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Abstract 

Neuroimaging, in particular magnetic resonance imaging (MRI), has been playing an important role in understanding 
brain functionalities and its disorders during the last couple of decades. These cutting-edge MRI scans, supported by 
high-performance computational tools and novel ML techniques, have opened up possibilities to unprecedentedly 
identify neurological disorders. However, similarities in disease phenotypes make it very difficult to detect such disor-
ders accurately from the acquired neuroimaging data. This article critically examines and compares performances of 
the existing deep learning (DL)-based methods to detect neurological disorders—focusing on Alzheimer’s disease, 
Parkinson’s disease and schizophrenia—from MRI data acquired using different modalities including functional and 
structural MRI. The comparative performance analysis of various DL architectures across different disorders and imag-
ing modalities suggests that the Convolutional Neural Network outperforms other methods in detecting neurological 
disorders. Towards the end, a number of current research challenges are indicated and some possible future research 
directions are provided.
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1  Introduction
Alzheimer’s disease (AD), Parkinson’s disease (PD) and 
schizophrenia (SZ) are three most common neurologi-
cal disorders (NLD) which are characterized by the dis-
ruption of regular operations of brain functions [1–3]. 
A patient with either of these three NLD puts a heavy 
burden on the family as well as the health system. It is 
therefore imperative to detect these disorders at the earli-
est stage possible so that their progression can be slowed 

down, if not fully stopped [4, 5]. Towards this aim, a 
number of different neuroimaging techniques (such as 
magnetic resonance imaging (MRI), computed tomogra-
phy (CT) and positron emission tomography (PET)) and 
deep learning (DL)-based analysis methods have been 
developed to classify these disorders for early detection 
[3, 6–8], and to devise appropriate treatment strategies 
[9–11].

Over the last decade machine learning (ML) has been 
successfully applied to biological data mining [12, 13], 
image analysis [14], financial forecasting [15], anomaly 
detection [16, 17], disease detection [18, 19], natural lan-
guage processing [20, 21] and strategic game playing [22]. 
In particular, the success of DL algorithms in computer 
vision, researchers of neuroimaging have also strived to 
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use DL-based approaches for the detection of these NLD 
from MRI scans [3, 23–25]. Also, it is noteworthy that 
multimodal approaches including data fusion has also 
been used in diverse fields including diagnosis of neuro-
logical disorders [26] as well as providing personalized 
services [27]. As shown in Fig. 1, the number of research 
findings reported in peer-reviewed avenues have been 
increasing every year. Out of the large number of DL 
architectures, researchers have been mainly relying on 
Convolutional Neural Network (CNN)-based approaches 
for detecting these NLD from MRI data in comparison 
to other architectures such as Recurrent Neural Network 
(RNN) and Long–Short Term Memory (LSTM), Deep 
Neural Network (DNN), and Autoencoder (AE) (see 
Fig.  1a). Additionally, the detection of AD has attracted 
much more attention in comparison to PD or SZ in the 
published literature over the years from 2015 to 2019 (see 
Fig. 1b).

Due to the increasing interest in this field and the surg-
ing number of reported approaches to analyze the MRI 
scans, it is a timely demand to summarize the existing 
literature to facilitate the selection of an appropriate 
technique for a given task and dataset. There exist some 
reviews summarizing the advances from different per-
spectives. One among them aims to synthesize the appli-
cations of ML and big data to study mental health [6]. 
Various ML-based tasks have been explored on connec-
tome data from MRI which aims to better diagnose neu-
rological disorders [28]. In [29] authors have investigated 
the application of DL to better understand and diagnose 
PD. A detailed survey on DL applied to the analysis of 
various medical image such as neuro, pulmonary, pathol-
ogy, etc., has been conducted in [30]. However, the pre-
processing and data selection are not discussed clearly 

in any of the available reviews. To mitigate this gap, the 
objective of this work is to put forth an overview of the 
DL’s application in detecting NLD (i.e., AD, PD and SZ) 
from MRI scans along with popular open-access datasets 
and pre-processing methods. Therefore, the main contri-
butions of this work are:

•	 A succinct introduction with appropriate sign-post-
ing to different DL architectures and pre-processing 
techniques used in detecting abnormalities from the 
MRI scans. This will set the scene for a new entrant 
to the field and serve as a future reference.

•	 A detailed account on the existing studies which 
reported the application of DL on MRI scans for the 
detection and classification of AD, PD and SZ. To 
the best of our knowledge, this is the first attempt in 
reviewing the DL-based classification approaches of 
these three NLD variants from MRI.

•	 A full report of the popular open-access datasets 
along with their sources and detailed information 
about the participants (e.g., number of subjects, age, 
gender, etc.), and MRI scan modality. This will facili-
tate the validation and comparison of a new method’s 
performance using open-access benchmark datasets.

•	 A focused discussion on the current research chal-
lenges and some future research directions to guide 
the new entrants towards impactful development.

The subsequent sections of the paper are organized as: 
Sect. 2 succinctly describes various DL architectures used 
in analyzing MRI scans to detect AD, PD and SZ. Sec-
tion  3 discusses the popular pre-processing techniques 
while sect. 4 provides the detailed account on the detec-
tion of AD, PD, and SZ. Section  5 presents the existing 
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Fig. 1  Peer-reviewed research results published during the last 5 years reporting the usage of DL in detecting NLD from MRI data. The Scopus 
database (https​://www.scopu​s.com/) was searched with search-strings containing keywords “Deep learning” and “MRI” in conjunction with each of 
the NLD (“Alzheimer’s”, “Parkinson’s”, and “schizophrenia”) and the obtained results were categorized basing on the DL architectures (a) and diseases 
(b). A. In the literature the CNN has been reported much more frequently in comparison to the RNN, LSTM, DNN, and AE. B. The main effort appears 
to cluster around AD in comparison to PD and SZ

https://www.scopus.com/
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open-access datasets available for exploration. Section 6 
includes performance analysis of the reviewed methods 
and sect. 7 offers challenges and future perspective with 
sect. 8 concludes the work.

2 � Overview of deep learning techniques
DL is a sub-field of ML that can be used to build models 
which learn high-dimensional features from data. It has 
attracted huge attention in the last few years especially 
in image analysis. A number of DL architectures such as 
CNN, DNN, RNN, AE, Deep Belief Network (DBN), and 
Probabilistic Neural Network (PNN) have been reported 
in the literature. These structures possess the capability 

to classify various NLD with very high accuracy [12, 13]. 
Figure 2 shows an overview of the pipeline employed the 
acquisition and analysis of the MRI scans. 

2.1 � Convolutional neural network (CNN)
A CNN or also known as ConvNet (used alternatively in 
the text) (Fig.  3a) usually takes an input image, assigns 
learnable weights with biases to different aspects in the 
image subsequently differentiating one picture from the 
other. CNN uses convolution operation in place of simple 
matrix multiplication in at least one of their layers. It is 
mainly used in an unstructured dataset (e.g., image and 
video). 2D-convolutional kernels are used by 2D-CNN 

Fig. 2  Overview of DL-based prediction and classification pipeline of neurodegenerative disease from different variants of MRI

Fig. 3  DL Architecture
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for the prediction of segmentation maps of a single slice. 
2D-CNN can leverage features from only spatial dimen-
sions (height and width). Since 2D-CNN takes only a sin-
gle slice as input, they intrinsically fail to extract context 
information from adjacent slices. From practical perspec-
tive, voxel information from adjoining slices might con-
tain enough information for the classification tasks. On 
the other hand, 3D-CNN can preserve temporal dimen-
sions by predicting the volumetric patch of neuroimag-
ing data [31]. Although 3D-CNN possesses the ability to 
anchorage interslice context information which leads to 
improved performance, but comes with a computational 
cost resulting in the increased number of parameters to 
be used by the 3D-CNNs. The various architecture of 
CNN are available (e.g., LeNet, AlexNet, VGGNet, Goog-
LeNet, ResNet, ZFNet, etc.) and can be used to build 
models for MRI analysis.

2.2 � Deep belief network (DBN)
DBN (Fig.  3b) is a mode of deep neural network (NN) 
which consists of a combined layer of a graphical model 
holding both directed and undirected edges. It consists 
of multiple layers of hidden units, in which each layer 
is linked with each other except the input units. DBN 
is mainly constituted of a stack of restricted Boltzmann 
machines (RBM) where each RBM layer needs to com-
municate with both the foregoing and successive layers. 
The nodes of any single layer do not communicate with 
each other distally. DBN are used to identify, group, and 
originate images, video clips, and motion-capture data. 
Its real-life application is Electroencephalography: An 
electrophysiological scanning method to document the 
electrical venture of the brain [32].

2.3 � Autoencoder (AE)
The AE (Fig.  3c) NN learns to facsimile its input to its 
output in an unsupervised manner. It has an internal 
(hidden) layer which is used to describe code to con-
stitute the input. An AE consists of two main parts: 
an encoder which maps the input to the code, and a 
decoder which in turn maps the code to the remodeling 
of the original input. An AE has three common vari-
ants named as sparse AE, denoising AE, and contractive 
AE. The sparse AE architecture includes more hidden 
units than inputs yet only a limited number of the hid-
den units should be enabled to be active at any point of 
time forcing the model to retort to the unique statistical 
traits of the input data used for training. On the other 
hand, denoising AE takes a partially distorted input and 
is trained to reconstruct the original genuine input. And 
contractive AE gets to add an explicit regularizer in its 
objective function which gets to force the model to mas-
ter a function that is resilient to a slight disparity of input 

values. An adaption of AE incorporating DL architecture 
is stacked AE (SAE) where multiple AE layers are stacked 
[33] to provide updated functionality by using a much 
detailed version of raw data with likely looking features 
to train a classifier with specified different contexts, sub-
sequently finding better accuracy than training with raw 
data.

