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Abstract 

In this paper, a novel approach that is based on two-stepped majority voting is proposed for efficient EEG-based 
emotion classification. Emotion recognition is important for human–machine interactions. Facial features- and body 
gestures-based approaches have been generally proposed for emotion recognition. Recently, EEG-based approaches 
become more popular in emotion recognition. In the proposed approach, the raw EEG signals are initially low-pass 
filtered for noise removal and band-pass filters are used for rhythms extraction. For each rhythm, the best performed 
EEG channels are determined based on wavelet-based entropy features and fractal dimension-based features. The 
k-nearest neighbor (KNN) classifier is used in classification. The best five EEG channels are used in majority voting for 
getting the final predictions for each EEG rhythm. In the second majority voting step, the predictions from all rhythms 
are used to get a final prediction. The DEAP dataset is used in experiments and classification accuracy, sensitivity and 
specificity are used for performance evaluation metrics. The experiments are carried out to classify the emotions into 
two binary classes such as high valence (HV) vs low valence (LV) and high arousal (HA) vs low arousal (LA). The experi-
ments show that 86.3% HV vs LV discrimination accuracy and 85.0% HA vs LA discrimination accuracy is obtained. The 
obtained results are also compared with some of the existing methods. The comparisons show that the proposed 
method has potential in the use of EEG-based emotion classification.
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1  Introduction
Emotions are defined as biological situations associ-
ated with the nervous system [1]. Neuro-physiological 
variations associated with thoughts, feelings, behavioral 
responses and a degree of pleasure or displeasure are the 
causes of emotions. Emotions have an important role in 
communication and facial expressions are the main indi-
cators of emotions. Besides facial expressions, human 
sound, and body gestures are known to be the other 
important emotion indicators [1]. Recently, the use of 
electroencephalogram (EEG) in emotion detection has 
been increasing. The EEG signals reveal the electrical sta-
tus of the brain while having different emotions. Besides 

image processing-based emotion analysis, the recent 
trend goes thought the EEG-based emotion analysis.

Chao et al. [1] proposed a framework, which was based 
on deep learning, for EEG-based emotion recognition. 
The proposed framework was based on multiband fea-
ture matrix and capsule networks. Frequency domain- 
and frequency band-based characteristics were used 
to construct the multiband feature matrix. The capsule 
network was used in the classification stage of the pro-
posed work. The authors used the DEAP dataset in their 
experiments and reported that the proposed method out-
performed most of the existing methods. Koelstra et  al. 
used frequency-domain features, which were extracted 
from the power spectrum density, for EEG-based emo-
tion recognition [2]. The Gaussian Naïve Bayes classi-
fier was used to classify the EEG-based emotions into 
binary classes such as valence and arousal. The DEAP 
dataset was used in experiments and promising results 
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were obtained. Alazrai et al. proposed a methodology for 
EEG-based emotion recognition [3]. The authors used 
a new time–frequency (TF)-based features for efficient 
classification. The quadratic TF transformation was used 
and 13 TF-based features were extracted. The Support 
Vector Machines (SVM) classifier was used in classifica-
tion. The experiments that were carried out on the DEAP 
dataset produced accuracy scores in the range of 73.8% 
and 86.2%. Huang et al. developed a novel approach for 
EEG-based emotion recognition [4]. The developed 
approach was based on asymmetric spatial patterns that 
were extracted from some pairs of spatial filters. Experi-
ments were carried out for discrimination of the arousal 
and valence status and satisfactory results were reported 
by the authors. Candra et al. used the wavelet transform 
for EEG-based emotion classification. The authors used 
the entropy of the wavelet coefficients as features and the 
SVM classifier was used to classify them into valence and 
arousal classes [5]. The authors also mentioned that the 
efficiency of the EEG-based emotion classification could 
be improved using shorter time segments of the EEG sig-
nals. The experiments handled by the authors released 
that using the shorter time segments of the EEG signals 
increased the classification accuracy. Rozgiç et al. devel-
oped a three-stepped approach for EEG-based emotion 
classification [6]. The authors initially used an overlap-
ping window for segment-level feature extraction. The 
obtained segment-level features were transformed into 
the response-level features using a novel non-parametric 
nearest-neighbor model. Finally, the transformed features 
were classified in the third step of the proposed method. 
The authors used the DEAP dataset and reported satis-
factory results. Al-Nafjan et al. used power spectral den-
sity and frontal asymmetry features for human emotion 
classification [7]. The authors opted to use deep neural 
networks (DNN) in the classification of the extracted 
features. The EEG signals from the DEAP dataset were 
used in experiments and the benefit of the DNN for the 
large dataset was reported. Chen et  al. proposed deep 
convolutional neural networks (DCNN) for EEG-based 
emotion recognition [8]. The authors developed a CNN 
model and trained it in the end-to-end fashion. Authors 
also opted to extract the time and frequency domain 
features and used machine learning techniques to com-
pare their results with the traditional approaches. The 
DEAP dataset was used in experiments and the ROC 
curve was used in performance evaluation. Zhang et  al. 
proposed the ontology-based approach for EEG-based 
emotion recognition [9]. The developed ontology-based 
system depended on two bases. The first basis covered a 
model that considers the users’ contexts, EEG data and 
the environmental situations, and the second one was 
related to modeling of the reasons on users’ emotions. 

