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Abstract

Background: In 2013, nearly fourmillion babies were born in the U.S., amongwhom447,875were born preterm.
Approximately 30,000 of these infants were born before 28 weeks of gestation. These infants, termed Extremely Low
GestationalAgeNeonates (ELGANs), experience highmorbidity andmortality despitemodern therapies: approximately 20%
of ELGANs admitted to an NICU die before discharge, 20% of survivors have severe, and 20%moderate neurodevelopmental
impairment (NDI). New approaches are needed to improve neonatal outcomes. Recombinant erythropoietin (Epo) is a
promising neuroprotective agent that is widely available, affordable, and has been used safely in neonates to stimulate
erythropoiesis. There are extensive preclinical data to support its use as a neuroprotective intervention: Epo promotes normal
brainmaturation by increasing neurogenesis, angiogenesis, and by protecting oligodendrocytes. Epo also decreases acute
brain injury following hypoxia ischemia by decreasing inflammation, oxidative and excitotoxic injury, resulting in decreased
apoptosis. Despite the availability of both preclinical and safety data there has not been a definitive clinical evaluation of the
benefit of Epo, and a large phase III trial is necessary to provide evidence to support potential changes in practice guidelines.

Findings:We first review the preclinical datamotivating further clinical trials, and then describe in detail the design of the
PENUT study (Preterm EpoNeuroprotection). PENUT is a phase III study evaluating the effect of neonatal Epo treatment on the
combined outcome of death or severe NDI among ELGANS. 940 subjects will be randomized to determine: 1) whether Epo
decreases the combined outcome of death or NDI at 22–26 months corrected age; 2) the safety of high dose Epo
administration to ELGANs; 3) whether Epo treatment decreases serial measures of circulating inflammatory
mediators, and improves biomarkers of brain injury; and 4) whether Epo treatment improves brain structure at
36 weeks postmenstrual age as measured by MRI.

Conclusions: Epo neuroprotection is an exciting new approach to preterm neuroprotection, and if efficacious, will
provide a much-needed therapy for this group of vulnerable infants.
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Introduction
Extremely Low Gestational Age Neonates (ELGANs) are
at high risk of death or neurodevelopmental impairment
(NDI). Data from 9575 ELGANs born between 2003 and
2007 and admitted to Neonatal Research Network inten-
sive care units showed that death or NDI occurred in
91, 80, 66 and 56 % of those born at 24, 25, 26 and
27 weeks gestation, respectively [1]. These sobering sta-
tistics do not include infants that died before admission
to a NICU, or those who died within 12 h of admission.
Major neurologic morbidities, which include cerebral

palsy (CP), deafness, blindness, and cognitive disabilities,
are present in up to 50 % of surviving extremely preterm
infants at school age [2–7]. In addition to the traditional
measures of impairment, long-term follow-up studies
are now also increasingly identifying behavioral dysfunc-
tions such as attention deficit disorder and autism
spectrum disorder [8–11]. Sequelae of extreme prematur-
ity are a tremendous burden to the individuals, their fam-
ilies, and to our health care system, accounting for nearly
half of the health care dollars spent on newborn care [12].
Clearly, a neuroprotective intervention that improves out-
comes for ELGANs would be profoundly beneficial to the
individual, the family and to society [13].* Correspondence: sjuul@uw.edu
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Findings
A phase III study to test the safety and efficacy of high
dose Epo is indicated, based on current preliminarypre-
clinical and clinical data.
The PENUT (Preterm Epo Neuroprotection) Trial is a

randomized, placebo controlled, double blind study
ofEpo neuroprotection in an ELGAN population.

