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Abstract

In this paper, in view of application to pricing of Barrier options under a stochastic volatility model, we study a
reflection principle for the hyperbolic Brownianmotion, and introduce a hyperbolic version of Imamura-Ishigaki-Okumura’s
symmetrization. Some results of numerical experiments, which imply the efficiency of the numerical scheme based on
the symmetrization, are given.
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Introduction
Reflection principle and the static hedge of barrier options
The reflection principle of standard Brownian motion
relates the probability distribution of a first hitting time
to a boundary to the 1-dimensional marginal distribution
of the process. The formula has a direct application in
continuous-time finance, that is, the static hedging of bar-
rier options1. The idea is explained roughly as follows.
Suppose that we sold a knock-out call option2 (which is a
typical barrier option). Its pay-off is described as

(ST − K)+1{τ>T},

where

• T is the expiry date of the option,
• K is the exercise price,
• S is the price process of a risky asset, with S0 > K ,

and

• τ := inf{s > 0 : Ss < K ′}, the first hitting time of S to
K ′, the knock-out boundary, with K ′ < K .

The static hedge of the knock-out option consists of
two plain-vanilla (=without knock-out condition) options,
long position of call option with pay-off (ST − K)+, and
short position of “put option” whose value
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• at τ equals the call, and
• is zero at T on τ > T .

This simple portfolio hedges the knock-out option since it
is

• zero at T on τ ≤ T since at τ it is liquidated, and
• (ST − K) at T on τ > T .

This relation can be expressed as

E[ (ST − K)+1{τ>T}|Ft∧τ ]
= E[ (ST − K)+|Ft∧τ ] (1)

− E[ “put option”|Ft∧τ ] ,

for 0 ≤ t ≤ T , where {Ft} is the filtration generated by S.
The existence of such an option is ensured by the reflec-
tion principle. If S is geometric Brownian motion, it can
be the option with pay-off (K − ST )+ since

(St − K)τ≤t≤T
(law)= (K − St)τ≤t≤T (2)

by the reflection principle. In general, the property is
referred to as (arithmetic) put-call symmetry at K [4],
which is weaker than the reflection principle that ensures
put-call symmetry for any K .
The interpretation is first proposed in [3], and there

are vast literatures since then (see e.g. [1] and references
therein). Among these, we just mention a multi-
dimensional extension proposed in [11], where the reflec-
tion principle with respect to reflection groups is applied
to the pricing of multi-asset barrier options, barrier being
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the boundary of aWeyl chamber. To the best of our knowl-
edge, it is the first attempt to deal with the cases where the
barrier(=knock-out/in boundary) is not a one point set.

Symmetrization and its application to numerical
calculation of the price of barrier options
A new point of view in the literature, the symmetrization,
was first introduced in [10], and further generalized in [2].
The symmetrization is a procedure to convert a given dif-
fusion into the one with a weaker version of reflection
principle, aiming at obtaining a precise numerical value of
the price of barrier options in a reasonable computational
time, rather than static-hedge in the market described in
the previous section.
Let us briefly explain their idea. We work on

1-dimensional case for simplicity. Let S be a diffusion
process satisfying the following stochastic differential
equation:

dSt = σ(St) dWt + μ(St) dt, (3)

where, σ and μ are piece-wise continuous functions with
linear growth. In general we cannot expect the formula (1)
to hold. The symmetrization S̃ of S alternatively satisfies
(1). It is defined as a (weak) solution to

dS̃t = σ̃ (S̃t) dWt + μ̃(S̃t) dt, (4)

where

σ̃ (x) =
{

σ(x) x ≥ K ′
σ(2K − x) x < K ′ ,

and

μ̃(x) =
{

μ(x) x ≥ K ′
−μ(2K − x) x < K ′ , (5)

The following is proven in [10].

