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Abstract 

Purpose  To evaluate collagen scaffolds (CS) in terms of their in vitro resorption behavior, surface structure, swelling 
behavior, and mechanical properties in physiologically simulated environments, compared with porcine native con-
nective tissue.

Materials and methods  Three test materials—one porcine collagen matrix (p-CM), two acellular dermal matrices 
(porcine = p-ADM, allogenic = a-ADM)—and porcine native connective tissue (p-CTG) as a control material were 
examined for resorption in four solutions using a high-precision scale. The solutions were artificial saliva (AS) and sim-
ulated body fluid (SBF), both with and without collagenase (0.5 U/ml at 37 °C). In addition, the surface structures 
of CS were analyzed using a scanning electron microscope (SEM) before and after exposure to AS or SBF. The swelling 
behavior of CS was evaluated by measuring volume change and liquid absorption capacity in phosphate-buffered 
saline (PBS). Finally, the mechanical properties of CS and p-CTG were investigated using cyclic compression testing 
in PBS.

Results  Solutions containing collagenase demonstrated high resorption rates with significant differences (p < 0.04) 
between the tested materials after 4 h, 8 h and 24 h, ranging from 54.1 to 100% after 24 h. SEM images revealed 
cross-linked collagen structures in all untreated specimens. Unlike a-ADM, the scaffolds of p-CM and p-ADM dis-
played a flake-like structure. The swelling ratio and fluid absorption capacity per area ranged from 13.4 to 25.5% 
among the test materials and showed following pattern: p-CM > a-ADM > p-ADM. P-CM exhibited higher elastic prop-
erties than p-ADM, whereas a-ADM, like p-CTG, were barely compressible and lost structural integrity under increas-
ing pressure.

Conclusions and clinical implications  Collagen scaffolds vary significantly in their physical properties, such 
as resorption and swelling behavior and elastic properties, depending on their microstructure and composition. 
When clinically applied, these differences should be taken into consideration to achieve the desired outcomes.
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Graphical Abstract

Background
Trauma or tooth loss typically triggers significant soft 
and hard tissue remodeling, occasionally leading to 
severe ridge deficits [1]. To restore an aesthetically pleas-
ing and functionally stable situation after tooth loss, 
dental implants serve as crucial anchors for fixed and 
removable dental prostheses [2]. Besides a sufficient 
bone bed and the so-called “bony envelope” [3], proper 
soft tissue integration is also essential [4]. This integra-
tion is a complex biological process, potentially influ-
enced by various factors [5]. Hence, the conceptual goal 
is full osseointegration, hemi-desmosomal attachment, 
and a circular connective tissue cuff around the implant, 
effectively separating the peri-implant bone from the 
oral cavity and thus preventing the development of peri-
implant inflammation [5]. Avila-Ortiz et al. defined short 
and long supra-crestal soft tissue height (STH) with a 
cutoff at 3  mm [6]. Studies have indicated, that a pre-
operative STH of > 2  mm reduces marginal bone loss 
around implants [7, 8]. The careful establishment of a 
stable soft tissue compartment is, therefore, pivotal for 
the long-term success of dental implants [9]. Thickening 
thin mucosa results in significantly less crestal bone loss 

than without soft-tissue thickening [8]. A 2021 consensus 
paper concluded, “Bone stands hard, but soft tissue is the 
guard,” emphasizing the bidirectional importance of hard 
and soft tissues [10].

Furthermore, soft tissues determine the aesthetic suc-
cess or failure of an implant, particularly in the anterior 
maxilla. Aesthetic outcomes are achieved with careful 
soft-tissue handling, which may include the necessity of 
soft tissue augmentation using autogenous or substitute 
materials [11].