Review
Vulnerabilities of the preterm brain
ELGANs are born at a time when the fetal brain is rapidly in-
creasing in size, shape and complexity [14, 15]. Brain
development is vulnerable to interruption by hypoxia-
ischemia, oxidant stress, inflammation, and excitotoxicity, as
evidenced by structural, biochemical, and cell-specific injury
[16, 17]. Oligodendrocytes, which emerge and mature be-
tween 24 and 32 weeks of development, are particularly sus-
ceptible to injury, resulting in the white matter injury (WMI)
characteristic of preterm infants [18]. Although the transition
from fetal to early postnatal life is the period of greatest vul-
nerability [19], ELGANs remain at risk for brain injury
throughout the period of oligodendrocyte development.
Perinatal inflammation (chorioamnionitis, necrotizing en-

terocolitis, or sepsis) is associated with increased risk of NDI
[2, 20, 21]. Microglial activation [22] and increased cytokine
expression, particularly TNF-α, interleukin (IL)-6, and IL-8,
have been associated with brain injury in preterm infants
[23, 24] and in animal models of neonatal brain injury [25].

Epo neuroprotection
Epo has anti-inflammatory, anti-excitotoxic, anti-oxidant, and
anti-apoptotic effects on neurons and oligodendrocytes, and
promotes neurogenesis and angiogenesis, which are essential
for repair of injury and normal neurodevelopment [26–30].
Epo effects are dose-dependent, and multiple doses are more
effective than single doses [31–33]. Epo reduces neuronal loss
and learning impairment following brain injury [34]. Even
when initiated as late as 48–72 h after injury, there is evidence
of improved behavioral outcomes, enhanced neurogenesis, in-
creased axonal sprouting, and reduced white matter injury
[35, 36]. Epo has demonstrated anti-inflammatory effects,
which may contribute to neuroprotection in the scenario of
preterm birth and increased inflammatory activity [37–43].
Epo also stimulates growth factors required for normal brain
growth such as brain-derived neurotrophic factor (BDNF)
and glial cell derived neurotrophic factor (GDNF) [27, 44].
Epo decreases WMI in adult and neonatal animal models

of brain injury [35, 45–50]. Preliminary work in preterm in-
fants suggests this holds true for developing human brain
[51]. This protective effect may be mediated by the effect of
Epo on oligodendrocytes: Epo promotes the proliferation,
maturation and differentiation these cells [52], and protects
them from injury induced by interferon-γ, LPS, and
hypoxic-ischemia [35, 53, 54].

In addition to cell specific effects in brain, Epo increases
iron utilization as erythropoiesis is increased. Iron is highly
reactive and normally sequestered by transport proteins. Un-
bound iron produces free radicals and subsequent oxidative
injury. Preterm infants have measurable free iron, which in-
creases after transfusions of red blood cells or during meta-
bolic instability such as sepsis [55, 56]. Epo may contribute
to neuroprotection by decreasing free iron.

Epo dosing
In rodent, ovine and nonhuman primate models of neonatal
brain injury, repeated Epo doses of 1000–5000 U/kg/dose
result in sustained neuroprotection, improving both short
and long-term structure and function [31, 32, 49, 57–59].
Higher doses are needed for neuroprotection than for
erythropoiesis, due to the low percentage of circulating Epo
that crosses the blood brain barrier [60]. In acute models of
brain injury, including a late dose (7 days post injury) signifi-
cantly improves outcomes [32, 61]. Preclinical data suggest
that Epo neuroprotection has a U-shaped dosing curve, with
too little or too much Epo resulting in diminished efficacy
[31, 62]. To estimate how neuroprotective Epo doses in rat
pups relate to human pharmacokinetics, plasma Epo con-
centrations were measured in extremely low birth weight in-
fants (<1000 g birth weight) after 500, 1000, and 2500 U/kg/
dose [63]. Nonlinear kinetics were noted, consistent with
previous studies in neonates [64]. In these infants, intraven-
ous administration of 500 and 1000 U/kg resulted in similar
peak concentrations but faster clearance than were achieved
in rat pups after 5000 U/kg (Fig. 1). Doses of 1000 U/kg Epo
resulted in area under the curve (AUC) measurements most
similar to the most protective dose in rats [31]. The 500 U/
kg dose fell short (one third to one quarter the protective
AUC), while 2500 U/kg was close to three times the optimal
dose in rats. Minimum steady-state concentrations (mean =
576 mU/ml) were produced using the 1000 U/kg/dose.
Thus, we estimate that multiple doses of 1000 U/kg would
be safe and achieve neuroprotective circulating concentra-
tions in human neonates.

