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Stress-strain state of an elastic half-space
with a cavity of arbitrary shape
E. A. Kalentev

Abstract

Background: Analytical method for studying stress concentration around arbitrary shape cavity is proposed.

Methods: The method is based on the assumption that it is possible to simulate the influence of cavity on
the redistribution of internal forces by including fictitious forces in the solution. To determine the stress-strain
state, additional forces acting on cavity surface are used. The magnitude of these forces is chosen on the
basis of the value of stress tensor flow through the examined surfaces limiting cavity volume.

Results: Research of stress-strain state for the most general three-dimensional case is done: an elastic half-
space with a cubic shape cavity under action of a concentrated force applied to a free surface. The obtained
results are comprehensively compared with the solution of a similar problem by the finite element method.
Distributions of the stress tensor components in the vicinity of these cavities are constructed. The estimation
of accuracy and efficiency of the proposed calculation model is made; the boundary of applicability of the
proposed solution is determined.

Conclusions: It seems promising to use the resource of structural materials advantageously, namely, creating
in the bodies of the cavity system the required shape and size, to obtain stress reduction at critical points,
thereby increasing the strength of the product.

Keywords: Stress tensor flow, Stress concentration, Cavity surface, Analytical solution, Three-dimensional elastic
half-space

Background
A lot of bodies in the world around us have differ-
ent cavities. These can be cavities in soils, machine
parts, building structures, biological materials, etc.
When such bodies are exposed to loads, stresses are
concentrated around cavities and distinct change in
parameters of stress-strain state is observed. To as-
sess the integrity of such bodies, effective methods
of determining stress concentration around cavities
are required.
In general, the study of stress concentration can be

made using experimental, analytical or numerical ana-
lysis. Since this matter has been widely studied and it

is hard to make even a short review of it, only key
points and particular examples will be covered. It
should be mentioned that experiments sometimes
cannot be carried out and are usually labor consum-
ing and numerical methods nearly always require soft-
ware support and great computing resources. It is
considered that stress concentration research started
with the work (Kirsch 1898) studying hole-weakened
infinite plate. Reviews (Sternberg 1958 and Neuber
and Hahn 1966) contain a lot of information on this
matter. The works (Vorovich and Malkina 1967 and
Sternberg et al. 1949) provide solutions from some
elementary cases. Stress distribution inside and
around spheroidal inclusions and voids has been
made (Tandon and Weng 1986). The analytical func-Correspondence: EugeneKalentev@gmail.com
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tions of the Kolosova-Muskhelishvili complex variable
(Muskhelishvili 1977) are used to solve problems of
plane elasticity theory; power Fourier series are
applied for a circle-bounded area and integrals of
Cauchy type—for elliptic holes. Method of integral
equations is also used to solve spatial elasticity
problems; the study of stress state of
piecewise-connected and multiply connected bodies
and bodies with cuts is performed on the basis of
this method (Parton and Perlin 1982). With alloca-
tion of analytic and generalized analytic function
system to spatial problems, some of them such as a
space with a toroidal cavity and a non-axisymmetric
problem for a space with a spherical cavity can be
solved (Aleksandrov and Solovyev 1978). Circular
and elliptical gaps in an elastic medium, a small
spherical cavity in a twisted cylindrical rod, and
some other problems are considered in the research
(Lurie and Belyaev 2010). Some axisymmetric prob-
lems are usually solved either in displacements
using the Lame equations or with the help of the
Love function (Love 1944; Edwards 1951; Noda et
al. 2003; Noda and Moriyama 2004). It should be
mentioned that when solving specific problems it is
difficult to provide solution subjection to boundary
conditions because of the complex boundary values.
Thus, when using the Love function in boundary con-
ditions for the given displacements, second derivatives
appear and with stresses given the third derivatives of
the Love function. When using two harmonic
functions, order of their derivatives in stress and
displacement expressions is lower, but the boundary
value problems for these functions’ determination are
not independent. In both cases, solution can be repre-
sented as Legendre polynomials series. Moreover,
existing analytical methods have cavity shape limits,
for example, when considering a cubic cavity or cavity
with a sharp boundary between the faces, singularities
of the stress-strain state are likely to appear or they
are limited by the problem symmetry. Despite a great
number of works published, researchers still keep interest
in problems of stress concentration around various
cavities, inclusions, inhomogeneities, reentrant corners,
and the like. In quite new works (Yang et al. 2012; Yang et
al. 2008; Paskaramoorthy et al. 2011), (Mi & Kouris 2013;
Lukić et al. 2009) different aspects of the stress concentra-
tion problem are considered.
Without reducing the importance of fundamental

