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EEG‑based human emotion recognition 
using entropy as a feature extraction measure
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Abstract 

Many studies on brain–computer interface (BCI) have sought to understand the emotional state of the user to provide 
a reliable link between humans and machines. Advanced neuroimaging methods like electroencephalography (EEG) 
have enabled us to replicate and understand a wide range of human emotions more precisely. This physiological sig-
nal, i.e., EEG-based method is in stark comparison to traditional non-physiological signal-based methods and has been 
shown to perform better. EEG closely measures the electrical activities of the brain (a nonlinear system) and hence 
entropy proves to be an efficient feature in extracting meaningful information from raw brain waves. This review aims 
to give a brief summary of various entropy-based methods used for emotion classification hence providing insights 
into EEG-based emotion recognition. This study also reviews the current and future trends and discusses how emo-
tion identification using entropy as a measure to extract features, can accomplish enhanced identification when using 
EEG signal.
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1  Introduction
Emotions are biological states related to the nervous sys-
tems, which are usually reflection of changes in neuro-
physiological condition. Being an indispensable part of 
human life, if emotions could be anticipated by machines 
precisely, it would accelerate the progress of artificial 
intelligence or the brain–computer interface field [1]. 
Presently there is no scientific agreement on a definition 
of emotions. One of the definitions, as given by William 
James, claims that "the bodily changes follow directly 
the perception of the exciting fact, and that our feel-
ings of the changes as they occur are emotion” [2]. As an 
evolving field of research with vital importance and vast 
implementation, emotion classification has drawn inter-
est from different disciplines like neuroscience, neural 
engineering, psychology, computer science, mathematics, 
biology, physics and has always remained in the spotlight 
[3, 4]. Various experiments are being done to accomplish 

higher instinctive human–computer interaction and ulti-
mate goal is to devise advanced gadgets, which would 
distinguish various human emotions, in real-time [5]. 
With the absence of the capability to quantify emotions, 
computers and robots cannot naturally connect with 
humans. Therefore, human emotion recognition is the 
key technology for human–machine interaction [6, 7].

1.1 � Why EEG for emotion recognition?
In current practice, emotion recognition is done widely in 
two ways, either by making use of non-physiological sig-
nals or by making use of physiological signals. Non-phys-
iological methods use text, speech, facial expressions, or 
gestures. Most of the previous studies are based on this 
method [8–10]. However, this method cannot be consid-
ered reliable, as facial gesture or voice tone can be vol-
untarily obscured. Unlike the first, the second approach 
employing physiological signals seems more efficient and 
reliable because one cannot restrain them willfully [3]. At 
present among all available physiological signals, emo-
tion detection using the EEG signal has become most 
popular non-invasive one as EEG efficiently records the 
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electrical activity of brain [11]. With the advancement of 
sensor networks [12, 13], intelligent sensing system [14–
16], and energy-efficient biomedical systems [17, 18], 
EEG-based methods has gained feasibility. Additionally, 
several researches have proved the reliability of EEG for 
application in the BCI [19], electronic gadgets [20, 21] as 
well as in medicine to closely inspect various brain dis-
orders [22–24]. Some EEG-based research indicate that 
EEG builds enhanced databases in comparison with other 
available emotion databases like the non-physiological 
datasets. Thus because EEG is meticulously tied in with 
brain activities [25–27] and also because it is immedi-
ate and comparatively reliable than electrodermal activ-
ity (EDA; sometimes known as galvanic skin response, or 
GSR), electrocardiogram (ECG), photoplethysmography 
(PPG), electromyography (EMG), etc., is highly recom-
mended over any other physiological signals [28, 29].

1.2 � How does entropy contribute in emotion recognition?
Entropy is a nonlinear thermodynamic quantity that 
specifies the system’s degree of randomness. Measures of 
entropy are usually employed to assess the inconsistency, 
intricacy and unpredictability of biomedical data sets 
and this principle of entropy has also been extended to 
study the complexity of EEG signals. A number of studies 
are available to prove that entropy measures have a sig-
nificant capability to access knowledge regarding regular-
ity from EEG data sets [18]. Therefore, entropy, being a 
nonlinear feature that measures the level of randomness 

of any system, is effective in distinguishing various emo-
tions based on their level of irregularity in the EEG signal.

1.3 � Major contributions of present study
In short, contributions of this article are:

1.	 From analysis, it has been discovered that recur-
rence quantification analysis entropy along with 
ANN-based classifiers approach dominates other 
approaches.

2.	 This analysis will assist researchers to determine 
the combination of entropy characteristics and clas-
sification methods that is more appropriate for fur-
ther enhancement of the current emotion detection 
methods.

3.	 This will assist learners in better comprehension of 
various existing EEG datasets of emotions.

4.	 Study also proposes that entropy function algorithms 
can be effective, for other information-retrieval tasks 
such as detection of emotion-related mental disor-
ders, in addition to emotion recognition.

