40, 41]
Family Bacillaceae TAS [40, 42]
Genus Bacillus TAS [40, 43]
Species Bacillus thuringiensis TAS [40, 44]
(Type) strain: ATCC10792
Gram stain Positive NAS
Cell shape Rod IDA
Motility Motile TAS [14]
Sporulation Spore type IDA
Temperature range 10 °C to 48 °C TAS [14]
Optimum temperature 28 °C-35 °C TAS [14]
pH range; Optimum 49-80; 7.0 TAS [15, 37]
Carbon source Organic carbon source NAS
MIGS-6 Habitat Soil TAS [12]
MIGS-6.3 Salinity Salt-tolerant TAS [13]
MIGS-22 Oxygen requirement Aerobic, facultative anaerobic TAS [16]
MIGS-15 Biotic relationship free-living IDA
MIGS-14 Pathogenicity Insect pathogen TAS [5]
MIGS-4 Geographic location United States TAS [12]
MIGS-5 Sample collection 1981 TAS [12]
MIGS-4.1 Latitude unreported TAS [12]
MIGS-4.2 Longitude unreported TAS [12]
MIGS-4.4 Altitude unreported TAS [12]

“Evidence codes - IDA: inferred from direct assay; TAS: traceable author statement (i.e., a direct report exists in the literature); NAS: non-traceable author statement
(i.e, not directly observed for the living, isolated sample but rather based on a generally accepted property for the species or on anecdotal evidence). These
evidence codes are from the Gene Ontology project [45]. If the evidence is IDA, then the property was directly observed for a live isolate by one of the authors or

an expert mentioned in the acknowledgements

Genome sequencing and assembly

The genome of HD521 was sequenced at Beijing Genomics
Institute (BGL Shenzhen, China) using Illumina HiSeq
2000 platform with two paired-End Modules. Sequencing
of 500 bp paired-end modules gathered 3.88 M reads,
about 58 fold coverage (0.36 Gb); sequencing of 180 bp
paired-end modules gather 14.76 M reads, about 319 fold
coverage (2 Gb). These data were de novo assembled
with Velvet, version 1.2.10 [24]. The assembly finally re-
sulted in 77 scaffolds. Possible circular scaffolds were veri-
fied by PCR. The precedence relationships among the
remainder scaffolds were predicted by using Nucleo-
tide BLAST with the beginning and the end sequences
of each scaffold. A Fosmid library was constructed and
used to confirm some long-distance connected rela-
tions between corresponding scaffolds. Gap closing
was using primer walking. Finally, 186 correct sub-
clones were used to close gaps among the possible

connected scaffolds. Anteroposterior sequences of the
gaps were used for primer design directly for inner gap
closing, 13 sub-clones were used for inner gap closing.
Finally one gapless chromosome and six plasmids were
obtained.

Genome annotation

Open reading frames were called used GeneMarkS with
the model parameter trained on the complete sequence
[25]. The predicted ORFs were translated and searched
in the National Center for Biotechnology Information
non-redundant database and then annotated to PFAM,
GO, KEGG, Swiss-Prot, COG, and TrEMBL databases.
The NR, KEGG, Swiss-Prot, and TrEMBL databases
were annotated using Blast and e-values of 1e-50, and
each protein was selected using the best hit. PFAM was
annotated using InterProScan, and GO was annotated
using Blast2GO with the NR database annotation. The
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Fig. 2 Neighbor-joining phylogenetic tree highlighting the position of B. thuringiensis HD521 relative to B. thuringiensis, B. anthracis, and B. cereus.
The strains and their 16 s rRNA corresponding to the GenBank accession numbers given below: A) BTALH (B. thuringiensis str. AL Hakam)
(CP000485.1): 9309-10762; B) BTYBT020 (B. thuringiensis serovar finitimus YBT-020) (CP002508.1): 9307-10866; C) BASterne (B. anthracis str. Sterne )
(AE017225.1): 9336-10845; D) BAAmesAncestor (B. anthracis str. '‘Ames Ancestor’) (AE017334.2): 29129-30635; E) BACDC684 (B. anthracis str.
CDC684) (CP001215.1): 9207-10715; F) BCE33L (B. cereus E33L) (CP_000001.1): 9337-10846; G) BT9727 (B. thuringiensis serovar konkukian str. 97-27)
(AE017355.1): 9337-10846; H) BCATCC14579 (B. cereus ATCC14579) (AE016877.1): 9186-10741; 1) BTBMB171 (B. thuringiensis BMB171) (CP001903.1):
9197-10736; J) BTHD771 (B. thuringiensis HD-771) (CP003752.1): 4786891-4788450; K) BTHD521 (B. thuringiensis subsp. indiana HD521) (CP010106):
9198-10737; L) BCQ1 (B. cereus Q1) (CP000227.1): 9338-10843; M) BTCT43 (B. thuringiensis serovar chinensis CT-43) (CP001907.1):9201-10740; N)

BTMC28 (B. thuringiensis MC28) (CP003687.1):1369440-1370979; O) BS168 (B. sublitis subsp. str. 168) (CM000487.1): 9808-11362