2.4 � Recurrent neural network (RNN)
RNN (Fig.  3d) is known as memory network which 
remembers the past and the decision it takes is influ-
enced by what it has learned from the past. Thus an RNN 
can be considered as an architecture that consists of mul-
tiple copies of the same network where every other is 
passing a message to a successor. The principal and most 
important characteristic of RNN is its Hidden state. The 
function of the hidden state is to remember certain infor-
mation about a sequence. The same parameters are used 
by every input as it has to perform the same task on all 
the inputs (hidden layers) for producing the output. This 
results in the reduction of the complexity parameters, 
unlike the other NNs. Application of RNN comprises 
in speech recognition, language modeling, translation, 
image captioning, etc.[34].

Long–Short Term Memory (LSTM) represents a vari-
ant of RNN. The main function of LSTM is to help to pre-
serve the error which can be back-propagated through 
different time and layers. In LSTM information is stored 
outside the natural flow of the RNN in a gated cell. Like 
a computer’s memory, the cell is used for storing, writing 
to, and reading information. The cell itself decides about 
what to store, and when to allow read and update of the 
information via gates that tend to open and close when 
required.

2.5 � Deep neural network (DNN)
A NN having more than one hidden layer is generally 
referred to as DNN (Fig.  3e). In DNN every layer per-
forms certain types of tasks embedding, collocating and 
ordering in a process. In deep feed-forward NN are also 
known as multi-layered perceptron (MLP) of neurons, 
information can travel only one-way (forward) with no 
feedback in the network. MLPs are capable of handling 
the complex non-linearly separable relations between 
input and output. In contrast, feedback NN has some 
kind of internal recurrence and hence feedback to a 
neuron or layer that has already received and processed 
that signal [35]. A substantial amount of annotated data 
is required for training a DNN. DNN can separate and 
extract internal features of millions of labeled images if 
trained with proper training algorithm.
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2.6 � Probabilistic neural network (PNN)
PNN (Fig. 3f ) is used for classification and pattern recog-
nition tasks. In PNN the probability distribution function 
(PDF) is estimated using a Parzen window comprising 
a negative function. Then the probability of a new input 
data is computed using the PDF function. And finally, 
Bayes rule is applied to assign the new input data with 
the class that has the highest posterior probability. This 
method contributes to minimizing the misclassification 
of data [8].

3 � Data pre‑processing techniques
The pre-processing step is important to enhance the 
quality of experimental data and preparing them for fur-
ther statistical analysis. Different modalities of MRI scans 
acquired from several sources are susceptible to a broad 
range of noise including motion, average signal intensity, 
and spatial distortions which need to be removed from 
data to ensure correct analysis. There are a number of 
pre-processing techniques which have been applied on 
MRI and listed in Table 1.

3.1 � Scaling
Scaling is important to correct several issues in MRI 
scans including image resizing (IRE), image registration, 
resolution enhancement, correction, and so on.

Image registration (IR)  Image registration is widely 
used in medical image analysis to align multiple images 
to verify the spatial correlation of anatomy across dif-
ferent images. Two types of registration algorithms are 
available: linear and non-linear. Linear registration (LRg) 
either exploits six-parametric rigid transformation (rota-
tion and translation on x, y, and z axes) or 12-paramet-
ric affine transformation (rotation, translation, scaling, 
and shearing on x, y, and z axes) and global; whereas, 
non-linear registration can achieve a higher degree of 
elasticity which can model local deformation [8, 34, 61]. 
A toolbox “A Fast Diffeomorphic Registration Algorithm 
(DARTEL)” has also been reported to be useful in image 
registration [37].

Intensity nonuniformity correction (INUC) The smooth 
intensity variation in MRI scans caused by several factors 
such as non-uniform reception of coil sensitivity, radio 
frequency (RF) excitation field inhomogeneity, eddy cur-
rents driven by field gradients and electrodynamic inter-
actions as in RF penetration, and standing wave effects 
as in intensity non-uniformity. In modern MRI scanners, 
these variations are tenuous enough that makes it diffi-
cult to detect. A solution to this approach comprises the 
usage of the convex accretion with an insistent method 
to enhance B1 uniformity in an anatomic region of inter-
est (ROI) by differing the enormity and phase of every 

RF channel element separately [40–42]. A correction for 
nonlinearities in the gradients are applied by the scan-
ner, called gradwarp. This correction tends to make the 
images spatially more accurate [41]. Large variance in 
the human brain’s response to substantial field inhomo-
geneity results in image distortion. Because the inhomo-
geneity field is slowly differing, it is a common practice 
to assume a smooth histogram. The N3 bias correction 
method is mostly used for that which is an iterative 
method that seeks the smooth multiplicative field maxi-
mizing the high-frequency content of the distribution of 
tissue intensity [41].

Distortion correction (DC) Functional MRI (fMRI) 
sequences generally pick up gradient echoes resulting in 
sensitivity to magnetic inhomogeneity (T2*) effects. Sig-
nal dropout near the skull base and spatial distortions 
are caused by this affecting anterior temporal and fron-
tal lobes. These distortions can be reduced by applying 
available methods such as field mapping, unwarping, and 
phantom-based distortion correction [42].

Bias correction and bias regularization (BC, BR)  A 
low-frequency but smooth bias field signal corrupts MRI 
images, specifically those which are produced by old MRI 
machines, for which several bias correction techniques 
might be applied as well [43–45].

Contrast enhancement (CE) A contrast enhancement 
method can be used to stop the clustering in histogram 
with the purpose of correcting the distribution. In [46], a 
CE method named CLAHE was used.

3.2 � Correction
Slice timing correction and motion correction are 
very important pre-processing steps applied to correct 
the slice-dependent delays of image slices and subject 
motion, respectively.

Slice timing correction (STC) Most fMRI studies do not 
acquire every slice in a volume at the same time. It signi-
fies that the signal recorded from one slice might be off-
set in time by up to various seconds when compared to 
the other [48]. Thus, the time differences among the slices 
need to be accounted for. There have been two basic 
strategies for slice timing correction. The most com-
monly used method is data shifting where the recorded 
points are moved to contemplate their proper offset 
from the time of incitement. Interpolation of points is 
required for the method to fit the fixed, which is a TR-
based timing grid using Hanning-windowed Sinc inter-
polation that produces some obscure and atrophy of the 
data as followed in [31]. Another strategy is model shift-
ing, where the anticipated location of the hemodynamic 
response function (HRF) is differing [62]. Slice timing 
correction can also be executed by using FEAT module 
of FSL library [47]. Moreover, Least squares approach 
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with 6 parameter spatial transformation is also used as a 
method for slice timing correction in [51].

Motion correction (MC) The largest source of error in 
fMRI studies is head motion which needs to be corrected 
during the acquisition of functional data. Trivial head 
movements also introduce unwanted variance in voxels 
and reduces the quality of data. Motion correction mini-
mizes the impact of movement on image data by orient-
ing the data to a reference time volume, application of 

which is found in [48, 54, 63]. Motion correction can also 
be performed by MCFLIRT module of FSL library [31, 
47].

3.3 � Stripping/trimming
The skull stripping/brain extraction is a preliminary step 
in MRI analysis. A pre-processing step of trim edges (TE) 
has also been reported in the same context [36].

Table 1  Data pre-processing techniques applied to MRI and fMRI images

FWHM-GK Full-width half-maximum (FWHM) Gaussian kernel, SPM statistical parametric mapping, SD standardization, ALT affine linear transformation, JWF Jacobian 
of wrap field, GSF Gaussian smoothing filter, FST Free Surfer Tool, ANTs advanced normalization tools, GW Gradwarp, B1-NU B1-non-uniformity, PB phantom based, 
FSL-BET FMRIB Software Library-Brain Extraction Tool, FSL-MCFLIRT motion correction using FMRIB’s linear image registration tool, FSL-FLIRT FMRIB’s linear image 
registration tool, FEAT FMRI expert analysis tool, CLAHE contrast limited adaptive histogram equalization, LLL local label learning, DARTEL diffeomorphic anatomical 
registration through exponentiated Lie algebra, LR linear registration, LSA least square approach, 6-PST 6 parameter spatial transformation, EPI echo planar imaging, 
NRBAC nonparametric region-based active contour, MICO multiplicative intrinsic component optimization
1  MRI
2  fMRI

Type Ref. Technique (applied methods)

Scaling [36] Image resize

[8, 34, 37–39] Image registration ( AR2 , DARTEL1 , LRg)

[40–42] Intensity non-uniformity correction (GW1 , B1-NU1 , N31)

[42] Distortion correction (PB1)

[43–45] Bias correction/regularization (MICO1)

[46] Contrast enhancement (CLAHE1)

Correction [31, 47–52] Slice timing correction (HSI2 , FEAT2 , LSA2 , 6-PST2)

[31, 34, 40, 47–51, 53–55] Motion correction (FSL-MCFLIRT2 , LSA2 , 6-PST2)

Stripping and trimming [39, 40, 44, 46, 53, 56, 57] Skull stripping (NRBAC1)

[47] Brain extraction (FSL-BET1 2)

[36] Trim edges

Normalization [33, 34, 37, 39, 42, 47, 49, 51, 56, 58, 59] Normalization (SPM 1,2 , SD1 , ANTs1 , EPI2)