Theorem 1 (Imamura-Ishigaki-Okumura [10]) The
law-unique solution S̃ of (4) satisfies the put-call symmetry
at K, and (S̃t)0≤t≤τ has the same law as (St)0≤t≤τ .

It then implies
E[ (ST − K)+1{τ>T}]
= E[ (S̃T − K)+]−E[ (K − S̃T )+] .

(6)

The formula (6), however, is not anymore interpreted as
static hedge relation, but it has another application. The
Eq. (6) now reads that

• An expectation with stopping time is converted
to the one without it.

A numerical calculation of an expectation with stopping
time often is a tough challenge due to its path-dependent
nature. On the other hand, an expectation with respect
to one dimensional marginal of a diffusion process is
in most cases numerically tractable. Thus the Eq. (6)

gives a new insight to the numerical analysis of barrier
options/stopping times.

Euler-Maruyama approximation of the price of barrier
options
The most common technique to numerically approximate
an expectation with respect to a diffusion process would
be so-called “Euler-Maruyama” scheme. Here we briefly
recall the scheme.
An Euler-Maruyama discretization of (3) with respect to

a time partition 0 = t0 < t1 < · · · < tn = T is given by

Snt0 = S0,
Sntk+1

= Sntk + σ(Stk )�Wtk

+ μ(Stk )(tk+1 − tk),
k = 0, 1, · · · , n − 1,

(7)

where �Wn
tk ∼ N(0, tk+1 − tk), mutually independent

for k = 0, 1, · · · , n − 1. The stopping time τ is also
approximated by

τn := min
{
j : Sntj+1 < K ′} .

The expectation in the left-hand-side of (6) is approxi-
mated by (Monte-Carlo simulation of)

E
[(
SnT − K

)
+ 1{τn>T}

]
, (8)

while the right-hand-side counterpart is

E
[(

S̃nT − K
)

+

]
− E

[(
K − S̃nT

)
+

]
, (9)

where S̃n is obtained by the same procedure as (7).
The discretization error, by which we mean the differ-

ence between the true value of the expectation and its
Euler-Maruyama approximation like (8) or (9), is known
to be of O

(
n−1/2) in general when tk − tk−1 = T/n

for all k. It is reported in [5] that the one with stopping
time like (8) cannot be improved, while the one with one-
dimensional marginal like (9) is, provided some continuity
of the coefficients, known to be of O

(
n−1).

The symmetrized drift coefficient (5)may not be contin-
uous in general even if the original one is very smooth, and
as far as we know, no existing result ensures the order is
of O(n−1) though recently there have been several papers
([12, 13], and [14]) to deal with discontinuous coefficients
in line with the problem posed here. In [10], however,
they conjecture that it is the case by performing numerical
experiments.
References for more detailed and precise results of the

order can be found in [10].
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SABRmodel and hyperbolic Brownian motion
In the present paper, we study a hyperbolic version of the
symmetrization, with a view to the application of the pric-
ing of barrier options under SABR model, which is known
to be transformed to hyperbolic Brownian motion with
drift.
The SABR (stochastic alha-beta-rho) model was intro-

duced in [6]. It is given by

dSt = vtσ(St) dW 1
t

dvt = ν vt
(√

1 − ρ2dW 2
t + ρdW 1

t

)
,

where (W 1,W 2) is a two dimensional Brownian motion,
ρ ∈ (−1, 1) and ν is a constant. We note that

• A driftless local volatility model is obtained by setting
ν = 0, and

• Zt := ψ(St/ν2 ,Vt/ν2) + √−1Vt/ν2 with
ψ(x, y) = (x−ρy)/

√
1 − ρ2 is a hyperbolic Brownian

motion with drift, a solution to (13) in “Hyperbolic
symmetrization” section (for details see [7]).

The following is a “motto” widely accepted among
researchers and practitioners in finance (see e.g. [8]):
as tractability of one dimensional diffusion processes is
attributed to the reduction to the standard Brownian
motion with drift by the Lamperti transform, so the anal-
ysis of SABR model will be converted to that of hyperbolic
Brownian motion with drift, where we can still work on
symmetries from linear fractional transformations. We
shall observe a realization of this idea in the present paper.

