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Abstract

Background: Although the over-the-counter H1 receptor antagonist diphenhydramine is not a common drug of
abuse, it was recently recognized as one of the substances causing acute poisoning in patients attempting suicide
that led to admissions to our hospital emergency room.

Case presentation: Two patients [women aged 21 and 27 years (cases 1 and 2)] were emergently admitted after
intentionally taking overdoses of 900 and 1200 mg diphenhydramine, respectively. The plasma diphenhydramine
concentrations in case 1 were 977 and 425 ng/mL at 2.5 and 11.5 h after single oral overdose, and those in case 2
were 1320 and 475 ng/mL at 3 and 18 h after administration, respectively. We set up a simplified physiologically
based pharmacokinetic (PBPK) model that was established using the reported pharmacokinetic data for a
microdose of diphenhydramine. The two virtual plasma concentrations and the area under the curve (AUC) values
extrapolated using the PBPK model were consistent with the observed overdose data. This finding implied linearity
of pharmacokinetics over a wide dosage range for diphenhydramine.

Conclusions: The determined plasma concentrations of diphenhydramine of around 1000 ng/mL at ~ 3 h after
orally administered overdoses in cases 1 and 2 may not have been high enough to cause hepatic impairment
because levels of aspartate aminotransferase and alanine aminotransferase were normal; however, there was an
increase in total bilirubin in case 1. Nonetheless, high virtual liver exposures of diphenhydramine were estimated by
the current PBPK model. The present results based on drug monitoring data and pharmacokinetic predictions could
serve as a useful guide when setting the duration of treatment in cases of diphenhydramine overdose.
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Background
Diphenhydramine is an over-the-counter H1 receptor
antagonist used to treat allergies and to induce sleep,
but it is not a common drug of abuse [1, 2]. Although
diphenhydramine is often considered to be relatively

nontoxic, dose adjustment may be needed to avoid pos-
sible hepatic impairment [1]. There have been reported
fatal and nonfatal cases of diphenhydramine overdose in
the clinical setting [2]. Moreover, there is the potential
for an increasing number of cases of deliberate drug poi-
soning with excessive use [3, 4]. Although diphenhydra-
mine did not rank in the top 20 substances in a drug
poisoning cohort study of 2016 [3], it was ranked second
among substances causing acute poisoning resulting in
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patient admissions to the emergency room of Kyoto
Medical Center between January 2018 and March 2021
(Table 1).
The monitoring of plasma concentrations of diphen-

hydramine should be considered even in emergency situ-
ations. The drug monitoring of steady-state plasma
concentrations in individual patients in the clinical set-
ting can, in general, be supported by pharmacokinetic
models and simulations. Full physiologically based phar-
macokinetic (PBPK) models [5] can predict drug moni-
toring results in patients [6–8]. We have developed
simplified PBPK models [9] and have applied them to
cases of edoxaban overdose [10] and to an overdose of
duloxetine along with other antipsychotic drugs [11].
The practical use of such PBPK models has been sug-
gested for supporting paramedical staff in emergency
clinical practice [10, 11].

Case presentation
Here we describe a 21-year-old woman (body weight, 52
kg) and a 27-year-old woman (body weight, 67 kg) (cases
1 and 2) who, as suicide attempts, intentionally took
overdoses of 900 and 1200mg diphenhydramine, re-
spectively (the usual clinical dose is in the range 50–150
mg/day [2]), and were emergently admitted to Kyoto
Medical Center, with empty heat seals for diphenhydra-
mine. These patients had no medical history. The
clinical laboratory results for these two patients after
self-administered diphenhydramine overdoses are shown
in Table 2. Figure 1B and C show the two measured
plasma concentrations and the PBPK-modeled

concentration profiles of diphenhydramine self-
administered in single oral overdoses for cases 1 and 2,
respectively. The patients gave written informed consent
to take part in this study and for its publication. The
Ethics Committee of Kyoto Medical Center approved
this study (18–018).
On arrival, case 1 was conscious but was in a state of