Translational trials of neonatal Epo
neuroprotection for preterm infants are in
progress
Enrollment in a randomized, double masked phase II trial
of Epo neuroprotection for preterm infants has been com-
pleted (NCT00413946). 443 infants (gestational age 26 0/
7-31 6/7 weeks) were randomized to Epo (3000 U/kg, N =
229) or saline (N = 214) at 3, 12–18, and 36–42 h after
birth. This dose and dosing regimen was found to be safe
[65], and those treated with Epo showed improved white
matter integrity [51, 66]. Long term follow up is ongoing.
Two additional preliminary reports of preterm infants

treated prospectively show benefit: 1) Preterm infants
500 to 1250 g treated with either Epo (400 U/kg 3x/
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week, N = 29) or Darbepoetin (10 U/kg/dose once a
week, N = 27) from birth to 35 weeks postmenstrual age
(PMA) had an average cumulative cognitive score 8 to 10
points higher than placebo/controls with Epo-treated in-
fants earning scores of 97.9 ± 14, and Darbepoetin-treated
infants scoring 96.2 ± 7.3 compared to 88 ± 14 for controls
(N = 24). Epo recipients also performed statistically better
than controls on object permanence testing [67]. The
combined scores for NDI or death were significantly bet-
ter in both Epo and Darbepoetin treated groups, with
combined scores of 15.5 % compared to 48.2 % in the con-
trol group. 2) Follow-up of ELBW infants that received
500 to 2500 U/kg Epo x 3 doses in a phase I/II trial [63]
showed that Epo treatment correlated with improvement
of cognitive (R = .22, p < 0.05) and motor (R = .15, p < 0.05)
scores [68].

Risks of intervention
In adults, complications of prolonged Epo treatment
include polycythemia, seizures, hypertension, stroke,
myocardial infarction, congestive heart failure, tumor
progression, and shortened time to death. None of
these adverse effects have been reported in Epo-treated
neonates in over 3000 patients enrolled in randomized
controlled trials [69]. Epo trials in neonates for the pur-
poses of testing its erythropoietic effect have shown it
to be a safe drug for use in this population. There is ro-
bust data from preclinical animal work showing that
Epo, when used at optimal doses (1000–5000 U/kg),
shows short and long term improvement in brain injury
that approximates 50–80 %, and no safety issues have been

discovered. Even the risk of retinopathy of prematurity
(ROP) has not been substantiated in randomized controlled
trials [70, 71]. Safety data for high dose Epo (3000 U/kg x
3 doses) have recently been published [65]. However, as
yet unknown rare complications may occur, so safety data
must still be collected as studies of Epo neuroprotection
are done.
The PENUT (Preterm Epo Neuroprotection) Trial is

a randomized, placebo controlled, double blind study of
Epo neuroprotection in an ELGAN population. Figure 2
provides an overview of the study. 940 patients will be
enrolled at 19 sites across the United States in order to
evaluate 752 infants at 22–26 months corrected age.
Enrollment and initial treatment with study drug will
occur by 24 h after birth. Subjects will be randomized to
either Epo treatment or placebo, and treatment will con-
tinue until 32-6/7 weeks PMA. Short term, intermediate
and long-term safety measures will be determined by
comparing Epo-treated and control infants. Mechanisms
of Epo neuroprotection and potential biomarkers of
outcome will be sought by measuring sequential inflam-
matory cytokines and markers of brain injury. In a sub-
set of subjects, a brain MRI will be done at 36 weeks
PMA to determine whether Epo treatment preserves
brain growth and decreases injury. After discharge from
the hospital, phone contact will be made at 4 to 6 month
intervals. Data will be collected on interval medical
history and functional status. In- person follow-up will
occur at two years corrected age (22–26 months), at
which time standardized neurodevelopmental assessments
will be made. The primary outcome is death or severe