Considering this, various surgical concepts and mate-
rials [12] have been established to thicken soft tissue 
[12, 13]. At present, autogenous soft tissue grafts—
connective tissue grafts (CTG) or free gingival grafts 
(FGG)—represent the gold standard [2]. However, har-
vesting soft tissue grafts from the palate might be asso-
ciated with increased patient morbidity [14]. Moreover, 
clinicians face challenges with limited standardized 
availability of autologous tissue quantity and inconsist-
ent quality due to inter-individual anatomical differ-
ences in palatal mucosa morphology and anatomical 
structures, such as vessels and nerves [15, 16]. Treating 
multiple recessions with autogenous connective tissue 
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is partly restricted due to this limited availability [14]. 
These factors have led to the development of alternative 
materials, including acellular dermal matrices (ADM) 
and collagen matrices (CM) of allogenic or xenogeneic 
origin. Using these alternatives eliminates the need for 
an additional surgical site while providing an unlimited 
supply [17] and potentially shortening surgical time 
[18]. Although xenogenic CM shows less soft tissue 
thickening compared to autologous CTG [7], it leads to 
a reduction of treatment time, postoperative complica-
tions, pain, and ultimately results in improved patient 
satisfaction [13, 19, 20].

However, certain material properties must be met to 
achieve adequate integration of the biomaterial into 
the surrounding tissue. An ideal replacement material 
should be biocompatible and allow rapid cell migration 
and vascularization [21–25]. Collagen scaffolds (CS) 
appear to fulfill these requirements, allowing controlled 
ingrowth of cells and vessels from adjacent tissues [14]. 
In this process, the original matrix is gradually resorbed 
and replaced by autogenous tissue [14]. Therefore, the 
resorption behavior of collagen materials is a relevant 
parameter for space provision for connective tissue 
regeneration, ensuring adequate volume stability [21].

Swelling is another crucial parameter. A clinical cor-
relation is believed to exist between a high swelling 
ratio and rapid resorption rate [26]. After implanta-
tion and suturing of the flap, the collagen materials are 
compressed to varying extents. The pressure remains 
unpredictable and depends on the flap technique and 
tissue turgor. In addition, the materials must withstand 
various forces under physiological (masticatory) load-
ing [21]. Therefore, a certain degree of elasticity may 
also be advantageous.

In this in-vitro study, three different CS were com-
pared to native porcine CTG in physiological solutions 
with and without collagenase to simulate biodegrada-
tion with respect to various parameters. The objectives 
were to answer the following questions:

1.	 What is the resorption capacity of the collagen mate-
rials as compared to native porcine connective tis-
sue?

2.	 How does the morphology of the collagen materials 
change under the influence of collagenase?

3.	 What is the swelling capacity of the test materials?
4.	 How do the CS and the control material behave 

under mechanical loading?

The null hypotheses were that the materials did not 
differ concerning the above-mentioned key aspects and 
parameters.

Materials and methods
Materials
In the study, three different CS were examined. Two of 
these were of porcine origin (p-CM and p-ADM), and 
one was of human origin (a-ADM). P-CM was a cross-
linked collagen matrix (Fibro Gide®, Geistlich Pharma 
AG, Wollhusen, Switzerland), while p-ADM and a-ADM 
represented acellular dermal matrices (Mucoderm®, Bot-
iss, Zossen, Germany, and Puros® Dermis Tissue Matrix, 
Tutogen Medical GmbH, Neunkirchen, Germany). 
Table  1 provides an overview of the materials used and 
their properties.

Native connective tissue from the porcine palate 
(p-CTG) served as the control and was stored at − 18 °C. 
Notably, animals of this study were raised and slaugh-
tered for food production according to the Swiss stand-
ards for animal welfare. The study protocol did not in any 
way influence premortal fate of the animals or the slaugh-
tering process. Therefore, this investigation was not 
classified as an animal study and the institutional ethics 
committee did not have any objections to the protocol.

Solutions
Four reagents were used to test the resorption behavior. 
These solutions, designed to mimic the oral environment, 
included simulated body fluid (SBF) and artificial saliva 
(Klimek), each with and without collagenase (0.5  unit/
ml), respectively. SBF and Klimek were prepared exactly 

Table 1  Overview of the test-materials

Collagen scaffold Features Thickness (mm) Manufacturer

a-ADM = Puros® Dermis Allograft Tis-
sue Matrix

Allogenic origin
Sterilization with Tutoplast-procedure
Monolayer

ca. 0.8–1.8 Tutogen Medical GmbH; ZimVie

p-CM = Geistlich Fibro-Gide® Porcine origin
Cross-linked
Three-dimensional structure

ca. 6.0 Geistlich Pharma AG

p-ADM = Botiss Mucoderm® Porcine origin
Monolayer

ca. 1.2–1.7 Botiss Biomaterials GmbH
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according to the instructions provided by Kokubo et  al. 
[27] and Klimek et  al. [28], respectively. The ingredi-
ents of the used reagents are listed in Tables 3 and 4 in 
Appendix.