5.	 Finally, through the present review and analysis, cer-
tain findings and suggestions have been listed for fur-
ther studies in this field.

A generalized block diagram of the proposed method-
ology in various papers discussed in this review is given 
in Fig.  1. The methodology includes four main tasks; 
first is the data acquisition, i.e., EEG device records a 

Fig. 1  Generalized block diagram of the proposed methodology
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high-quality signal from the brain. These raw signals are 
often contaminated with unwanted noise and artifacts. 
The second task is the preprocessing of the raw signal 
to remove or minimize these noise and artifacts, which 
uses different filters, and then the raw signal is down-
sampled to some sampling frequency. After the signal 
is preprocessed, feature extraction is carried out. Here 
various entropy methods are used to extract significant 
information from the EEG data. Last is the classification 
task: after selecting the features useful to the psychologi-
cal state, classifiers must be trained in such a way that 
different emotional states can be categorized using the 
extracted features.

There is increasing evidence that entropy-based meth-
ods can provide higher accuracy for emotion recognition 
[29–33]. The objective of this paper is to comprehend 
various entropy measures for EEG-based emotion clas-
sification. The article is structured as follows: Sect.  2 
presents the theories of emotion and EEG as psycho-
physiological measures for emotion evaluation. Sec-
tion  3 discusses the implementation of EEG measures 
for emotion recognition. Section  4 provides an analysis 
of the previous research works on EEG-based emotion 
recognition using different entropy measures. Section  5 
concludes with the findings of this review on emo-
tion recognition and also provides some suggestions for 
future research in this field.

2 � Theory and measures of emotion
2.1 � Theories of emotion
Emotions show up in our day to day lives and they influ-
ence our human awareness significantly [34]. Principally, 
an emotion is a psychological state that arises uncon-
sciously instead of a conscious effort and it appears as 
physiological changes in the body [35]. Different theories 
have been proposed by psychologists and neuroscientists 
regarding why and how any living body experiences emo-
tion [36]. However, the two widely used models in emo-
tion recognition are the discrete emotional model and 
the two-dimensional valence-arousal model, proposed 
by Ekman [37] and Lang [38], respectively. The discrete 
emotional model affirms the existence of a few primitive 
or core emotions universally in all perceptions. Different 
psychologists have proposed various classes of emotions, 
but a substantial agreement lies for six emotions speci-
fied as happiness, sadness, surprise, anger, disgust, and 
fear [39]. The dimensional model attempts to conceptu-
alize human emotions by defining where they lie in the 
two or three dimensions [36] and classifies emotions 
depending on their valence-arousal scale. Valence indi-
cates pleasantness and ranges from negative to positive. 
Arousal represents the activation level and ranges from 

low to high [40]. Figure 2 summarizes the models of emo-
tions mentioned above.

2.2 � EEG as a psycho‑physiological emotion assessment 
measure

Psycho-physiology refers to the part of brain science that 
deals with the physiological bases of psychological pro-
cesses. Regardless of whether an individual expresses 
the emotion through speech and gesture, a change in 
cognitive mode is unavoidable and measurable [41] as 
receptive nerves of the autonomic nervous system are 
stimulated once an individual is positively or negatively 
excited. This stimulation elevates fluctuation in heart 
rate, increases respiration rate, raises blood pressure, and 
decreases heart rate variability [42].

Monitoring brain activity through EEG is among the 
most widely accepted psycho-physiological measures 
used in the research field of the BCI. EEG databases cor-
respond to the functions of the central nervous system 
(CNS) which monitors and records activity in the brain.

3 � Methods and materials
3.1 � Emotion elicitation stimuli
Emotion elicitation is required in the subject to obtain a 
high-quality database for building an emotion classifica-
tion model [6, 43]. To obtain a good emotion dataset it 
is important to elicit the emotion in the subject naturally 
as EEG is measured in ANS/CNS. Many different proto-
cols for emotion elicitation on subjects have been pro-
posed using various types of stimuli. The most common 
of all is audiovisual. Images have also been used to elicit 
emotions, international affective picture system (IAPS) 
[44, 45] is a very well-known project to develop an inter-
national framework for emotional elicitation based on a 
static picture. The link between music and emotions has 
also inspired the use of music and audio stimuli to elicit 
emotions [40]. Memory recalling [43] and multimodal 
approach [6] are some other strategies used.

The purpose of the emotion elicitation technique is to 
stimulate the desired emotion in the subject by eliminat-
ing the possibility of stimulating multiple emotions. A 
study by Gross and Levenson reveals that psychologically 
characterized movies attained better outcomes consider-
ing its dynamic profile [46].

3.2 � Data used
In this review article, results from various entropy 
approaches have been reviewed. Different researchers 
used different emotion database as per the need and suit-
ability of the data for better results.