Fig. 1 Epo pharmacokinetics in neonatal rats compared to extremely low birth weight infants (ELBW). Epo concentration in mU/mL is shown on
the Y axis, and time in hours on the X axis. Serum concentration in neonatal rats is shown following subcutaneous injection (s.c.) or intraperitoneal
injection (i.p.) of 5000 U/kg/dose of Epo. This is compared to dosing in human ELBW infants with 500 U/kg/dose or 1000 U/kg/dose by intravenous
injection (i.v.). The area under the curve (AUC) of 1000 U/kg/dose most closely approximates the neuroprotective concentrations noted in rats treated
with 5000 U/kg/dose
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NDI at 22–26 months corrected age, with a secondary
outcome of death, severe or moderate NDI. This study of
high dose Epo for the purposes of neuroprotection of pre-
term infants is registered with the FDA (IND # 12656)
and ClinicalTrials.gov (NCT01378273).

Eligibility and enrollment
Patients will be eligible if they are NICU inpatients be-
tween 24–0/7 and 27–6/7 weeks of gestation and less
than 24 h of age with arterial or venous access. Parental
consent may be obtained prenatally or postnatally, as
dictated by each recruitment site’s IRB. Patients will be
excluded if there are known major life-threatening
anomalies, known or suspected chromosomal anomalies,
severe hematologic crises such as disseminated intravascu-
lar coagulopathy, twin-twin transfusion such that 1 twin is
not eligible due to polycythemia or hydrops, polycythemia
(hematocrit > 65 %), hydrops fetalis, or known congenital
infection such as toxoplasmosis, CMV, rubella or syphilis.

Randomization
We will use block randomization within site using vari-
able blocks of size 4 to 10 subjects. Using block
randomization ensures that equal numbers of subjects are
randomized to the intervention and control arm and that
the two groups are balanced at period enrollment inter-
vals. For multiple births (twins, triplets, etc.), all infants
will be randomized to the same treatment group (e.g. ef-
fective randomization of the mother). Randomization se-
quences will be provided to the research pharmacy at each
site. Randomization will be stratified on site, gestational

age category (24–25 weeks, 26–27 weeks), and on mul-
tiple gestation (number of babies carried to birth: single-
ton, twins, triplets, or more).

Epo dose justification
The Epo dose, and duration of therapy chosen for this
study is based upon available preclinical and clinical data
for Epo neuroprotection. Although doses as high as
3000 U/kg/dose are being tested in preterm infants
without apparent adverse effects [65], we chose 1000
U/kg/dose based on our phase I/II data [63]. We will
treat with high dose during the first weeks of life when
physiologic vulnerability is highest, followed by main-
tenance Epo through 32 weeks postmenstrual age (the
period of oligodendrocyte vulnerability).

Iron supplementation
Maintaining iron sufficiency in a growing preterm infant
is important for normal brain growth. Because of this,
iron guidelines were established for the PENUT trial.
When enteral feedings are started, a standard iron
containing formula is used if breast milk is unavailable.
Once infants (all subjects) reach an enteral intake of
60 mL/kg/d and are at least one week old, they are
started on enteral iron at a dose of 3 mg/kg/d total. En-
teral iron is increased to 6 mg/kg/d when infants achieve
an enteral intake of 100 to 120 mL/kg/d [72]. Serum fer-
ritin or ZnPP/H ratios are checked at 14 and 42 days,
and iron adjusted accordingly. If subjects are not able to
tolerate enteral feedings and oral iron supplements, they

Fig. 2 PENUT Trial Overview. Significant events each subject will undergo when participating in the PENUT trial
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will be given maintenance iron parenterally (3 mg/kg/
week, adjusted based on iron indices).