research, it can be claimed that existing analytical
solutions are only applicable to cavities or inclu-
sions with simple geometry and boundary condi-
tions. The consideration of the problem in a plane
or the symmetry of stress-strain state can greatly
simplify the solutions obtained. For the general case,

solutions even if they can be obtained in closed
form are extremely heavy and cannot be used in en-
gineering practice. Therefore, the task of creating an
effective and universal method for determining
stress-strain state around an arbitrary shape cavity
has an independent meaning.
As a rule, maximum stress occurs on cavity

boundary, for example, if we consider a sphere cav-
ity in an unbounded elastic medium with a homo-
geneous deformation at the infinity maximum,
stresses will take place at the equator. In this case,
as a rule, areas with lower stresses that obviously
exist are not taken into account. In the above ex-
ample of a spherical cavity, the areas of low
stresses are located at the poles and have consider-
ably bigger volume than increased stress areas. It
seems promising to use resource of structural ma-
terials efficiently, that is to obtain stress reduction
at critical points and thus to increase the strength
of the product by creating cavity systems of re-
quired shape and size in bodies. It works in the
same way if stresses in structure must be reallo-
cated for more uniform use of material-bearing
capacity. To achieve this goal, an effective method
of determining stress-strain state around cavities is
required.

Research objective and basic relationship
We consider an elastic isotropic half-space and its
coordinate system xi, the free surface is located in
the x1, x2 plane and the positive semi axis x3 is
located in the medium. The problem of determin-
ing deformation of an elastic isotropic medium
bounded by a plane under forces applied to its free
surface was solved in the end of the nineteenth century:
in case of a normal concentrated force (Boussinesq
1885) and for tangential forces (Cerruti 1882).
According to (Landau and Lifshitz 1986), the equation

of equilibrium is the following:

grad div uð Þþ 1−2νð ÞΔu ¼ 0

ð1Þ
where u is the displacement vector and ν is the Poisson
ratio.
Applying the Laplace operator Δ to the equation, we

obtain

ΔΔu ¼ 0 ð2Þ
that means in equilibrium the displacement vector
satisfies the biharmonic equation.
For a concentrated force of arbitrary orientation,

the displacements ui have the form
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u1 ¼ 1þ ν
2πE

 
x1x3
r3

−
1−2νð Þx1
r r þ x3ð Þ

� �
F3 þ 2 1−νð Þr þ x3

r r þ x3ð Þ F1

þ 2r νr þ x3ð Þ þ x23
� �

x1

r3 r þ x3ð Þ2 x1F1 þ x2F2ð Þ
!
;

u2 ¼ 1þ ν
2πE

 
x2x3
r3

−
1−2νð Þx2
r r þ x3ð Þ

� �
F3 þ 2 1−νð Þr þ x3

r r þ x3ð Þ F2

þ 2r νr þ x3ð Þ þ x23
� �

x2

r3 r þ x3ð Þ2 x1F1 þ x2F2ð Þ
!
;

u3 ¼ 1þ ν
2πE

2 1−νð Þ
r

þ x23
r3

� �
F3 þ 1−2ν

r r þ x3ð Þ þ
x3
r3

� �
x1F1 þ x2F2ð Þ

� �
;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

q
:

ð3Þ

It can also be written in a compact form and using
Green’s tensor:

ui ¼ Gik x1; x2; x3ð ÞFk ð4Þ

where Gik is Green’s tensor for equilibrium equations of
an infinite elastic half-space.
With x3 = 0, expressions for a free surface displace-

ment are obtained

u1 ¼ 1þ ν
2πE

1
r

 
−

1−2νð Þx1
r

� �
F3 þ 2 1−νð ÞF1

þ 2νx1
r2

x1F1 þ x2F2ð Þ
!
;

u2 ¼ 1þ ν
2πE

1
r

 
−

1−2νð Þx2
r

� �
F3 þ 2 1−νð ÞF2

þ 2νx2
r2

x1F1 þ x2F2ð Þ
!
;

u3 ¼ 1þ ν
2πE

1
r

2 1−νð ÞF3 þ 1−2νð Þ 1
r
F2 x1F1 þ x2F2ð Þ

� �
:

ð5Þ

Using known Cauchy relations and Hooke’s law, ex-
pressions for components of strain and stress tensors
can be obtained

εij ¼ 1
2

∂ui
∂x j

þ ∂uj

∂xi

� �

σ ij ¼ E
3 1−2νð Þ εllδij þ

2E
2 1þ νð Þ εij−

1
3
δijεll

� � ð6Þ

here E is the elasticity coefficient and δij is the delta
Kronecker (bivalent mixed tensor).
For example, components of strain ε33 and stress σ33

tensors have the following form:

Let us cut a part of half-space medium of arbitrary shape
and arrangement, and a cavity obtained has a surface S.
The problem is defined: to find expressions for stress

tensor components around cavity.

Methods
Respecting common reasoning, we consider stress-strain
state of a half-space with a rectangular parallelepiped
shape cavity with coordinates of geometric center ei and
faces a1, 2, b1, 2, c1, 2 (Fig. 1), here cavity sides are parallel
to the coordinate planes. In this case, six faces S1. . S6
form the S surface of the cavity. First, we consider the
surface surrounding the cavity space without the cavity
itself. The forces acting on S1. . S6 faces without the cavity
are determined by stress tensor flow:

P ¼ ∬
S
σ � ndS ð8Þ

Components of this vector are equal (convolution is
made with second indices of stress tensor):

Pi ¼ ∬
S
σ iknkdS ¼ ∬

S
σ i1n1 þ σ i2n2 þ σ i3n3ð ÞdS ð9Þ

When calculating stress tensor components, flow sur-
face integrals of quite long functions have to be taken;
therefore, they can be presented in the form of
low-degree polynomials around the cavity center ei.
Then taking into account the differential operator D:

D ¼ x1−e1ð Þ ∂
∂x1

þ x2−e2ð Þ ∂
∂x2

þ x3−e3ð Þ ∂
∂x3

ð10Þ

we get

σ�ij x1; x2; x3ð Þ ¼
Xm¼2

k¼0

Dkσ ij e1; e2; e3ð Þ
k!

þ Rm x1; x2; x3ð Þ ð11Þ

For stress tensor first column, the equation can be
written as follows:

σ�
n1 x1; x2; x3ð Þ ¼ 3

4
Kn

1x
2
1 þ

1
4

6Kn
2x2 þ 6Kn

3x3 þ 8Kn
4

	 

x1 þ

þ 3
4
Kn

5x
2
2 þ

1
4

6Kn
6x3 þ 8Kn

7

	 

x2

þ 3
4
Kn

8x
2
3 þ 2Kn

9x3 þ 3Kn
10; n ¼ 1::3

ð12Þ

where Kn
mðn ¼ 1::3;m ¼ 1::10Þ are constants determined

by the medium elastic characteristics, force acting, and
cavity location.

ε33 ¼ −
3
2

F1x1 þ F2x2 þ F3x3ð Þ 1þ vð Þ x23−2=3r
2v

	 

r5Eπ

;

σ33 ¼ −
3
2
x23 F1x1 þ F2x2 þ F3x3ð Þ � ðrx21 þ rx22 þ 4rx23 þ 3x21x3 þ 3x22x3 þ 4x33Þ

π r þ x3ð Þ3r5
ð7Þ
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Components of vector of force Pnk (k is the face num-
ber) acting on the S1 face of the cavity:

Pn1 ¼
ZZ

σ�
n1dS ¼

Zc2
c1

Zb2
b1

σ�n1dx2dx3 ¼
1
4
Kn

8 b2−b1ð Þ −c31 þ c32
	 
þ

þ 1
2

3
4
Kn

6 −b21 þ b22
	 
þ 3

2
Kn

3a1 b2−b1ð Þ
� �

−c21 þ c22
	 
þ

þ 1
4
Kn

5 −b31 þ b32
	 


c2−c1ð Þ þ 1
2

3
2
Kn

2a1 þ 2Kn
7

� �
−b21 þ b22
	 


c2−c1ð Þ þ

þ 3
4
Kn

1a
2
1 b2−b1ð Þ c2−c1ð Þ þ 2Kn

4a1 b2−b1ð Þ c2−c1ð Þ þ

þ3Kn
10 b2−b1ð Þ c2−c1ð Þ;

n ¼ 1::3

ð13Þ

Or in a compact form relating to a1 coordinate of the
S1 face:

Pn1 ¼ 3
4
Cn1

1 a21 þ
1
4
Cn1

2 a1 þ 1
8
Cn1

3 ð14Þ

Here Cnk
1::3 are determined by shape and dimensions of

cavity projection on a plane that is perpendicular to axis

with a1 coordinate. Following in the same way for the
rest faces of the cavity, we obtain:

Pnk ¼ 3
4
Cnk

1 a21 þ
1
4
Cnk

2 a1 þ 1
8
Cnk

3 ; n ¼ 1::3; k ¼ 1::6 ð15Þ

Let us select a certain volume in the body and consider
the total force acting on it. It can be represented as ∫FdV
where F is the force acting per unit volume. This force
can be considered as the sum of the forces that act on the
given volume from the parts surrounding it. The action of
these forces is carried out through the surface surround-
ing this volume, then the resultant force can be written as
an integral over this surface:

Z
FidV ¼

Z
∂σ ik
∂xk

dV ¼ ∮σ ikdf k :

In this expression, the integral over the surface is the
force acting on the volume bounded by this surface from
the side of the surrounding parts of the body. Conversely,

Fig. 1 Equilibrium of an elastic half-space with a cavity

Kalentev International Journal of Mechanical and Materials Engineering  (2018) 13:8 Page 4 of 9



the force with which this volume acts on the surrounding
surface itself has the opposite sign

−∮σ ikdf k

This is true for a continuous medium. In the presence
of a cavity, the forces Pnk acting on the surface S will not
be compensated by this volume of the medium, then ap-
plying the force − ∮ σikdfk on this surface, one can ap-
proximately describe the picture of the stress-strain state
in the vicinity of the cavity. It is convenient to imagine
this as a case of the action of a distributed force on an
elastic half-space. Of course, we must remember that
such an assumption would make an error in the results
and of course the expected faster growth of tension as
the distance from the boundary of the cavity. It should
also be taken into account that the solution used for the
half-space gives acceptable results at points located in
subareas well approximated by this half-space, that is,
near the base of these cavities, but far from the edge of
the base. Nevertheless, our task is to show the principle
possibility of using this method.
Generally, distribution of forces on cavity surface is

not always uniform; particularly, it takes place with
high-strain gradient. In this case, deformation under dis-
tributed force action is defined by the integral:

ui ¼ ∬Gik x1−x10; x2−x20; x3ð Þσkm x1
0; x20ð Þdx10dx20 ð16Þ

To avoid heavy calculations while integrating compo-
nents of Green’s tensor and stresses, we can represent ac-
tion of distributed forces as a system of concentrated loads.
Let us consider S2 surface of cavity and put the

Cartesian coordinate system yi in its center so that its unit
axis are aligned with coordinate axis of system xi. Deform-
ation uyi from concentrated force Pn2 in this coordinate
system:

uy1 ¼
1þ ν
2πE

2 1−νð Þ
r

þ y21
r3

� �
P12 þ 1−2ν

r r þ y1ð Þ þ
y1
r3

� �
y2P22 þ y3P32ð Þ

� �
;

uy2 ¼
1þ ν
2πE

 
y1y2
r3

−
1−2νð Þy2
r r þ y1ð Þ

� �
P12 þ 2 1−νð Þr þ y1

r r þ y1ð Þ P22

þ 2r νr þ y1ð Þ þ y21
� �

y1
r3 r þ y1ð Þ2 y2P22 þ y3P32ð Þ

!
;

uy3 ¼
1þ ν
2πE

 
y1y3
r3

−
1−2νð Þy3
r r þ y1ð Þ

� �
P12 þ 2 1−νð Þr þ y1

r r þ y1ð Þ P32

þ 2r νr þ y1ð Þ þ y21
� �

y3
r3 r þ y1ð Þ2 y2P22 þ y3P32ð ÞÞ;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y22 þ y23

q
:

ð17Þ

Using (6), we can easily get expressions for strain εyij
and stress σy

ij tensor components, for example:

εy11 ¼
r2v−

3
2
y21

� �
P12y1 þ P22y2 þ P32y3ð Þ 1þ vð Þ

r5Eπ

σy11 ¼ −
6 y21 þ

1
4
y22 þ

1
4
y23

� �
r þ y1 y21 þ

3
4
y22 þ

3
4
y23

� �� �
P12y1 þ P22y2 þ P32y3ð Þy21

r5 r þ y1ð Þ3π ;