There are two benchmark databases; dataset for emo-
tion analysis using physiological signals (DEAP) and 
SJTU Emotion EEG Dataset (SEED) that are widely used. 



Page 4 of 13Patel et al. Brain Inf.            (2021) 8:20 

The other datasets were similarly recorded, but are not 
publicly available for use.

3.2.1 � DEAP dataset
Dataset for emotion analysis using physiological signals 
(DEAP) is a multimodal dataset designed to study human 
cognitive states by Queen Mary University in London. 
The database has been obtained using a BioSemi acquisi-
tion system of 32 channels and it recorded the electroen-
cephalogram (EEG) and peripheral physiological signals 
of 32 participants as each subject viewed 40 1-min music 
video excerpts. The subjects scored the videos according 
to the extent of arousal, valence, like/dislike, dominance, 
and familiarity. Frontal face video was also tracked for 22 
of the 32 subjects. A unique stimulus selection approach 
has been used, using affective tag retrieval from the last.
fm website, video highlight identification, and an online 
assessment tool. The dataset is made freely accessible, 
and it allows other researchers to use it to check their 
methods of estimating the effective state. The dataset was 
first presented in a paper by Koelstra et al. [46]. For fur-
ther specifics on DEAP database, please find the details 
online at https://​www.​eecs.​qmul.​ac.​uk/​mmv/​datas​ets/​
deap/​index.​html.

3.2.2 � SEED dataset
The SEED dataset includes 62-channel EEG record-
ings from 15 subjects (7 males and 8 females, 
23.27 ± 2.37  years) according to the international stand-
ard 10–20 system. The emotions of the subjects are trig-
gered through 15 video shots, and every video shot is of 
4 min duration. It measures three types of emotions (pos-
itive, neutral, negative) and every category of emotion is 
associated with five video shots, respectively. At a time 
interval of 1  week or longer between multiple sessions, 
each participant was advised to enroll in the experiments 
for three sessions [47, 48]. For further specifics on SEED 
database, please find the details online at http://​bcmi.​sjtu.​
edu.​cn/​home/​seed/​seed.​html.

3.3 � Entropy feature extraction
In building an emotion recognition system, different 
features are required to be retrieved, whichever better 
describes the behavior (either static or dynamic) of brain 
electrical activity during different emotional states. Dis-
tinct kinds of emotions depending on different entropy 
characteristics are assessed in this article.

Entropy function is a dynamic feature that describes the 
chaotic nature of any system and evaluates the amount of 

Fig. 2  Models of human emotion widely used in emotion recognition

https://www.eecs.qmul.ac.uk/mmv/datasets/deap/index.html
https://www.eecs.qmul.ac.uk/mmv/datasets/deap/index.html
http://bcmi.sjtu.edu.cn/home/seed/seed.html
http://bcmi.sjtu.edu.cn/home/seed/seed.html
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information acquisition which could be employed to iso-
late necessary information from the interfering data [49]. 
Greater the value of entropy, greater is the irregularity of 
the system. This section provides a concise description 
of various entropy used as feature to classify different 
emotions.

3.3.1 � Sample entropy
Sample entropy (SampEn) quantifies a physiological sig-
nal’s complexity irrespective of the signal length and 
therefore has a trouble-free implementation. Conceptu-
ally, sample entropy is based on the conditional probabil-
ity that two sequences of length ‘n + 1’ randomly selected 
from a signal will match, given that they match for the 
first ‘n’ elements of the sequences. Here ‘match’ means 
that the distance between the sequences is less than some 
criterion ‘k’ which is usually 20% of the standard devia-
tion of the data sequence taken into account. Distance 
is measured in a vector sense. Defining ‘k’ as a fraction 
of the standard deviation eliminates the dependence of 
SampEn on signal amplitude. The conditional probability 
is estimated as the ratio of the unconditional probabilities 
of the sequences matching for lengths ‘n + 1’ and ‘n’, and 
SampEn is calculated as the negative logarithm of this 
conditional probability [49]. Thus, SampEn is defined as:

where Bn(k) is the estimated probability that two 
sequences match for n points, and An(k) is the estimated 
probability that the sequences match for n + 1 points. 
An(k) and Bn(k) are evaluated from data using a relative 
frequency approach.

Sample entropy is comparatively reliable and decreases 
the bias of approximate entropy [31]. Greater value 
of estimated sample entropy suggests that signal is 
extremely unpredictable and lower value suggests that 
signal is predictable. The value of ‘n’ has to be considered 
as per the preference of the researcher and it differs from 
work to work.

SampEn’s advantage is that it can distinguish a num-
ber of systems from one another. It gives a much bet-
ter result than approximate entropy with the theory of 
random numbers. Self matches are not included in this 
entropy so the bias decreases. The entropy esteems are 
relatively steady across various sample lengths. However, 
lack of consistency for sparse data is the key downside of 
SampEn.

