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PERSPECTIVE

mRNA vaccine development 
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Abstract 

Cholangiocarcinoma (CHOL) is one of the most aggressive tumors worldwide and cannot be effectively treated by 
conventional and novel treatments, including immune checkpoint blockade therapy. The mRNA vaccine‑based 
immunotherapeutic strategy has attracted much attention for various diseases, however, its application in CHOL 
is limited due to the thoughtlessness in the integration of vaccine design and patient selection. A recent study 
established an integrated path for identifying potent CHOL antigens for mRNA vaccine development and a precise 
stratification for identifying CHOL patients who can benefit from the mRNA vaccines. In spite of a promising prospect, 
further investigations should identify immunogenic antigens and onco‑immunological characteristics of CHOL to 
guide the clinical application of CHOL mRNA vaccines in the future.
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Background
Cholangiocarcinoma (CHOL) is the second most com-
mon hepatobiliary cancer and one of the most aggressive 
tumors worldwide [1]. Surgical resection can be curative 
for some CHOL patients who present with early-stage 
disease [1,  2]. However, CHOL is mostly detected at an 
advanced stage, and thus most patients are late for sur-
gery [3]. Besides, most patients with unresectable CHOL 
get little benefit from systematic treatments. For instance, 
gemcitabine and cisplatin, as first-line treatments for 
CHOL, can only achieve an overall survival of less than 
1 year [4]. Although fibroblast growth factor receptor and 
isocitrate dehydrogenase mutations-targeted drugs, as 
second-line treatments, can achieve a 30–35% response 
rate, most CHOL patients do not have such mutations 

and are thus not suitable for such targeted therapies 
[5–7]. Additionally, mitogen-activated protein kinase 
inhibitor selumetinib shows poor efficacy in patients with 
metastatic biliary cancer [8], while hepatocyte growth 
factor receptor inhibitor tivantinib combined with gem-
citabine has a partial response in only 20% of patients [9].

Current dilemma in CHOL immunotherapy
Since immune system plays a critical role in recognition 
and elimination of malignant cells, intensive studies have 
been conducted to seek effective approaches for activat-
ing anti-tumor immune response in the past 2  decades 
[10]. The immune checkpoint proteins, including pro-
grammed death (ligand) 1 [PD-(L)1] and cytotoxic T 
lymphocyte-associated antigen 4 (CTLA-4), help tumor 
cells escape from immune surveillance, and thus immune 
checkpoint blockade (ICB) therapy targeting such pro-
teins has been approved to treat a wide range of tumors 
[10–12]. Although ICB has achieved great success in can-
cer immunotherapy in recent years, it has limited efficacy 
in CHOL [13, 14]. In KEYNOTE 028, 24 CHOL patients 
were enrolled in a basket trial involving PD-L1 positive 

Open Access

†Tian‑Yu Tang and Xing Huang contributed equally to this work

*Correspondence:  huangxing66@zju.edu.cn; liangtingbo@zju.edu.cn

1 Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated 
Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-8886-2777
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40779-022-00399-8&domain=pdf


Page 2 of 6Tang et al. Military Medical Research            (2022) 9:40 

solid tumor and treated with anti-PD-1 antibody pem-
brolizumab, of which only 4 patients (17%) achieved a 
partial response. Furthermore, the response rate to ICB 
was even lower in non-mis-match repair (MMR) defi-
cient CHOL, although the data were mixed [15]. In KEY-
NOTE-158, a response rate of only 5.8% was detected 
among 104 patients without known MMR deficiency, 
with a progression-free survival of less than 2 months [7, 
15]. Although the response rate of patients with MMR 
deficiency to ICB exceeded 40%, such MMR deficiency 
cases only occur in 5% of CHOL patients [3,  7]. Previ-
ous studies have demonstrated that tumor response to 
immunotherapy largely depends on the expression levels 
of tumor-specific antigens that mediate immune recog-
nition on tumors and promote activation of anti-tumor 
immunity [16–18]. Tumor cells escape immune surveil-
lance by reducing the expression of immunogenic anti-
gens or modifying certain antigens through multiple 
mechanisms, while lack of tumor-specific antigen stimu-
lation can lead to T-cell exhaustion, eventually resulting 
in primary and acquired tumor resistance to immuno-
therapy [19–23].

