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REVIEW

Various epileptic seizure detection 
techniques using biomedical signals: a review
Yash Paul*

Abstract 

Epilepsy is a chronic chaos of the central nervous system that influences individual’s daily life by putting it at risk due 
to repeated seizures. Epilepsy affects more than 2% people worldwide of which developing countries are affected 
worse. A seizure is a transient irregularity in the brain’s electrical activity that produces disturbing physical symptoms 
such as a lapse in attention and memory, a sensory illusion, etc. Approximately one out of every three patients have 
frequent seizures, despite treatment with multiple anti-epileptic drugs. According to a survey, population aged 65 or 
above in European Union is predicted to rise from 16.4% (2004) to 29.9% (2050) and also this tremendous increase in 
aged population is also predicted for other countries by 2050. In this paper, seizure detection techniques are classified 
as time, frequency, wavelet (time–frequency), empirical mode decomposition and rational function techniques. The 
aim of this review paper is to present state-of-the-art methods and ideas that will lead to valid future research direc-
tion in the field of seizure detection.

Keywords:  Fourier transform, Wavelet, Epilepsy, Electroencephalogram (EEG), Hilbert transform, Empirical mode 
decomposition, Rational function, Particle swarm optimization (PSO)
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1  Introduction
Epilepsy is a neurological disorder which creates severe 
effects to human brain. According to the latest study, 
more than 2% of the population worldwide is affected 
from epilepsy where 85% of those live in developing coun-
tries and has adverse effects on their daily life and pro-
ductivity. Each year 2.4 million new cases are estimated 
to occur globally [1, 2]. EEG signals are usually used by 
experts for the diagnosis of the epilepsy. EEG signals are 
classified into two types: (a) scalp EEG and (b) intracra-
nial EEG (iEEG). Scalp EEG is captured by placing the 
electrodes on the surface of scalp by using international 
standard 10–20 system [3]. iEEG signals are captured by 
placing the electrodes directly on the surface of brain to 
record the brain activity from the cerebral cortex. Detect-
ing and locating the seizure period in EEG recordings 
manually is difficult and time-consuming because EEG 
recordings are usually tens or even hundreds of hours 
long. Epilepsy seizures are mainly classified as generalized 
or local and partial seizures or focal. Generalized seizures 

are further classified as Grand Mal, Absence, Myoclonic, 
Clonic, Tonic and Atonic and are produced by electri-
cal impulses throughout the whole brain, whereas par-
tial seizures are categorized as simple and complex and 
are from small portion of the brain. Simple seizures are 
simple motor, simple sensory and simple psychological, 
and complex seizures are partial seizure with secondary 
generalization. In seizure signal, four states are identi-
fied, namely pre-ictal, ictal, inter-ictal and post-ictal. 
The portions of the signal before the first seizure and 
after the last are called pre-ictal and post-ictal. Ictal and 
inter-ictal indicate intervals of seizures and between sei-
zures. When a seizure occurs, it might cause injuries or 
jeopardize the life of the patients especially when they 
are driving cars or working with different machinery. 
That is why there is a need to develop an automatic sei-
zure detector to avoid different types of harms to epilep-
tic patients. Most of the research work is carried out by 
using scalp EEG, because capturing the signal from the 
surface of the brain (iEEG) is quite risky and require lots 
of expertise in it. There are number of review papers pub-
lished on this area, but most of the papers do not cover 
the complete state-of-the-art methods and transforms 
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like application of rational transform in seizure detec-
tion. According to [4, 5], the seizure detection process 
is classified as single-channel or multichannel process. 
In single-channel process, a channel or signal which is 
strong and close to the seizure origin is selected based 
on some measures like local variance. Combining the 
information from more than one channel through some 
data fusion techniques [6] gives better results in seizure 
detection process. Another attempt to classify seizure 
detection as linear and nonlinear techniques is made 
in [7–9]. Tzallas et  al. [10] classified seizure detection 
methods as pattern recognition methods, morphological 
analysis methods, parametric methods, decomposition 
methods, clustering methods and data mining methods. 
Alotaiby et  al. [11] classified seizure detection methods 
based on time, frequency wavelet and empirical mode 
decomposition (EMD) domains. We adopt classification 
based on [11] but with latest methods and additional 
domain called rational domain and discuss how rational 
transform is more efficient than wavelet transform and 
other methods while detecting seizures from a given 
EEG epochs (time window). Because of the application of 
various transforms like discrete Fourier transform (DFT), 
discrete wavelet transform (DWT), Hilbert transform, 
Gabor transform, rational transform, etc., decomposition 
techniques like empirical mode decomposition, singular 
value decomposition, etc., and data reduction techniques 
like principal component analysis (PCA) and independ-
ent component analysis (ICA) have played an important 
role in seizure detection. In this paper, we are review-
ing the latest directions in seizure detection area and the 
techniques and methodologies used are categorized into 
five domains, i.e. time domain, frequency (DFT) domain, 
wavelet domain (time–frequency), empirical mode 
decomposition (EMD) and rational transform domain. 
Most of the techniques discussed here are noninvasive. 
Based on the various processing domains, the classifica-
tion of the various seizure detection methods is shown in 
Fig. 1. 