3.3.2 � Dynamic sample entropy
As the name suggests dynamic sample entropy (DyS-
ampEn) is the dynamic extension of the Sample entropy 
and is applied to evaluate the EEG signal. DySampEn is 

(1)Sample Entropy = − log

(

An(k)

Bn(k)

)

,

often seen as the dynamic feature of EEG signals that can 
track the temporal dynamics of the emotional state over 
time. Dynamic sample entropy determination strategy 
follows the calculation of SampEn from EEG signals by 
sliding time windows (a set of consecutive time windows) 
[29] by employing sliding time windows with window 
length tw and moving window length ∆t, the DySampEn 
can be expressed as:

where subscript 
〈

l
〉

 represents sliding time windows 
(k = 1,2,3,…w ) and w =

[

T−tw
�t

]

+ 1 is measure of sliding 
time windows and T is the total length of EEG signal and 
[·] corresponds to floor function that rounds T−tw

�t  to larg-
est integer not exceeding T−tw

�t .
Time window length tw and moving window length ∆t 

have to be taken as per research need. As EEG features a 
temporal profile, the benefits of this entropy is that it can 
provide more accurate emotionally relevant signal pat-
terns for emotion classification than sample entropy [18, 
29].

3.3.3 � Differential entropy
Differential entropy (DE) is the entropy of a continu-
ous random variable and measures its uncertainty. It is 
also related to minimum description length. One may 
describe the mathematical formulation as

where X is a random variable, f (x) is its probability den-
sity. So for any time series X obeying gauss distribution 
N
(

µ, σ 2
)

 , its differential entropy can be expressed as 
[50]:

Disadvantage is estimation of this entropy is quite dif-
ficult in practice, as it requires estimation of density of X, 
which is recognized to be both theoretically difficult and 
computational demanding [3, 51].

3.3.4 � Power spectral entropy
Power spectral entropy (PSE) is standardized model 
of Shannon’s entropy. It utilizes the component of the 
power spectrum amplitude of the time series to evalu-
ate entropy from data [3, 50], i.e., it measures the spectral 

(2)
DySampEn(n, k)�l� = SampEn(n, k)�l�, 1 ≤ l ≤ w,

(3)h(X) = −
∫

X

f (x) log [f (x)]dx,

(4)

h(X) = −
∞
�

−∞

1√
2πσ 2

e
−
�

(x−µ)2

2σ2

�

log





1
√
2πσ 2

e
−
�

(x−µ)2

2σ2

�



dx

=
1

2
log

�

2πeσ 2
�

.
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complexity of any EEG signal and so also regarded as fre-
quency domain information entropy [51].

Mathematically it is given by

where Pf  is power spectral density.
Shannon’s entropy (ShEn) is a set of relational vari-

ables that changes linearly with the logarithm of a 
range of possibilities. This is also a data spread metric, 
which is widely applicable in a system’s dynamic order 
determination.

Shannon’s entropy being based on the additivity law of 
the composite system, i.e., if a system is divided into two 
statistically independent subsystems A and B then as per 
additivity law

where S (A, B) is the total entropy of the system and S(A) 
and S(B) are entropy of subsystems A and B, respectively. 
So, Shannon’s entropy successfully addresses extensive 
(additive) systems involving short-ranged effective micro-
scopic interactions. Now, physically ‘‘dividing the total 
system into subsystems’’ implies that the subsystems are 
spatially separated in such a way that there is no resid-
ual interaction or correlation. If the system is governed 
by a long-range interaction, the statistical independence 
can never be realized by any spatial separation since the 
influence of the interaction persists at all distances and 
therefore correlation always exists for such systems. This 
explains the disadvantage of ShEn that it fails miserably 
for non-extensive (non-additive) systems that is gov-
erned by long-range interactions. It overestimates the 
entropy level when a larger number of domains are con-
sidered, and also does not clarify the temporal connec-
tion between different values extracted from a time series 
signal [18].

3.3.5 � Wavelet entropy
One of the quantitative measures in the study of brain 
dynamics is wavelet entropy (WE). It quantifies the 
degrees of disorder related to any multi-frequency signal 
response [52].

It is obtained as

where Pi defines the probability distribution of a time 
series signal and i defines different resolution level [18].

It is utilized to recognize episodic behavior in EEG sig-
nal and provides better results for time-varying EEG [53]. 
The benefit of wavelet entropy is it efficiently detects the 

(5)PSE = −
∑

f

Pf log Pf ,

S(A, B) = S(A)+ S(B),

(6)WE = −
∑

i<0

Pi ln Pi,

subtle variations in any dynamic signal. It takes lesser 
computation time, noise can be eliminated easily and its 
performance is independent of any parameters [18].