[36, 40] Intensity normalization

[31, 43, 45, 47, 50, 52, 54, 55] Spatial normalization (ALT1 2 , FSL-FLIRT2 , DARTEL2)

[32] Z-score normalization

[39] Numerical normalization

Filtering [46, 50, 51] Basic filtering (GSF1)

[34] Spatial filtering

[34, 48, 49, 51] Temporal filtering

[8] Weiner filtering

[31, 47, 48, 53] High-pass filtering

Smoothing [45, 50, 58] Basic smoothing (FWHM-GK2)

[31, 47–49, 51, 52, 54, 59] Spatial smoothing (FWHM-GK2)

Distinct techniques [32] Linear regression

[49] Linear detrend

[31, 37, 43] Modulation (JWF1)

[38, 44, 59] Segmentation (LLL1)

[60] Voxel-based morphometric

[36] Cortical reconstruction

[34, 48] Denoising (tCompCor2)

[46, 57] Data augmentation
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Skull stripping (SST, BE) Skull stripping/brain extrac-
tion is one of the most important pre-processing 
steps for eliminating non-brain tissues from brain MR 
images. It is important for many clinical applications 
and data analysis. To improve analysis speed and exper-
imental accuracy of data, automated skull stripping is 
one of the helpful strategies. Brain extraction tool of 
FMRIB Software Library (FSL) has been used exten-
sively for this purpose [47, 53]. Multiplicative intrinsic 
component optimization is applied for skull stripping 
in [44].

3.4 � Normalization (NM)
Normalization is a process of aligning and enclos-
ing MRI data to a comprehensive anatomic template. 
Because of the difference in every person’s brain in 
terms of size and shape, normalization needs to be 
done to facilitate the comparison of one brain MRI 
to another in order to interpret them onto a common 
shape and size. Normalization tends to map the data 
acquired from discrete subject-space to a reference-
space containing a template and a source image [64]. 
Usage of tools like Statistical Parametric Mapping 
(SPM) and Advanced Normalization Tools (ANTs) have 
been widely used in this context [33, 42]. Standardiza-
tion has also been used simultaneously [33].

Intensity normalization (IN)  Intensity normalization 
is used to reduce the intensity variation caused due to 
usage of different scanners or parameters for scanning 
different subjects or the same subject at disparate time 
[36, 40].

Spatial normalization (SN) spatial normalization warps 
the MRI scans to a similar stereotomical space, such that 
one MRI scan’s particular location matches other MRI 
scans from another subject [31, 43, 45, 52, 54, 55]. A 
common technique is affine linear transformation (ALT) 
[31, 37]. The FMRIB’s Linear Image Registration Tool or 
FLIRT module is also used for this purpose [47]. Moreo-
ver, diffeomorphic anatomical registration through expo-
nentiated Lie algebra (DARTEL) procedure is used for 
spatial normalization in [50].

Z-score normalization (ZN) It is a strategy of normaliz-
ing data to avoid outlier issues by defining the divergence 
of sample data with respect to the mean of a distribution 
[32].

Numerical normalization (NNM) Numerical nor-
malization is also found in the study which refers to the 
process of converting numerical values into a new range 
using a mathematical function. It contributes to make 
different experimental data values in different scales 
comparable resulting in their relationship to clearly stand 
out [64].

3.5 � Filtering (F)
It refers to the process of modifying or enhancing an 
image by emphasizing certain features or removing other 
features [50, 51]. Growing skull fracture or GSF has been 
reported in this study for reducing sharp pixel transitions 
between pixels [46, 58].

Spatial filtering (SF) Spatial filtering is that image 
enhancement technique which is used directly on pixels 
of an image where, value of the processed current pixel 
depends on both itself and adjacent pixels [34].

Temporal filtering (TF) Temporal filtering removes 
frequencies that are not of interest within the raw signal 
which substantially improves the signal-to-noise ratio 
(SNR) [34, 48, 49].

Weiner filtering (WF) One of the most prevalent signal-
dependent noises in MRI scan is Rician noise which can 
be minimized using a popular filtering technique known 
as Weiner filter [8].

High-pass filtering (HPF) fMRI data tend to manifest 
low-frequency drifts at times, which is characterized 
by physiological noise and by physical (scanner-related) 
noise. These signal drifts might affect substantially statis-
tical data analysis, if not removed. High-pass filters func-
tion comes into this context by cutting off frequencies 
below an acknowledged threshold which should be below 
the lowest frequency of interest [31, 47, 48, 53, 65].

3.6 � Smoothing (SM)
Smoothing refers to the process of reducing noise within 
an image which subsequently produces a less pixelated 
image [45, 58].

Spatial smoothing (SS) Spatial smoothing refers to the 
averaging of signals from adjoining voxels. It enhances the 
SNR but reduces spatial resolution, obscures the image, 
and smudges initiated areas into adjoining voxels. Since 
neighboring voxels are coordinated in their function and 
blood supply, the process can be difficult to perform. 
Within this context, the objective of spatial smoothing 
copes with functional anatomical variability which has 
not been compensated by spatial normalization (“warp-
ing”) thus, improving the SNR. Spatial smoothing is con-
ducted with a spatially stationary Gaussian filter in which 
the user must ordain the kernel width in mm “full width 
half max” [31, 47, 48, 52–54]. This Gaussian kernel is a 
kernel which possesses the shape of a normal distribution 
curve [66].

3.7 � Distinct techniques
Apart from the techniques described above, some other 
pre-processing techniques have been reported in the 
study of the neurological disorders.
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Linear regression (LR)  Application of linear regres-
sion has been found in [32] to model the relationship 
between morphometric features and confounders.

Linear detrend (LD)  Linear detrend is applied in 
those spectral estimation methods which are sensitive 
to the existence of linear trends being erratic for low 
frequencies [49].

Modulation (MD) A compensation or modulation 
is applied due to the contraction/enlargement of data 
of interest caused by the non-linear transformation. 
These data of interest comprise voxel of each regis-
tered grey matter image and is multiplied by the Jaco-
bian of the warp field [31, 38].

Segmentation (SG) The process of segmentation is 
characterized by which the brain is partitioned into 
neurological sections following a specified template. It 
can be rather generalized for segmenting the brain into 
white matter, gray matter and cerebrospinal fluid. Seg-
mentation is used for different purposes. In structural 
MRI (sMRI), this facilitates the normalization process. 
It also aids further analysis by the use of a specific 
segmentation as a mask and also can be used as the 
definition of a specific ROI [67]. However, local label 
learning has been used in [38].

Voxel-based morphometric (VBM) Voxel-based mor-
phometric which actually uses statistics for identifying 
deviations in brain anatomy between groups of sub-
jects has been used in [60].

Cortical reconstruction (CR) Cortical reconstruction 
is required for quantitative analysis of human brain 
structure [36].

Denoising (DN) MRI acquired from different sources 
are affected by noises. It results in loss of information 
associated with the image that might affect the quality 
of disease diagnosis or treatment. CompCor is a physi-
ological noise correction method that exploits the 
noise ROI (e.g., white matter, ventricles, large vessels, 
and so on) to accurately predict the physiological fluc-
tuations in gray matter regions. Noise ROI is defined 
using anatomical data to detect voxels that consist of 
either white matter or cerebrospinal fluid (CSF). A 
principal component analysis (PCA) is used to explain 
the variance in the time-series data derived from the 
noise ROI. Significant principal components (PCs) are 
fed as covariates in a general linear model (GLM) as an 
estimate of the physiological noise signal space. Voxels 
with largest temporal standard-deviation are known 
as tCompCor and have also been used in a number of 
studies [34, 68].

Data augmentation (DA) Data augmentation tech-
niques are applied when the number of images for dif-
ferent classes become unbalanced [46, 57].

4 � Identification of neurological disorders
4.1 � Alzheimer’s disease
AD is characterized by escalating mental degradation 
that generally occurs in older age, due to deterioration 
of specific brain regions. However, a lot of research have 
been conducted to correctly discover the cause of this 
degeneration and automated ways to detect the patterns 
of degeneration from neuroimages.

The authors in [33] have reported a DNN-based 
approach which consists of sparse AE and CNN by apply-
ing 3D convolutions on the whole MR images from sub-
jects who are over 75 years of age. In this work, authors 
have obtained satisfactory classification results by using 
a 3-way classifier among healthy control (HC), AD, and 
mild cognitive impairment (MCI), i.e., HC vs. AD vs. 
MCI with an accuracy of 89.47%; and three binary clas-
sifiers (AD vs. HC, AD vs. MCI and MCI vs. HC). The 
approach captured local 3D patterns using the 3D-CNN 
which yielded better performance than 2D convolutions. 
Although in this experiment the convolutional layer has 
been pre-trained with an AE, it has not been fine-tuned 
to improve the classification performance.

The authors in [31] have differentiated HC and AD in 
older adults by extracting scale and shift-invariant low 
to high-level features using CNN. In this work, they pro-
posed two pipelines of a workflow consisting of struc-
tural fMRI data with a classification accuracy of 99.9% 
and structural MRI data with a classification accuracy 
of 98.84%. In the first block of the pipelines, substantial 
pre-processing was performed to remove potential noise 
and distortion from the data. Next, a convolutional layer 
of CNN architecture which consisted of a set of learn-
able filters, serving as a shift and scale-invariant opera-
tor, extracted low- to mid-level features (also considered 
high-level features in GoogleNet). In the fMRI pipeline, 
both LeNet and GoogleNet had been implemented which 
were trained and tested by a massive number of images 
created from the 4D fMRI time series. The proposed 
model has been a highly accurate and reproducible. They 
have also contributed to characterizing multimodal MRI 
biomarkers. As for the limitation, this work has con-
ducted experimentation concerning a fixed age-group 
limiting the possibilities to explore the patterns of differ-
ent age groups.