In this study, we also summarize some papers which 
adopted other biomedical signals like electrocardio-
gram (ECG), electrocorticography (ECoG), etc., or 
combination of different signals for seizure detection. 
We focused on scalp EEG databases-based techniques 
and methodologies.

The performance of the most of the techniques in dif-
ferent domains is measured by following quantities:

Sensitivity =
TP

TP+ FN
× 100

Specificity =
TN

TN+ FP
× 100

where TP → true positive, is the number of epochs which 
are marked as seizure by both algorithm and doctor.

TN → true negative, is the number of epochs which 
are marked as non-seizure by both algorithm and 
doctor.

FN → false negative, the number of seizure epochs 
which are misclassified by the algorithm, i.e. recognized 
as non-seizure but actually they are seizures.

FP → false positive, the number of non-seizures 
epochs which are misclassified by the algorithm, 
i.e. recognized as seizure but actually they are 
non-seizures.

The performance of the seizure detection algorithm 
primarily depends on following parameters:

Transformation technique, feature selection, classifier 
used, window size, type of window or mother wavelet, 
the levels of decomposition of the original signal and 
optimization algorithm, etc.

We will also investigate above-mentioned parameters 
from different domains, and it will help the researchers 
to identify which parameters are more relevant to their 
algorithms for further improvement in the already-
existing seizure detection methods. The study will also 
help the readers to become familiar with different types 
of public and non-public epilepsy databases.

The paper is organized as follows. It has four sections. 
Section  1 is related to time and frequency domain 
methods, Section  2 is about wavelet domain, in Sec-
tion  3, EMD domain is discussed, Section  4 contains 
rational transform domain and comparisons of various 
techniques in terms of feature, methods and results. 
Every section presents the core idea of the papers along 
with what features are used, which transform is used, 
what is the appropriate window size, what is the sig-
nal duration, what type of results, i.e.  % of sensitivity, 
specificity, accuracy false detection rate, etc. The 4th 
section also includes the conclusion, various problems 
and valid directions of future research in this area.

Accuracy =
TP+ TN

TN+ FP+ TP+ FN
× 100

Fig. 1  Classification of seizure detection method
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2 � Section 1
2.1 � Time domain or threshold‑based methods
Time domain refers to how the value of the signals var-
ies over time, in other words time parameter is the inde-
pendent variable of the signal. Time domain methods are 
usually patient-specific or problem-specific and do dis-
crete time analysis, and do analysis of the given epochs 
(time window). Thus, this is value-time analysis of a given 
signal x(t). Seven papers are summarized here. The main 
objective here is to demonstrate the various approaches, 
interconnection among approaches and different pos-
sibilities in time domain so that we can further do 
improvement in seizure detection devices. To this end, 
we selected seven different papers with different ideas. 
The selected papers have high accuracy, sensitivity, speci-
ficity and low false detection rate. It may be beneficial 
to the researchers who are interested to develop seizure 
detection devices with high speed and more accuracies. 
The performance in terms of accuracy, sensitivity, speci-
ficity and false detection rate of below mentioned algo-
rithms depends mainly on core ideas, selection of the 
features and classifiers being used. Since these methods 
do not require transformations and are generally fast and 
are used in seizure detection devices like smart watch, 
tablets, etc., proposed algorithms are tested on CHB-
MIT, Bonn database [12] and self-recorded data, whereas 
last two papers are purely hardware based.