The DEAP dataset was used in experiments and accu-
racy scores 75.19% and 81.74% were reported for valence 
and arousal classes, respectively. Atkinson et al. proposed 
a novel feature-based approach for EEG-based emotion 
recognition [10]. In the proposed approach, the authors 
used statistical feature selection methods in an ensemble 
way to increase the efficiency of the extracted features. 
The SVM classifier was used at the classification stage of 
the work and the authors mentioned that the proposed 
method outperformed other machine learning methods. 
Tripathi et al. used deep learning for EEG-based emotion 
recognition [11]. More specifically, the authors explored 
two different deep neural networks models, one was a 
simple DNN and the other was a CNN model, for emo-
tion classification. The carried-out experiments showed 
that the deep models outperformed other state-of-the-art 
methods. Zhong et al. proposed a methodology for EEG-
based emotion recognition [12]. The proposed method 
employed a multiple-fusion-layer-based ensemble clas-
sifier of stacked auto-encoder. Each of the stacked auto-
encoder consisted of three hidden layers. An additional 
deep model was considered to achieve the ensemble 
structure. For feature fusion, an adjacent graph-based 
network model was used. The fused features were 
fed into the classification of the emotion into arousal 
or valence states. Zhuang et  al. used empirical mode 
decomposition (EMD) for EEG-based emotion detection 
[13]. After obtaining the intrinsic mode functions, energy 
and phase information were extracted to use as features 
for the characterization of the emotions. The SVM clas-
sifier was used on the DEAP dataset and satisfactory 
results were reported. Li et al. achieved EEG-based emo-
tions recognition that was based on an ensemble of SVM 
classifiers [14]. A weighted fusion scheme was consid-
ered to construct the ensemble structure. Moreover, a 
channel division approach was employed that was based 
on neuropsychological theory, to acquire the informa-
tion from different areas of the brain. The DEAP dataset 
was used in the experiments and high performance was 
reported by the authors. Zhang et al. used EMD and sam-
ple entropy for classifications of emotion EEG signals 
into valence and arousal classes [15]. The two channels of 
the EEG signals were used to convert them into intrinsic 
mode functions. The first four intrinsic mode functions 
were considered to extract the sample entropy features. 
The SVM classifier was used in the recognition step of 
the proposed study. The proposed method achieved 
a 94.98% accuracy score for binary-class tasks on the 
DEAP dataset.

In this paper, an efficient two-stepped majority voting 
approach is proposed for EEG-based emotion recogni-
tion. The proposed approach is quite simple and easy to 
implement. The input EEG signals are initially low-pass 
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filtered for noise removal. And, the EEG rhythms are 
extracted using the band-pass filters. For each rhythm, 
the effective channels of the EEG signal are investigated. 
The top 5 EEG channels are considered and the rest are 
discarded. The channel’s achievements are detected using 
a procedure that is shown in Fig. 1. For each rhythm, from 
all EEG channels, wavelet-based entropy features such as 
“Shannon”, “Logarithmic energy”, “Threshold”, “Sure” and 
“Norm” are calculated. For wavelet decomposition, wave-
let packet decomposition is considered. Wavelet packet 
decomposition employs decomposition procedure not 
only approximation coefficients but also the detail coef-
ficients, respectively. Thus, the interesting knowledge in 
the details is also revealed. Two fractal dimension fea-
tures, namely Katz and Higuchi are also considered in 
feature extraction. Thus, the number of features for each 
sample is based on the level of the wavelet packet decom-
position. The KNN classifier is used in the classification 