restlessness and was unable to communicate. Her aware-
ness level was assessed, and the Glasgow Coma Scale
score was eye 4, verbal 4, and motor 6 (E4V4M6); she
had a breathing rate of 20 breaths/min, a body
temperature of 36.9 °C, a blood pressure of 140/80
mmHg, a heart rate of 102 bpm, and a narrow QRS
complex on her electro-cardiogram with a QTc of 467
ms. After infusion with bicarbonate Ringer’s solution,
the patient’s awareness level 9 h after arrival had im-
proved to E4V5M6 with a breathing rate of 18 breaths/
min, a body temperature of 36.8 °C, a blood pressure of
123/80 mmHg, a heart rate of 77 bpm, and a reduced
QTc of 449 ms. The patient was discharged 2 days after
admission. There was a slight increase in total bilirubin
(Table 2), but no other laboratory data abnormalities
were noted. In contrast, the awareness level in case 2
was E4V5M6 on arrival. On admission, the patient had a
breathing rate of 24 breaths/min, a body temperature of
37.8 °C, a blood pressure of 148/89 mmHg, a heart rate
of 128 bpm, and a normal sinus rhythm with a QTc of
476 ms on the electro-cardiogram. However, 15 h after
administered, these values had reduced to 18 breaths/
min, 36.6 °C, 123/82 mmHg, 85 bpm, and < 430 ms, re-
spectively. No abnormalities were founded in vital signs,
and the patient was discharged 4 days after admission.
After the patients’ level of consciousness had gradually
improved, subsequent questioning revealed that they
had taken high doses of diphenhydramine.
Frozen plasma samples collected from the two patients

after diphenhydramine overdoses were pharmacokineti-
cally analyzed. The plasma concentrations of diphen-
hydramine, after being deproteinized with four volumes
of acetonitrile, were quantified by liquid chromatography
using a gradient elution program followed by tandem

Table 1 Top 11 substances causing acute poisoning from
overdoses that led to admission to the emergency room of
Kyoto Medical Center

Substance Number of poisoning cases (%)

1. Flunitrazepama 12 (7.8)

2. Diphenhydramine 8 (5.2)

3. Etizolam a 7 (4.5)

4. Quetiapine 7 (4.5)

5. Ethanol 6 (3.9)

6. Lorazepama 5 (3.2)

7. Triazolama 5 (3.2)

8. Brotizolama 4 (2.6)

9. Diazepama 4 (2.6)

10. Loxoprofen 4 (2.6)

11. Risperidonea 4 (2.6)

Total 154 (100)

We conducted a cohort study of 87 patients who self-administered substances
that resulted in acute poisoning and admission to the emergency room of
Kyoto Medical Center between January 2018 and March 2021
aThese seven substances are reported to be commonly ingested in cases of
deliberate drug poisoning in Japan [3]

Table 2 Clinical laboratory results in two patients who had
taken single oral overdoses of diphenhydramine

Time after administration of oral
dose

Case 1 Case 2

2.5 h 11.5 h 3 h 18 h

Aspartate aminotransferase (U/L) 20 26 21 19

Alanine aminotransferase (U/L) 10 11 26 22

Total bilirubin (mg/dL) 1.6 1.5 0.5 0.6

Serum creatinine (mg/dL) 0.67 0.70 0.83 0.79

Creatinine clearance (mL/min) 109 104 108 113
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mass spectrometry systems, according to previously re-
ported methods [11] with slight modifications. An
API4000 tandem mass analyzer (AB Sciex, Framingham,
MA, USA) was used in electrospray positive ionization
mode and was directly coupled to a Shimadzu LC-20 AD
system equipped with an octadecylsilane (C18) column
(XBridge, 3.5 μm, 2.1 mm × 150mm, Waters, Milford,
MA, USA). The liquid chromatography conditions were
as follows: solvent A was 10mM ammonium acetate
buffer (pH 6.8) and solvent B was acetonitrile. The fol-
lowing gradient program was used with a flow rate of
0.20 mL/min: 0–8 min, linear gradient from 35% B to
70% B (v/v); 8.1–10min, hold at 90% B; and 10.0–15
min, hold at 35% A. The temperature of the column was
maintained at 40 °C. Prepared samples (2.0 μL) were
injected with an auto-sampler. Diphenhydramine was
quantified using the m/z 256→ 167 transition in the
range of 10–2500 ng/mL. Under the present conditions,
diphenhydramine levels in plasma were measurable at
concentrations ≥10 ng/mL and were detectable at con-
centrations ≥0.10 ng/mL. Authentic diphenhydramine
was purchased from Fujifilm Wako Pure Chemicals,
Osaka, Japan. The measured plasma concentrations of
diphenhydramine self-administered in single oral over-
doses are shown in Fig. 1. The plasma diphenhydramine
concentrations in case 1 were 977 and 425 ng/mL at 2.5
and 11.5 h, respectively, after an oral overdose of 900 mg
(Table 3). The plasma concentrations in case 2 at 3 h
and 18 h after administration were 1320 ng/mL and 475
ng/mL, respectively, after an oral overdose of 1200 mg
diphenhydramine.
We also report the results of pharmacokinetic model-