Shanir and Khan [13] Proposed method for automatic 
seizure detection based on mean and minimum value of 
energy per epoch, i.e. mean of the energy of each sam-
ple point in a epoch and sample point having minimum 
energy in a epoch are used as features for classification. 
The window size was chosen as 1  s. The classifier used 
here is linear classifier. The algorithm was tested on 
CHB-MIT database on three subjects with 60 and 40% 
of data used as training and test data, respectively. They 
obtained an average detection accuracy of 99.81%, sensi-
tivity 100%, and specificity 99.81%. The epoch having sei-
zure, the features like mean and minimum of energy have 
greater values than the segments with no seizure and can 
be classified easily as seizure and non-seizure epoch. Fea-
tures are extracted here from original epoch, and there-
fore, the size of the feature vector is large which may 
reduce the speed of the system. This large size vector may 
be reduced by half-wave and histogram method [2, 14].

Alotaiby et  al. [2] They proposed patient-specific 
method for channel selection and seizure detection by 
estimating the histograms of multichannel scalp EEG 
signals. In the training phase, the signal is windowed by 
using 10-s-long non-overlapping window with five his-
tograms measured from each segment. Histograms have 
number of bins that are studied individually as random 
variables. Based on some predefined threshold, bin(s) 

are selected from certain channel distributions for sei-
zure detection. During training hours, a leave-one-out 
cross-validation technique is applied. In the testing 
phase, those channel(s)-histogram(s)-bin(s) are used to 
classify each segment as ictal or non-ictal. The resulting 
sequence is de-noised with a moving average filter and 
compared to a patient-specific detection threshold. The 
method is tested on CHB-MIT dataset using 309.9 h of 
sEEG including 26 seizures of five patients. They have 
shown an average sensitivity and specificity off 97.14% of 
98.58%, respectively.

Runarsson and Sigurdsson [14] The idea behind this 
paper is: first, find the half-wave form of the EEG epoch 
at hand and then find the consecutive peaks and minima 
in that half-wave signal segment. The histograms are 
estimated for two variables: the amplitude difference (Δ, 
Y-axis) and time separation (τ, X-axis) between two con-
secutive peak values as well as minima. Here we have two 
histograms one for minima and other for maxima. The 
features used for classification of an epoch as a seizure 
or non-seizure are these estimated values like Δ and τ 
from local minima and maxima. Actual features used are 
the frequencies of co- occurrences of τ and Δ and each 
feature is generated from 8 s long signal with 2 s overlap 
12 h self-recorded data using 10 EEG channels with 256 
sampling. Support vector machines (SVMs) with chunk-
ing method are used as classifiers. An average sensitivity 
of about 90% is achieved. Proposed algorithm in [14] may 
not perform better than [13] on CHB-MIT because CHB-
MIT has very long duration data and requires investiga-
tion. On the other hand most of the values in the feature 
vector extracted by half-wave method will be zero and 
it gives the sparse representation of the data and hence 
less data to be processed as compared to the methods 
in [2, 13]. Problem with this method is that actual pro-
cessing of the signal like extraction of the features starts 
only after finding the half-wave representation of the 
original signal. Once the half-wave is in hand this could 
be very fast algorithm in time domain applications with 
large amount of dataset and can be used as online seizure 
detection method. In [15] the researchers designed the 
seizure detector (hardware) and implemented the algo-
rithm (software) in the designed processor. In [16] they 
have developed a improved network of seizure detection 
devices.

