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failure of ductile materials under combined
torsion-tension
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Abstract

The constitutive behavior and failure of ductile materials are described in the present work for a general case of
loading in terms of the secant moduli, which depend on the first (dilatational) and second (deviatoric) strain
invariants. This approach exposes the distinct behavior of materials to the equivalent normal and shear stresses. The
secant moduli enable the establishment of two (instead of one) constitutive equations necessary for the complete
description of these materials. Emphasis is given in the accuracy of the resulting constitutive equations in terms of
their predictions relative to actual experimental data for two materials systems. Failure predictions, according to
T-criterion, are derived for two materials under combined torsion and tension, which are in good agreement
with experimental data. Finally, the associated failure surfaces in a stress space are presented as well.
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Background
The importance of strain energy density and in particu-
lar the distortional part of it relative to material failure
was understood, conjectured and postulated, as early as
in the era of Maxwell (1937) and others (Hencky 1924;
Huber 1904). Strain energy, supplied to the material via
some generalized loading, can be additively decomposed
into two parts: the elastic and the inelastic one (for
metals the plastic one); the elastic strain energy is recov-
erable upon removing the load (i.e., the corresponding
strain at the unloaded state is zero) due to the fact that
the materials remained elastic throughout its loading;
the plastic strain energy is unrecoverable (and some-
times is called plastic work because it represents the en-
ergy lost to microstructural dissipative processes such as
grain boundary slippage) that, when the load is removed,
yields a permanent strain known as plastic strain.
Many failure criteria have been proposed and used to

predict the initiation of macroscopic material failure under
various loading conditions (Li 2001). In Christensen's
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failure theory (Christensen 2014), failure represents the
termination of elastic behavior and not plastic behavior. In
our failure theory, failure is defined as the loss of the abil-
ity of the material to store elastic strain energy. This may
happen at the familiar yield point (elastic - perfectly plastic
materials), or at maximum engineering loading point
(hardening materials) or just at the moment of fracture
(brittle materials). In this sense, the present definition of
failure covers all the as above cases.
Phenomena are materialized in expenses of available

resources. In case of failure of materials, the only avail-
able resource is elastic strain energy, stored into the ma-
terial through elastic (linear or not) deformations. Elastic
deformations exist from the very first load step until the
last one. From this point of view, the amount of plastic
work has no causative role in failure because it is the
outcome of the action of available strain energy. Plastic
work is a result of this action and cannot be the cause of
other processes, including failure. It is a type of specific
failure per se. This specific failure may be complete
(plastic collapse), driving to the final loss of the ability of
the material to store elastic strain energy when the ma-
terial is elastic - perfectly plastic, implying saturation of
the Bauschinger loop. Otherwise, in the so-called hardening
ensee Springer. This is an Open Access article distributed under the terms of the
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materials (where both elastic and plastic strains coexist),
the material may fail by either brittle or ductile fracture as
it will be discussed in the sequel.
It is well known (Bao and Wierzbicki 2004) that plas-

tic strains can depend on pressure. There are loading
conditions (such as torsion) where in the absence of
pressure plastic strains are dominant, or they are negli-
gible when hydrostatic pressure prevails. Failure cri-
teria based exclusively on stresses cannot capture the
differentiation between elastic and plastic strains since
there is no ‘elastic’ or ‘plastic’ differentiation for the
stresses.
Concerning nonlinear elastic deformations, it is true

that they, usually, can be neglected in engineering appli-
cations for practical reasons. However, all materials (es-
pecially brittle) show a degree of nonlinearity deserving
consideration. Nevertheless, the strongest reason to in-
corporate nonlinear elastic deformations is the harden-
ing behavior of materials, where both elastic and plastic
strains coexist. In the hardening area, the nonlinearity of
elastic deformations is certain.
A classical criterion marking pressure dependence is the

Coulomb (Heyman 1997) criterion, which after Mohr
(1914) states that a material fails when ‘a proper combin-
ation of shear and normal stresses is realized.’ This heuris-
tic statement is logically perfect but lacks a quantitative
description as far as it is based on experimental data
interpolation and/or arbitrary assumptions for the shape
of the failure envelope. In addition, it exhibits problematic
behavior for tensile stresses (e.g., tension cut-off). Many
failure criteria of this type exist in the open literature (Paul
1968; Stassi 1967; Schajer 1998; Bigoni and Piccolroaz
2004; Mahendra and Bhawani 2012; Drucker and Prager
1952), the simplest being the original Mohr-Coulomb cri-
terion τ + a ⋅ σ = c.
All these criteria have two points in common:

(a) They are based on formulations involving a single
function comprising the sum of two parts, one
involving an expression of the shear stresses and
the one involving the contribution of the normal
stresses.