3.3.6 � EMD approximate entropy
Approximate entropy (ApEn) is a ‘regularity statistics’ 
measuring the randomness of the fluctuation in given 
data set. Generally, one may assume that existence of 
repeated fluctuation patterns in any data set makes it 
a little less complex than other dataset without many 
repetitive patterns. Approximate entropy ensures identi-
cal patterns of predictions are not accompanied by fur-
ther identical patterns. A data set with a lot of recurring 
motifs/patterns has notably lower ApEn, whereas a more 
complex, i.e., less predictable data set has higher ApEn 
[54]. ApEn estimation algorithm is described in many 
papers [33, 54–57]. Mathematically it can be calculated 
as

where Cn(k) and Cn+1(k) are pattern mean of length (n) 
and (n+ 1) , respectively. ApEn is robust to noise and 
relies on a less amount of data. It detects changes in 
series and compares the similarity of samples by pattern 
length n and similarity coefficient ‘ k ’. The appropriate 
selection of parameters ‘n’ (subseries length), k (similarity 
tolerance/coefficient) and N (data length) is critical and 
are chosen as per research needs. Traditionally, for some 
of clinical datasets, ‘n’ is to be set at 2 or 3, ‘k’ is to be 
set between 0.1 and 0.25 times the standard deviation of 
time series taken into account to eliminate the depend-
ence of entropy on signal’s amplitude and N as equal to or 
greater than 1000. However, these values do not always 
produce optimal results for all types of data. The paper 
cited presents a method that employs the empirical mode 
decomposition (EMD) to disintegrate the EEG data and 
then calculates ApEn of disintegrated data and so, is 
called E-ApEn. EMD is a time frequency analysis method 
that decomposes nonlinear signals into oscillations at 
various frequencies.

The advantages of EMD-ApEn are that it is measurable 
for shorter datasets with high interference and it effec-
tively distinguishes various systems based on their level 
of periodicity and chaos [49, 54]. The disadvantages are 
it strongly depends on the length of input signal [58]. 
Meaningful interpretation of entropy is compromised 
by significant noise. As it depends on length, it’s a biased 
statistics [18, 59].

3.3.7 � Kolmogorov Sinai entropy
The volatility of data signal over time is assessed using 
entropy defined by Kolmogorov Sinai shortly known 

(7)ApEn (n, k ,N ) = ln

(

Cn(k)

Cn+1(k)

)

,
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as KS entropy. It is determined by identifying points 
on the trajectory in phase space that is similar to each 
other and not correlated with time. Divergence rate of 
these point pairs yields the value of KSE [60], calculated 
as

where Cm(r,Nm) is the correlation function which pro-
vides probability of two points being closer to each other 
than r. Higher KSE value signifies higher unpredictability. 
Hence KSE does not give the accurate results for signals 
with slightest noise.

The advantages is that it differentiates between peri-
odic and chaotic systems effectively [61, 62]. And this 
being decayed towards zero with increasing length is its 
main limitation [63].

3.3.8 � Permutation entropy
It is also possible to measure the intricacy of brain 
activity using the symbolic dynamic theory where a 
data set is being plotted to a symbolic sequence through 
which the permutation entropy (PE) is generated. The 
highest value of PE is 1, signifying that the data series 
is purely unpredictable; whereas the lowest value of PE 
is 0, signifying that the data series is entirely predict-
able [4, 76]. At higher frequency, permutation entropy 
amplifies with the incongruity of data series while per-
mutations related to reported oscillations are seldom at 
a lower frequency.

Mathematically PE is described as

where Pi represents the relative frequency of possible 
sequence patterns, n implies permutation order of n ≥ 2 
[63–65].

Permutation entropy is a measure of chaotic and non-
stationary time series signal in the presence of dynami-
cal noise. This algorithm is reliable, effective, and yields 
instant outcomes regardless of the noise level in data [64, 
65]. Thus, it can be used for processing of huge data sets 
without preprocessing of data and fine-tuning of com-
plexity parameters [13]. The advantages of this entropy 
are it is simple, robust and less prone to computational 
complexity. It is applicable to real and noisy data [66], 
does not require any model assumption and is suitable 
for the analysis of nonlinear processes [67]. The main 
limitation is its inability to include all ordinal patterns 
or permutations of order ‘n’, when ‘n’ is assigned a larger 
value for a finite input time series [18, 68].