of the obtained features into emotion labels. The KNN 
is selected due to its simplicity. In KNN, the number of 
the nearest neighbor was set to three and Minkowski 
distance was used for distance metric. These values were 
obtained heuristically during the experimental processes. 
The first majority voting procedure is applied on each 
rhythm on the best channels predictions and the sec-
ond majority voting procedure is applied to all rhythms 
predictions. Thus, an aggregated prediction is obtained. 
The DEAP dataset is used in experiments and classifica-
tion accuracy, sensitivity and specificity scores are calcu-
lated for performance measurements. The experiments 
are carried out to classify the emotions into two binary 
classes such as high valence (HV) vs low valence (LV) and 
high arousal (HA) vs low arousal (LA). The experiments 
show that 86.3% HV vs LV discrimination accuracy and 
85.0% HA vs LA discrimination accuracy is obtained. The 
contributions of this paper are; 
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Fig. 1  The graphical illustration of the proposed work
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1.	 Two-stepped majority voting approach is proposed 
for efficient EEG-based emotion recognition.

2.	 Comprehensive experimental works are conducted 
on EEG rhythms vs EEG channels to detect the effi-
cient channels and rhythms of the EEG signals and 
with majority voting effective results are obtained.

The remainder of this paper is as follows. In the next 
section, the proposed method and the background theo-
ries are described. In Sect.  3, experimental works and 
obtained results are examined. In the last section, conclu-
sions, discussions and future works are described.

2 � Proposed method
Figure 1 shows the graphical illustration of the proposed 
work. The input EEG signals are initially low-pass fil-
tered for the elimination of the noises. The pass band and 
stop band frequency values were set to 0.15 and 0.2 Hz, 
respectively. In addition, pass band ripple and stop band 
attenuation values were set to 1 and 60 dB, respectively. 
After noise elimination, the rhythm of the EEG signals 
is extracted and all procedures are repeated for each 
rhythm. The band-pass filters are used to acquire the 
alpha, beta, theta and delta rhythms. Alpha rhythm cov-
ers the 8–12-Hz frequency range. Beta rhythm is in the 
range of 12–30  Hz. Theta and delta rhythms are in the 
range of 4–8 Hz and 0–4 Hz, respectively. As the best five 
channels are seeking, for all channels, the wavelet packet 
decomposition is applied and the entropy and frac-
tal dimension features are extracted from the obtained 
wavelet coefficients. These features are the entropies 
namely “Shannon”, “Logarithmic energy”, “Threshold”, 
“Sure” and “Norm” and Katz and Higuchi fractal dimen-
sions. k-NN classification is applied to get the channels 
predictions. And, the accuracy score is calculated to get 
the channels’ achievements. The best 5 channels’ predic-
tions are used in majority voting to get the rhythm’s pre-
diction. After obtaining the majority voting predictions 
of all rhythms, the second majority voting procedure is 
applied to the rhythms’ predictions. The obtained final 
prediction is used as the output of the proposed method.

2.1 � Wavelet packet transform and related entropies
Discrete wavelet transform (DWT) presents time–fre-
quency information about the signal. Wavelet Packet 
Transform (WPT) is an improved version of the 
DWT. Because more filters are applied to the signal 
x(t) compared to DWT. The DWT is passed the pre-
vious approximation coefficients through Quadrature 
Mirror Filters (QMF). In WPT, both approximation 
and detail coefficients are passed through QMF. This 
situation provides more information about the x(t) at 

different levels, consequently higher performance in 
classification problems. The WPT can be described as 
follows:

where di,j symbolize the coefficient of the WPT at the ith 
level for the jth node, h(k) is high-pass QMF and g(k) is 
low-pass QMF. As mentioned above, the features which 
are information about the raw signals are most impor-
tant in classification problems [15–19]. Therefore, the 
WPT coefficients can be used for this purpose. Entropy 
measures uncertainty of signal, so it can be a useful tool 
in signal processing. Entropy can be calculated from the 
energy of the WPT coefficient [15, 18–20]. The Shannon 
Entropy (SE) can be calculated from Eq. (2) at the related 
node.

The Logarithmic Energy Entropy (LEE) can be 
expressed at the related node in Eq. (3).