The contents of the present paper
We start with introducing a hyperbolic version of the
reflection principle that parallels the one with the standard
Brownian motion in “Hyperbolic reflection principle”
section. We introduce in “Hyperbolic symmetrization”
section a weak version of the reflection principle, which
also parallels with the classical put-call symmetry. Asso-
ciated symmetrization is then introduced. “Numerical
experiments” section is devoted to numerical studies. As
in the case of the Imamura-Ishigaki-Okumura’s scheme
using classical symmetrization, the error is not proven
to be O(n−1) mathematically but the numerical results
support the conjecture of the hyperbolic case as well.

Hyperbolic reflection principle
Invariant property of hyperbolic Brownianmotion
A Hyperbolic Brownian motion is the unique solution to{

dXt = YtdW 1
t

dY t = YtdW 2
t ,

where W 1 and W 2 are independent Brownian motions.
It is defined on the upper-half plane H = {(x, y) ∈ R

2 :

y > 0} and we may and sometimes will embed it to C by
Zt = Xt + iY t , where i = √−1.

Proposition 1 Let f : H → H be such that f (z) := az+b
cz+d ,

where
(
a b
c d

)
∈ SL(2,R). Then

(
f (Zt)

)
t≥0 and (Zt)t≥0

are equivalent in law provided that f (Z0) = Z0.

Proof Since Zt = Xt + iY t , using Ito’s formula for Zt ,

dZt = dXt + idY t = Yt
(
dW 1

t + idW 2
t
)

= Im(Zt)dWC
t ,

where dWC
t = dW 1

t +idW 2
t , which we define to be a com-

plex Brownian motion. On the other hand, since Zt is a
conformal martingale and f is a holomorphic function, we
can use Ito’s formula for conformal martingales to get

df (Zt) = ∂zf (Zt)dZt

= 1
(cZt + d)2

Im(Zt)dWC

t

= |cZt + d|2
(cZt + d)2

Im(f (Zt))dWC
t

= Im(f (Zt))dW̃C
t ,

where dW̃C
t = |cZt+d|2

(cZt+d)2
dWC

t , which is another complex
Brownian motion. Hence Zt and f (Zt) are equivalent in
law if they start from the same point, as they are defined
by the same SDE.

Hyperbolic reflections
Let C be the totality of such isometries π on the upper-
half plane H that π2 = Id and that the invariant set
Invπ := {z ∈ H : π(z) = z} is a geodesic onH.

Proposition 2 We have that

C =
{

A ◦ 
0 ∈ Isom(H) :

A =
(
a b
a2−1
b a

)
,
( ±1 0
c ±1

)

a, c ∈ R, b ∈ R \ {0}
}
,

where 
A(z) = az+b
cz+d for A =

(
a b
c d

)
∈ SL(2,R) and


0(z) := −z.

Proof It is well-known that an isometry on H is either

A or 
A ◦
0 for some A ∈ SL(2,R). By the fundamental
theorem of algebra, we know that the equation 
A(z) = z
has at most two solutions of complex for A ∈ SL(2,R). So

A(z) �∈ C .
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For 
A ◦ 
0 ∈ Isom(H) and for z = x + iy,

(
A ◦ 
0)
2(z) = (a2 − bc)z − b(a − d)

c(a − d)z − (bc − d2)
.

By a simple calculation,

(a2 − bc)z − b(a − d)

c(a − d)z − (bc − d2)
= z

⇐⇒ (a2 − bc)z − b(a − d) (10)
= c(a − d)z2 − (bc − d2)z

• If a = d, for any b and c, (10) is satisfied.

Since a2 − bc = 1, we have c = a2−1
b if b �= 0, that is;

A =
(
a b
a2−1
b a

)
.