(8)KSE = lim
r→0

lim
m→∞

1

τ

Cm(r,Nm)

Cm+1(r,Nm+1)
,

(9)PE = −
n

∑

i=1

Pi log2 Pi,

3.3.9 � Singular spectrum entropy
Entropy calculated from singular spectrum analysis (SSA) 
components are known as singular spectrum entropy. 
SSA is an important signal decomposition method based 
on principal component analysis, which can decompose 
the original time series into the sum of a small number 
of interpretable components. SSA usually involves two 
complementary stages, one is the stage of decomposi-
tion and the other is the stage of reconstruction. The 
stage of decomposition consists of two steps: embedding 
and singular value decomposition (SVD). The stage of 
reconstruction also consists of two steps: grouping and 
diagonal averaging [69]. Singular spectrum entropy func-
tion represents instability of energy distribution and is a 
predictor of event-related desynchronization (ERD) and 
event-related synchronization (ERS) [70].

3.3.10 � Multiscale fuzzy entropy
The measures of fuzziness are known as fuzzy informa-
tion measures and the measure of a quantity of fuzzy 
information gained from a fuzzy set or fuzzy system 
is known as fuzzy entropy. No probabilistic concept is 
needed to define fuzzy entropy like the other classical 
entropy that needs probabilistic concept. This is due to 
the fact that fuzzy entropy contains vagueness and ambi-
guity uncertainties, while Shannon entropy contains the 
randomness uncertainty (probabilistic).

Multiscale fuzzy entropy extracts multiple scales of 
original time series with a coarse-gaining method and 
then calculates the entropy of each scale separately. 
Assuming an EEG signal with ‘N-point’ samples is recon-
structed to obtain a set of ‘m-dimensional’ vectors with 
n, r and Dm

ij  taken as width, gradient and the similarity 
degree of the two vectors (fuzzy membership matrix), 
respectively, final expression for fuzzy entropy appears as

It can also be defined as 
[

ln ϕm(n, r)− ln ϕm+1(n, r)
]

 for 
EEG signals where number of given time series sample 
N is limited, where ϕm(n, r) is a function defined to con-
struct a set of (m + 1)-dimensional vector and is taken as:

with fuzzy membership matrix Dm
ij = µ

(

Dm
ij , n, r

)

= exp
(

−(Dm
ij )

n/r
)

.

For detailed mathematical formulation one can refer 
to [71, 72]. The advantage of this entropy is that it is 

(10)
Fuzzy entropy(m, n, r) = lim

N→∞

[

ln ϕm(n, r)− ln ϕm+1(n, r)
]

.

(11)

ϕ(n, r) =
1

(N −m)

N−m
�

i=1





1

N −m− 1

N−m
�

j=1,j �=1

Dm
ij



,
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insensitive to noise; and is highly sensitive to changes in 
the content of information [32, 68, 71].

3.3.11 � Recurrence quantification analysis entropy
This is a measure of the average information contained in 
the line segment distribution or line structures in a recur-
rence plot. Recurrence plot is a visualization or a graph 
of a square matrix built from the input time series. This 
is one of the state-space trajectories-based approaches 
of recurrence quantification analysis (RQA). This helps 
to compute the number and duration of the recurrence 
of a chaotic system [73]. RQA evaluates the forbidden 
precession of a data set and is computed to portray a 
time-varying input signal in contexts of its intricacy and 
randomness. Recurrence entropy helps detect chaos–
chaos transitions, unstable periodic orbits, time delays, 
and extracts appropriate information from short and 
nonlinear input signals [18, 30].

3.4 � Classification
After extracting features that seem to be appropriate to 
the emotional responses, these are then used to build a 
classification model with the intent to recognize spe-
cific emotions employing proposed attributes. Different 
classifiers like K-Nearest Neighbor (KNN) [74], Support 
Vector Machines (SVM) [3, 29, 32, 51, 52], integration of 
deep belief network and SVM (DBN-SVM) [75], channel 
frequency convolutional neural network (CFCNN) [76], 
multilayer perception, time-delay neural network, proba-
bilistic neural network (PNN) [77], least-square SVM, 
etc., are used by various researchers for emotion recogni-
tion. It is difficult to compare the different classification 
algorithms, as different research works employ different 
datasets, that differs significantly in the manner emo-
tions are evoked. In general, the recognition rate is sig-
nificantly greater when various physiological signals such 
as EEG, GSR, PPG, etc., are employed together compared 
to the use of a single physiological signal for emotion rec-
ognition [78].

4 � Discussion
In earlier days, numerous approaches were sought to 
measure human emotion. Several scientific researches 
on emotion classification were carried out using the EEG 
signal in the last couple of years. The human emotion rec-
ognition study began with a subject-dependent approach 
and is now moved more towards a subject-independent 
approach.