Similarly, authors in [53] applied CNN (precisely, 
LeNet) to detect AD from HC. The pipeline consists of 
shift and scale-invariant features extraction by CNN fol-
lowed by the LeNet model based on CNN model pro-
vided by Caffe DIGITS 0.2 from Nvidia to perform binary 
image classification. The classification accuracy obtained 
from this study was 96.86%.

Authors in [74] reported another framework by using 
hyperparameters from a very deep image classifier 
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based on CNN to diagnose AD’s different stages. Here, 
the proposed model eliminates the necessity for the 
generation of a hand-crafted feature that transforms 
input to output by building a feature hierarchy from 
simple low-level features to complex high-level fea-
tures. The proposed framework has utilized hyper-
parameters from a very deep classifier, helping feature 
learning from small medical image datasets. This work 
is also the first one for detecting AD and classification 
utilizing DL methods on the OASIS dataset with an age 
group of 18–96 years. Classification accuracy achieved 
was 73.75% during a fivefold cross-validation. However, 
the authors have not validated the performance metric 
comparing with previous traditional methods.

Farooq et al. also used CNN for multiclass classifica-
tion among AD, prodromal stages of AD, and HC [43]. 
They have proposed a CNN-based model where pre-
processing of MRI images is first conducted to obtain 
grey matter images which are later passed to the CNN. 
In it, GoogLeNet and ResNet models have been used 
to train and test the CNN. The authors reported a 4% 
increase in classification accuracy compared to other 
methods selected from the literature. A very high 4-way 
(AD/MCI/LMCI/NC) accuracy of 98.8% and sensitiv-
ity of 97.9% for three classes (AD/MCI/NC). They have 
also contributed by not incorporating pre-trained fea-
tures still enabling the network to predict the classes 
accurately.

Furthermore, Spasov et al. presented a parameter effi-
cient 3D-CNN model to predict MCI to AD conversion 
along with the classification of AD and HC [39]. The 
model is based on 3D separable and grouped convolu-
tions to extricate detailed descriptive features from sMRI. 
In this work, the authors have contributed in early iden-
tification of the MCI patients with a high risk of conver-
sion to AD within 3 years. With a classification accuracy 
of 86% they also achieved sensitivity 87.5% and specificity 
85.7% exploiting tenfold cross-validation. As the model 
contained parameter efficient layers, it restricted overfit-
ting in exploiting the AD and HC data.

In another study, Böhle et  al. classified AD and HC 
using layer-wise relevance propagation (LRP) of CNN 
on MRI data [42]. The authors compared LRP to guided 
backpropagation (GB), a gradient-based method, which 
revealed that LRP heatmaps can contribute to more 
accurate detection. It has also been reported that the LRP 
method is useful in a clinical context for a case-by-case 
analysis. As for the limitations, the heatmaps have no 
ground truth as they are only an approximation to what 
dominates the classifier in its decisions. Also, heatmaps 
just highlight voxels contributing to a certain decision 
of a classifier which does not allow making an assertion 
about the underlying causes. The study reported a class 

score of more than 75% for AD classification by applying 
fivefold cross-validation.

Basaia et al. also used CNN to distinguish among AD, 
MCI conversion to AD, and stable MCI based on a single 
cross-sectional brain MRI scan [37]. This study reported 
a successful overcome of the limitation of generalizing 
the findings across different centers, scanners, and neuro-
imaging protocols to attain both reproducibility and reli-
ability of results. Certain drawbacks comprise that they 
could not exclude the presence of future conversion MCI 
among stable MCI patients. Also in order to improve the 
prediction capability of the model, it needs to be tested 
with cognitive, clinical, PET, and genetics biomarkers.

Ullah et al. came up with a CNN model to detect AD 
and Dementia from 3D MR image [73]. This model can 
be extended to generalize other disease detection as well. 
However, the accuracy of this experimentation could be 
enhanced with more training. They achieved an accuracy 
of 80.25% by applying cross-validation.

Amoroso et al. proposed a pure ML approach exploit-
ing Random Forest for feature selection and a DNN for 
classification to early detection of AD [69]. This work 
was ranked third in the “International challenge for auto-
mated prediction of MCI from MRI data” which was 
hosted by the Kaggle platform and the work achieved 
an overall accuracy of 34.8 % by applying tenfold cross-
validation over other participating teams. Although the 
classification results obtained by the authors with DNN 
got them to attain one of the most precise predictions in 
participant’s roaster, the multiclass classification accu-
racy is far from getting to competent results for clinical 
applicability.

A long–short term memory (LSTM)-based AE has 
been reported in [71] which consists of RNNs to learn 
compact and informative representation from longitudi-
nal cognitive measures characterizes and facilitates the 
early prediction of MCI progression to AD. This work 
has achieved notable performance for predicting MCI 
subjects’ progression to AD using data within 1-year fol-
low-up. Also, the proposed model built on data of later 
time points showed better performance than those which 
were built on data of earlier time points. On ADNI-1 
they achieved a C-index value of 0.901 and 0.889 on 
ADNIGO-2.

Luo et  al. provided an automatic AD detection algo-
rithm using CNN on 3D brain MRI in which the 3D 
topology of the whole brain is considered [41]. The CNN 
architecture consists of three consecutive groups of pro-
cessing layers, two fully connected layers, and a classifi-
cation layer. In this work, the 3D topology of the brain 
has been considered as a whole in AD recognition which 
has resulted in an accurate recognition with a sensitivity 
value of 1 and specificity of 0.93.
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Dolph et  al. reported a model consisting of stacked 
AE (SAE) and DNN for multiclass classification that 
can learn complex non-linear atrophy patterns for clas-
sification of AD, MCI, and NC using both in-house and 
public-domain standardized CADDementia framework 
[40]. The authors produced two model specifications 
using blind datasets. Along with accuracy measurement, 
the authors also measured true positive fraction (TPF) to 
be 62.1% for AD, 54.5% for CN and 39.5% for MCI for 
the first model. Then for the second model, the authors 
achieved TPF of 64.1% for AD, 55.8% for CN and 51.6% 
for MCI. They have also contributed to include novel 
fractal-based texture fractal dimension co-occurrence 
matrix (FDCM) combining with well-known volumetric, 
cortical thickness, and surface area features for multiclass 
AD classification.

Bäckström et  al. proposed a 3D-CNN for automatic 
learning of features and detecting AD on a pre-processed 
and fine-tuned large size MRI dataset using 3D-CNN 
[36]. This study has contributed to find the impact of 
hyper-parameter assortment on the performance of the 
proposed AD classifier with the impact of pre-process-
ing, data partitioning, and dataset size. This work could 
be extended through subject-separated data partitioning 
tests.

A statistical feature gray-level co-occurrence  matrix 
(GLCM)-based model exploiting PCA and finally PNN 
for training and classification has been proposed by 
Mathew et al. to classify AD, MCI, and NC [8]. This work 
achieved sensitivity measurement 86% of with specificity 
83% and accuracy 85%. Proposed network architecture 
provides a better result than SVMs and KNN in terms of 
accuracy.

In [38], a DL model has been proposed using hip-
pocampal magnetic resonance imaging data of 2146 
subjects to predict MCI subjects’ progression to AD 
dementia in a time-to-event analysis setup. The proposed 
model is not sensitive to hippocampus segmentation 
requiring only a bounding box containing the hippocam-
pus. This work went on to achieve a C-index of 0.762 
for 6 to 78 months duration and C-index of 0.781 with 
18 to 54 months duration. This model can be used in a 
cloud computing platform as well if containerized using 
Docker. This study focused on the hippocampus region, 
it is expected to obtain better performance if the DL 
method would have been applied to the whole-brain MRI 
data. Also, data at baseline were exploited in this study, 
whereas performance could be improved if longitudinal 
data were infused into the model.

Now, the authors of [56] have proposed a 3D-CNN 
architecture emphasizing to achieve better performance 
without incorporating feature extraction steps. Here 
two different approaches have been compared for MRI 

classification: the plain CNN and the residual NN. The 
proposed model’s performance was checked for the task 
of classifying MRI scans of subjects with AD, EMCI and 
LMCI, and NC. From the dataset, they tend to choose 
only the first image taken for every subject in order to 
eradicate possible information “leaks”. They have not 
provided the age group of the subjects. In terms of per-
formance metric area under the curve (AUC), receiver 
operating characteristics (ROC) curves and accuracy 
have been evaluated using VoxCNN and ResNet. Of all 
the classifications presented in this paper, AD vs NC 
achieved the best result with AUC 0.88 ± 0.08 and acc 
0.79 ± 0.08 using VoxCNN and AUC 0.87 ±0.07 with acc 
0.80 ± 0.07 using ResNet In this study, there has been 
approached binary one-versus-one classification which 
showed better performance, an approach towards multi-
class classification has not been tried.

In [72], the authors proposed a CNN-based architec-
ture combined with transfer learning to separate AD 
patients from the HC group. Two architectures VGG16 
and InceptionV4 have been exploited to carry out this 
task. The main emphasis has been put into building the 
architecture using a small training set through image 
entropy. Fivefold cross-validation was applied to achieve 
accuracy. Default hyperparameter values chosen for the 
models provide better results, whereas the hyperparam-
eter search method could result in further improvement.