The swelling and cyclic compression tests were con-
ducted in an external laboratory (Geistlich Pharma AG, 
Wollhusen, Switzerland). This company uses an isotonic 
phosphate buffered salt solution (PBS) as a reagent for 
these tests. Therefore, PBS was also employed for these 
two tests. PBS was prepared according to the company’s 
recipe.

Collagenase
When used clinically, the tested materials undergo natu-
ral degradation. To simulate this biodegradation in vitro, 
collagenase was employed as an enzyme. The collagenase 
used in this experiment was of bacterial origin, obtained 
from Clostridium histolyticum. Available as a lyophilized 
powder (C9891, Sigma Aldrich, St. Louis, USA), it was 
mixed with either SBF or Klimek (5 unit/ml) before being 
diluted to 0.5 unit/ml.

Experimental procedure
Resorption behavior
Standardized 5 × 5  mm test specimens of the included 
materials were prepared. The thickness of the samples 
was measured using an ethanol-purified digital external 
micrometer (Mitutoyo, Urdorf, Switzerland) to avoid 
compressing the materials. Five samples (n = 5) of each 
of the four tested materials (three artificial matrices and 
one p-CTG as control) were exposed to the four solu-
tions at three timepoints (4, 8 and 24  h). Samples were 
placed in a 24-well plate for 15 min, each in 1 ml of 0.9% 
sodium chloride solution. After 15 min, the samples were 
dried and weighed (see “Procedure for standardized dry-
ing and weight measurement” section). The sodium chlo-
ride solution was removed and replaced by the respective 
test solutions. At each timepoint, the solutions were 
exchanged. The 24-well plate containing the samples and 
replaced solutions was sealed with tape and incubated 
at 37  °C. At each solution change, CS and control sam-
ples were dried and weighed with a Mettler AT261 Del-
taRange® scale (Mettler, Greifensee, Switzerland). The 
resorption rate of the materials was investigated based on 
the weight measurements.

Surface analysis
The surface morphology of the test materials was exam-
ined using a scanning electron microscope (SEM; Zeiss, 
Oberkochen, Germany) at a magnification of 2000×. 
SEM images were taken in the untreated condition (out 
of the package) and after 24-h exposure to both SBF with 
collagenase (0.5  unit/ml) and Klimek with collagenase 

(0.5  unit/ml), respectively. Before imaging, CS were 
soaked in deionized water for 3 min and then dried (see 
“Procedure for standardized drying and weight measure-
ment” section). Subsequently, samples were affixed to an 
SEM carrier using a self-adhesive carbon pad and sput-
ter-coated with 10 nm of gold.

Swelling behavior
In this experiment, three CS (p-CM, p-ADM, a-ADM) 
were cut to a size of 15 × 20  mm, with three samples 
(n = 3) of each matrix prepared. Dimensions (length, 
width and height) were measured at the highest point of 
the samples using a digital external micrometer (Mitu-
toyo, Urdorf, Switzerland) at the first visual contact. A 
pencil line was drawn on each matrix 2 mm from the bot-
tom edge. The prepared samples were vertically mounted 
on a sample holder attached to a XS204 DeltaRange® 
scale (Mettler, Greifensee, Switzerland) (Fig. 1). A vessel 
containing PBS was placed on the balance plate and the 
bottom 2 mm of each matrix was immersed in PBS. The 
time and mass change from the immersion of the matrix 
in the solution until the solution reached the top of the 
matrix were assessed. Once the matrix appeared fully 
swollen, the balance plate was lowered, so that the matrix 
was no longer in contact with the solution. After this, 
weight change was recorded for an additional 2 min to 
measure any evaporation. The liquid absorption capacity 
per volume was calculated by subtracting the mass of the 
dry matrix from the mass of the swollen matrix and then 
dividing by the volume of the matrix.