Vijayan et al. have formulated an emotion recognition 
strategy that takes Shannon’s entropy as an attribute. Elu-
cidated algorithm with a multiscale SVM classifier gives 

94.097% accuracy in classifying four emotions namely 
excitement, happiness, sadness, and hatred [3]. Duan 
et  al. provided a feasible study on novel EEG feature 
differential entropy to describe the characteristic of 
the thoughts and emotions. In his study, he compared 
DE with the traditional energy spectrum feature of fre-
quency domain. The result shows an accuracy of 84.22% 
with SVM classifier over 76.56% accuracy of ES [72–74]. 
Authors as in [33] have extracted features using E-ApEn 
and employed DBN-SVM classifier for four type emo-
tion recognition named happy, calm, sad, fear. The study 
shows an accuracy of 87.32% with the DBN-SVM clas-
sifier. Lu et  al. published an extensive study on a newer 
model of pattern learning positioned on dynamic entropy 
to empower user-independent emotion detection from 
the EEG signal. The result from the study reveals that the 
best average accuracy of 85.11% is attained for classify-
ing negative and positive emotions [29]. Li et al. used 18 
kinds of linear and nonlinear features, in which entropies 
namely approximate entropy, K.S entropy, permutation 
entropy, singular entropy, Shannon’s entropy, and spec-
tral entropy have been used in cross-subject emotion 
recognition. The result shows automatic feature selection 
gives the highest mean recognition accuracies of 59.06% 
on the DEAP dataset and 83.33% on the SEED dataset 
[4]. Zhang et  al. developed a human emotion recogni-
tion algorithm by combining EMD and sample entropy 
with the SVM classifier. The experiment has been done 
to classify four categories of emotional states such as high 
arousal high valence (HAHV), low arousal high valence 
(LAHV), low arousal low valence (LALV), high arousal 
low valence (HALV) on DEAP Database. The result shows 
the average accuracy of the proposed method is 94.98% 
for a binary-class task and the best accuracy achieves 
93.20% for multiclass tasks, respectively, [74]. Candra 
et  al. employed the wavelet entropy feature to build an 
automated EEG classifier means for human emotion rec-
ognition. Study shows that accuracy can be improved 
further using this method for shorter time segments and 
the highest accuracy of 65% for both arousal and valence 
emotions were achieved [51]. Lotfalinezhad separated 
two and three levels of emotion in arousal and valence 
space using a multiscale fuzzy entropy feature. Work 
used the DEAP database and SVM classifier and achieved 
a classification accuracy of 90.81% and 90.53% in two-
level emotion classification and 79.83% and 77.80% in 
three-level classifications in arousal and valence space, 
respectively, for subject-dependent systems [71]. Tong 
et  al. computed power spectral entropy and correlation 
dimension feature along with SVM classifier to differen-
tiate three categories of emotion namely positive neutral 
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and negative. Result shows with the proposed method 
three kinds of emotions can be classified with relatively 
high accuracy of 79.58% [50]. Yong et  al. presented a 
study on emotion recognition using recurrence quanti-
fication analysis entropy with channel frequency convo-
lutional neural network (CFCNN) as a classifier. Result 
gives the best accuracy of 92.24 ± 2.11% for three types 
of emotion recognition and also shows its remarkable 
efficiency over traditional methods like PSD + SVM and 
DE + SVM [74]. Xiang et  al. in his research applied the 
sample entropy feature along with the SVM classifier to 
distinguish positive and negative emotions from EEG and 
achieved an accuracy of 80.43% [77]. Goshvarpour et al. 
in their study of emotion recognition from EEG applied 
several measures of recurrence quantification analysis 
including recurrence rate, deterministic, average line 
length of diagonal lines, entropy, laminarity, and trapping 
time along with neural network and probabilistic neural 
networks (PNN). The result suggests RAQ gives the best 
accuracy of 99.96% of three-level emotion classifications 
with the PNN classifier and so it can be used as an appro-
priate tool for emotion recognition [76]. Figure 3 graphi-
cally represents the classification accuracy of different 
approaches mentioned above with their publication year. 
We have also summarized the investigations carried out 

on EEG signal and entropy feature extraction in human 
emotion recognition in Table 1.

5 � Conclusions
Emotions reflect one’s mental state and can be analyzed 
through physiological data of the brain such as the EEG. 
EEG signals are dynamic and also have greater inter and 
intra-observer variability therefore proved to be useful 
in automated human emotion recognition. Features like 
entropy can be used to describe the chaotic nature of 
EEG signals as entropy the degree of variability and com-
plexity of any system. In this paper, we have presented 
a comprehensive review of the use of different entropy 
features for recognizing human emotions using EEG sig-
nals. It should be acknowledged that the identification of 
real-time emotions is still in its initial phase of evolution. 
Because, emotions are unique to each person, the provi-
sion of a standardized method for categorizing various 
primary emotions remains a challenge. The majority of 
the framework created to date is subject dependent, and 
subject-independent methods need more precision. The 
emotion changes in the EEG signal can be observed for a 
very short period of about 3–15 s. Therefore, extracting 
the data within the subject at the moment of emotional 
elicitation will produce better result which requires a 
window-based framework in EEG processing for emotion 