Tumor vaccines for CHOL treatment
Tumor vaccines activating anti-tumor immunity with 
immunogenic tumor-specific or nonspecific antigens 
are emerging therapeutic strategies for CHOL [23, 24]. 
Several vaccine-based strategies, including carcinoem-
bryonic antigen RNA-pulsed dendritic cell (DC) and 
immunogenic peptides plus gemcitabine, have been 
developed for CHOL treatment, singly or in combina-
tion (Table 1) [25–27]. The mRNA vaccine has attracted 
much attention in the past decades since it can stimulate 
immune activation through multiple mechanisms [28]. 
Conventionally, mRNA vaccines can be processed as 

normal endogenous mRNAs in antigen-presenting cells 
(APCs), inducing antigen expression and presentation 
on major histocompatibility complex class I (MHC-I) 
for  CD8+ T cell activation and major histocompatibility 
complex class II (MHC-II) for  CD4+ T cell activation [14, 
24]. Moreover, mRNA can activate immune systems via 
Toll-like receptors (TLR3, TLR7, and TLR8) located on 
the plasma membrane or endosome of APCs, leading to 
cytokine production and providing an essential costimu-
latory signal for the activation of T and B cells [29, 30]. 
Additionally, mRNA can upregulate chemokine produc-
tion in non-immune cells through sensing by RIG-I-like 
receptors, thus recruiting APCs and other immune cells 
to the injection sites [31, 32]. Notably, mRNA vaccines 
have more advantages than previously studied vaccine 
models for CHOL. First, mRNA vaccines can be pro-
duced on a large scale within a short period due to their 
mature manufacturing and cost-effective process [24, 33]. 
Second, mRNA vaccines can mediate the transient 
expression of the selected antigens without the risk of 
being integrated into the host genome and thus are much 
safer than DNA and viral vaccines [24, 34]. Third, mRNA 
vaccines can relatively alleviate adverse effects due to 
the short-term expression of encoded peptides [33, 34]. 
Finally, the mRNA-based techniques allow the develop-
ment of a personalized treatment based on individual 
sequencing data of tumor samples [24, 33]. As a result, 
the mRNA vaccines may become the next hotspot in can-
cer immunotherapy (Table 2) [35–42].

An integrated path to identify potent CHOL 
antigens for mRNA vaccine development
The precise identification of most immunogenic stimula-
tors as potent candidates for optimal immune response 
and therapeutic efficacy is one of the critical steps for 

Table 1 CHOL vaccines in clinical trials

CHOL cholangiocarcinoma, HCC hepatocellular carcinoma, ICC intrahepatic cholangiocarcinoma, TRICOM triad of costimulatory molecules, DC dendritic cell, CEA 
carcinoembryonic antigen, KRAS kirsten rat sarcoma viral oncogene, “–” no combined drug

Vaccine Form Combination Indication n Clinical trial Status

Prevnar Pneumococcal 
13‑valent conjugate 
vaccine

Therapeutic autologous 
dendritic cells, external 
beam radiation therapy

Unresectable HCC and 
unresectable ICC

26 NCT03942328 Recruiting

Recombinant fowlpox‑CEA 
(6D)/TRICOM vaccine

Fowlpox Sargramostim Advanced stage tumors 
including CHOL

48 NCT00028496 Completed

Wilms’ tumor 1 antigen DC vaccine Gemcitabine Advanced stage tumors 
including CHOL