Cyclic compression test
The test materials, along with the control material, were 
cut to a size of 10 × 20  mm. Three specimens (n = 3) of 

Fig. 1  Scheme of the experimental setup
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each material were prepared. These materials were trans-
ferred with forceps into tubes filled with 50  ml of PBS. 
These tubes were then incubated in a water bath at 37 °C 
for 2 h. After this 2-h incubation, specimens were placed 
using bent tweezers under a serrated press plate on the 
metal plate of the material testing machine (Zwick Roell, 
Ulm, Germany), fully immersed in PBS at 37 °C. The tool 
gap was visually adjusted to secure the specimen in place. 
Cyclic testing (force: 12.1 kPa) of the specimens was per-
formed in PBS at 37 °C for a total of 49 cycles. In the 50th 
cycle, each specimen was completely pushed through.

Procedure for standardized drying and weight measurement
The standardized drying procedure was carried out as 
follows: at the time of measurement, each sample was 
removed from the perforated plate using diamond twee-
zers (Intensiv SA, Collina d’Oro, Switzerland), cleaned 
with ethanol and placed on a Tela napkin. The napkin was 
then folded over and weighted down for 5 s with a multi-
kilogram lead cylinder. This procedure was repeated on a 
dry area of the napkin.

Prior to each weight measurement, the scale was cali-
brated with a plastic pan. Using the diamond tweezers, 
the specimen was then placed on this pan in the balance 
for weighing.

Statistical analysis
The analysis was conducted using the statistical software 
R. Median, interquartile range (IQR), and the small-
est and largest values were calculated from the relative 

values of the weight changes of the different specimens 
and compared. Pairwise Wilcoxon Rank Sum Tests were 
conducted to determine the differences between the 
materials in the various solutions at the 24-h timepoint. 
Statistical significance was indicated with an “*” and was 
always assumed at p < 0.05. For the test materials, area, 
volume change and fluid absorption capacity per volume 
for each material were calculated. Median, IQR and the 
smallest and largest values were determined and com-
pared in each case. Pairwise Wilcoxon Rank Sum Tests 
were used to calculate pairwise comparisons between 
material levels for swelling behavior. Due to the number 
of specimens (n = 3) no p value was obtained.

Results
Resorption behavior
For the solutions without collagenase, all samples exhib-
ited a comparable and very low to no resorption behavior, 
with percentage changes ranging from − 6.9 to + 15.8% 
after 24  h. Please refer to Fig.  2 for more comprehen-
sive information. In contrast, the test samples immersed 
in the solutions with collagenase demonstrated higher 
resorption, while the control group (P) exhibited the low-
est resorption.

Figure  2 compares the median (IQR) percentage 
changes in weight for the four investigated materials at 
different measurement times (4, 8, and 24 h) in both, the 
SBF collagenase and Klimek collagenase solutions.

In the collagenase-containing solutions, the control 
material (p-CTG) exhibited weight gain within the first 

Fig. 2  a Resorption behavior (%) of included materials over time (h). b Box-plots for resorption (%) at 24 h
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8 h. However, after 24 h, a weight loss of approximately 
− 5% was observed in the SBF collagenase solution, and 
close to − 10% in the Klimek collagenase solution.

Comparison of materials in SBF collagenase solution
Comparing resorption values at the measurement time-
point of 24 h, all test and control materials show signifi-
cant differences (p < 0.05) of their resorption behavior in 
SBF solution with collagenase (Fig. 2).

Comparison of materials in Klimek collagenase solution
There is a statistically significant difference between 
most of the materials in the Klimek collagenase solution 
(p < 0.05). Only between the two acellular dermal matri-
ces (p-ADM, a-ADM), there is no statistically significant 
difference (p > 0.05) of the resorption rate (Fig. 2).

Comparison of the materials in collagenase‑free solution
No significant difference between the materials in the 
solutions without collagenase (p > 0.05).