εy12 ¼ −
3y1y2 P12y1 þ P22y2 þ P32y3ð Þ ry1 þ y21 þ

1
2
y22 þ

1
2
y23

� �
1þ vð Þ

r5 r þ y1ð Þ2Eπ ;

σy12 ¼ −
3
2

y1y2 P12y1 þ P22y2 þ P32y3ð Þ 2ry1 þ 2y21 þ y22 þ y23
	 


r5 r þ y1ð Þ2π :

ð18Þ
Let us break S2 surface of cavity into n equal parts

Snðk;lÞ2
2.1 We take that Pn2 forces are distributed uni-

formly, then forces Pn2/n act on each Sn2 part. In the

center of each Sn2 part, there is a coordinate system

yi(n) and deformation under action of Pn2/n forces
in the system has the form of the expression (17).
We can make similar expressions for the rest of the
cavity surface.
Then at some point, A around cavity stresses can be

represented as a sum of stresses from concentrated force
F and forces acting on cavity surface:

σAij ¼ σ ij þ
X6
1

Xn
i¼1

σy nð Þ
ij ð19Þ

However, depending on reference point position
regarding cavity, only some members are to be con-
sidered in the double sum of expression. It is obvi-
ous that some cavity faces and corresponding forces
are separated from the reference point by cavity
space and their action can be neglected. Following
in a similar way, we can set additive series for any
point around cavity.

Results and discussion
Calculation method shown above has been imple-
mented in the existing software code. As it is shown
in Fig. 2, elastic half-space is a cylinder 25 × 10−3(m)
high and with a base diameter 25 × 10−3(m) and
containing rectangular parallelepiped shape cavity.
The side and one of the bases of the cylinder are
fixed in all directions. Elasticity coefficient and Pois-
son’s ratio for the material are:

E ¼ 2� 1011 Pað Þ; ν ¼ 0:3 ð20Þ

In the center of cylinder free end, a concentrated force
acts and its components are:
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F1 ¼ 300 Nð Þ; F2 ¼ 400 Nð Þ; F3 ¼ 500 Nð Þ:
ð21Þ

Cavity size and position:

e1 ¼ 0:505� 10−3 mð Þ; e2 ¼ 0 Mð Þ; e3 ¼ 0:55� 10−3 mð Þ;
a1 ¼ 0:5� 10−3 mð Þ; a2 ¼ 0:51� 10−3 mð Þ;
b1 ¼ −0:05� 10−3 mð Þ; b2 ¼ 0:05� 10−3 mð Þ;
c1 ¼ 0:5� 10−3 mð Þ; c2 ¼ 0:6� 10−3 mð Þ;

ð22Þ

It should be mentioned that such cavity shape allows
in the next calculations to neglect forces acting on cavity
faces perpendicular to axis x2, x3 as their surface is rela-
tively small and thus forces acting on them are weak.
To verify the results obtained, the task given has been

solved using ANSYS, commercial software involving finite
element method. In ANSYS model, 1,948,560 SOLID187
elements with 2,627,248 units are used.
Let us consider the area around cavity adjoining the S2

face, to describe stress concentration distribution of all six
independent components of stress tensor along the y1 axis
passing through its center and perpendicular to it will be

plotted. Forces acting on the S1 face will not be included
in the equation since they are separated from the consid-
ered area by cavity space. Thus, to determine stress con-
centration effect of forces acting on just the S2 face is to
be taken into account and that simplifies calculations a
lot. Partitioning of this face is shown in Fig. 3 for n = 36.
The use of such a partition simplifies an equation for

stress tensor component distribution along the y1 axis
from Pn2/36 forces acting in the center of each S362 part. It
is obviously a simple shift of the coordinate system, and to
take it into account, we should change coordinates in the
expressions like (18):

σy k;lð Þ
ij → σyij

D E
y2 ¼ chk � b3; y3 ¼ −chl � c3f g

ch ¼ −5;−3;−1; 1; 3; 5½ �
b3 ¼ b2−b1

12
;

c3 ¼ c2−c1
12

ð23Þ

As an example, distribution of stress tensor compo-

nent σy12 from concentrated force acting on S36ð2;1Þ2

part has the following form:

Fig. 2 Cylinder with a cavity under concentrated force action
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Distribution of stress tensor components along the y1
axis is shown in Fig. 4. All the graphs show curves repre-
senting this distribution for the corresponding solution:
analytical solution without cavity, FEM solution without
cavity, FEM solution with cavity, analytical solution for
cavity version, and FEM solution for a pyramid-shaped
cavity. The first and second ones are given to assess con-
formity of the solution (3) to the numerical solution of
ANSYS. Near complete result agreement indicates high
quality of FE net used. The results obtained for cavity
cases match ANSYS finite element analysis data quite
well. Some features can be pointed in these stress
graphs. First of all as it was expected, some stress tensor
components are much higher than ANSYS results in the
center and at the boundary of the stress concentration
area. This is due to the method used to take into ac-
count effect of forces acting at the cavity boundary. Sec-
ondly, while approaching cavity boundary, difference
between analytical and ANSYS decision becomes less.

Solutions for an elastic half-space cannot be definitely
used here. Thus, when S2 surface of a cavity is divided

into parts, action of forces σyð3;3Þij ; σyð3;4Þij ; σyð4;3Þ
ij ; σyð4;4Þij will

match the expression on central elements only.
For parts closer to the S2 face periphery, this corres-

pondence will decrease and reach the minimum at the
boundary. The stress distribution is plotted along the y1
axis passing through the center of the S2 face. In this
case, when approaching cavity boundary, effect of
well-corresponding parts is great while effect of periph-
ery forces is not significant and result difference jump
occurs just at the cavity boundary.
As we move away from cavity, the pattern changes, all

partition elements start influencing significantly on the
solution and this causes some result discrepancy. To
overcome the issue, the number of cavity surface parti-
tions is to be increased or exact value of the integral
(16) is to be used for the central part, and for peripheral

Fig. 3 Example of cavity surface partitioning

σy 2;1ð Þ
12 → σy12h i y2 ¼ −3b3; y3 ¼ 5c3f g;

σy 2;1ð Þ
12 ¼ −

3
2

y1 −3b3ð Þ P12y1 þ P22 −3b3ð Þ þ P32 5c3ð Þð Þ 2ry1 þ 2y21 þ −3b3ð Þ2 þ 5c3ð Þ2	 

r5 r þ y1ð Þ2π ;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ −3b3ð Þ2 þ 5c3ð Þ2

q
:

ð24Þ
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parts, empirical coefficients are to be applied or an-
other way of taking them into account is to be
chosen. In the first graph for distribution of stress
tensor component σ11, it can be seen that with n =
100 the solution much better corresponds to ANSYS
at the cavity boundary.
To estimate reliability of the method developed, we

study stress concentration around quadrangular pyramid
shape cavity, here pyramid base coincides with the S2
face of the cavity considered. Let the height of the pyra-
mid be equal to h = 0.7(c2 − c1) of the S2 face edge, then
we can disregard forces acting on the pyramid sides to
plot stress distribution along the y1 axis. Thus, the ana-
lytical solution for this option does not change and will

match the solution for rectangular parallelepiped shape
cavity. As one can see in the graphs, stress distribution
for a pyramid shape cavity almost completely coincides
with the one for a parallelepiped cavity.

Conclusions
In this article, stress concentration around arbitrary
shape cavity has been studied. Introduction of additional
fictitious forces acting on cavity surface is used to obtain
a stress concentration pattern. The flow of stress tensor
through a surface limiting cavity volume assists in deter-
mining magnitude of these forces. At an arbitrary point,
around cavity stress-strain state can be represented as a

Fig. 4 Stress tensor components and equivalent stresses distribution along the y1 axis. Legend: FEM, FEM with
cavity, Analytical study, Analytical study with cavity, FEM with a pyramid cavity, Analytical
study with cavity (n=100)
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result of action of external load and forces acting on cav-
ity surface. The approach proposed was successfully ap-
plied to study stress concentration in elastic half-space
with a rectangular parallelepiped and a quadrangular
pyramid cavity under action of an arbitrarily oriented
concentrated force applied to a free surface. Distribu-
tions of stress tensor components around these cavities
have been created. Accuracy and efficiency of the calcu-
lation model proposed have been assessed.

Endnotes
1Indexes (k, l) stand for number and location of a

definite part of face breaking.
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