11 UMIN000004063 [25] Completed

Autologous tumor lysate DC vaccine – Resectable intrahepatic 
cholangiocarcinoma

62 UMIN000005820 [26] Completed

CEA RNA‑pulsed DC tumor 
vaccine

DC vaccine – Advanced stage tumors 
including extrahepatic bile 
duct cancer

24 NCT00004604 Completed

Amph modified KRAS 
peptides

Peptide Amph‑CpG‑7909 Advanced stage tumors 
including CHOL

18 NCT04853017 Recruiting
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mRNA vaccine development. Previous studies have dem-
onstrated that bioinformatics can help identify therapeu-
tic targets and antigens and help understand tumor-host 
interplay from an immune perspective. cBioPortal for 
Cancer Genomics, Gene Expression Profiling Interac-
tive Analysis (GEPIA), and Tumor Immune Estimation 
Resource (TIMER) are well-established, easily accessible 
databases that largely lower the threshold of bioinfor-
matics analysis. Particularly, the cBioPortal for Cancer 
Genomics is an online tool used to analyze the raw data 
from large-scale genomic projects, including The Can-
cer Genome Atlas (TCGA) and the International Cancer 
Genome Consortium (ICGC) [43]. GEPIA is an online 
resource integrating RNA sequencing data from both 
tumors and normal samples of the TCGA and the Gen-
otype-Tissue Expression (GTEx) programs [44]. TIMER 
is an online tool for immune infiltration analysis across 

discrete cancers [45]. Based on these online databases 
and bioinformatic approaches, a new pipeline has been 
established to identify promising antigens for mRNA 
CHOL vaccine development [46]. Briefly, 1391 genes 
with both amplified copy numbers and mutations in 
CHOL were first determined as potential candidates. 
Subsequently, the prognostic values of the amplified and 
mutated genes were analyzed. Fifteen candidates were 
identified as closely associated with overall survival, of 
which 3 were also correlated with progression-free sur-
vival. Elevated mRNA levels of the three candidates 
[transformation/transcription domain associated protein 
(TRRAP), fragment crystallizable (Fc) fragment of IgG 
receptor 1A (FCGR1A), and CD247] were significantly 
correlated with a better prognosis of CHOL. Moreo-
ver, the elevated expression levels of FCGR1A, TRRAP, 
and CD247 were closely associated with the infiltration 

Table 2 Early phase clinical studies evaluating the role of mRNA vaccines for non‑CHOL cancers

WT1 Wilms’ tumor 1 antigen, DC dendritic cell, CMV cytomegalovirus, PRAME preferentially expressed antigen in melanoma, CR complete response, CEA 
carcinoembryonic antigen, LNP lipid nanoparticle, RNA ribonucleic acid, PR partial response, PD-1 programmed death-1, IL-2 interleukin-2, TLR4 toll-likereceptor4, 
gp100 glycoprotein 100, SD stable disease, MageA melanoma-associated antigen, GM-CSF granulocyte–macrophage colony-stimulating factor, s.c. subcutaneous 
injection, hTERT human telomerase reverse transcriptase, “–” no combined drug

Antigen Vehicle Combination Indication n Outcomes Clinical trial

WT1 DC Durvalumab Solid tumor Lymphoma 264 Increased WT1‑specific 
 CD8+ T cells

NCT03739931 [35]

WT1, PRAME, and 
CMVpp65

DC – Acute myeloid leu‑
kemia

13 Enhanced PRAME and 
WT1‑specific immunity; 
5 patients in CR, with an 
observation period of 
up to 840 d

NCT01734304

CEA‑peptide LNP Oxaliplatin/Capecit‑
abine

Colorectal cancer 30 CEA peptide‑specific 
T‑cells detected in 8/11 
patients in the peptide 
group

NCT00228189 [36]

Tumor RNA plus syn‑
thetic CD40L RNA

DC Sunitinib Renal cell carcinoma 25 13 patients (62%) expe‑
rienced clinical benefit 
(PR + CR)

NCT00678119 [37]

Tumor‑associated 
antigens

Liposome PD‑1 inhibitor Melanoma 119 Increased antigen‑
specific cytotoxic T‑cell 
were observed

NCT02410733 [38]

Autologous tumor‑
mRNA

DC IL‑2 Melanoma 31 Antigen‑specific 
immune response 
demonstrated in 
51.6% patients; 
immune responders 
had better survival 
(median 14 months vs. 
6 months, P = 0.030)

NCT01278940 [39]