Surface analysis
In the untreated state (original), a-ADM exhibits numer-
ous cross-linked fibers. However, in the SBF collagenase 
solution, the fine fibers are largely absent, leaving behind 
primarily thicker fibers. In contrast, the treatment with 
Klimek collagenase resulted in a distinct redistribution 
of proteins compared to the SBF collagenase treatment, 
resulting in a compact appearance of the surface, with the 
fibers more embedded in the mass.

Upon examination of the untreated state, p-CM reveals 
a flocculent, multilayered structure at the cut edge. The 
flakes appear to be cross-linked with each other, although 
at this low resolution, no definitive conclusion can be 
drawn regarding molecular cross-linking. In the SEM 
image of p-CM after treatment with SBF collagenase, salt 
crystals are visible, which are attributed to a preparation 
artifact. Similar behavior was observed for p-CM in both 
the SBF collagenase solution and the Klimek collagenase 
solution, where the surrounding matrix disintegrated and 
only remnants of fibers are visible.

SEM images of p-ADM depict a cut surface in its origi-
nal state. In the untreated state, the structure appears dis-
rupted and flaky, with salt crystals (preparation artifact) 
observed between the bundles. The structures seem to 
be strongly cross-linked. After incubation of p-ADM in 
the SBF collagenase solution, the surface appears highly 
dense. Similarly, treatment with Klimek collagenase 
resulted in the loss of the flake structure and densifica-
tion, leading to a compact and dense surface appearance.

Figure 3 displays SEM images of CM in the initial state 
(fresh from packing) and after 24 h of exposure to colla-
genase solutions (0.5 unit/ml at 37 °C).

Swelling behavior
Both, area change and volume change (%) were great-
est for p-CM, while the two ADM showed less swelling. 
The trend in terms of volume change was as follows: 
p-CM > a-ADM > p-ADM.

A similar pattern was observed for the fluid absorp-
tion capacity per volume (mg/cm3). On median, p-CM 
exhibited the highest absorption capacity, with the ability 
to absorb 953.9  mg/cm3 of PBS. For p-ADM, this value 
was 487.8 mg/cm3, and for a-ADM, it was 518.3 mg/cm3 
(Table 2).

Out of three samples of the allogeneic material 
(a-ADM), only two were evaluable. Figure 4 illustrates the 
cyclic loading of the four materials. P-CM demonstrates 
approximately 60% compressibility at a force of 12.1 kPa. 
The force–strain diagrams of p-CTG and a-ADM exhibit 
a similar pattern. Both p-CTG and a-ADM experience 
structural degradation under cyclic loading, resulting 
in minimal compressibility. On the other hand, p-ADM 
appears to maintain its structure and exhibit compress-
ibility, although to a significantly lesser extent compared 
to p-CM. Therefore, p-ADM demonstrates lower elastic-
ity when compared to p-CM.

Discussion
Autogenous connective tissue grafts and free gingival 
grafts continue to be the gold standard in periodontal and 
implant dentistry [12]. Nevertheless, concerns related to 
patient morbidity, limited supply and inconsistent avail-
ability have prompted clinicians to seek alternatives. 
These alternatives ideally should have similar properties 
to ensure comparable clinical outcomes to autogenous 
grafts.

In this study, the authors assessed three different col-
lagen scaffolds regarding their resorptive behavior via 
weight measurements. We also examined the surface 
structure of CS using scanning electron microscopy and 
analyzed swelling behavior and mechanical properties 
through a cyclic compression test. Native porcine colla-
gen served as the control group.

This research is among the first to examine the resorp-
tion behavior and surface morphology of xenogeneic and 
allogeneic CS in physiological solutions.

The resorption rate results exhibited similar behavior 
among the tested collagen materials in simulated body 
fluid (SBF/Klimek, both with and without collagenase). 
SBF mirrors the ion concentration found in human blood 
plasma, while Klimek mimics saliva, saturated with cal-
cium and phosphate. Phosphate-buffered saline, used for 
swelling behavior and cyclic compression testing, is an 
isotonic solution. All these solutions model a physiologi-
cal environment in vitro.
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In the absence of collagenase, most materials dem-
onstrated a weight increase due to the filling of pores 
with solution, while a few samples showed a decrease, 
up to − 6.9%. In the presence of collagenase, the three 
CS exhibited varying resistance levels. P-CM displayed 

the lowest resistance, followed by p-ADM, with a-ADM 
demonstrating the highest. This suggests, that allo-
geneic ADM might be more collagenase-resistant 
than the xenogeneic CS. This indicates, that resorp-
tion time primarily depends on the CS used. Collagen 