Table 2 Project information

MIGS ID Property Term
MIGS 31 Finishing quality Complete
MIGS-28 Libraries used Three libraries, two Illumina
paire-end libraries (180 bp
inserted size; 500 bp inserted
size); one Fosmid library
MIGS 29 Sequencing platforms lllumina HiSeq 2000, Sanger
3730
MIGS 31.2 Fold coverage 377x
MIGS 30 Assemblers Velvet 1.2.10 version
MIGS 32 Gene calling method GeneMarks
Locus Tag NF53
Genbank ID CPO10106
GenBank Date of Release  20-July-2015
GOLD ID Gi0079964
BIOPROJECT PRINA263441
MIGS 13 Source Material Identifier  Bacillus Genetic Stock Center

Project relevance

Chinese Major Project

rRNA, tRNA, and sRNA were predicted using rRNAm-
mer, tRNAscan, and Rfam, respectively [26—28]. Genes
with signal peptides and transmembrane helices were
predicted using SignalP, version 3.0 and TMHMM, ver-
sion 2.0 [29, 30]. CRISPER repeats were predicted by
using CRISPRfinder [31, 32].

Genome properties

The genome of HD521 consisted of 7 replicons: a circu-
lar chromosome with a length of 5,429,688 bp (Fig. 3,
Table 3). The G + C content of the circular chromo-
somes was 35.28 %. It included a predicted 5,538 genes
138 are RNA genes. Of these 5,400 genes, with a col-
lective length of 4,544,493 bp, were protein-encoding
genes. Table 4 displays the six circular plasmids
pBTHD521-1, pBTHD521-2, pPBTHD521-3, pBTHD521-
4, pPBTHD521-5 (Fig. 4a), and pBTHD521-6 (Fig. 4b). The
G + C contents of the six plasmids ranged from 29.45 to
35.91 % and contained a total of 772 predicted genes. The
plasmid pBTHD521-5 contained three cry7 genes, which
can form bipyramidal parasporal crystals (data not
shown). Among all the predicted genes, 3,323 were placed
in 25 general COG function gene catalogs. The distribu-
tion of the predicted genes, which are annotated with
COG functional categories, is presented in Table 5.
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and G+ C skew

HD521 chromosome

5,429,688 bp

Fig. 3 Circular representation of chromosome of HD521 performing relevant genome features. From outside to center; Genes on forward strand
(colored genes annotated into COG categories), Genes on reverse strand (colored genes annotated into COG categories), G + C content (black),

Table 3 Genome statistics

Attribute Value % of Total
Genome size (bp) 5,429,688 100.00
DNA coding (bp) 4,544,493 83.69
DNA G+ C (bp) 1,915,594 35.28
DNA scaffolds 77

Total genes 5538 100.00
Protein coding genes 4,544,493 83.69
RNA genes 138 249
Pseudo genes 0 0.00
Genes in internal clusters 0 0.00
Genes with function prediction 4308 7779
Genes assigned to COGs 3323 60.00
Genes with Pfam domains 4462 80.57
Genes with signal peptides 941 16.69
Genes with transmembrane helices 1,576 2846
CRISPR repeats 0 0.00

Conclusions

B. thuringiensis, B. cereus, and B. anthracis have a close
relationship as indicated by genomes and they are consid-
ered the same species [4]. Through the 15 complete B.
thuringiensis genomes, 15 complete B. cereus genomes
and 15 B. anthracis genomes, the B. thuringiensis, B.
cereus, and B. anthracis genomes ranged in size from 5.3
Mbp to 6.7 Mbp (G + C content ranged from 34.91 to
3541 %), 5.2 Mbp to 5.8 Mbp (G + C content 35.05 to
35.54 %), and 5.2 Mbp to 5.5 Mbp (G + C content 35.26 to
35.4 %), respectively [11, 33, 34]. B. thuringiensis has a lar-
ger genome than B. cereus and B. anthracis. The genome
of B. thuringiensis strain HD521 consisted of a circular
chromosome 5.4 Mbp in length and six plasmids ranging
from 7,042 bp to 314,882 bp in size for a total genome 6.2
Mbp in length. There were 5,400 protein-encoding genes,
3,323 of which could be assigned to COG functional cat-
egories. Among these categories, 9.62 % of the genes were
annotated to amino acid transport and metabolism,
9.27 % to transcription, 7.21 % to signal transduction
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Table 4 Summary of genome: one chromosome and 6

plasmids

Label Size (Mb)  Topology  INSDC identifier ~ RefSeq ID
Chromosome 540 circular CP0O10106 CP004069.1
Plasmid 1 0.007 circular CP0O10107 AB083655.3
Plasmid 2 0.050 circular CP010108 CP004871.1
Plasmid 3 0.072 circular CP010109 CP002178.1
Plasmid 4 0.072 circular CP0O10110 CP004071.1
Plasmid 5 025 circular CPO10111 CP007615.1
Plasmid 6 031 circular CPO10112 CP007616.1