ing of plasma and tissue concentrations of

diphenhydramine. Based on the reported human blood
concentrations of diphenhydramine after subjects were
orally treated with a normal or microdose [12, 13] (Fig.
1A), a simplified PBPK model consisting of gut, liver,
kidney, central, and peripheral compartments was set up
as described previously [10, 11, 14]. The initial values for
the fraction absorbed × intestinal availability (Fa·Fg) and
hepatic clearance (CLh) were estimated from the elimin-
ation rate constants in empirical one-compartment
models. The absorption rate constant (ka), volume of the
systemic circulation (V1), and hepatic intrinsic clearance
(CLh,int) values with standard deviations (as parameters
for the PBPK model) were determined by fitting using
nonlinear regression analyses; these final parameters are
shown in Table 4. The resulting system of differential
equations was solved to obtain the concentrations of the
substrates for the overdosed patients in this study:

Fig. 1 Reported/measured (circles) and estimated (lines) concentrations of diphenhydramine in plasma and/or tissues of healthy subjects (A) and
two patients who took single oral overdoses (B,C). Plasma concentrations of diphenhydramine were measured in patients who had taken single
oral overdoses of diphenhydramine of 900 mg (case 1, B) and 1200mg (case 2, C). The modeled plasma (solid lines), hepatic (broken lines), and
renal (dotted lines) concentration curves after virtual administrations of 900 and 1200 mg diphenhydramine are also shown. In panel A, reported
mean plasma concentrations of diphenhydramine after an oral microdose (0.1 mg) were taken from literature [12]

Table 3 Observed plasma concentrations and PBPK modeled
concentrations of diphenhydramine in two patients who had
taken overdoses

Pharmacokinetic data Observed PBPK output a

Case 1, 900 mg diphenhydramine

C2.5, ng/mL 977 1730 (1.8)

C11.5, ng/mL 425 310 (0.73)

AUC0–11.5, ng h/mL 7530 10,900 (1.5)

Case 2, 1200 mg diphenhydramine

C3, ng/mL 1320 2110 (1.6)

C18, ng/mL 475 220 (0.46)

AUC0–18, ng h/mL 15,400 16,400 (1.1)
aValues in parentheses are ratios of the calculated values to the observed
values after 900 mg (case 1) and 1200 mg (case 2) administrations
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dXg ðtÞ
dt ¼ −ka � XgðtÞ when at t = 0, Xg(0) = dose

Vh
dCh

dt
¼ Qh � Cb−

Qh � Ch � Rb

Kp;h
þ ka � Xg−CLh; int

� Ch

Kp;h
� f u;p

V 1
dCb

dt
¼ − Qh þ Qrð Þ � Cb þ Qh � Ch � Rb

Kp;h
−k12 � V 1

� Cb þ k21 � Xperipheral þ Qr � Cr � Rb

Kp;r

V r
dCr

dt
¼ Qr � Cb−

Qr � Cr � Rb

Kp;r
−CLr � Cr

Kp;r
� f u;p

dXperipheral

dt
¼ k12 � V 1 � Cb−k21 � Xperipheral

where Xg and Xperipheral are the substrate amounts in the
gut and peripheral compartments, and Ch, Cr, and Cb

are the hepatic, renal, and blood substrate concentra-
tions. Vh and Vr are the liver (1.5 L) and kidney (0.28 L)
volumes and Qh/Qr are the blood flow rates of the sys-
temic circulation to the hepatic/renal compartments
(96.6 L/h).