CD40 ligand TLR4, 
gp100 and tyrosinase

DC – Melanoma 28 1 PR and 2 SD observed 
in 8 patients

NCT01530698 [40]

MageA3, MageA1, 
Melan‑A, Tyrosinase, 
Survivin, and gp100

Protamine‑protected GM‑CSF s.c Melanoma 20 Antigen‑specific T 
cells detected in 2/4 
evaluable patients; 1 CR 
observed in 7 patients

NCT00204607 [41]

hTERT DC – Acute myeloid leu‑
kemia

21 11 patients (58%) devel‑
oped hTERT‑specific 
T‑cell responses

NCT00510133 [42]
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of DCs, macrophages, and B cells. As a result, the three 
antigens were identified as potential candidates for the 
development of CHOL mRNA vaccine, boosting anti-
tumor immunity after delivery to the adapted immune 
system.

A precise stratification for the identification 
of suitable CHOL patients for mRNA vaccine
Identifying suitable patients with the highest probabil-
ity of benefiting from the treatment is also crucial for 
the mRNA vaccine development process [47]. Mounting 
evidence indicates that the distinction of tumor immune 
microenvironment largely determines the immuno-
therapeutic efficacy in different cancer patients [22]. As 
a result, the CHOL patients have recently been stratified 
into two distinct immune subtypes (ISs) with the maxi-
mum intergroup and the minimum intragroup variances 
(IS1 and IS2, respectively) based on the gene profiles 
extracted from TCGA and Gene Expression Omnibus 
(GEO) [46]. ISs are closely correlated with the progno-
sis of CHOL patients. Moreover, genes associated with 
immunogenic cell death and immune checkpoint are 
differentially expressed in the two ISs. The immune cell 
components in these two ISs have also been analyzed. IS1 
has an immune “hot” phenotype with increased scores 
of activated CD8 T cells, memory T cells, and immune-
suppressive cell subsets [Myeloid-derived suppressor cell 
(MDSC), Macrophage, and Treg]. In contrast, IS2 has an 
immune “cold” phenotype with decreased immune cell 
infiltration. The molecular signature analysis has fur-
ther confirmed the immune characteristics of the two 
ISs, indicating that IS2 patients may benefit from mRNA 
vaccine for immune status alteration. The intergroup 
heterogeneity of ISs has been visualized through the 
construction of the immune landscape of CHOL, where 
the two ISs were further divided into smaller subgroups 
with distinct prognoses, thus providing valuable informa-
tion for patient selection for mRNA vaccine treatment. 
Finally, the immune gene co-expression modules have 
been analyzed to identify immune hub for selecting suit-
able CHOL patients for treatment with mRNA vaccines 
[22].

Conclusions
The novel pipeline collectively provides a practical 
approach for the development of an mRNA vaccine for 
CHOL, particularly in selecting potent antigens and 
appropriate patients. Notably, although treatment with 
mRNA vaccines is promising, mRNA vaccines for CHOL 
patients are still in the initial stages and may face sev-
eral challenges in the future. First, an in silico study has 
identified potential CHOL antigens based on integrated 
information of expression, mutation, prognostic value, 

and correlation with infiltrated immune cells, how-
ever, it is difficult to estimate whether such candidates 
can induce anti-CHOL immunity in  vivo. Moreover, at 
advanced stages, CHOL may have already developed 
numerous mechanisms for immune escape, eventually 
causing therapeutic resistance. Additionally, the require-
ment for activation of anti-tumor immunity is highly 
variable among different patients due to CHOL hetero-
geneity. Last but not least, the required dosage of mRNA 
vaccine to treat tumors is usually higher than prophylac-
tic vaccination for infectious diseases, which may raise 
concerns about the safety of mRNA vaccines in CHOL 
patients. Therefore, advanced investigations focusing on 
understanding the onco-immunological characteristics 
of CHOL, especially the intra-tumoral heterogeneity, 
tumor-microenvironmental crosstalk, and microenvi-
ronmental instability, are needed for precise and feasible 
application of CHOL mRNA vaccine in clinics, improve-
ment of its effectiveness and safety, as well as the progno-
sis of CHOL patients.
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