The authors in [70] have proposed a deep variational 
SAE-based approach which tends to learn latent feature 
(i.e., spectral feature) representation from the low-level 
features finally training an MLP for classification pur-
poses consisting of six binary classification problems: AD 
vs. NC, NC vs. EMCI, NC vs. LMCI, AD vs. EMCI, AD 
vs. LMCI, and EMCI vs. LMCI. A softmax classifier has 
been applied to conduct the classification.

Furthermore, in [60] another approach based on DBN 
architecture has been proposed. Voxel-based morpho-
metric (VBM) approach has been used for feature extrac-
tion here. Overall DBN has been depicted as a superior 
architecture in high-dimensional data classification. 
For mean-squared displacement or MSD feature vector 
sensitivity, specificity and accuracy found were 0.7122, 
0.7601, and 0.7360. Also for VV-based feature vector, it 
provided better performance for sensitivity, specificity, 
and accuracy with 0.9059, 0.9296, and 0.9176.

However, a recent attempt of multiclass classification 
of 6 AD stages have been found in  [47]. In this work, 
CNN-based Resnet-18 architecture with transfer learn-
ing has been used on rs-fMRI for training and evaluation 
purposes incorporating a good amount of pre-process-
ing; whereas according to the literature presented in this 
work, the previous works on rs-fMRI were mainly based 
on LetNet, GoogleNet and Alexnet architectures. Several 
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performance metrics have been used as well to evalu-
ate their proposed model which are precision, recall, 
f1-measure, AUC, and ROC curves. Improved results in 
terms of accuracy have been found for 6 AD stages clas-
sification depicted in Table 2.

Consecutively another CNN-based model has been 
proposed in recent times in [46]. T1-weighted volumet-
ric MR images have been used to diagnose AD and MCI. 
Two datasets were used for this work, where the OASIS 
dataset has been used for training purpose replicating the 
MIRIAD dataset for testing purposes. In this work, the 
authors have contributed by not applying particular age 
limitation in AD samples annotation which subsequently 
resulted in a stimulating prediction problem owing to 
a vast range of age distribution. By incorporating SST 
in pre-processing and using CNN-based features of the 
input images this proposed model attained accuracy val-
ues around 0.8 for diagnosis of both AD and MCI.

Table  2 presents a summary of mentioned DL appli-
cations for AD including the type of MRI, brain region 
and network involved, type of feature used with feature 
count, pre-processing technique used, dataset and num-
ber of participants from the dataset, validation scheme 
and performance accuracy found for all reviewed papers.

4.2 � Parkinson’s disease
Parkinson’s disease or PD is a neurodegenerative disorder 
that affects voluntary movements. As identification of PD 
as well as its underlying causes is very crucial to devise 
treatment strategy, DL has also been applied to detect 
it from neuroimages. A number of studies have been 
reported to serve that purpose. Table 3 presents a sum-
mary of these studies which employed DL applications 
for PD including the type of MRI, brain region and net-
work involved, type of feature used with feature count, 
pre-processing technique used, dataset and number of 
participants from the dataset, validation scheme and per-
formance accuracy found for all reviewed papers. Kol-
lias et  al. proposed a DNN architecture including CNN 
deriving rich internal depiction from input data and 
bidirectional-LSTM/gated recurrent units (GRU RNNs)-
based RNN to analyze time progression of the inputs for 
delivering the final predictions [75]. A combined super-
vised and unsupervised learning methodology has been 
developed here exploiting ResNet and ReLU architec-
tures. They have contributed to the creation of a new 
database that has been used for training, evaluating, and 
validating the proposed systems. Shinde et  al. proposed 
to differentiate PD from HC by employing a fully auto-
mated CNN with discriminative localization architec-
ture for creating prognostic and diagnostic biomarkers 
of PD from Neuro-melanin sensitive MRI or NMS-MRI 
[76]. For this work, data have been collected from the 

Department of Neurology, National Institute of Mental 
Health and Neuro sciences (NIMHANS) which consist 
of MR imaging, demographic and clinical details such as 
gender, age at presentation, age at onset of motor symp-
toms, disease duration, etc., data of PD patients, atypical 
parkinsonian syndromes (APS) patients, multiple system 
atrophy (MSA) patients and progressive supranuclear 
palsy along with some HC as well [76]. The authors were 
able to capture the subtle changes in PD in the substantia 
nigra pars compacta (SNc) using selected features from 
the NMS-MRI. Although the proposed method shows 
satisfactory performance exploiting a small sample size, 
larger sample size is required for improved efficacy of the 
method. On the other hand, Kollia et al. proposed a con-
volutional-RNN architecture for PD prediction through 
the extraction of latent variable information from 
trained DNN using both MRI data [77]. In this work, the 
authors presented a DNN retraining procedure, which 
allowed retaining the knowledge provided by previously 
extracted, annotated, and clustered latent variables. Later 
on, the information provided by those clustered latent 
variables were used to develop a domain adaptation 
approach. It tends to improve the performance of the 
DNN architecture even if presented with less input.

Using sMRI, dopamine transporter (DAT) scan data, 
age, and gender information, Pereira et  al. [45] pro-
posed a novel model to detect PD patients via CNN. The 
authors observed that pattern changes in the basal gan-
glia and the mesencephalon can be considered as a domi-
nating feature for the detection of PD from HC and scans 
without evidence for dopaminergic deficit (SWEDD).

Esmaeilzadeh et  al. used a 3D-CNN incorporating 
a voxel-based approach for brain image segmentation 
extracting data augmentation techniques to expand the 
training set size to classify PD and HC [57].

Moreover, Sivaranjini et  al. contributed in analyzing 
T2-weighted MRI scans to classify between HC and PD 
by applying deep CNN architecture AlexNet [58]. In this 
study, sensitivity and specificity with values of 89.30% 
and 88.40% were also evaluated with a classification accu-
racy of 88.90%.

4.3 � Schizophrenia
Schizophrenia or SZ is a major psychiatric disorder 
related to structural and functional brain anomalies that 
gradually ended up with impairments in cognition, emo-
tion, and behavior. In recent years, many researchers have 
contributed to develop automated tools and techniques 
for the initial diagnosis of SZ using DL and MRI data. 
Table 4 provides a summary of DL techniques applied in 
prediction and classification of SZ.

Qureshi et al. have proposed 3D-CNN-based DL classi-
fication to distinguish patients with SZ and HC [48]. The 
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Table 2  Summary of DL-based studies for prediction and classification of AD from MRI

Ref reference, Reg region, DL Arch deep learning architecture, Pre-Proc pre-processing technique used in the study, WB whole brain, BL-brain lobes HPC–hippocampus, 
CSA cortical surface area, MCS middle cross section, SCS single cross section, SSIF shift and scale-invariant features; Vol.-volume; CorTh-cortical thickness; SAF-surface 
area features; HPCV-hippocampal volumes; CFV-cerebrospinal fluid volume; LVV-lateral ventricle volume; ECT-entorhinal cortex thickness; MMSE-baseline scores of 
Mini-Mental State examination; nα-n-fold cross-validation, 4DF 4D features, CF clinical features, GLCM gray-level co-occurrence matrix, SED Sobel edge detector, MSD-
maximal self-dissimilarity, VV voxel values

Ref. Reg. DL Arch. Pre-Proc. Features Dataset Size Accuracy

[33] WB SAE-3D, CNN NM CBF ADNI 755 (AD, MCI, HC) 3-way 89.47%, AD vs. 
HC 95.39%, AD vs. 
MCI 86.84%, HC vs. 
MCI 92.11%

[31] CNN MC, STC, SS, HPF, SN, 
WMS, MD

SSIF ADNI 52 AD3 , 92 HC3 , 211 
AD1 , 91 HC1

99.9%3 , 5α , 98.84%1 , 5α

[53] CNN MC, SST, HPF SSIF ADNI 28 AD, 15 NC 96.86%5α

[43] CNN SN, BC, MD CBF ADNI 33 AD, 22 LMCI, 49 
MCI, 45 HC

98.88%

[42] CNN INUC, DC, NM ADNI 193 AD, 151 HC Class Score 95%5α

[69] DNN HPCV, CFV, LVV, ECT, 
MMSE

ADNI 60 AD, 60 HC, 60 cMCI 
60 MCI

34.8%10α

[36] 3D-CNN CR, TE, IRE, IN 3D CBF ADNI 199 AD, 141 NC; 3D 
MRI AD 600 NC 598

98.74%

[56] 3D-CNN SST, NM CBF ADNI 50 AD, 43 LMCI, 77 
EMCI, 61 NC

[8] PNN IR, WF GLCM, SED ADNI 85%

[70] VAE, MLP SG Shape feature ADNI 150 NC, 90 AD, 160 
EMCI, 160 LMCI

NC-AD 84%, NC-EMCI 
56%, NC-LMCI 59%. 
AD-EMCI 81%, AD-
LMCI 57%, EMCI-LMCI 
63%

[60] DBN VBM VV 3611, MSD 24 OASIS 49 AD, 49 HC MSD 0.736010α , VV 
0.917610α

[47] CNN BE, MC, STC, IM, SS, 
THPF, NM, SN

CBF ADNI 25 CN, 25 SMC, 25 
EMCI, 25 LMCI, 13 
MCI, 25 AD

CN 100%, SMC 96.85%, 
EMCI 97.38%, LMCI 
97.43%, MCI 97.40%, 
AD 98.01%

[39] BL 3D-CNN NNM, BE, IR 4D features, clinical 
features

ADNI 192 AD, 184 HC, 181 
pMCI, 228 sMCI

86%5α

[38] HPC CNN IR, SG HPC shape, texture, 
CBF

ADNI-1, ADNI- GO&2, 
AIBL

ADNI: 1711, AIBL: 435

[71] LSTM-RNN LSTM-based features ADNI-1, ADNI-GO&2 822 MCI

[40] CSA SAE-DNN MC, NUC, IN, SST, VL 310 Vol., CorTh, SAF, 
5000 FDCM

ADNI, CAD- Dementia 171 CN, 232 MCI, 101 
AD

Model-1 ADNI 56.6%10α , 
CAD-Dementia 
51.4%10α Model-2 
ADNI 58%10α , CAD-
Dementia 56.8%10α