Mursalin et  al. [17] Present a hybrid approach where 
features from time and frequency domains are analysed 
to detect epileptic seizure from EEG signal. Time domain 
features like mean, median, mode, minimum, maximum, 
skewness, standard deviation, kurtosis, first quartile (Q1), 
third quartile (Q3) and interquartile range (Qir), mobil-
ity and complexity, Hurst exponent and the detrended 
fluctuation analysis with frequency domain features 
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like Maximum of the wavelet coefficients, Minimum 
of the wavelet coefficients Mean of the wavelet coeffi-
cients Standard deviation of the wavelet coefficient. First 
they apply improved correlation-based feature selection 
(ICFS) method to select prominent features from the 
time domain, frequency domain, and entropy based fea-
tures and these then classification of the selected feature 
is done by an ensemble of Random Forest (RF) classifi-
ers. Results show that the proposed method is better in 
performance as compared to the conventional Correla-
tion-based and some other state-of-the-art methods of 
epileptic seizure detection methods when tested on Bonn 
dataset.

Alejandro and Ramon-Lozano [18] In this paper, 
authors used energy of the signal in a different way. 
They used smaller window as the foreground windows 
and larger window as the background while windowing 
the signal. Energy is calculated in every foreground and 
background window, and the energy ratio is calculated 
by dividing the foreground energy by the correspond-
ing background window energy resulting a series of 
energy ratios and can be treated as a time series distribu-
tion where some values are more higher than average or 
threshold values are part of seizure. Finally after thresh-
olding, the values are combined and seizures that are 
shorter than lmin (the minimum seizure duration.) sec-
onds are deleted which may removes noise too. Finally, 
the algorithm has detected a set of seizures for each 
channel. The final set of detected seizures is a result of all 
different channels. All above-mentioned steps for seizure 
detection require some set of optimized parameters, and 
these parameters are optimized by genetic algorithms. 
The algorithm is tested on CHB-MIT database and found 
that the number of false positives is very small, and it is 
0.39 per 24 h in average, which less than most state-of-
the-art methods.

Yoo et  al. [15] They designed a multichannel-based 
processor called system on chip (SoC) for detecting the 
seizure, and energy of the signal is used as features. The 
feature vector is constructed by dividing the signal into 
segments, and instead of calculating the energy of the 
signal as whole they calculated the energy from these 
segments, which results in a more discriminative fea-
ture vector. The device has 8 data acquisition channels, 
feature extraction module (FE) and classification engine 
(CE). They used SVM as classifier and is trained to detect 
rapid-eye blink patterns as this is similar to the general-
ized seizure and has more energy as compared to non-
seizure patterns. The SoC was tested on CHB-MIT scalp 
EEG database [19] and it showed an accuracy of 84.4% 
with a total time of 2 s and 2.03 μJ/classification energy. 
The advantage of this processor as compared to IAS 
processor is that it enlarges the EDO filtering range up 

to + 200 mV which is 4 times better and consuming the 
same power of 2.5 μW.

Dalton et al. [16] In [15], the processor has the capabil-
ity to save power, by working in a single mode at a time, 
keeping other mode off at the same time, but device is 
not used in network, i.e. it is standalone device for sei-
zure detection. Dalton et  al. proposed the algorithm 
which can be used in standalone device as well as in the 
network too. It is a single channel method where they 
developed a body senor network (BSN) that can moni-
tor and detect epileptic seizures using the features like 
mean, variance, zero-crossing rate, entropy, root means 
square (RMS), and autocorrelation with template signals 
extracted from time domain signals. They detected motor 
seizures, and data are collected by using accelerometer-
based kinematic sensors like gyroscope and magnetic 
sensor for physical activity monitoring. They adopted a 
dynamic time warping (DTW) approach for best align-
ment between the signal segment to be tested and the 
template signal, i.e. no classifier is used for classification. 
They also found that RMS is best separation feature as 
compared to others listed above. The sensitivity and the 
specificity of the algorithm for a dataset of five subjects 
with 21 seizures is 91 and 84%, respectively, with battery 
lifetime of 10.5 h. The problem with this technique is that 
they used N810 tablet, and it does not contain cell phone 
capabilities. The device is GPS-enabled and can send 
only messages to another cell phone or device. Therefore, 
we can conclude that time domain methods are simple 
and are good choices to implement these algorithms for 
patient-specific problems, seizure detection devices and 
in networks too. The methods proposed in [2, 13, 14, 
17] may further improve the performance of the seizure 
detection devices because of their high accuracy and 
sensitivity.