For b = 0, c is an arbitrary real number and a = ±1 from
a2 = 1;

A =
( ±1 0

c ±1

)
.

• If a �= d, the Eq. (10) is

cz2 − (a + d)z + b = 0.

We get a = −d and b = c = 0.
Finally, we should find that the invariant set is geodesic.

A geodesics of upper half plane is a line perpendicular to
the real line, or a half-circle orthogonal to the real line.

• If

A =
(
a b
a2−1
b a

)
,

and if a �= ±1,

−az̄ + b
− a2−1

b z̄ + a
= z,

⇐⇒ (a2 − 1)|z|2 − ab(z + z̄) + b2 = 0.

The last equation means that it is a half circle, with
center

(
ab

a2−1 , 0
)
and radius of

∣∣∣ b
a2−1

∣∣∣.
If a = ±1,

−z̄ + b = z.

The equation means that the invariant set is lines perpen-
dicular to the real line.

• If

A =
( ±1 0

c ±1

)
,

and if c �= 0, without loss of generality, we may set a = 1;

−z̄
−cz̄ + 1

= z

⇐⇒ − c|z|2 + (z + z̄) = 0.

The invariant set is a circle with center
( 1
c , 0

)
and the

radius 1
|c| .

If c = 0, the invariant set is the lines perpendicular to
the real line.

Hyperbolic reflection principle
Let π ∈ C . Then,H = D+ ∪ Invπ ∪D−, where D± are the
connected components of H \ Invπ .

Proposition 3 (Hyperbolic Reflection Principle) Let
Z0 ∈ D+ and τ = inf {t ≥ 0 : Zt �∈ D+} =
inf {t ≥ 0 : Zt ∈ Invπ } . If we put Z̃t = Zt1{t<τ } +
π (Zt) 1{t≥τ }, then we have (Zt) = (Z̃t) in law.

Proof It suffices to show that if π is a reflection of H,
then (π(Zt))t≥0 = (Zt)t≥0 in law if Z0 ∈ Invπ since Z
is a strong Markov process and Zτ ∈ Invπ . As we have
seen that π = 
A ◦ 
0 for some specific A ∈ SL(2,R),
and by Proposition 1, we only need to check that (−Zt)
is identically distributed as (Zt) as a stochastic process,
but this is obvious since (Xt) is identically distributed as
(−Xt).

Hyperbolic symmetrization
Hyperbolic put-call symmetry
Let π ∈ C . Then, by Proposition 2, we know that

π = 
A ◦ 
0

for

A =
(

a b
a2−1
b a

)
,
( ±1 0

c ±1

)

a, c ∈ R, b ∈ R \ {0}.
(11)

A Hyperbolic Brownian motion with drift is a unique
solution in H (if it exists) to

{
dXt = YtdW 1

t + μ1(Xt ,Yt)dt
dY t = YtdW 2

t + μ2(Xt ,Yt)dt,
(12)

where W 1 and W 2 are independent Brownian motions
and μ1 and μ2 are measurable functions. If we use com-
plex coordinate, the SDE (12) is rewritten as
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dZt = Im(Zt)dWC

t + μ(Zt) dt, (13)

whereWC := W 1+ iW 2 and μ(Z) = μ1(Re(Z), Im(Z))+
iμ2(Re(Z), Im(Z)).

Theorem 2 Let π = 
A ◦ 
0 ∈ C and we write

A =
(
a b
c d

)
,

to unify the two classes in the expression (11). Suppose that
μ satisfies

μ(z) = 
0 ◦ μ ◦ π(z)
(c
0 ◦ π(z) + d)2

, (14)

and (13) has a unique weak solution. Then (π(Zt)) and
(Zt) have the same law as a stochastic process, provided
that Z0 ∈ Invπ

Proof Using Itô formula for π(Zt), we have

dπ(Zt) = d(
A ◦ 
0(Zt))