[41] MCS CNN INUC CBF ADNI 47 AD 34 NC

[72] SCS CNN CBF OASIS 100 AD, 100 HC VGG16: 92.3%5α , Incep-
tion-V4: 96.25%5α

[37] CNN NM, IR, MD CBF ADNI, Milan ADNI: 294 PAD, 763 
MCI, 352 HC Milan: 
124 PAD, 50 MCI, 
55 HC

ADNI: 99%10α , MILAN: 
98%10α

[73] CNN CBF, 64 OASIS 416 80.25%

[46] VB CNN SST, DA, CE, F CBF OASIS, MIRIAD OASIS: 30 AD, 70 MCI, 
316 HC MIRIAD: 46 
MCI, 23 HC

0.8
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rs-FMRI data collected from the Center for Biomedical 
Research Excellence (COBRE) dataset was first preproc-
essed using FMRIB Software Library (FSL) version 6.0. 
Afterward, the group independent component analysis 
(ICA)-based connectivity measures (maximum 30 inde-
pendent components) were acquired using the enhanced 
version of FSL. The features are further normalized and 
thresholded to semi-automatically separate the noise 
and artifacts. Finally, 3D-CNN classification was applied 
and 98.09±1.01% tenfold cross-validated classification 
accuracy was achieved. But, the specific feature was not 
selected from ICA and hence contribution-based ranking 
of features was missing in this study. Moreover, a quite 

similar approach was found in [54] but the authors have 
applied 2D-CNN instead of 3D-CNN as a classifier and 
functionally informative slices are selected and labeled 
before classification. Data are preprocessed through 
motion correction and spatial normalization. The study 
has classified both slice level and subject level. For slice-
level classification, the proposed method demonstrated 
an average accuracy of 72.65% in the default mode net-
work (DMN) and 78.34% in the auditory cortex (AUD). 
The study also shows better specificity in the DMN 
(80.75%) and higher sensitivity (79.11%) and specificity 
(77.25%) in the AUD. In short, according to the proposed 

Table 3  Summary of DL-based studies for prediction and classification of PD from [s]-MRI

 Pre-Proc. pre-processing, Synd syndrome, nα – n fold cross-validation, AC alignment correction, SWEDD scans without evidence for dopaminergic deficit, CBF CNN-
based features

Ref. Regions DL Tech. Pre-Proc. Feature Dataset Size Accuracy

[75] Axial CNN-RNN – CBFd NTUA​ 55 PD, 23 PD Synd 98%

[57] Sagittal, coronal, axial planes 3D-CNN SST, DA CNN based, age, sex PPMI 452 PD, 204 HC 100%

[76] Mild brain CNN CBF NIMHANS 45 PD, 20 APS, 35 HC 80%5α

[77] Lentiform nucleus CNN-RNN CNN based NTUA​ 66176 98%

[58] Whole brain CNN NM, F, SM CBF PPMI 100 PD, 82 HC 88.9%

[45] Basal ganglia, mesencephalon CNN AC, BR, SN, SM CNN based PPMI Control vs PD 94.5-
96%, PD vs SWEDD 
88.7%

Table 4  Summery of DL-based studies for prediction and classification of SZ from MRI

WB whole brain, Cor. cortical, Str. striatal, Cere cerebellar, Vent. ventricle, MRN mild research network, VFN visual frontal network, AUD auditory cortex, CN cerebellar 
network, DMN default mode network, nα =n-fold cross-validation, SPF spatial feature, NMF neuro-morphometric features, VTS voxel time series, SV segmented 
ventricle, Self self-generated dataset

Ref. Regions DL Pre-Proc. Feature (count) Dataset Size Accuracy

[48] VFN, CN, DMN 3D-CNN MC, DN, STC, SS, TF, HPF 3D-ICA (15) COBRE 72 SZs,74 HCs 98.09%10α

[54] AUD, DMN 2D-CNN MC, SN, SS ICA(13) Self 42 SZs,40 HCs slice-level DMN-72.65%5α , 
AUD-78.34%5α , subject-level 
DMN-91.32%5α , AUD-
98.75%5α

[78] WB DNN ICA FNC, SBM (10) MRN 69 SZs, 75 HCs 94.4%

[79] WB DNN ROI (116) OpenfMRI 50 SZs, 49 BD, 122 HCs 76.6%α

[34] WB RNN MC, DN, SF, TF, NM, LRg SPF FBIRN phase-II 87 SZs, 85 HCs 64%10α

[52] WB DNN STC, SN, SS FNC (116) COBRE 72 SZs,74 HCs 95.4%5α

[35] WB DNN FNC,SBM (410) MLSP

[32] WB DBN LR, ZN NMF Multisite 143 SZs,83 HCs 73.6%3α

[50] WB SAE STC, MC,SN, SM, F VTS COBRE 72 SZs,74 HCs 92%10α

[51] Atlas FFBPNN STC, MC, TF, NM, SS FNC (20) Hospital 39 SZs,31 HCs 79.3%10α

[55] WB DNN, LRP MC, SN FNC, ICA (1225) Multisite 558 SZs, 542 HCs 84.75%10α

[49] Cor., Str., Cere. DNN MC, NM, STC, SS, LD, TF FNC (116) Multisite 474 SZs,607 HCs ≈83%10α

[44] Vent. DBN SST, BC, SG SV, ROI COBRE 72 SZs,76 HCs ROI-83.3%3α , SV-90%3α

[80] WB MLP ICA, RV FBIRN 135 SZs,169 HCs AUC- 0.858α , SD-0.05

[59] WB MLP NM, SG, SS Multisite 198 SZs,191 HCs AUC-0.7510α , SD-0.04
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work, 2D-CNN improved the accuracy of classification 
by reducing training parameters compared to 3D CNN.

A large portion of the reported approaches have 
applied DNN-based classification technique to diagnose 
SZ [35, 55, 78, 79]. Srinivasagopalan et  al. claim that 
DL can be a paradigm shift for SZ diagnosis [78]. Their 
main finding was the ranking of features according to sig-
nificance is important in detecting SZ in patients. Data 
were preprocessed using the ICA to achieve independent 
components and spatio-temporal regression to mitigate 
low bias or high variance. Recursive feature elimination 
and random forests were used to determine the impor-
tance of different features and to decide threshold cut-
off for feature elimination. For classification, the authors 
implemented a simple three-layer DNN architecture and 
achieved a classification accuracy of nearly 94%. How-
ever, the training dataset used in this model was very 
small compared to the test dataset that may negatively 
affect the performance of the classifier. Matsubara et al. 
[79] proposed a deep neural generative model (DGM) 
implementing DNN for diagnosing psychiatric disorders 
from rs-fMRI data. The dataset used was already pre-
processed with time-slice adjustment, rigid body rotation 
to correct for displacement, and spatial normalization. 
DGM evaluates the contribution weight of different brain 
regions to the diagnosis using Bayes’ rule. The proposed 
DGM implemented a ROI-wise feature and showed an 
acceptable performance (accuracy 76.6%, sensitivity 
84.9%, and specificity 58.5%). But, the method is only 
applicable to rs-fMRI data and not robust to correlated 
regions. Moreover, DNN and LRP was used in improving 
the classification accuracy of SZ patients [55]. Data were 
collected from seven different sites and preprocessed 
through motion correction, spatial normalization using 
the SPM8 software1. The preprocessed data were then 
slightly subsampled to voxels and afterward decomposed 
via PCA. DNN classifier was trained with 1/2 norm regu-
larization (dropout and batch normalization) by using 
resting-state functional network connectivity (FNC) pat-
terns as input. LRP serves as an explanatory layer that 
provides relevant details to identify mostly informative 
features. The study found that some functional connec-
tivity between the frontal network and sub-cortical net-
work exhibits the highest discriminating power in SZ 
detection. The cross-site prediction accuracy was 82% 
with sensitivity 86.68% and specificity 82.79%. Also, 
DNN-based multi-view models comprising deep canoni-
cal correlation analysis (DCCA), deep canonically corre-
lated auto-encoders (DCCAE), and SVM with Gaussian 
kernel was used to determine SZ in [35]. It is noted that 

multimodal features (FNC, SBM) and ICA were mainly 
considered as parameters for DNN-based classification.