Observations The problem with time domain analysis 
is that it does not tell about the frequency components 
of the signal and this drawback is overcome by frequency 
domain analysis which provides deeper analysis of the 
signal as compared to time domain. Time domain meth-
ods are usually fast and can be used in real-time systems.

2.2 � Frequency domain
Time domain method does the analysis of the signal 
based only the time and magnitude components of signal 
[magnitude (Y-axis), time (X-axis)], and there is no infor-
mation about frequency component of the signal. But if 
we want the deep analyses of the signal then frequency 
component is also required. Frequency domain tells 
about the frequency spectrum [magnitude (Y-axis), fre-
quency (X-axis)] of the signal. The advantage of the trans-
formation of signal from one domain to another domain 
is that it provides insight and points out the important 
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properties of the signals which cannot be seen by visual 
inspection of the original signal and or hidden signal in 
time domain. Theoretically, signals are decomposed into 
pure sinusoidal signals with different frequencies. The 
signal is transformed to frequency domain by using Fou-
rier transform, and Fourier transform’s magnitude and 
phase can be exploited here. Thus, this is amplitude–fre-
quency analysis of the given signal. Frequency domain 
methods are more robust than time domain methods. 
Five papers are discussed to demonstrate unique ideas 
for seizure detection. The proposed algorithms perform 
excellent on long-term recordings and help to distinguish 
different states of seizure EEG signal. This domain like 
time domain methods also helps us to select a channel 
having greater seizure activity.

Bhople [20] Authors proposed epileptic seizure detec-
tion method by using fast Fourier transform (FFT). The 
FFT-based features are extracted and are fed to the neu-
ral networks. They used multilayer perceptron (MLP) 
and generalized feed-forward neural network (GFFNN) 
as a classifier. The algorithm is tested on Bonn database, 
and results show they are able to achieve 100% accuracy.

Hills [21] The author participated in a competition 
“UPenn and Mayo Clinic’s Seizure Detection Challenge” 
and he used fast Fourier transform (FFT) to each one 
second long window and taking magnitude in the range 
1–47 Hz and leaving phase information. Then correlation 
coefficients and eigenvalues are computed in both fre-
quency and time domains and added to the FFT data to 
form the feature vector; these features are classified using 
random forest classifier with 3000 trees.

Rana et  al. [19] They proposed a multichannel algo-
rithm for seizure detection, and their algorithm is based 
on phase slope index (PSI). PSI metric of EEG signals is 
used to categorize seizure and normal activities. The PSI 
metric measures the interaction between the two chan-
nels and identifies rise in the spatio-temporal interactions 
between the channels, which undoubtedly differentiate 
seizure from inter-ictal activity. It is a threshold-based 
method where threshold is chosen by using moving 
average of latest activity to include differences between 
patients and slow changes within each patient over time. 
The performance of the algorithm is tested on 258-h-long 
recorded EEG data of five patients with different types 
of epilepsy. ECoG data of five patients ranges from 41 to 
63-h-long and have 5–15 seizures in each case. The per-
formance of the algorithm was tested for two segments 
of 20 and 60 s long without using any classifier, and they 
showed that the algorithm successfully detected all sei-
zures from all 5 patients and achieved false detection 
rate lower than two per hour. The 20-s-long segment and 
a threshold of 4.8 standard deviations detected 100% of 
the seizures excepting in one patient. A unique strength 

of this paper is that it is designed and evaluated on long-
term recordings. They also showed that their algorithm 
can be used to find the channels among various channels 
having strong activity.