(b) They are based on stresses only and, especially, on
those lying on the ‘critical’ plane of extreme
stresses (σ1, σ3). It is difficult to accept that the
intermediate stress σ2 plays no role, even in the
critical plane.

An interesting exception is the criterion that was de-
veloped by Christensen (1997, 2004), where the dilata-
tional and deviatoric (distortional) parts of the elastic
stress tensor are introduced. This approach allows for a
direct association of the decomposed parts of the stress
tensor with the respective geometric changes activated
during loading, i.e., volume (lengths) changes and shape
(angles) changes, which are the only possible geometric
changes in a deformable solid.
A criterion based on elastic strain energy density in

case of linear elasticity was the first version of the so-
called T-criterion which has been proved adequate to
predict failure conditions for pre-cracked (Theocaris
and Andrianopoulos 1982a, b) or uncracked geometries
(Andrianopoulos 1993; Andrianopoulos and Boulougouris
1994). It was based on the von Mises's (1913) criter-
ion and an addendum giving an answer to the ques-
tion: ‘What happens with the, not covered by von
Mises, dilatation of the material?’ However, this early
version of the T-criterion was unable to give an an-
swer to the phenomenon of ‘pressure dependence’ of
failure.
In order to cover pressure dependence and nonlinearity

of elastic strains, a generalization of the T-criterion was re-
cently introduced (Andrianopoulos and Boulougouris
2004; Andrianopoulos et al. 2007, 2008; Andrianopoulos
and Manolopoulos 2012). The general case of an isotropic
material showing nonlinear elastic behavior was con-
sidered, and the total elastic strain energy density T
was anticipated as the characteristic quantity for the re-
spective conservative field. This quantity T is path inde-
pendent and so, a relationship between dilatational TV and
distortional part TD of T is obtained (Andrianopoulos and
Manolopoulos 2010). This approach proved to be quite
successful in predicting the failure behavior of metals
under high levels of pressure (Andrianopoulos and
Manolopoulos 2012) where for the first time - according
to our best knowledge - the classical experiments of
Bridgman (1952) were theoretically justified.
The goal of this paper is to give a different view of

what a constitutive equation is and to emphasize the
idea that the prediction of failure of a material is mainly
equivalent to the problem of deriving the proper consti-
tutive equations. Also, the thoughts, the assumptions
and the considerations that made the writers to generalize
T-criterion are presented in detail. The new generalized
form of T-criterion, which is used in this work, was thor-
oughly explained and described in (Andrianopoulos and
Manolopoulos 2012). Now the application of T-criterion
is examined for combined loading paths of two ductile
materials. Two sets of data with various combined
tension-torsion loading paths are studied (Ali and Hashmi
1999; Marin 1948). The aim is to test T-criterion's forecast
for these loading paths.

Methods
Constitutive equations
The constitutive behavior of elastic materials is described
by an equation relating equivalent stress to equivalent
strain. The simplest and, perhaps, the more reasonable
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way to define these quantities is the von Mises yield criter-
ion (von Mises 1913) according to which

σeq ¼ 1ffiffiffi
2

p σ1−σ2ð Þ2 þ σ2−σ3ð Þ2 þ σ3−σ1ð Þ2� �1=2
εeq ¼ 1

1þ v
1ffiffiffi
2

p ε1−ε2ð Þ2 þ ε2−ε3ð Þ2 þ ε3−ε1ð Þ2� �1=2
)

ð1Þ

where σi and εi are the principal stresses and strains, re-
spectively, and ν is the Poisson ratio.
Then, the required constitutive equation is a relation