An MLP model was also applied to analyze normal and 
SZ subjects from multisite sMRI data in [59]. The sites 
were: the Johns Hopkins University, USA; the Maryland 
Psychiatric Research Center, USA; the Institute of Psychi-
atry, UK; and the Western Psychiatric Research Institute 
and Clinic at the University of Pittsburgh, USA. The work 
was based on the hypothesis that the NNs trained on syn-
thetic data may provide better performance than trained 
on real data. To verify the hypothesis, the sMRI images 
were first normalized to Montreal Neurologic Institute 
(MNI) standard space followed by segmentation into 
gray matter, white matter, and cerebrospinal fluid maps. 
Finally, the resulting gray matter images were smoothed 
with an isotropic 8 mm full-width at half-maximum 
Gaussian filter and used as input for the data-driven 
simulator. ICA and random variable (RV) sampling 
method were used to reduce dimensionality and to gen-
erate synthetic samples, respectively. Through simula-
tion, the best performance was achieved by the MLP 
classifier on synthetic sMRI with an average AUC 0.75. 
However, the range of the data size that can be fed to a 
simulator is not defined and the important brain region 
for classification is not identified for the study. Han et al. 
started their research for resolving whether resting-state 
functional connectivity can be used as a biomarker of 
clinical diagnosis of SZ [51]. A total of 70 subjects (39 
early-stage SZs and 31 HCs) were recruited. rs-fMRI 
images were acquired and pre-processed using a least-
squares approach to correct slice acquisition and head 
motion. Later on, the corrected images were normalized 
and filtered to get the functional connectivity features for 
feed-forward back propagation NN (FFBPN). The study 
found that rs-fMRI functional connectivity shows good 
potential classification capacity (accuracy: 79.3% , sen-
sitivity: 87.4% specificity: 82.2%) and could be used as a 
biomarker of clinical diagnosis.

An attempt has been made to explore the perfor-
mance of DBN in case of discriminating the normal 
and SZ subjects by taking ROI and morphometry data 
into consideration in [44] and [32], respectively. Latha 
et al. have pre-processed the COBRE dataset using skull 
stripping to remove the nonbrain tissue. Afterward 
ventricle region was segmented from the images using 
a multiplicative intrinsic component optimization 
method. The considered region was trained using DBN 
with learning method: stochastic gradient descent, 
adaptive gradient, and root-mean-square propagation 
[44]. The study achieved a high AUC value (0.899) for 
the segmented ventricle image with accuracy: 90%, 
sensitivity: 87.5% and specificity: 92.86%. On the other 
hand, multivariate analysis was done for visualizing the 1  https​://www.fil.ion.ucl.ac.uk/spm/softw​are/spm8/

https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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most affected brain regions in [32] with an error rate 
of 56.3% for classifying the first-episode SZ patients. 
Moreover, some current studies have employed autoen-
coder for functional connectivity feature extraction [49, 
50, 52]. Thereafter, these trained features are applied 
to SVM classifier [50] or DNN classifier for automatic 
diagnosis of individuals with SZ [49, 52]. Apart from 
that Dakka et  al. have successfully demonstrated the 
feasibility of R-CNN involving a 3D-CNN with LSTM 
units [34].

5 � Open‑access datasets
5.1 � ADNI
Alzheimer’s disease neuroimaging initiative (ADNI) data-
set includes demographic information, raw neuroimaging 
scan data, APOE genotype, CSF measurements, neu-
ropsychological test scores, and diagnostic information 
[81]. ADNI is composed of ADNI-1 (it tends to develop 
biomarkers as denouement step for clinical trials), ADNI-
GO (in this section biomarkers are examined in earlier 
stages of disease), ADNI-2 (biomarkers are developed as 
predictors of cognitive decline and as denouement also) 
and ADNI-3 (the usage of tau PET and functional imag-
ing strategies are studied for clinical trials in this section). 
These subsections are again composed of the following 
type of data:

•	 ADNI-1 is composed of CN (cognitive normal), MCI 
(mild cognitive impairment), and AD (Alzheimer’s 
disease) data.

•	 ADNI-2 is composed of EMCI (early mild cognitive 
impairment) data.

•	 ADNI-GO is composed of CN, EMCI, AD, and 
LMCI (late mild cognitive impairment) data.

•	 Finally, ADNI-3 is composed of CN, MCI and AD 
data.

5.2 � OASIS
Open access series of imaging studies (OASIS) dataset 
includes longitudinal neuroimaging, clinical, cognitive, 
and biomarker data for normal aging and Alzheimer’s 
disease [82]. Currently, two sets of data are included in 
OASIS. One is cross-sectional which includes 416 sub-
jects aged from 18 to 96, of whom 100 of them were clini-
cally diagnosed with AD. The other one is a longitudinal 
section which comprises 150 subjects aged 60 to 96. In 
this section, the subjects were diagnosed with AD at cer-
tain points during their course of participation [83]. Kag-
gle dataset contains mild-to-moderate dementia dataset 
which is 72 subsets data taken from OASIS dataset.

5.3 � MIRIAD
Minimal Interval Resonance Imaging in Alzheimer’s 
Disease (MIRIAD) dataset consists of a series of lon-
gitudinal volumetric T1 MRI scans of 46 mild–mod-
erate Alzheimer’s subjects and 23 controls. There is a 
total of 708 scans in this database which had been col-
lected at intervals from 2 weeks to 2 years conducted by 
the same radiographer using the same scanner. It also 
accompanied information on gender, age and MMSE 
scores [46, 84].

5.4 � COBRE
The Center for Biomedical Research Excellence (COBRE) 
dataset is found to be prevalent in research regarding SZ. 
The dataset includes raw anatomical and functional MRI 
data from 147 subjects (72 SZ and 75 HC) of age range: 
18 to 65. Phenotypic data (e.g., gender, age, handedness, 
and diagnostic information) of every participant are also 
available [85]. Many studies have utilized the OpenfMRI 
database which is a repository of neuroimaging data col-
lected using a different form of MRI and EEG techniques 
since 2010. The dataset contains information about sub-
ject-level variables (e.g., gender, age, handedness, etc.), 
longitudinal and multi-session studies, structural, ana-
tomical imaging data (e.g., T1, T2-weighted, MPRAGE, 
etc.), resting-state and task-based fMRI data, diffusion-
weighted imaging data, physiological (e.g., pulse, res-
piration, etc.) monitoring output acquired during MRI 
experiments, behavioral data collected without MRI, 
and standardized metadata to describe the conditions 
and parameters of the experiment data [86]. It is a huge 
repository of 95 MRI datasets including 3372 subjects 
from different sources.

5.5 � FBIRN
The Function Biomedical Informatics Research Net-
work (FBIRN) is an another SZ dataset which develops 
methods and tools for fMRI studies to assess the major 
sources of variation among the studies and to provide a 
distributed datasets for a clinical study. Multi-scanner 
brain imaging datasets are shared through the BIRN Data 
Repository (BDR). Moreover, the FBIRN Phase 1 data-
set consists of 5 traveling healthy subjects (age: 20 to 29 
years) with no history of psychiatric or neurological ill-
ness, each scanned with sMRI and fMRI on 10 different 
1.5 to 4 T scanners. The FBIRN Phase 2 (87 SZ and 85 
HC, age: 18 to 70 years) and Phase 3 datasets (186 HC, 
176 SZ, age: 18-62) consist of subjects with SZ disorder 
along with healthy comparison subjects scanned at mul-
tiple sites [87]. Moreover, several studies have been found 
while reviewing that have collected data from multiple 
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sites or different hospitals to validate their proposed 
model.

5.6 � Other datasets
AIBL Australian Imaging Biomarkers and Lifestyle Study 
of Ageing (AIBL) dataset contains MRI, PiB PET images, 
and clinical data of more than thousand participants hav-
ing minimum age of 60 years [88]. These datasets can be 
used for detection of AD and MCI [83].

NTUA​ NTUA Parkinson dataset which consists of 
MRI, DaT Scans, and clinical data of 55 patients with PD 
and 23 subjects with PD-related syndromes. A total of 
over 42000 images are available for academic use [89].

PPMI Parkinson’s Progression Markers Initiative 
(PPMI) public domain database to detect bio markers 
of PD progression. The PPMI study dataset includes raw 
and processed MRI and single-photon emission comput-
erized tomography (SPECT) images [90].

Open fMRI Open functional MRI (fMRI) database 
includes recorded MRI and EEG data while subjects were 
asked to perform tasks [86].

FITBIR Federal Interagency Traumatic Brain Injury 
Research (FITBIR) dataset includes MRI imaging data-
sets which can be employed for understanding the rela-
tion between traumatic brain and Alzheimer’s disease 
[91].

Table  5 contains a list of all the open-source datasets 
found during the study. The includes 95 MRI datasets 
taken from 9972 subjects [86].

6 � Performance analysis
All the referred studies included in this paper incorpo-
rate several aspects of work from AD prediction, MCI 
to AD conversion, multiclass AD classification, etc. Per-
formance metrics have been evaluated in terms of find-
ing accuracy, specificity, sensitivity, class score, ROC and 
AUC values, concordance index, etc.

First of all, accuracy is a metric that is used for evalu-
ating classification models. Thus, classification accuracy 
provides the percentage of correct predictions. Then, 
scoring is also termed as a prediction. It is the process in 
which values are generated based on a trained ML model 
on the basis of giving some new input data. The created 
scores can represent predictions of future values.

In order to visualize the performance of the multi-
class classification problem, AUC, ROC, etc., curves are 
used widely. Here, ROC is the probability curve on the 
other side, AUC is used to represent the degree or meas-
ure of separability. It reveals the capability of the model 
for distinguishing different classes. The higher is the 
value of AUC, the better the model is at predicting cor-
rectly. For referred studies here, the higher is the value 
of AUC, the better the model performs in distinguishing 
between patients having a disease and no disease [97]. 
Defining terms used in AUC and ROC are sensitivity and 
specificity.