= ∂z̄(
A ◦ 
0)(Zt)dZt

= − 1
(cZt − d)2

Im(Zt)dW
C

t

− μ(Zt)

(−cZt + d)2
dt

= − |cZt − d|2
(cZt − d)2

Im(π(Zt))dW
C

t

+ 
0 ◦ μ ◦ π2(Zt)

(c
0 ◦ π2(Zt) + d)2
dt

= Im(π(Zt))dW̃C
t + μ(π(Zt))dt,

where we have used assumption (14) in the last line and

dW̃C
t = − |cZt − d|2

(cZt − d)2
dWC

t ,

which is another complex Brownian motion. Now
Theorem follows by the law-uniqueness of the SDE
(13).

Symmetrization
Here we present a hyperbolic version of the symmetriza-
tion introduced in [2] and [10].

Theorem 3 We keep the setting of “Hyperbolic reflec-
tion principle” section and Theorem 2 except for the drift
function μ. We let

μ̃(z) =
⎧⎨
⎩

μ(z) z ∈ D+


0◦μ◦π(z)
(c
0◦π(z)+d)2

. z ∈ H \ D+.

Then,

(i) the law unique solution of the SDE, if it exists,

dZt = Im(Zt)dWC + μ̃(Zt) dt

satisfies (π(Zt)) = (Zt) in law, provided that
Z0 ∈ Invπ .

(ii) Let Z0 ∈ D+ and
τ = inf{t ≥ 0 : Zt �∈ D+} = inf{t ≥ 0 : Zt ∈ Invπ }. If
we put Z̃t = Zt1{t<τ } + π (Zt) 1{t≥τ }, then we have
(Zt) = (Z̃t) in law.

(iii) [Conversion Formula] Suppose that F is a bounded
measurable function on H with support in D+. Then,

E[ F(Zt)1{τ>t}]
= E[ F(Zt)]−E[ F(π(Zt))] .

Proof (i) and (ii) are direct consequences of Theorem 2
and Proposition 3. (iii) can be proven in the same manner
as in [10].

Example 1 Let Z be the unique solution to (13), π(z) =
1
z̄ and Invπ = {|z| = 1}. We let D+ := {z ∈ H : |z| > 1}
and

μ(z) = c Im(z),

where c is a constant, then the symmetrization μ̃ in
Theorem 3 is

μ̃(z) =
{
c Im(z) z ∈ D+
−cz2Im

( 1
z̄
)
otherwise.

Numerical experiments
In the hyperbolic symmetrization proposed in the present
paper the symmetrized drift may not be continuous in
general, as in the case of the symmetrization in [10]. This
means that no rigorous mathematical result guarantees
the efficiency— (high) order of convergence— in Euler-
Maruyama approximation. In [10], it is claimed, however,
that numerical experiments show the efficiency. In this sec-
tion we present some simulation results of the Example 1
with c = 1, t = 1, and F(z) = (|z|−1)+ ∧N withN = 104,
which suggest that in the hyperbolic case the conjecture is
still likely to be true.
We work on Euler-Maruyama discretization scheme

with Monte-Carlo simulation, described below.

1. Let n be the number of discretization; we put
tk = k/n, k = 0, 1, · · · , n.

2. Let Z be the original process and Z̃ be the
symmetrized one. We approximate Z and Z̃ by
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Zn = (Xn,Yn) and Z̃n = (X̃n, Ỹ n), defined as

Xn
tk − Xn

tk−1

= Yn
tk−1

�Wn
tk + μ

(
Yn
tk−1

)
n−1,

Yn
tk = Yn

tk−1
exp

(
�Wn

tk − (2n)−1
)
,

k = 1, 2, · · · , n
and

X̃n
tk − X̃n

tk−1
=Ỹ n

tk−1
�Wn

tk + μ̃1(
X̃n
tk−1

, Ỹ n
tk−1

)
n−1,

Ỹ n
tk − Ỹ n

tk−1
=Ỹ n

tk−1
�Wn

tk + μ̃2(
X̃n
tk−1

, Ỹ n
tk−1

)
n−1,

k =1, 2, · · · , n,
where μ̃1 and μ̃2 are such that μ̃ = μ̃1 + iμ̃2. Here{
�Wn

tk : k = 1, 2, · · · , n
}
simulates, by pseudo

random numbers, independent copies of centered
Gaussian random variables with variance n−1.