Khamis et  al. [22] It is a single channel, patient-spe-
cific and with no threshold parameter method of seizure 
detection. Frequency domain features like frequency 
moment signatures are used to distinguish a seizure seg-
ment from non-seizure. The EEG signals at hand have 
marked the collected scalp EEG data with seizure events. 
After marking the signal, a filtering process has been per-
formed on the windowed EEG data from electrode dif-
ferences T6-P4 (right hemisphere, RH) and T5-P3 (left 
hemi sphere, RH). Power spectral densities of the signals 
on both hemispheres have been computed and frequency 
components of both hemispheres are combined into a 
single quantity. Signatures are calculated by subtract-
ing normalized central moments of the subset distribu-
tion from the mean, and it shows whether the amplitude 
of the seizure frequency is consistent and it helps to 
distinguish a seizure from a transient event. The blocks 
(RH blocks and LH blocks) of 32 s from 8192 are merged 
with 50% overlap, resulting in a signature in every 16  s. 
A triangular window having 1024 sample size with 50% 
overlap is used resulting in a total of 15 subset transforms 
from each RH and LH blocks. Any frequency which has 
consistent spectral power at a give time in all the sub-
sets is seizure frequency and is different from any nor-
mal event. They used template matching algorithm called 
“Powell’s direction set” method for classification, i.e. to 
measure the consistency of a frequency. A sensitivity of 
91% and false alarm rate of 0.02 false positives per hour is 
achieved as per this method. Thus, no threshold param-
eter and no classifier are used for classification. The algo-
rithm is tested on 618-h-long recordings.

Acharya et  al. [23] They designed a method for the 
detection of three states of EEG signal, i.e. normal, 
pre-ictal, and ictal conditions from recorded EEG sig-
nals. They combine the features from two domains, i.e. 
time domain and frequency domain and found that this 
combined features method is performing good in  situ-
ations when signal has nonlinear and non-stationary 
nature. Four entropies (measure of randomness), phase 
entropy 1 (S1), phase entropy 2 (S2), approximate 
entropy (ApEn), and sample entropy (SampEn) are used 
as features. The phase entropies are estimated from the 
higher-order spectra of EEG signal epochs and can be 
used as discriminating features for ictal, pre-ictal, and 
inter-ictal activities. The approximate and sample entro-
pies are logarithmic measures that measure the closeness 
and matching between the incoming EEG signal pattern 
and the recorded templates. The entropy features are 
fed to seven different classifiers like SVM, fuzzy Sugeno 
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classifier (FSC), probabilistic neural network (PNN), 
KNN, naive Baye’s classifier (NBC), decision tree (DT), 
and Gaussian mixture model (GMM) for comparison, 
and finally they compared the results. Results showed 
that Fuzzy classifiers are optimal, with an accuracy of 
98.1%.

Observations Frequency domain methods are good 
choices when recorded data is large, i.e. for long-term 
data but time component of the signal is missing here. 
On the other hand, combination of features from differ-
ent domains may produce very promising results. But for 
more efficient analysis of the signal we need a transform 
that will tell us about time and frequency components of 
the signal simultaneously and such type of transforma-
tions are discussed in next section.

3 � Section 2
3.1 � Wavelet domain (time–frequency)
A wavelet can be defined as a waveform with certain 
properties: (a) effectively limited duration and (b) zero 
average value.

Example

Here basis functions are wavelets called mother wave-
lets, e.g. Har, Daubechies, etc. The mother wavelet is a 
reference wavelet, whose coefficients are evaluated for 
the entire range of dilation and translation factors [24]. 
Wavelet transform is a time–frequency analysing tool 
like short Fourier transform (STFT), which is found very 
useful to extract the features from the signals which are 
non-linear and non-stationary in nature like EEG sig-
nals. It gives better time and frequency localizations as 
compared to the short time Fourier transform. It uses 
long time windows for low-frequency components and 
short time intervals for high-frequency components. 
Fourier transform has fixed basis functions throughout 
signal and generally extract global features of the sig-
nals. STFT can be used to extract local feature, but it 
has some drawbacks like fixed window size and dilemma 
of Resolution, i.e. narrow window gives poor frequency 
resolution, while wide window gives poor time resolu-
tion. Wavelet transform uses scale-varying basis func-
tions to compute the energy of a signal and extract local 
features of the signal. Fourier transform holds Heisen-
berg uncertainty principle, i.e. it cannot know what fre-
quency exists at what time intervals. Wavelet transform 