Study procedures
Five 0.5 mL blood samples will be drawn from each en-
rolled subject on the following schedule: prior to the
first study drug dose, 30 min after the 4th study drug
dose (peak), 30 min prior to the 5th study drug dose
(trough), on day 14 ± 1 day, and at the 22–26 month in-
person visit (Fig. 3). These samples will be used to deter-
mine circulating Epo concentrations, cytokine measure-
ments, and biomarkers of brain injury. The following
inflammatory markers and growth factors will be assayed:
BDNF, Interferon-gamma (IFN-γ), IL-1β, IL-6, IL-8, IL-10,
tumor necrosis factor-α (TNF-α), transforming growth fac-
tor (TGF)-β, matrix metalloproteinase (MMP)-2 and
MMP-9, macrophage inflammatory protein-1α (MIP-1α),
MIP-1β, monocyte chemotactic protein-1 (MCP-1) and
tissue inhibitor of metalloproteinase (TIMP)-1 [50, 73–75].
Markers of neurotoxicity and brain injury will include:
S100B, glial fibrillary acidic protein (GFAP), neuron specific
enolase (NSE), Tau, Activin A, and Ubiquitin C-terminal
hydrolase-L1 (UCH-L1) [76–78].
Brain magnetic resonance imaging (MRI) will be ob-

tained on 110 subjects from each study arm at 36 weeks
PMA (220 total). All scans will be done on 3 T scanners
using an optimized, standardized protocol. MRI’s will be
evaluated centrally, and analysis will include both quan-
titative [79, 80] and qualitative evaluations [81].

Outcomes
The primary outcome variable is the composite outcome
of death or neurodevelopmental impairment at 22–26
months. All personnel involved in the neurodevelopmen-
tal assessments will undergo standardized training, and
will be blind to study treatment. Assessment at 22–26
months corrected age will include: Bayley III Scales of
Infant and Toddler Development, a standardized neuro-
logical examination, Gross Motor Function Classification
System (GMFCS) assessment, the Child Behavior Checklist,

and the Modified Checklist for Autism in Toddlers (M-
CHAT-R). Neurodevelopmental impairment (NDI) is de-
fined as the presence of any one of the following: CP,
Bayley III cognitive or motor scale < 70. There is a known
inflation of scores from the Bayley II to III [82–84] and we
will therefore also consider a threshold of <85 for second-
ary analysis. Cerebral palsy will be categorized based on
features present on standardized neurologic exam, and
classified as mild, moderate, or severe, with hemiplegia or
diplegia. Two stepped outcomes will be used: the primary
outcome is very stringent, and uses a cut off of two stand-
ard deviations below the mean for cognitive or motor
scales (<70). The secondary outcome uses a cut off of one
standard deviation below the mean for these criteria
(<85), which will still have a significant impact on the
child, family, and healthcare system. The 2-year assess-
ment will provide a window into early language develop-
ment and early gross- and fine-motor development. We
plan to submit further grant applications for long-term
follow-up at 5 years of age, which correlates better with
ultimate function [85].

Power and sample size for primary outcome
In order to determine the necessary sample size for effi-
cacy evaluation, we formulated assumptions for the pri-
mary outcome rate in the treated and untreated groups.
The primary outcome measure is the rate of death or
severe NDI. Using data from two sources, we computed
the expected rates of death or NDI for the neonates that
we will enroll. The Vermont Oxford Network 2008
Follow-up Report [86] evaluated the disability status of
infants born in 2008 only, and the combined 2004–2008
cohorts. Follow-up status was determined at age 18–24
months and information regarding death and NDI is
provided for subgroups of children based on their gesta-
tional age. Therefore, we used these data to forecast
expected trial results for our eligible subjects (24–27
weeks gestational age). In order to estimate the overall
rate observed among treated neonates we have assumed
that there will be no effect of treatment on death, but

Fig. 3 PENUT Trial Blood Draws. The timing of all PENUT related blood draws is shown schematically
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that Epo will lead to a decrease in the rate of NDI. If we
assume a multiplicative reduction in the NDI rate of
0.45 then we expect a treated NDI rate of 12 % and an
overall rate of death + NDI of 30.4 % as compared to the
control rate of 40.4 %. Therefore, in order to obtain a
target sample size we assumed: an overall control rate of
40 %, and an overall treated rate of 30 % corresponding
to an overall treatment rate ratio of 0.75. Using the con-
trol and treated rates of 40 % and 30 % respectively leads
to a sample size of 376 evaluated subjects per arm or a
total evaluated sample size of 752 subjects in order to
have 80 % power. We inflated the sample size by 20 % to
account for correlation among multiple births (clustering)
and potential loss to follow-up to arrive at a total enroll-
ment target of 940 subjects.