The Norm Entropy (NE) can be described at the 
related node as a following:

where p is equal to or greater than one [20]. Threshold 
Entropy (TE) can be defined at the related node:

where T is the threshold value. TE is equal to the sum of 
the instances in which the signal (| di,j,k |) is greater than 
the T [20]. The Sure Entropy (SUE) can be expressed at 
the related node as follows;

(1)















d0,0(t) = x(t)

di,2j−1(t) =
√
2
�

k

h(k)di−1,j(2t − k)

di,2j(t) =
√
2
�

k

g(k)di−1,j(2t − k),

(2)SEi,j = −
N
∑

k=1

d2i,j,k log
(

d2i,j,k

)

.

(3)LLEi,j = −
N
∑

k=1

log
(

d2i,j,k

)

.

(4)NEi,j =
N
∑

k=1

∣

∣di,j,k
∣

∣

p
,

(5)TEi,j,k =
{

1,
∣

∣di,j,k
∣

∣ > T

0,
∣

∣di,j,k
∣

∣ ≤ T ,

(6)TEi,j =
N
∑

k=1

TEi,j,k ,

(7)

SUEi,j =
N
∑

k=1

min
(

d2i,j,k , ε
2
)

such that
∣

∣di,j,k
∣

∣ ≤ ε,



Page 5 of 12Ismael et al. Brain Inf.             (2020) 7:9 	

where ε symbolizes a positive threshold and must be 
equal or greater than two.

2.2 � Higuchi’s fractal dimension
The nonlinear quantifying of complexity dynamical time 
sequence can be calculated using Higuchi’s fractal dimen-
sion (HFD) [21, 22]). Suppose x(1), x(2),…, x(N) a dis-
crete-time sequence with N length to be analyzed. The 
discrete signal can be constructed k new time sequence 
as: Xm

k : x(m), x(m+ k), x(m+ 2k), . . . , x
(

m+ int
[

N−k
k

]

k
)

 
for m = 1,2,…,k. here, m symbolizes the initial time, k rep-
resents the time interval and int(.) is the integer part of a 
real number. For each of the k time sequence or Xm

k  
curves; the curve length is described as follows:

where a is int
(

N−m
k

)

 . In Eq. (8), the average length is cal-
culated as the mean of the k lengths Lm(k) for all m. This 
process is repeated to obtain L(k) the mean curve length 
for each k which ranged from 1 to free a parameter kmax.

HFD is expressed as a follows [22]:

the HFD may typically produce the value between 1 and 
2 for EEG waveforms [21]

2.3 � Katz’s fractal dimension
Katz’s fractal dimension (KFD) is commonly used to 
measure the complexity of EEG signals. KFD is described 
as follows [23, 24]:

where L is the total length of the time series, a symbol-
izes the average number of steps and d describes as the 
Euclidian distance between the first sample and the sam-
ple which provides farthest distance [23, 24].

2.4 � k‑Nearest Neighbor classifier
In the among supervised machine learning methods, 
the k-Nearest Neighbor (k-NN) is widely used due to its 
simplicity and good performance [18]. k-NN classifier 
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,

needs a training dataset which consists of positive and 
negative class. The class of a new sample is assigned 
according to the distance to the nearest training class. 
This process is dilated taking into consideration the 
nearest k points and by assigning the sign of majority. 
The number of neighbor k is commonly odd and small 
(e.g., 1, 3 or 5). However, larger k may provide to reduce 
noisy effects in the training set. The distance can be cal-
culated with methods such as Euclidean, Minkowski, 
Chebyshev, Cityblock, etc. [18, 25, 26].

3 � Experimental works and results
A workstation configured with Intel(R) Xeon(R) CPU 
E5-1650 @3.60  GHz with 64  GB memory and the 
NVIDIA Quadro M4000 GPU was used in experi-
ments. The codes were run on the MATLAB software. 
The DEAP database, which was used in experiments, 
contains 32-channel EEG and 8 peripheral physiologi-
cal signals. 16 men and 16 women were used to col-
lect the EEG signals. More specifically, 40 EEG signals 
for each subject were collected where 40 1-min length 
videos with different emotional tendencies were used. 
The subjects were asked to rate the watched videos on 
a scale of 1–9 in terms of valence, arousal, liking, and 
dominance. During the labeling of the emotions, binary 
labeling was considered. The valence ratings that were 
smaller than 5 were assumed to have negative emo-
tions. And, valence ratings higher than 5 were consid-
ered to have positive emotions. Besides, the arousal 
rating scales show ranging from passive to active. The 
arousal ratings that were smaller than 5 were consid-
ered as passive and other rating scales that were higher 
than 5 were assumed as active. Thus, the obtained class 
labels were low valence (LV) vs high valence (HV) and 
low arousal (LA) vs high arousal (HA), respectively. 
The experiments were conducted in tenfold cross-
validation fashion. The pseudo-code of the proposed 
study is given in Table 1. As seen in Table 1, the input 
of the code was raw EEG signals and the output was 
the detected emotions. For all subjects, the EEG signals 
were initially low-pass filtered and for each rhythm, the 
channel achievements were calculated and the top five 
successful channels were used in majority voting pro-
cedure to get the rhythm’s predictions. The number of 
five was selected heuristically during the experiments. 
These predictions were saved and in the end, the sec-
ond majority voting was applied to the rhythms’ predic-
tions to obtain the final prediction.