Fig. 3  Classification accuracy of different methods with their publication year
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recognition. Work can be further extended for different 
purposes like optimization of the above algorithm and 
development of a unified algorithm. There is a need for 
a larger-scale and well-balanced data set to avoid bias 
and over-fitting of the classification task. Human emo-
tions are found to be predominantly allocated in frontal 
and temporal lobes, and the gamma-band is ideally suited 
for identifying emotions. Evidently, not all electrode loca-
tions are useful for the identification of emotion. Fur-
ther studies are needed for automatic choice of selecting 
the suitable and optimal EEG electrode placement to 
enhance the efficiency and reduce the confusion of mus-
cle signal. Added, issues such as choosing more efficient 
EEG emotional attributes and reducing the interference 
from the exterior surrounding are required to be stud-
ied. Sturdier and progressive feature extraction tech-
niques such as machine learning should be considered. 

Emotion experiences can differ in both individuals male 
and female, so developing a cross-gender EEG emotion 
detection framework can be a crucial problem to be 
investigated for emotion identification to be more gen-
eralized. Some research shows that correlation analysis 
is not really adequate to predict the purpose of certain 
functionalities as well as to determine the places of rel-
evance. In forthcoming researches, more investigation 
from multiple points of view employing different meth-
ods will be expected. The use of the smallest number of 
EEG channels can probably boost user comfort and cut 
down the related computation cost. Another potential 
research work could be to develop a framework based 
on these features for emotion-related to mental disorder 
identification such as depression.

Further studies can also be done on the influence of 
other unused entropy features for emotion recognition. 

Table 1  Summary of studies conducted on EEG-based emotion recognition using entropy as a feature

Reference No. of subjects Emotions Features Database Classifier Accuracy

[30] 3 men, 3 women Positive, negative ES, DE, DASM, RASM Private SVM
KNN

76.56%
84.22%

[77] – Positive, negative Sample entropy – SVM weight classifier 85.11%

[51] 16 men,           
16 women

Arousal, valence Wavelet entropy DEAP SVM 65%

[29] 7 men, 8 women Positive, neutral, negative Dynamic sample entropy SEED SVM 64.15%

[50] 6 men, 7 women Positive, neutral, negative Power spectral entropy, 
correlation dimension

Private SVM 79.58%
82.58%

[76] 5 men Happy, neutral, disgust RAQA; Shannon’s entropy 
and 5 others

eNTER-
FACE06_
EMOBRAIN

Multilayer percep-
tion          

36%

Time-delay neural 
network

36%

Probabilistic neural 
network

99.96%

[75] 5 Happy, sadness, fear RAQA; entropy and 5 
others

Private SVM 92.24%

[3] 16 men,           
16 women

Excitement, happiness, 
sadness, hatred

Shannon’s entropy and 3 
others

DEAP Multiclass SVM 94.097%

[33] 5 men, 5 women Happy, calm, sad, fear EMD approximate entropy Private Integration of deep 
belief network and 
SVM (DBN-SVM)

87.32%

[4] 16 men,           
16 women

Excitement, happy, sad-
ness, hatred

Approximate entropy, 
K-S entropy, permutation 
entropy, singular entropy, 
Shannon’s entropy

DEAP                                     SVM 59.8%                

7 men, 8 women Positive, neutral, negative Spectral entropy and 12 
other nonlinear entropy 
methods

SEED 83.33%

[71] 16 men,           
16 women

2 and 3 level of labeling in 
arousal and valence space

Multiscale fuzzy entropy DEAP SVM 2-class
90.81% (A)
90.53% (V)
3-class
79.83% (A)
77.80% (V)

[74] 16 men,           
16 women

HAHV, HALV, LAHV, LALV EMD
Sample entropy

DEAP SVM 94.98% (binary class)
93.20% (multiclass)
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Also, there is still a need to reduce the calculation cost 
of used entropies. EEG does have a very high temporal 
resolution but a relatively lower spatial resolution. So, the 
precise classification can be gained by integrating EEG 
with some higher spatial resolution signals such as NIRS 
and fMRI.

There are in total 8 valence levels of emotion. Most of 
the researches done to date is rough emotion classifica-
tion, i.e., it only classifies a maximum of three or four 
types of emotion. Future research must focus on the clas-
sification of more detailed or all eight types of valence 
levels. Figure 4 summarizes the paper, presenting direc-
tion for future study, issues, and developments in EEG-
based human emotion recognition from our viewpoint. It 
illustrates several issues associated with emotion recog-
nition in BCI framework, which in general is divided into 
two domains: technology based and user based. It also 
shows how the advances in technology and trends would 
affect the field of EEG-based human emotion recogni-
tion research. Emotion identification in the field of BCI 
continues to be challenging and needs more research and 
experimentation. Higher research on designing a reliable 
and emotion classification system is still a needful job to 
implement a seamless communication between humans 
and machines.
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