Magnification Original SBF with  
Collagenase  
(0.5 Unit/ml) 

Klimek with  
Collagenase  
(0.5 Unit/ml) 

a-ADM 200x 

1000x

2000x

p-CM 200x

1000x

2000x

p-ADM 200x

1000x

2000x

Fig. 3  CS at ×2000 magnification in the untreated (original) state, after 24 h incubation in SBF with collagenase and Klimek with collagenase
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content and type likely also influence this process [29]. 
The native control material, p-CTG, showed the high-
est collagenolytic resistance. These results align with 
Sbricoli et  al., who reported variable resorption times 
dependent on the CS used [30].

Contradicting these findings, Vallecillo et  al. found, 
that p-CM displayed the greatest resistance to three 
degradation tests: hydrolytic degradation in phosphate 
buffer solution, enzyme resistance via white trypsin solu-
tion and bacterial collagenase resistance [31]. Our results 
indicate, that p-CM presented the least resistance in 
both, SBF and Klimek solutions containing collagenase.

Supporting the previous study, Angele et al. observed, 
that cross-linking significantly enhanced resistance to 
enzymatic degradation; a factor potentially influenced 
by the specific reagents used [32]. Moreover, this study 
employed a potentially more potent bacterial collagenase 

(0.5 U/ml), suggesting the rapid degradation of CS might 
not translate to physiological conditions.

Macroscopically, p-ADM and a-ADM showed a com-
pact structure compared to the sponge-like structure 
of p-CM. This feature was confirmed by SEM imaging. 
Cross-linking was achieved with collagen fibers, which 
could be further investigated by higher magnification 
SEM imaging. After a 24-h immersion in collagenase-
containing solutions, a-ADM and p-ADM underwent 
densification, suggesting that degradation must precede 
blood vessel and cell ingrowth in these matrices. In con-
trast, p-CM lost its flocculent structure after 24 h, which 
might have initially facilitated fluid penetration and col-
lagenase access, explaining its lower resistance to colla-
genase-induced resorption.

Rothamel et  al. compared cross-linked and native 
matrices in a canine study. His results revealed, that 

Table 2  Swelling behavior of test and control materials [area, volume change (%) and PBS uptake (mg/cm3)]

Area change (%) Volume change (%) PBS uptake (mg/cm3)

Median IQR Min Max Median IQR Min Max Median IQR Min Max

p-CM 15.0 0.95 13.9 15.8 25.5 0.65 24.8 26.1 953.9 16.9 947.6 981.3

p-ADM 9.1 3.4 5.2 12.0 13.6 2.25 11.0 15.5 487.8 50.8 411.1 512.6

a-ADM 10.1 2.3 9.5 14.1 19.6 3.4 16.3 23.1 518.3 77.2 438.8 593.2
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Fig. 4  Force–strain diagram for p-CM, p-CTG, p-ADM and a-ADM
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cross-linked materials exhibited the longest resorption 
rate but also the highest inflammation rate, potentially 
complicating wound healing [33]. Thus, less volume-
stable native materials may provide the optimal clinical 
solution.

We also investigated CS swelling behavior. The scaffold 
of the matrices absorbs liquid, leading to an increase in 
volume (swelling). The swelling degree and fluid absorp-
tion capacity per volume were significantly higher for 
p-CM than for p-ADM and a-ADM. This could be attrib-
uted to p-CM’s sponge-like, multilayered structure, com-
pared to the more compact structure of p-ADM and 
a-ADM.

In an in  vitro test, Zhu et  al. observed a correlation 
between larger pore size and increased liquid absorption 
capacity and swelling behavior [26]. This could indicate a 
superior ability to absorb blood and tissue fluid, and thus, 
endogenous and added exogenous growth factors. How-
ever, a high swelling capacity might also lead to a higher 
rate of wound dehiscences, necessitating more careful 
flap management by the clinician. Postsurgical wound 
dehiscences are a common problem, leading to faster 
resorption of exposed CS and thus less tissue thickening 
[34].