As it was mentioned in the previous sections, the EEG 
signals were initially filtered with low-pass filtering to 
eliminate the noises. The alpha, beta, gamma, theta and 
delta rhythms of EEG signals were decomposed. Figure 2 



Page 6 of 12Ismael et al. Brain Inf.             (2020) 7:9 

shows the example of EEG signals and their correspond-
ing rhythms. The sample EEG signal was acquired from 
the Fp1 electrode and its sampling frequency was 128 Hz. 
The EEG signal contains 8064 samples.

While Fig. 2a shows the raw and low-pass-filtered sam-
ple EEG signal, Fig. 2b–f shows the alpha, beta, gamma, 
theta and delta rhythms of the sampled EEG signal, 
respectively. The alpha, beta, theta and delta rhythms 
were further used as suggested in [1, 14]. The wavelet 
packet entropy types namely “Shannon”, “Logarithmic 
energy”, “Threshold”, “Sure” and “Norm” and Katz and 
Higuchi fractal dimensions were used as features. Fig-
ure 3 shows the wavelet packet decomposition of an EEG 
signal. Two-level decomposition using the Daubechies 
wavelet function of order 4 was carried out to obtain the 
wavelet packet coefficients.

From Fig.  3, the first row shows the raw EEG signal, 
the second and the third rows show the coefficients that 
were obtained in the first level and the last four rows 
show the four coefficients that were obtained in the sec-
ond level of the wavelet packet decomposition. Thus, six 
wavelet packet coefficients were obtained. As seven fea-
tures were extracted for each wavelet packet coefficients, 
a total of 42 features were obtained from the wave-
let packet decomposition. The “Threshold”, “Sure” and 
“Norm” entropy parameters were chosen as 0.2, 3.0 and 
1.1, respectively. These parameters were adjusted heu-
ristically during the experimental studies. The number 
of neighbors in the k-NN classifier was chosen as 3. The 
other numbers were also selected but the best accuracy 
scores were obtained when the number of nearest neigh-
bors was 3.

The initial experiments were conducted on HV vs LV 
and the obtained results are given in Tables  2, 3, 4, 5 
and 6, respectively. As we used 32 EEG channels, initial 
experiments were conducted to determine the efficient 
EEG channels for each of the EEG rhythms. To this end, 
the achievements of the EEG channels were examined 
and the channels that were in the top five achievements 
were fed into the majority voting procedure. For alpha 
rhythm, the obtained results were tabulated in Table  2. 
From Table 2, it was observed that Fp1, Fc1, T7, O1 and 
T8 channels produced the top five highest achievements 
for alpha rhythm, respectively. Table  2 also gives the 
related sensitivity and specificity scores. The best accu-
racy score of 66.25% was obtained by the O1 channel. 
The second-best accuracy score 62.50% was produced 
by the T7 channel. T8 and Fc1 channels produced the 
61.25% accuracy scores and Fp1 channels produced the 
60.00% accuracy score, respectively.

The last row of Table  2 shows the results of majority 
voting. In majority voting, the predictions of the top 5 
channels were further used to obtain a final prediction 
using the majority predictions of the top 5 channels. As 
seen in Table 2, the majority voting highly improved the 
classification achievement where 83.75% accuracy score 
was produced. This score is 17.50% better than the O1 
channel’s achievement. The sensitivity and specificity 
scores were also highly improved.