σeq = f(εeq). This equation reflects the behavior of a ma-
terial under shear stresses causing only shear strains,
which, in turn - by the von Mises assumption - are
responsible for its plastic behavior. The von Mises
yield criterion is not designed to predict failure under
equal hydrostatic pressure. This is easily understood by
inspecting Equation (1) where for σ1 = σ2 = σ3, it is
obtained that σeq = 0 and εeq = 0. Then, strain energy
density, i.e., the area under the curve σeq = f(εeq), vanishes
under equal hydrostatic pressure, in case when
Equation (1) is solely used. Consequently, any cons-
titutive equation involving the effective stresses and
effective strains as defined by Equation (1) cannot de-
scribe the behavior of the material completely. There-
fore, some expression in terms of the normal stresses
and strains is required in order to capture the hydro-
static contribution to the material behavior. The nat-
ural choice for such expressions is the hydrostatic
pressure p and volumetric change Θ, according to

p ¼ σ1 þ σ2 þ σ3ð Þ=3; Θ ¼ ε1 þ ε2 þ ε3 ð2Þ

If one assumes that a constitutive relation of the
form p = p(Θ) exists, then the area under the curve
Figure 1 Constitutive equations of an arbitrary material in the engine
required. The two branches for ± Θ are not necessarily symmetric. (b) σeq =
representing this constitutive relation represents the
dilatational strain energy density stored into the
material.
The existence of two components of the strain energy

density, one for the dilatation and one for the distortion
of the material behavior, suggests that the constitutive
behavior could also be considered as consisting of two
parts, one responsible for the dilatation (in terms normal
stresses/strains) and the other for the distortion (in
terms of shear stresses/strains) of the material. In turn,
this suggests that it is natural to introduce two constitu-
tive equations instead of one for describing completely
the behavior of a material, provided it can be proved that
the two equations are equivalent to the one produced by
the differentiation of the total strain energy density with
respect to the strains. Figure 1 shows the potential
graphs of these two equations, namely, p = p(Θ) and
σeq = σeq(εeq) for an arbitrary material, with linear, non-
linear elastic, and hardening behavior.
Essential to our analysis are the following remarks

with respect to Figure 1:

1. By definition, strains in Figure 1a must be elastic as
dictated by von Mises criterion (von Mises 1913).
The stress-strain relationship is linear up to point A
and generally nonlinear afterwards. Direct experi-
mental data for p = p(Θ) curves are not available as
triaxial tension is not easily accomplished. Usually,
uniaxial tension data are used and an experimental
or ‘graphical’ unloading is performed in order to find
the elastic part of strain, i.e., the strain that can still
be attributed to elastic response. Another option is
from a graphical unloading of the curve p = p(Θ).
These two alternatives are described thoroughly in
Appendix 1.

2. Plastic strains appear in Figure 1b after the end of
both linear (point A) and nonlinear (point L)
elasticity, although elastic strains continue
ering space. (a) p = p(Θ). Strains are assumed elastic. Unloading is not
σeq(εeq). Unloading is required. Unloading line is arbitrary.
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developing up to the end (point H), in case of
hardening materials.

3. Both equations p = p(Θ) and σeq = σeq(εeq) are
essential for the description of a material. They are
considered as unique for each material and contain
information about the energy balance and the type
of failure. The traditional representation of materials
through the second of them only (i.e., σeq = σeq(εeq))
and von Mises failure are incomplete.

4. In each curve of the above plots, a critical point can
be located, marking the end of the development of
elastic strains and, so, the collapse of the respective
constitutive equation. The area of the graph under
the loading part of the constitutive response line for
any given level of strain on the horizontal access
represents the value of the stored energy density.
The elastic part of this energy density is represented
by the area to the right of the unloading line when
the stress returns to zero and the vertical from the
strain reached for the terminal point on the curve.
By definition, the terminal point in Figure 1a is the
critical one when no plastic strains appear in this
plot (see above remark 1). Consequently, the whole
area from zero to terminal point in Figure 1a
represents elastic strain energy density TV stored for
volume changes. Respectively, the unloading in
Figure 1b from the terminal point H is a line
(straight or not is unconcerned) ending at point

εpleq; 0
� �

whose abscissa represents the unrecoverable

plastic strain. This line separates the whole area into
available elastic strain energy density TD and plastic
work.

5. The two branches of curve p = p(Θ) are not symmetric
with respect to the origin of axes, especially in case of
brittle materials. However, the area under each branch
(TV) is the same when the terminal point of each
branch coincides with the critical one.

6. The geometry of the specimen and the current
stress state at any given point of the specimen affect
the velocity of a ‘pointer’ running along these two
curves. When normal stresses/strains prevail, the
velocity of the pointer on p = p(Θ) is higher than
that on σeq = σeq(εeq), the opposite being true when
shear stresses/strains prevail. Then, according to the
specimen geometry and the stress state, the pointer
on one curve arrives at the respective critical point
before its companion does on the other curve,
marking the type of failure.