Discussion and conclusions
Although diphenhydramine did not rank in the top 20
substances involved in overdoses in Japan, we

Table 4 Physiological, experimental, and final calculated parameters for the diphenhydramine PBPK model established in this study

Parameter Value for diphenhydramine

Model input parameters

Molecular weight 255

Octanol–water partition coefficient 3.45

Plasma unbound fraction 0.216

Blood–plasma concentration ratio 0.898

Liver–plasma concentration ratio 3.27

Fraction absorbed × intestinal availability 0.436

Absorption rate constant, 1/h 1.36 ± 0.01 a

Transfer rate constant (k12), 1/h 0.107 ± 0.001 a

Transfer rate constant (k21), 1/h 0.0437 ± 0.0001 a

Volume of systemic circulation, L 117 ± 1

Hepatic intrinsic clearance, L/h 100 ± 1

Hepatic clearance, L/h 17.7

Renal clearance, L/h 0.3

Estimated levels

Cmax in plasma, ng/mL 0.209 (1.07) b

AUC in plasma, ng h/mL 1.46 (1.07) b

Cmax in liver, ng/mL 2.93

AUC in liver ng h/mL 10.7

Cmax in kidney, ng/mL 1.43

AUC in kidney ng h/mL 9.96

Reported values [12, 13]

Maximum drug concentration time, h [12] 2.5

Cmax in plasma, ng/mL [12] 0.195

AUC in plasma, ng h/mL [12] 1.36

Half-life, h [12] 12

Bioavailability [12] 0.34

Urinary excretion of unchanged drug [13] 0.01 c

The plasma unbound fraction, octanol–water partition coefficient, blood-to-plasma concentration ratio, and liver-to-plasma concentration ratio of
diphenhydramine were estimated using in silico tools [14]
aData are means ± standard deviations by fitting to measured concentrations
bValues in parentheses of estimated levels are ratios to the reported values taken from the literature (shown in Fig. 1A, [12]) after 0.1 mg administrations
c Urinary excretion ratio was taken from the literature [13] after 100 mg administrations
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experienced multiple diphenhydramine overdose cases at
our hospital. Reportedly, blood diphenhydramine con-
centration levels of 15–112 ng/mL are considered thera-
peutic, 1000–5000 ng/mL are considered toxic, and
5000–39,000 ng/mL are considered lethal [1, 2, 4]. In the
present study, the two modeled plasma concentrations
and AUC values by trapezoidal methods estimated using
the PBPK model were consistent with the observed
values for single oral overdoses of 900 and 1200 mg di-
phenhydramine. The relatively good fit of the PBPK-
modeled plasma concentrations and AUC values (within
a two-fold range of observed values), as shown in Table
3, was noted. Diphenhydramine’s time to reach max-
imum concentration is reportedly 1.7 ± 1.0 h, with a ter-
minal elimination half-life of 9.2 ± 2.5 h [1].
The determined plasma concentration levels of di-

phenhydramine of around 1000 ng/mL for the over-
doses seen in cases 1 and 2 at ~ 3 h after oral
administration would appear not to be high enough
to cause hepatic impairment, as judged by the normal
levels of aspartate aminotransferase and alanine ami-
notransferase in our two patients; however, an in-
crease in total bilirubin was seen in case 1 (Table 2).
Nonetheless, high virtual exposure of diphenhydra-
mine in livers was predicted by the current PBPK
model (Fig. 1B and C). Interestingly, we experienced
an unrelated outpatient case with an increased aspar-
tate aminotransferase level of 45 U/L after 150 mg of
diphenhydramine; however, drug monitoring data was
not available in this patient.
The elimination half-lives of 7.5 h and 10 h calcu-

lated from the two available data points for our two
cases after overdoses of 900 and 1200 mg were similar
to the reported normal values of 9.2 ± 2.5 h [1]. This
finding implies linearity over a wide range of doses
for diphenhydramine pharmacokinetics, as exemplified
by the present two cases. Gastric lavage should not
be considered unless a patient has ingested a poten-
tially life-threatening amount of a poison and the pro-
cedure can be undertaken within 60 min of ingestion
[15]. Even if more than 1 h has passed after adminis-
tration, in general, gastric lavage and the administra-
tion of activated charcoal [16] may be effective in
clinical practice for diphenhydramine overdose pa-
tients. In hospitals, a simplified PBPK model-based
simulator may be of use in reducing the need to rou-
tinely measure the blood levels of drugs. The present
findings, based on drug monitoring data and pharma-
cokinetic modeling predictions, could serve as a use-
ful guide for determining the treatment period in
cases of overdoses.
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