The detected top 5 successful EEG channels for beta 
rhythm are given in Table  3. As seen in Table  3, Fc5, 
O1, Fc6, Fp1 and Cz channels obtained the better accu-
racy scores than the other channels on HV vs LV classi-
fication. It was observed that the best accuracy score of 
73.75% was produced by the Fc6 channel. Fp1 and O1 

Table 1  The pseudo-code of the proposed method

Input: Raw EEG signals
Output: Detected emotion
For all subjects

Low-pass filtering
For rhythms

For channels
Extract features (Entropy and Fractal Dimension features)

end
k-NN classification
Choose Top 5 best channels based on accuracy scores
Apply majority voting to get the rhythm’s prediction
Save predictions
end

end
Apply majority voting on rhythm’s predictions to get the final prediction
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yielded 66.25% accuracy scores. And, Fc5 and Cz pro-
duced 63.75% and 62.50% accuracy scores, respectively. 
When the obtained predictions were used in major-
ity voting, 82.50% accuracy score was produced, which 
shows a clear improvement against the achievements of 
the single channel. The improvement was 8.75% on the 
accuracy score. Moreover, the sensitivity and specificity 
scores of the majority voting were 97.83% and 61.77%, 
respectively.

Table 4 gives the achievements of the top 5 EEG chan-
nels for theta rhythm. These channels were Fp1, F3, PO4, 
Fc2, and Fp2, respectively. The best accuracy score of 
70.00% was produced by the Fc2 channel. Moreover, F3 
and PO4 channels produced the 66.25% accuracy scores. 
Fp2 and Fp1 channels yielded 61.25% and 60.00% accu-
racy scores, respectively. Similar to the previous experi-
ments, the majority voting of the channel achievements 
improved the channels of individual achievements. 
80.00% accuracy score, 95.65% sensitivity, and 58.82% 
specificity scores were obtained with the majority voting 
procedure.

The performances of the top 5 EEG channels on delta 
rhythm are given in Table  5. The EEG channels that 
performed better than the other channels were F7, 
F3, FC1, F4, and Fp2, respectively. F3 and Fp2 chan-
nels produced 67.50% accuracy scores, which were 
better than the F7, FC1 and F4 channels. FC1 and F4 
channels produced 66.25% the second-best accuracy 
scores among the top 5 channels achievements. 60.00% 
accuracy score was produced by the F7 channel. The 
majority voting procedure obtained the best accuracy 
score where the accuracy was 82.50%. Majority voting 
improved the accuracy of 15% on delta rhythm.

Finally, Table 6 shows the classification performance 
on HV vs LV discrimination. The majority voting pre-
dictions from all rhythms were re-used in a final major-
ity voting procedure. As four rhythms were considered 
in experiments, for the final majority voting proce-
dure, the alpha rhythm was used two times as the alpha 
rhythm produced the best results among all rhythms. 
From Table 6, it is observed that the final majority vot-
ing increased the HV vs LV discrimination. The calcu-
lated accuracy, sensitivity and specificity scores were 
86.25%, 100%, and 67.65%, respectively.

Experiments were also carried out to recognize the 
emotions LA and HA. Tables  7, 8, 9, 10 and 11 show 
the obtained results, respectively. The achievements of 
the channels on alpha rhythm for classification of LA 

vs HA are given in Table 7. Fp1, Fc1, Fc6, O1, and Cp2 
channels produced better achievements than the other 
channels. While the Fc6 channel produced 61.25% 
accuracy score, O1 and Cp2 channels produced 60% 
accuracy scores. Fc1 and Fp1 channels produced 58.75% 
and 57.50% accuracy scores, respectively. Majority vot-
ing improved the classification of the HA vs LA on 
alpha rhythm. The improvement was about 10%..

Table 8 shows the performances of the top 5 channels 
on beta rhythm for HA vs LA classification. As seen in 
Table  8, the best achievement was performed by the 
O2 channel where the calculated accuracy score was 
62.50%. Fc2 produced a 60.00% accuracy score, which 
was the second-best performance on beta rhythm. F7 
and F6 channels produced 58.75% accuracy scores and 
the Cp2 channel yielded the 57.50% accuracy score, 
respectively. The last row of Table 8 shows the majority 
voting achievement on beta rhythm and 70.00% accu-
racy score was obtained. This score was 7.50% better 
than the best EEG channel.

The theta rhythm’s achievements are given in Table 9. 
As it was observed from Table  9, F3, Fc1, Fp2, F4 and 
Fc2 channels produced the top 5 accuracy scores on 
HA vs LA discrimination. The Fc2 channel produced 
a 70.00% accuracy score, which was the highest among 
the top 5 EEG channels. While the Fp2 channel pro-
duced the second-best accuracy score, F4, F3, and Fc1 
produced the third, fourth, and fifth-best accuracy 
scores, respectively. The performance of the major-
ity voting was 78.75% which was better than a single 
channel’s achievements. The sensitivity and specificity 
scores of the majority voting were 89.58% and 62.50%, 
respectively.