In our study, while porosity was not directly measured, 
SEM images revealed a significantly less dense structure 
in p-CM. This suggests, that p-CM may have a higher 
porosity than p-ADM and a-ADM. This would explain its 
superior liquid absorption capacity and swelling behavior.

Finally, we used cyclic compression testing to examine 
the mechanical properties of the three CS and the control 
material. P-CM was found to be elastic and compress-
ible, whereas p-ADM showed less elasticity. The allogenic 
material, a-ADM, displayed little elasticity and lost struc-
tural integrity with repeated compression. Interestingly, 
the native control material, p-CTG, was also found to be 
minimally compressible and unable to maintain its struc-
tural integrity. This could suggest that the allogenic ADM 
is structurally most like the native material.

The cyclic compression test was performed at 12.1 kPa, 
a value specifically set by Geistlich Pharma AG (Wol-
lhusen, Switzerland) for p-CM. If a smaller force was 
applied, it is possible that a-ADM and p-CTG would not 
lose their structure, yet their elasticity would still be less 
than that of p-CM.

Limitations
It is important to acknowledge some limitations in our 
study setup. This in  vitro experiment used a relatively 
small number of samples (n = 5 for resorption behavior 
experiment, n = 3 for swelling behavior and cyclic com-
pression test experiments) at a single center. For future 
research, we suggest larger, multi-center studies. The 

results rely on weight measurements and SEM images 
taken by a single individual, introducing potential for 
bias. Furthermore, investigator-dependent data collec-
tion and lack of information about molecular structure 
are also limitations. Future research could use tech-
niques, such as 2D gel electrophoresis or higher magni-
fications for further insights.

Moreover, the use of only three CS in our study may 
limit the generalizability of our findings. Inclusion of 
more diverse and newer CS in future studies might 
yield a broader range of results and more comparative 
data.

In addition, in this study porcine tissue was utilized 
as control group. However, it is important to note that 
pCTG differs from human tissue obtained from the pal-
ate in terms of consistency. This discrepancy may have 
introduced variations in our findings. Moreover, the 
storage at − 18  °C, while commonly employed, might 
have affected the tissue’s properties.

Regarding surface morphology, although SEM images 
provided some understanding of the material struc-
tures, a higher magnification and possibly combin-
ing SEM with other imaging techniques could provide 
more detailed information about the surface and inter-
nal structures.

It is also noteworthy, that although the use of SBF, 
Klimek and PBS simulate physiological conditions, they 
still represent an oversimplified model of the complex 
biological environment in the human body. In vivo stud-
ies or advanced in  vitro models, which better simulate 
the physiological environment and immune responses 
would provide more clinically relevant results.

In addition, the clinical relevance of mechanical prop-
erties should be interpreted with caution. While the 
cyclic compression test provided useful information on 
the elasticity and structural integrity of the materials, it 
does not fully simulate the dynamic and multifactorial 
mechanical stresses occurring in clinical settings.

Finally, all these findings need to be validated in well-
designed clinical studies, which could provide more 
insight into the clinical performance and patient out-
comes associated with these materials. In addition, cost-
effectiveness analyses may also be important in guiding 
the choice of materials in clinical practice.

In conclusion, this research provides valuable insights 
into the resorption behavior, surface morphology, swell-
ing behavior and mechanical properties of three different 
CS. Despite its limitations, the study advances our under-
standing of these properties and their implications for 
clinical practice in periodontal and implant dentistry. It is 
hoped that this work will provide a foundation for further 
studies aimed at optimizing the choice and use of CS in 
these clinical contexts.
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Conclusions
Within the limitations of the current study, it can be 
observed that collagen scaffolds vary significantly in 
their physical properties, such as resorption and swell-
ing behavior and elastic properties, depending on 
their microstructure and composition. When clinically 
applied, these differences should be taken into considera-
tion to achieve the desired outcomes.

Collagen scaffolds represent a promising alternative 
compared to the conventionally applied autogenous con-
nective tissue grafts and should, therefore, be further 
assessed in future studies.

Appendix
See Tables 3, 4.
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