Statistical analysis
A modified intent-to-treat (ITT) approach will be used [87],
with all randomized infants who receive the first dose of
study treatment included in the analysis. All pre-specified
hypotheses will be tested using a two-sided type I error of
0.05 with no formal adjustment for multiple comparisons
unless otherwise specified (such as with safety outcomes).
Secondary analyses that focus on separate hypotheses will
not require correction for multiple comparisons, but those
analyses that use multivariate measures such as multiple
brain image parameters would be corrected for multiple
comparisons using standard methods.
Given that we anticipate enrollment of multiple births

we require that all analyses properly account for the
within-sibship correlation of outcomes. We will use
Generalized Estimating Equations (GEE), which is a ver-
satile regression approach for the analysis of discrete
and continuous outcomes [88]. Use of “robust” standard
errors will provide valid statistical inference and fully
account for the clustering of data.

Data and safety monitoring
A data safety monitoring board (DSMB) created by Na-
tional Institute of Neurological Disorders and Stroke
(NINDS) will review the accruing data to ensure that
the study is adequately enrolling and to ensure that
there are no serious safety concerns. The research coor-
dinators at each site monitor each subject daily for the
presence of any complications. Serious adverse events
are brought to the attention of an independent Medical
Monitor, the DSMB, and IRB in writing. A potential
risk that is unique to preterm infants is the risk of ROP
[89]. In the published studies of preterm neonates re-
ceiving potentially neuroprotective doses of Epo, no dif-
ference has been noted between treatment and control
groups [63, 90–92]. The DSMB will conduct formal in-
terim safety monitoring analysis at approximately 25,
50, and 75 % and 100 % of target enrollment of n = 940

using O’Brien-Fleming [93] boundaries for death (net
alpha = 0.05) and 10 serious adverse events (Bonferroni
corrected alpha = 0.005).

Discussion
Ample preclinical, and growing phase I and II data sup-
port the neuroprotective effects of Epo as an approach to
improving the neurologic outcomes of ELGANS. In de-
signing the PENUT Trial, we considered the issue of what
constitutes a clinically significant effect size. Characteris-
tics of trials that lead to changes in clinical practice in-
clude: the estimated magnitude of benefit; the number of
subjects studied; and the risk of the therapy. Ibrahim et al.
performed a 13-item web-based questionnaire asking 226
neonatologists what would convince them to adopt a new
therapy in infants <28 weeks of gestation. The survey as-
sumed no adverse results of treatment. The survey results
suggest that a reduction of Bayley scores < 80 by 25 % of
subjects would change behavior in 40 % of clinicians,
while the same change in 50 % of subjects would persuade
two thirds of neonatologists to adopt the intervention. A
sample size of 200 per arm resulted in one third of neona-
tologists changing their behavior, while a sample size of
400 per arm resulted in two thirds changing behavior. The
PENUT study is powered to detect a 45 % reduction in
NDI, with a large enough sample size to be judged of suffi-
cient quality to change practice for 64 % of clinicians sur-
veyed [personal communication]. Epo neuroprotection is
an exciting new approach to preterm neuroprotection,
and if efficacious, will provide a much-needed therapy for
this group of vulnerable infants.

Conclusion
Current neuroprotective strategies include prenatal ste-
roids, magnesium sulfate, delayed cord clamping, postna-
tal caffeine, breast milk, and avoiding postnatal growth
retardation. Despite these measures, outcomes of extreme
prematurity have not improved significantly over the last
decades, with survivors remaining at significant risk of
neurodevelopmental impairment. Erythropoietin has great
potential to improve these outcomes. There is ample pre-
clinical data showing beneficial effects of Epo on brain in-
jury. Clinical trials to determine whether these preclinical
findings translate to clinical improvement are ongoing.
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