Table  10 shows the top 5 channels achievements on 
delta rhythm. These channels were P3, Oz, Fz, C4, and 
Cp6, respectively. The best accuracy 65.00% was pro-
duced by the Cp6 channel and P3 produced the 63.75% 
accuracy score. Fz and C4 produced 58.75% accuracy 
scores and the worst accuracy score of 57.50% was 
obtained by the Oz channel. 76.25% accuracy score was 
produced by the majority voting of the top 5 channels. 
This score showed a clear improvement against single 
EEG channels.

The final classification result for HA vs LA discrimi-
nation is given in Table  11. For majority voting, the 
predictions of the theta rhythm used twice as shown 
by theta and theta*. The final achievement for HA vs 
LA classification was 85.00%. Besides, the obtained 

(See figure on next page.)
Fig. 2  The rhythms of the EEG signal. a Low-pass filtered EEG signal, b Alpha rhythm, c Beta rhythm, d Gamma rhythm, e Theta rhythm, f Delta 
rhythm
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Fig. 3  The wavelet packet decomposition of an EEG signal. 2 level decomposition is used using the Daubechies wavelet of order 4

Table 2  Top 5 EEG channel achievements on alpha rhythm 
for HV vs LV classification

Top 5 EEG 
channel 
achievements

Sensitivity (%) Specificity (%) Accuracy (%)

Fp1 73.91 41.18 60.00

Fc1 58.70 64.71 61.25

T7 73.91 47.06 62.50

O1 65.22 67.65 66.25

T8 63.04 58.82 61.25

Majority voting 86.95 79.41 83.75

Table 3  Top 5 EEG channel achievements on  beta rhythm 
for HV vs LV classification

Top 5 EEG 
channel 
achievements

Sensitivity (%) Specificity (%) Accuracy (%)

Fc5 89.13 29.41 63.75

O1 69.57 61.77 66.25

Fc6 89.13 52.94 73.75

Fp1 89.13 35.29 66.25

Cz 73.91 47.06 62.50

Majority voting 97.83 61.77 82.50

Table 4  Top 5 EEG channel achievements on theta rhythm 
for HV vs LV classification

Top 5 EEG 
channel 
achievements

Sensitivity (%) Specificity (%) Accuracy (%)

Fp1 67.39 50.00 60.00

F3 71.74 58.82 66.25

PO4 76.09 52.94 66.25

Fc2 80.44 55.88 70.00

Fp2 82.61 32.35 61.25

Majority voting 95.65 58.82 80.00

Table 5  Top 5 EEG channel achievements on delta rhythm 
for HV vs LV classification

Top 5 EEG 
channel 
achievements

Sensitivity (%) Specificity (%) Accuracy (%)

F7 71.74 44.12 60.00

F3 65.23 70.59 67.50

FC1 78.26 50.00 66.25

F4 80.44 47.06 66.25

Fp2 80.44 50.00 67.50

Majority voting 97.83 61.77 82.50
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sensitivity and specificity scores were 93.75% and 
71.88%, respectively. The improvement was about 
6.25%.

The performance comparison of the proposed 
work with some of the existing methods was given in 
Table  12. These methods were reviewed in the intro-
duction section and all of them used their experiments 
on the DEAP dataset. When Table  12 was examined, 
it was seen that the proposed method outperformed 
other methods on HV vs LV discrimination. Alzarzi 
et  al. produced a second-best accuracy score where 
the accuracy was 85.8% [3]. Abeer et al., Tripathi et al. 
and Li et  al. reported 82.0%, 81.4% and 80.7% accu-
racy scores, respectively [7, 11, 14]. Rozgić, Zhang 
and Atkinson et  al. reported accuracy scores among 
70.0% and 80.0% and Zhuang, Huang and Chandra 
et al. reported achievements between 60.0% and 70.0% 
[4–6, 9, 10, 13]. The worst score 57.6% was reported by 
Koelstra et al. [2].

The performance comparisons on HA vs LA dis-
crimination are also given in Table 12. From Table 12, 
it was seen that Alazrai et al. reported the best classi-
fication accuracy [3]. The second-best accuracy score 
was also produced by the proposed method. Huang, 
Zhang and Li et  al. reported accuracy scores among 
80.0% and 85.0%, respectively [4, 7, 9, 14]. Atkinson, 
Tripathi and Zhuang et al. reported accuracy scores in 
the range of 70.0% and 75.0%, respectively [10, 11, 13].  