mechanisms, 6.43 % to inorganic ion transport and metab-
olism, 5.78 % to inorganic ion transport and metabolism
carbohydrate transport and metabolism, and 5.13 % to cell
wall and membrane biogenesis. B. thuringiensis is an
insect pathogen, B. cereus is an opportunistic human
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pathogen, and B. anthracis is a mammalian pathogen. The
differences in their pathogenicity were caused by virulent
components located in the plasmids. These were acquired
by horizontal gene transfer [1, 4]. The pathogenicity of B.
anthracis is caused by two plasmids, pXO1 and pXO2
[35]. B. thuringiensis and B. cereus are more similar to
each other, the determinate difference is the insecticidal
toxin genes, which are usually located on plasmids [4]. B.
thuringiensis HD521 contains six plasmids, named
pBTHD521-1 through pBTHD521-6. These plasmids each
contain 11, 70, 89, 103, 243, and 256 protein-coding genes.
The G+ C content of these six plasmids ranged from
29.45 to 35.91 %. G + C contents of plasmid pPBTHD521-1
and pBTHD521-4 were 29.45 and 29.79 %, which were
markedly lower than the general G + C content (34.91 to
3541 %) of B. thuringiensis. It is postulated that
pBTHD521-1 and pBTHDS521-4 were obtained by B.
thuringiensis HD521 through horizontal gene transfer.

A 0K

HD521 plasmid pBTHD521-5

253,580 bp

180K

B. cereus UW8S

H28

zmaA zmaB C DERFGHI J

UWB4  UWB9 UW52 UW120
B. thuringiensis HD521
g ] g

g :

T

Fig. 4 Circular representation of plasmids pBTHD521-5 and pBTHD521-6. a and b Circular representation of plasmid pBTHD521-5 and pBTHD521-6
displaying relevant genome features. From outside to center: Genes on forward strand (dark red by COG categories), genes on reverse strand (green
by COG categories), G + C content (black) and G + C skew. Red regions of pBTHD521-5 represent three cry/ genes: cry/Fb3 (KF672184), cry/Ga2, and
cry7Darl; red region of pBTHD521-6 represents the Zwittermycin A gene cluster. ¢ comparison of Zwittermycin A gene cluster between B. cereus UW85
and B. thuringiensis HD521 [10]. The figure of B. cereus UW85 Zwittermycin A gene cluster is cited from reference paper 10
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Table 5 Number of genes associated with the 25 general COG
functional categories

Code Value % of total® Description
J 221 43 Translation
A 0 0.00 RNA processing and
modification
K 473 9.27 Transcription
L 222 4.35 Replication, recombination,
and repair
B 2 0.04 Chromatin structure and
dynamics
D 43 0.84 Cell cycle control, mitosis,
and meiosis
0 0.00 Nuclear structure
122 2.39 Defense mechanisms
368 721 Signal transduction
mechanisms
M 262 5.13 Cell wall/membrane
biogenesis
N 62 1.21 Cell motility
z 0 0.00 Cytoskeleton
W 1 0.02 Extracellular structures
V] 59 1.16 Intracellular trafficking
and secretion
O 117 229 Posttranslational modification,
protein turnover, chaperones
@ 228 447 Energy production and
conversion
G 295 578 Carbohydrate transport and
metabolism
= 491 9.6 Amino acid transport and
metabolism
F 125 245 Nucleotide transport and
metabolism
H 180 353 Coenzyme transport and
metabolism
134 260 Lipid transport and
metabolism
p 328 643 Inorganic ion transport and
metabolism
Q 126 247 Secondary metabolites
biosynthesis, transport and
catabolism
R 798 15.63 General function prediction
only
S 448 8.78 Function unknown
- 1708 30.84 Not in COGs

2 The total is based on the total number of protein coding genes in the
annotated genome

B. thuringiensis strain HD521 forms bipyramidal para-
sporal crystals and has an insecticidal activity against
Henosepilachna vigintioctomaculata larva (Coleoptera).
SDS-PAGE analysis of spore-crystal suspension showed
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HD521 express one major protein band of 130 kDa
which is encoded by three cry7 genes located on plasmid
pBTHD521-5. One cry7-like gene showed 99 % identity to
cry7Fb genes. It was named cry7Fb3 by Delta-Endotoxin
Nomenclature Committee. The other two cry7-like genes
have a 100 % homology to cry7Ga2 and cry7Dal. B.
thuringiensis strain HD521 also has an ability to inhibit
the growth of plant sheath blight disease pathogen (R.
solani AG1 IB). A Zwittermycin A gene cluster was found
on plasmid pBTHD521-6. There were more than 56 kbp
sequences matched to Zwittermycin B. cereus UW85 was
found to produce a specific gene cluster sequence
(FJ430564.1, 65 kbp) and this sequence included its main
gene components. This indicated that strain HD521 has
utility as a biocontrol agent not only against insect larva
but also against plant disease. The complete genome se-
quence of HD521 may provide another model to study
pathogenicity against pests, plant disease, and phylogen-
esis among Bacillus cereus sensu lato group.
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