A specific form of the abovementioned constitutive
equations can be derived for the case of an arbitrary ma-
terial by introducing the first strain and second deviato-
ric strain invariants I1, J2, respectively, and the secant
elastic bulk modulus KS and secant elastic shear modu-
lus GS where

Ι1 ¼ ε1 þ ε2 þ ε3¼Θ;

ffiffiffiffi
J2

p
¼ 1ffiffiffi

6
p ε1−ε2ð Þ2 þ ε2−ε3ð Þ2 þ ε3−ε1ð Þ2� �1=2

ð3Þ
Then, the complete behavior of a material as a func-

tion of I1 and J2 is described by

KS ¼ K S I1; J2ð Þ; GS ¼ GS I1; J2ð Þ ð4Þ
Equation (4) constitutes the necessary minimum set of

constitutive equations for an isotropic material replacing
Equations (1) and (2). Now, quantities TV and TD can be
estimated as we are describing in the subsequent ana-
lysis. Referring to Figure 1a, the dashed green area in the
first or third quadrant equals to dilatational strain energy
density TV and it is solely elastic. For the estimation of
elastic distortional strain energy density TD, the respect-
ive red dashed area in Figure 1b provides the necessary
value while the remaining area under the curve repre-
sents plastic work. Depending on the type of failure,
i.e., brittle fracture (cleavage) or plastic flow (slip), ei-
ther TV = TV,0 or TD = TD,0 is satisfied, where TV,0, TD,0

are the critical elastic strain energy densities.

Failure criterion
Given the partitioning of the elastic strain energy density
to two parts (i.e., distortional and dilatational), the pro-
posed failure criterion for the general case of nonlinear-
ity is introduced as

TV ¼
Z I1;0

0

1
2
KS I1; J2ð ÞdI21 ¼ TV;0 for failure by cleavage

TD ¼
Z J2;0

0
2GS I1; J2ð Þ dJ2 ¼ TD;0 for failure by slip

�
ð5Þ

Equation (5) constitutes the general form of the
T-criterion (Andrianopoulos and Boulougouris 1994),
according to which

(A) Failure by cleavage (brittle fracture) occurs when
TV reaches a critical value TV,0

(B) Failure by slip (plastic flow) occurs when TD

reaches a critical value TD,0.

To quantify the failure behavior of an elastic material
described by Equation (4), the evaluation of upper inte-
gration limits I1,0 and J2,0 for the quantities I1 and J2
appearing in Equation (5) is postulated.
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A relationship between secant elastic moduli and
strain invariants is obtained which, as it is shown in Ap-
pendix 2, in the present case takes the form:

∂ I1KSð Þ
∂J2

¼ 2
∂GS

∂I1
: ð6Þ

Thus, Equations (5) and (6) constitute a system of
three equations with four unknowns, KS(I1, J2), GS(I1, J2),
I1,0, and J2,0. One of the functions KS or GS can be given
experimentally, and subsequently the system can be
solved for any prescribed loading path and the proposed
criterion can be applied. Required constants, like (λ1, λ2)
or K0

S; G
0
S

� 	
can be obtained from Figure 1.

Results and discussion
Two sets of experimental data are used to verify the
present theoretical predictions. The first one (Ali and
Hashmi 1999) gives detailed description of the material
(constitutive equations, type of failure, etc.) and permits
a rigorous examination of its results. The second one is
a classical series of data presented by Marin (1948).
Figure 2 Theoretically predicted constitutive response and associated
(a) σ1 = σ1(ε1), (b) p = p(Θ), (c) σeq = σeq(εeq) in torsion, (d) σeq = σeq(εeq) in
Application to En8 steel
In this section we will be using the experimental results
originally presented in (Ali and Hashmi 1999) for En8
(BS 970) steel. All the necessary information concerning
material properties, loading paths, and failure conditions
is given. The lack of hydrostatic tension or compression
data is a barrier in defining the exact form of p = p(Θ)
and the exact value of the critical dilatational strain en-
ergy density TV,0. The required information was ob-
tained under uniaxial tension conditions according to
the procedure described in Appendix 1.
The experimental procedure, described in (Ali and

Hashmi 1999) involved the application of combined
torsion-tension loading under controlled conditions.
Two types of loading paths were investigated:
The first loading path was torsion within the elastic

range of the material and then axial tension beyond the
uniaxial yield stress σY (= 600 MPa) holding the initial
angle of twist constant.
The second loading path was tension within the elastic

range of the material and then torsion beyond the tor-
sion yield stress τY (= 350 MPa) holding the initial axial
displacement constant.
experimental data for En8 steel in various engineering spaces.
torsion and tension.
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In addition, distinct uniaxial tension and torsion ex-
periments were performed to obtain the constitutive be-
havior of the material.