3. The Monte-Carlo simulation of Path-Wise
Euler-Maruyama approximation of E[ F(Z1)1{τ>1}] is
obtained by

PW-EM(n)

:= 1
M

M∑
m=1

F
(
Zn,m
1

)
1{τn,m>1},

where Zn,m stands for them-th simulation of Zn, and

τn,m = min
{
tk : |Zn,m

tk | ≤ 1
}

4. The Monte-Carlo simulation of
E[ F(Z̃1)]−E[ F(π(Z̃1))] is given by

Symmetrization(n)

:= 1
M

M∑
m=1

(
F

(
Z̃n,m
1

) − F
(
π

(
Z̃n,m
1

)))
,

5. The “true” value Tr(n) is set to be Symmetrization(n)

for some large n.
6. The errors are calculated accordingly as

PW EM Error(n)

:= log|Tr(n) − PW EM(n)|
and

Sym Error(n)

:= log|Tr(n) − Symmetrization(n)|.
The results are visualized as follows. The Figures 1

and 2 show the results when (X0,Y0) = (0.75, 0.7) and
(X0,Y0) = (1.0, 1.0), respectively, and the “true" value is
calculate for n = 1000. The Tables 1 and 2 are the values of
the dotted points in the Figures 1 and 2, respectively. The
tangent of the regression line corresponds to the order of
the convergence, which may suggest that it is of order 1 in
the case of symmetrization.

Endnotes
1A barrier option is a financial derivative with an addi-

tional condition that is made active when the underly-
ing price process goes beyond/below a certain level. For
details, see e.g. [9].

2An option is called of “knock-out” type if the pay-off
becomes zero if the underlying price process hits a certain
value.

Fig. 1 The results of the first experiment
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Fig. 2 The results of the second experiment

Table 1 (X0, Y0) = (0.75, 0.7), Tr1000=0.116674

M:No. of simmulation trials n:No. of time steps Symmetrization PW EM Sym Error PW EM Error

11000 10 0.494071 0.212777 −2.342335 −0.974458

18000 20 0.424634 0.165305 −3.023494 −1.177785

27000 30 0.374365 0.15732 −3.202855 −1.355994

64000 40 0.350142 0.138187 −3.839098 −1.454710

125000 50 0.33173 0.135724 −3.960688 −1.536857

216000 60 0.316112 0.128837 −4.409357 −1.612252

343000 70 0.301227 0.13156 −4.207334 −1.689819

512000 80 0.290315 0.130349 −4.292186 −1.750765

729000 90 0.281466 0.128077 −4.473879 −1.803071

1000000 100 0.273353 0.126315 −4.641730 −1.853556

Table 2 (X0, Y0) = (1.0, 1.0), Tr1000=1.253903

M:No. of simmulation trials n:No. of time steps Symmetrization PW EM Sym Error PW EM Error

18000 20 1.305908 1.22153 −3.430431 −2.956415

27000 30 1.302775 1.235505 −3.995513 −3.018551

64000 40 1.294995 1.234476 −3.941091 −3.191942

125000 50 1.294358 1.2407 −4.327311 −3.207565

216000 60 1.290095 1.23953 −4.242404 −3.318917

343000 70 1.293495 1.247477 −5.047403 −3.229128

512000 80 1.295325 1.249126 −5.343942 −3.183943

729000 90 1.293081 1.248791 −5.276165 −3.239640

1000000 100 1.290695 1.250402 −5.654707 −3.302475
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