Table 6  The majority voting of the rhythm’s achievements for final emotion recognition (HV vs LV)

Top 5 EEG channel achievements Sensitivity (%) Specificity (%) Accuracy (%)

Majority voted alpha 86.95 79.41 83.75

Majority voted alpha* 86.95 79.41 83.75

Majority voted beta 97.83 61.77 82.50

Majority voted theta 95.65 58.82 80.00

Majority voted delta 97.83 61.77 82.50

Majority voting of rhythms 100.00 67.65 86.25

Table 7  Top 5 EEG channel achievements on alpha rhythm 
for HA vs LA classification

Top 5 EEG 
channel 
achievements

Sensitivity (%) Specificity (%) Accuracy (%)

Fp1 66.67 43.75 57.50

Fc1 81.25 25.00 58.75

Fc6 79.17 34.38 61.25

O1 77.08 34.38 60.00

Cp2 72.92 40.63 60.00

Majority voting 97.92 31.25 71.25

Table 8  Top 5 EEG channel achievements on  beta rhythm 
for HA vs LA classification

Top 5 EEG 
channel 
achievements

Sensitivity (%) Specificity (%) Accuracy (%)

F7 60.42 56.25 58.75

Fc1 62.50 56.25 60.00

Fc6 64.58 50.00 58.75

Cp2 58.33 56.25 57.50

O2 95.83 12.50 62.50

Majority voting 81.25 53.13 70.00

Table 9  Top 5 EEG channel achievements on theta rhythm 
for HA vs LA classification

Top 5 EEG 
channel 
achievements

Sensitivity (%) Specificity (%) Accuracy (%)

F3 68.75 53.13 62.500

Fc1 75.00 40.63 61.25

Fp2 68.75 65.63 67.50

F4 85.42 37.50 66.25

Fc2 72.92 65.63 70.00

Majority voting 89.58 62.50 78.75

Table 10  Top 5 EEG channel achievements on  delta 
rhythm for HA vs LA classification

Top 5 EEG 
channel 
achievements

Sensitivity (%) Specificity (%) Accuracy (%)

P3 79.17 40.63 63.75

Oz 66.67 43.75 57.50

Fz 62.50 53.13 58.75

C4 79.17 28.13 58.75

Cp6 93.75 21.88 65.00

Majority voting 95.83 46.88 76.25
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The worst accuracy score was also reported by 
Koelstra et  al. [2]. Yin et  al. obtained 83% and 84.2% 
accuracy scores, respectively.

4 � Conclusions
In this paper, an efficient approach was proposed for 
EEG-based emotion recognition. The proposed method 
employed a two-stepped majority voting procedure 
to increase the performance of the emotion classifica-
tion. The DEAP dataset was used in experiments and 
two binary classifications such as HV vs LV and HA vs 
LA were considered. For HV vs LV discrimination, it 
was seen that the alpha rhythm of the EEG signals was 
more convenient. Also, Fp1, Fc1, T7, O1 and T8 chan-
nels on alpha rhythm produced better accuracy scores 
than the other EEG channels. Beta and delta rhythms 
produced the 82.50% accuracy scores. For beta rhythm, 
Fc5, O1, Fc6, Fp1, and Cz channels performed better 
and for delta rhythm, F7, F3, FC1, F4, and Fp2 chan-
nels were outperformed. Theta rhythm produced the 
worst majority voting prediction. The second stepped 

majority voting produced quite improved results that 
the single EEG channels. The HA vs LA classification 
rates were lower than the HV vs LV classification rates. 
Theta was the best rhythm for HA vs LA discrimina-
tion and F3, Fc1, Fp2, F4 and Fc2 channels performed 
better than the other channels. The second stepped 
majority voting on HA vs LA classification improved 
the classification accuracy. Delta rhythm also produced 
the second-best majority voting prediction on HA vs 
LA discrimination. Alpha and beta rhythms produced 
similar accuracy scores. The obtained results showed 
that the frontal EEG channels performed well than the 
other EEG regions. Also, majority voting was increased 
the obtained accuracy scores.

In future works, the deep learning achievements will 
be investigated on the EEG rhythms [27–29]. Besides, 
the achievements of all EEG channels will be investi-
gated in the deep learning fashion.
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