Constitutive equations
Function σ1 = σ1(ε1) (as defined in Ali and Hashmi
(1999)) is plotted in Figure 2a along with the experimen-
tal data after transforming them to true quantities. The
hydrostatic pressure p(Θ) is plotted in Figure 2b as a
function of the dilatation Θ, as defined in Appendix 1.
The equivalent von Mises stress-strain σeq(εeq) curve (as
defined in Ali and Hashmi (1999)) is plotted in Figure 2c.
For the comparison purposes, we also present all the as-
sociated experimental data from uniaxial tension and
torsion in Figure 2d.
Taking into consideration the definitions of the secant

bulk modulus KS(I1) being the ratio p/Θ and of the se-
cant shear modulus GS(J2) being the ratio σeq/(3εeq), we
can derive the graphs of these moduli as shown in
Figure 3.
As it was expected, both curves show an initial flat re-

gion up to λ1, λ2. The λ1 and λ2 are the last points of I1
and

ffiffiffiffi
J2

p
, respectively, of the linear part of the relation

between the secant moduli and the strain invariants.
The remaining part of the behavior can be described by
exponentially decaying functions. Consequently, the total
behavior can be described as

KS I1ð Þ ¼ K0
S for 0≤I1≤λ1

K0
Se

−m I1−λ1ð Þ for I1 > λ1




GS J2ð Þ ¼ G0
S for 0≤

ffiffiffiffi
J2

p
≤λ2

G0
Se

−n
ffiffiffi
J2

p
−λ2ð Þ for

ffiffiffiffi
J2

p
> λ2

(

ð7Þ

The reason of using
ffiffiffiffi
J2

p
instead of J2 is for ensuring that

our variable quantities (i.e., I1 and
ffiffiffiffi
J2

p
) have the same

units. The derivation of the detailed form of Equation
(4) via Equation (7) is described in (Andrianopoulos
and Boulougouris 2004). The resulting equations are as
follows:
K S I1; J2ð Þ ¼ K0
S e−m I1−λ1ð Þ−1
� 	

1−qG0
Sλ

2
2 þ qG0

S J2 þ 2−2
 "

GS I1; J2ð Þ ¼ 1
4m2

G0
S −1þ e−n

ffiffiffi
J2

p
−λ2ð Þ� � m2 4−qK0

Sλ
2
1

� 	þ
K 0

S 2−2e−m I1−λ1ð Þ��
where q, n, and m are parameters that must be defined
from regression analysis of Equation (8) with experimen-
tal data.
Plots of constitutive Equations (8) are shown in Figure 4.

The necessary parameters and constants are shown in
Tables 1 and 2. The strong dependence of KS on I1
and GS on J2, respectively, is evident. The respective de-
pendence of KS on J2 and GS on I1 is weak, but exists.

The failure boundary
In order to plot the failure boundary in stress space, the
calculation of critical values of the elastic strain energy
densities TD,0 and TV,0 is needed. From Figure 2c of the
torsion experiment, TD,0 is evaluated by elastic unload-
ing, identical to that shown in Figure 1b. The obtained
value is TD,0 = 1.24 MPa. As triaxial tension data do not
exist, following the procedure of Appendix 1, we obtain
TV,0 = 0.16 MPa. Here, the evolutionary continuity of the
volumetric expansion part of deformation was enforced
by keeping the Poisson ratio constant. The failure
surface is obtained in the strain space I1;

ffiffiffiffi
J2

pð Þ by inte-
grating Equation (5) for some arbitrary simple stret-
ching paths, i.e.,

ffiffiffiffi
J2

p ¼ s⋅I1 where s > 0. This way
critical pairs I1;0;

ffiffiffiffiffiffiffi
J2;0

p� 	
are obtained. The failure sur-

face (Figure 5) in the Haig-Westergaard stress space
(ξ, ρ) can be obtained through the transformation
equations (Manolopoulos 2009):

ξ ¼
ffiffiffi
3

p
KSI1; ρ ¼ 3

ffiffiffi
2

p

1þ v
GS

ffiffiffiffi
J2

p
ð9Þ

where v is the Poisson ratio of the material.