Sensitivity is measured as the proportion of actual 
positive cases that have been predicted as positive (or 
true positive (TP)). Sensitivity is also termed as recall. 
Then there will also be found those proportion of actual 

Table 5  Open source datasets containing data of neurodegenerative disorders

Ref. Dataset Description

[81] ADNI Alzheimer’s Disease Neuroimaging Initiative (ADNI) contains MRI data for detecting and tracking AD

[85] COBRE The Center for Biomedical Research Excellence (COBRE) dataset includes MR data of 147 subject where 72 patients are suffering from 
schizophrenia

[92] fastMRI It gives 1.5/3T MR data from 6,970 fully sampled brain data of axial T1/T2 and FLAIR images

[87] FBIRN Function Biomedical Informatics Research Network (FBIRN) Phase 1 consists of 5 traveling healthy subjects (age: 20–29 years) each 
scanned with sMRI and fMRI on 10 different 1.5 to 4 T scanners, FBIRN Phase 2 (87 SZ and 85 HC, age: 18–70) and Phase 3 datasets 
(186 HC, 176 SZ, age: 18–62) consist of subjects with SZ or schizoaffective disorder along with HC scanned at multiple sites

[91] FITBIR Along with the other Imaging datasets, the Federal Interagency Traumatic Brain Injury Research (FITBIR) includes the open source 
datasets for AD

[93] Kaggle It contains mild-to-moderate dementia dataset which is 72 subsets data taken from Open Access Series of Imaging Studies (OASIS) 
dataset

[94] NAMIC National Alliance for Medical Image Computing (NAMIC) provides Brain Mutlimodality datasets

[89] NTUA​ It consists of MRI and DAT scan of those who are suffering from PD and also some NC

[82] OASIS OASIS-3, OASIS-2 and OASIS-1 contain 373 MRI data of 150 subjects, 434 MRI data of 416 subjects and 2168 MRI data of 1098 sub-
jects, respectively

[95] MIRIAD The MIRIAD dataset contains volumetric MRI brain-scans of AD sufferers and HC elderly people. This database consists of 46 mild–
moderate Alzheimer’s subjects and 23 controls

[86] Open fMRI It contains 95 MRI datasets of 3372 subjects and can be used detect AD and PD

[96] PPMI Parkinson’s Progression Markers Initiative (PPMI) database accommodates raw and processed MRI of parkinson’s progression data
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positive cases, which would be predicted incorrectly as 
negative (can also be termed as False Negative (FN)). 
For higher value of sensitivity rate of TP will be higher 
contrasting lower value of FN. Similarly, for lower value 
of sensitivity rate of TP will be lower contrasting higher 
value of FN. For the referred studies, models with high 
sensitivity show better performance [98, 99].

Specificity is measured as the proportion of actual 
negative cases that has been predicted as the negative 
(or true negative (TN)). Similarly, there will be another 
proportion of actual negative cases that has been pre-
dicted as positive (or false positive (FP)). For higher value 
of specificity rate of TN will be higher contrasting lower 
value of FP. Similarly, for lower value of specificity rate of 
TN will be lower contrasting higher value of FP [99].

Then, the concordance index or c-index is a metric that 
is most commonly used to evaluate the predictions made 
by an algorithm specifically for survival models. Actual 
survival prediction is important in the scenario of neu-
rodegenerative disease analysis. Survival analysis is con-
ducted from the perspective that since, both the training 
data and the test data are subject to censoring, it was 
not possible to observe the exact time taken for an event 
regardless of how the data was split. The c-index is used 
to evaluate the accuracy of the ordering in the predicted 
time. It is interpreted as 0.5 for random predictions, 1.0 
for perfect concordance, and 0.0 for perfect anti-con-
cordance. Generally, the concordance index for fitted 
models ranged between 0.55 and 0.7 owing to the pres-
ence of noise in data [100].

Authors in [31] achieved the highest rs-fMRI classifica-
tion accuracy of about 99.9% using CNN. But accuracy of 
38.8% has been achieved which featured a scientific chal-
lenge placing third over 19 participating teams to classify 
AD which is comparatively lower than all other [69].

Highest accuracy 98.09% of schizophrenia detec-
tion has been observed in [48], which have employed 
3D-CNN-based classification. Above 90% accuracy is 
shown in [78] and [44]. The other studies perceived the 
accuracy ranges from 70%-80%.

By using 3D-CNN [57] achieved 100% accuracy on the 
validation and test sets for PD diagnosis. At the same 
time, the study in [76] discriminated PD from typical par-
kinsonian syndromes having 85.7% test accuracy.

Pereira et al. [45] found an accuracy of 96% using age as 
additional feature and CNN classifier for differentiating 
HC and PD, while the accuracy has dropped to 88.7% in 
classifying PD and SWEDD.

After analyzing the literature on AD, PD and SZ 
using DL some observations can be made based on the 
reported studies. The application of CNN is the most 
prevalent one in AD and PD detection. At the same time, 
ADNI has been the most used and balanced database 

covered in the study for AD, while NUTA and PPMI 
have been the most popular for PD. But, in the case of 
SZ detection, the prevalence of DNN has been more 
prominent compared to other DL techniques. And, the 
most frequently used database found is COBRE for the 
works covered in this study. A summary of the observa-
tions achieved from this study in terms of DL methods 
and datasets is shown in Table 6.

Performance analysis of application of various DL 
methods in detecting neurological disorders from MRI 
datasets are shown in Fig. 4.

7 � Challenges and future perspective
DL-based frameworks for the prediction of NLD has 
become desirable with the massive improvement in the 
computing capabilities and better development of DL 
tools. Further research may be conducted for tuning the 
DL algorithms in improving inferences (i.e., similar train-
ing and test environment). Some of the challenges with 
corresponding future perspectives are outlined below:

•	 The supervised architecture is limited due to huge 
effort for creating label data, low scalability, and 
selection of appropriate bias levels. Unsupervised 
learning is not a usual option to be considered for 
image analysis. However, unsupervised architecture 
not only learns features from the dataset but also 
design a data-driven decision support system from 
these data. Thus unsupervised deep architecture can 
be used to solve medical imaging-related problems.

•	 Predicting NLD from imaging data in real-time is 
still an open challenge. However, stream processing 
has been introduced for processing high-volume data 
using a parallel computing algorithm.

•	 Designing a bias-free neuroimaging dataset is chal-
lenging as it is a patrimony of learning system which 
may create a computational artifact. The problem can 
be reduced by including a large dataset in the model 
and studying the relationship between extracted fea-
tures and tune the parameters of the model.

•	 Adversarial noise can add with the neuroimages and 
may reduce the classification accuracy. Thus, the can-
cellation of adversarial errors is a challenge.

•	 DL algorithms present impact and accurate solutions 
for large datasets. However, the high-dimensional 
CNN such as 2D-CNN and 3D-CNN will provide 
high accuracy for the large and multimodal neuroim-
ages. On the other hand, Generative Adversarial Net-
works (GAN) can generate synthetic neuroimages 
which may also be used along with CNN.

•	 The basis of achieving better results using DL 
techniques largely depends upon using large train-
ing datasets; unavailability of which is one of the 
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biggest barriers in the application process DL in 
neuroimaging which also comes in as a result of 
preserving the privacy of patients. At the same 
time annotating those data is a big issue as well as 
requires expert intervention. Consequently, the 
dataset found for rare diseases are mostly unbal-
anced. A collaboration of the health industry, medi-
cal professionals, and data scientists are required 
to overcome this problem of dataset creation and 
annotation. At the same time, data augmentation 
techniques can be applied to overcome the problem 
of unbalanced data by modifying data volume and 
quality.

•	 Non-standardized acquisition of images causes dif-
ference in images pertaining to different datasets. 
This poses a big challenge in processing the neuro-
images using DL. Application of transfer learning is 
recommended here to overcome this problem.

•	 A deep learning model is a black box that learns from 
data and can be used to simulate the process from 
where data was collected. These models are inter-
pretable rather than explainable. The black-box, how-
ever, works badly when the model is used to predict 
with data which do not belong to the database. Rudin 
clarified that the method used to forecast a process 
in the explainable DL is too complex, highly recursive 
and difficult to understand [101]. Explanation there-
fore often does not provide adequate information to 
understand the DL mechanism. There is therefore 
often a debut between explainable DL and interpret-
able DL.

8 � Conclusion
Advancement in high-speed computing techniques and 
an unprecedented improvement in the development of 
novel DL-based techniques and models opens up unique 
opportunity to predict and manage a number of neuro-
logical disorders including Alzheimer’s disease, Parkin-
son’s disease and schizophrenia. In this paper, the most 
popular DL techniques have been explored in detecting 
those three leading neurological disorders from the MRI 
scan data. DL methods for the classification of neurologi-
cal disorders found in the literature have been outlined. 
The pros, cons, and performance of these DL techniques 
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Fig. 4  Performance comparison of application of various DLs in detecting neurological disorders from MRI datasets. The normalized performance 
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Table 6  Summery of  various DL methods and  datasets 
used in detecting NLD

NLD DL methods Datasets

AD CNN ADNI, OASIS

PD CNN NTUA, PPMI

SZ DNN, CNN COBRE, FBIRN
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for the neuroimaging data have been summarized. In the 
end, the open challenges and future trends have been 
discussed. Prime observation of this study included the 
maximum usage of CNN in the detection of Alzheimer’s 
disease and Parkinson’s disease. On the other hand, DNN 
has been used in greater prevalence for schizophrenia 
detection. At the same time, ADNI, COBRE, and PPMI 
datasets have been explored mostly for AD, PD and SZ, 
respectively.
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