Results for combined loading paths
For this specific material, there were not any experimen-
tal data from the compression tests, so the failure box is
plotted only in the first quadrant (Figure 5) and the
‘sheets’ of KS(I1, J2) and GS(I1, J2) in Figure 4 are shown
for positive values of I1 only. The results of the two
series of experiments are presented in Table 3.
The respective failure points are shown in Figure 5,

along with the loading paths from Table 1. In the same
figure, solid, red (TD = TD,0), and green (TV = TV,0) lines
represent the bounds of the failure surface.
e−n
ffiffiffi
J2

p
−λ2ð Þ 1þ n

ffiffiffiffi
J2

pð Þ þ n −nJ2 þ λ2 2þ nλ2ð Þð Þ
n2

!#

qm2K0
SI

2
1þ

1þmI1ð Þ þmq −mI21 þ λ1 2þmλ1ð Þ� 		 � g ð8Þ



Figure 3 The two-branched functions. (a) KS(I1) and (b) GS(J2).
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It is clear that the failure points L, K, F, J, and E belong
to the curve TD = TD,0 (red one), and point D belongs to
the curve TV = TV,0 (green one). The predictions of the
T-criterion are quite satisfactory.

Application to Alcoa aluminum 24S-T alloy
According to Marin (1948), thin-walled tubular speci-
mens, made from a fully heat-treated aluminum alloy
(Alcoa 24S-T), were subjected to combined tension and
torsion so that the ratio of principal stresses σ2/σ1 is kept
constant for each experiment and ranged from zero
(uniaxial tension) to −1.0 (torsion). The test procedure
consisted in applying simultaneously torsion and tension
loads of predetermined amounts corresponding to a
selected value of nominal principal stress ratio (σ2/σ1).
In order to find the failure surface for this material, the
procedure described in ‘Application to En8 steel’ section
is repeated and the results are presented in the sequel.
In the present case, respective Equation (7) is chosen
to have the following form:

KS I1ð Þ ¼ K0
S for 0≤I1≤λ1

aIb1 for I1 > λ1




GS J2ð Þ ¼ G0
S for 0≤

ffiffiffiffi
J2

p
≤λ2

c
ffiffiffiffi
J2

pð Þh for
ffiffiffiffi
J2

p
> λ2



ð10Þ



Figure 4 Constitutive equations for En8 steel. (a) KS I1;
ffiffiffiffi
J2

p� 	
and (b) GS I1;

ffiffiffiffi
J2

p� 	
:
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These equations are different from those of steel
Equation (7) giving quite adequate agreement with ex-
perimental data through nonlinear regression. This differ-
ence in the form of fitting functions does not affect the
application of T-criterion, which can be applied independ-
ently of the form of Equation (4). The derivation of
the detailed form of Equation (4) via Equation (10)
is described in (Andrianopoulos and Manolopoulos
2012). So,
Table 1 Properties of materials

Material K0
S (GPa) G0

S (GPa) TV,0 (MPa) TD,0 (MPa

Steel En8 193.7 80.4 0.16 1.24

Al 24S-T 75.15 29.1 0.26 1.96
K S I1; J2ð Þ ¼ aIb1
2þ hþ 2cq

ffiffiffiffi
J2

pð Þ2þh−λ2þh
2

� �h i
2þ h

GS I1; J2ð Þ ¼ c
ffiffiffiffi
J2

pð Þh 4þ 2bþ aq I2þb
1 −λ2þb

1

� 	� �
2 2þ bð Þ

g
ð11Þ

The necessary parameters and constants are shown in
Tables 1 and 2. The constitutive equations (Equation
) λ1 λ2 σY (MPa) τY (MPa) ν

0.0015 0.0020 600 350 0.3

0.0019 0.0025 340 196 0.33



Table 2 Parameters and constants in Equations (8) and (11)

Parameter Constant

Steel En8, Equation (7) m n q (MPa)

336.7 277.9 −0.00789

Al 24S-T, Equation (10) a (MPa) b c (MPa) h q

445.33 −0.775 202.54 −0.841 −0.042

Table 3 Combined tension-torsion data for En8 steel

Path Experiment Maximum values at failure

σeq (MPa) εeq p (MPa) Θ

OD Tension 693 0.0060 231 0.0024

OBF 50% σY ➔ torsion 725 0.0137 121 0.0008

OCE 75% σY ➔ torsion 735 0.0136 181 0.0021

OL Torsion 745 0.0140 0 0

ONJ 50% τY ➔ tension 702 0.0135 171 0.0012

OMK 75% τY ➔ tension 710 0.0138 111 0.0005
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(11)) for Alcoa 24S-T are qualitatively similar to those in
Figure 4 for En8 steel, but the sensitivity of KS on J2 and
GS on I1 is much stronger than that in the case of steel.
However, a critical difference in the behavior of the two
materials is that in the case of Alcoa 24S-T, the Poisson
ratio varied in order to satisfy the continuation of volume
expansion Θ. Here, Poisson ratio took the values ν = 0.33
in the linear elastic area, νL = 0.34 in the nonlinear elastic
area, and νH = 0.36 in the hardening area.
The failure surface for 24S-T aluminum alloy in the

Haig-Westergaard stress space (ξ, ρ) is shown in Figure 6
(gray area) along with the given experimental loading
paths.
It is clear that the failure points B, C, D, E, and F be-

long to the curve TD = TD,0 (red one) while the failure
point A (uniaxial tension) belongs to the curve TV = TV,0

(green one). The predictions of the T-criterion are quite
satisfactory. All required parameters and constants for
both materials are summarized in Tables 1 and 2.

Conclusions
In the present work, a careful analysis based on experi-
mental data from Ali and Hashmi (1999) and Marin
(1948) is performed by applying the T-criterion. The
underlined physical principle is that a material fails be-
cause it cannot store more elastic strain energy for the
Figure 5 Loading paths and failure points appearing in Table 3, in th
TD = TD,0 (failure by slip) and vertical line for TV = TV,0 (failure by cleavage).
formation of either new plastic or elastic strains. Conse-
quently, it fails by slip or cleavage, respectively.
This binary alternative (slip-cleavage) necessitates the

introduction of two, instead of one, constitutive equa-
tions for the complete description of materials; the first
dealing with normal stresses/strains and the second one
dealing with shear stresses/strains. In turn, two critical
quantities are required, namely, TD,0 and TV,0.
Even a couple of constitutive equations that predict ac-

curately the experimental data, cannot guarantee accept-
able predictions from any criterion as far as a clear
distinction between ‘elastic energy’ and ‘plastic work’ is
not considered. Plastic (or total) strains are results of
loading and their magnitude depends on loading path
(see Table 1 and for example, Bao and Wierzbicki
(2004)). Proper functions of stresses and elastic strains
separated into volume-shape changes give constant limits
for failure.
The comparison of failure surfaces for steel (Figure 5)

and aluminum (Figure 6) indicates that there are consid-
erable qualitative differences between them. None of the
two limiting lines TV = TV,0 and TD = TD,0 is a straight
line, although this is clear only in case of aluminum. It
e failure surface of En8 steel. Horizontal line of failure surface is for



Figure 6 Loading paths and failure points in the failure box (shaded area) for aluminum 24S-T alloy.
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implies that for materials like aluminum 24S-T alloy, it
could be difficult to distinguish between cleavage and
slip under certain combinations of stresses (area between
points A and B in Figure 7). In turn, this difficulty em-
phasizes in an indirect way, the vital importance of hav-
ing an adequate constitutive description of the material.
It is obvious that single constitutive equations have no
chance to describe the twin (volume-shape) character of
materials. Our work aims in emphasizing that the idea
of predicting the failure of a material is mainly equiva-
lent to the problem of deriving the proper constitutive
equations.
Appendix 1: Derivation of curve p = f(Θ)
The standard method for obtaining the elastically stored
strain energy is computing the area under the stress
strain area that is bounded to the right by the unloading
path. The total strain energy density, T, can be written in
Figure 7 Qualitative curve σ1 = σ1(ε1) in the most general case
of a material.
terms of the conjugate pairs of principal stresses and
strains as follows:

T ¼ 1
2

X3
i¼1

Z σ i

0
σ i εið Þdεi ð12Þ

resulting in both volume and shape changes. The separ-
ation of total elastic strain energy density into the two
respective parts (TV, TD) requires distinction between
elastic and plastic strains and unloading in a proper
stress/strain space.
The proper space for distortional strain energy density

is that of equivalent quantities, given by Equation (1) in
the main body of this paper, where each shear stress cor-
responds to a shear strain. Then, unloading results in
the evaluation of distortional elastic strain energy and
plastic work.
Problems arise when the required one-to-one corres-

pondence between stress and strain components does
not hold. The most classical example of correspondence
violation is uniaxial tension, where a single stress causes
in an indirect way (through Poisson ratio) three strains. In
addition, the proper unloading space given by Equation
(2) of the main body is (p, Θ) requiring some algebra.
For that we have

p ¼ σ1 þ σ2 þ σ3
3

¼ σ1
3

Θ ¼ ε1 þ ε2 þ ε3 ¼ ε1−ν⋅ε1−ν⋅ε1 ¼ 1−2νð Þε1 ¼ 1−2νð Þ ε1;el þ ε1;pl
� 	

�
ð13Þ

where ν is the Poisson ratio, ε1,el the elastic part of ε1,
and ε1,pl the plastic one.
In the most general case of a material, the curve

σ1 = σ1(ε1) consists of four areas marked with respect to
strain as (a) linear elastic, (b) nonlinear elastic, (c)



Figure 8 Hydrostatic pressure versus strain. (a) p = f(Θ) selecting total ε1, (b) p = f(Θ) selecting elastic part of ε1.
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hardening, and (d) fully plastic, as it is typically shown
in Figure 7 with line segments (AL) and (LH) being
straight for simplicity.
It is known (Theocaris and Koroneos 1963) that Pois-

son ratio varies from an initial linear elastic value ν to a
final one ν ≈ 0.5 in perfect plasticity. Consequently, the
second of Equation (13) must be modified accordingly.
Thus, we have

ΘA¼ 1−2vð Þε ; 0 < ε < εA
ΘL¼ 1−2vLð Þε ; εA < ε < εL
ΘH¼ 1−2νHð Þε ; εL < ε < εH

8<
: ð14Þ

Various symbols in Equation (14) are defined in Figure 7
and Θi, i =A, L,H represents the sum of strains at each
area.
Using the first of Equations (13) and (14), we can plot

p = f(Θ) as shown in Figure 8a. For that, proper values
for νL and νH satisfying strain continuation - in the
present case - must be selected. If so, p = f(Θ) becomes a
relationship p(σ1) =Θ(ε1, ν, νL, νH) with σ1 = σ1(ε1) given
for the material under study and (ν, νL, νH) been evalu-
ated through continuation of Θ. The function ν = ν(ε1)
must be a continuous function as it seems natural. It
was checked that the introduction of a mean value for
νL, νH affects slightly the final values of TV,0.
To plot the curve p = f(Θ), there are two alternatives

at this point: either to select total ε1 or select its elas-
tic part ε1,el. In case of total ε1, the results are affected
by plasticity and require unloading, as indicated in
Figure 8a.
On the other hand, unloading is not necessary when

the elastic part of ε1 is used. In Figure 8a,b the green
areas are equal to TV ¼ 1

2 p ε1;M−ε1;pl
� 	 ¼ 1

2 p⋅ε1;el.

Appendix 2: Relationship between secant elastic
moduli and strain invariants
The first invariant of the strain tensor and the second
invariant of the deviatoric strain tensor can be expressed
as follows:
I1 ¼ εkk; J2 ¼ 1
2
eklekl; ð15Þ

where

ekl ¼ εkl−
1
3
εppδkl ⇒ekk ¼ 0ð Þ ð16Þ

The derivatives of these invariants with respect of the
strain tensor can now be expressed by

∂I1
∂εij

¼ δij and
∂J2
∂εij

¼ ekl
∂ekl
∂εij

¼13ð Þ
ekl δklδil−

1
3
δklδij

� �
¼ eij

ð17Þ

The constitutive equation can be derived according to

σ ij ¼ ∂T
∂εij

¼ ∂T
∂I1

∂I1
∂εij

þ ∂T
∂J2

∂J2
∂εij

¼ ∂T
∂I1

δij þ ∂T
∂J2

eij

¼ a1δij þ a2eij ð18Þ

Comparison of the last equation with the Lamé rela-
tionship between stresses and strains

σ ij ¼ KSεkkδij þ 2GSeij ð19Þ

results to

KSεkk ¼ K SI1 ¼ a1 2GS ¼ a2 ð20Þ
Consequently, the following equation must hold:

∂a1
∂J2

¼ ∂ K SI1ð Þ
∂J2

¼ ∂a2
∂I1

¼ 2
∂GS

∂I1
ð21Þ
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