decomposes the signal into sub-bands or decomposition 
levels, and then, features are extracted from the selected 
sub-bands or levels. The main challenging task in wave-
let-based EEG seizure detection is finding the appropri-
ate number of decomposition levels, mother wavelet and 
the selection of the features from certain sub-bands to 
discriminate seizure from non-seizure periods. Discrete 
wavelet decomposition (DWD) provides sufficient infor-
mation both for analysis and synthesis of the original sig-
nal, with a significant reduction in the computation time. 
DWT signal is also continuous like continuous wavelet 
transform but scaling and translation parameters here 
are discrete in nature. Discrete wavelet transform can 
be implemented with single level or multilevels. Three-
level discrete wavelet decomposition (DWD) is shown in 
Fig. 2.

Wavelet function is defined as follows:

τ → shift parameter and s → scale parameter.
Wavelet transform:

Inverse wavelet:

The wavelet coefficients are shown as pixel intensity 
(colour), in a two-dimensional plane with y-axis in lieu 
of the scaling factor of the wavelet, and the x-axis, its 
translation time axis. The wavelet transform plot, i.e. 
scalogram is a two-dimensional colour pattern rep-
resenting the location of the “event” occurring in the 
timescale.

(1)Ψs,τ (t) =
1√
s
Ψ

(

t − τ

s

)

(2)γ (s, τ ) =
∫

f (t)Ψ ∗
s,τ (t)dt

(3)f (t) =
∫∫

γ (s, τ)Ψs,τ (t)dτds

Fig. 2  Discrete wavelet decomposition (3 levels)
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The main motive of this section is to make the read-
ers familiar with time–frequency analysis using wavelet 
transform. When we are proposing the algorithms for 
seizure detection using wavelets, it is necessary to know 
how many decomposition levels are sufficient for efficient 
seizure detection, which classifier is appropriate and what 
types of mother wavelets are good for seizure detection. 
To this end, we have chosen 10 papers. The algorithm 
proposed in first three papers are tested on same data-
base, i.e. Bonn database and hint us about what type of 
mother wavelet is appropriate for efficient seizure detec-
tion. Next six papers investigate the appropriate decom-
position levels of the signal for efficient seizure detection, 
and last paper is hardware based. Different classifiers are 
discussed in all ten papers.

Hasan et  al. [25] Proposed a new method for sei-
zure detection by using Wavelet and Hilbert transforms 
(explained in section  3). The features like Mean, maxi-
mum, minimum, standard deviation and average power 
of absolute values of wavelet and Hilbert transform coef-
ficients are extracted separately. The decomposition level 
2 was chosen because dynamics of EEG signals contain 
important sub-bands. Daubechies wavelet of order 4 
(db4) is chosen as mother wavelet. The K-nearest neigh-
bourhood (KNN) classifier is applied separately on these 
extracted features. The performance is tested on Bonn 
database [26], and they found that the results obtained by 
using Hilbert transform are quite promising. Accuracy: 
for wavelet case, 100 and 96% for the A–E and B–E data-
sets, and for Hilbert case, 100 and 100% for the A–E and 
B–E datasets, respectively. In case of Hilbert transform, 
they have also shown the sensitivity and specificity of 
100% each. The power of the algorithm is that it uses only 
one decomposition level achieving an highest accuracy.

Zainuddin et al. [27] In this paper, the authors first take 
the wavelet transform of EEG signals to generate a set of 
coefficients, and then, maximum, minimum, and stand-
ard deviation of the absolute values of the wavelet coef-
ficients in each sub-band are extracted as features. The 
extracted features are then classified by WNNs (wavelet 
neural networks) classifier. They also investigated various 
mother wavelets like Gaussian, Mexican Hat, and Morlet, 
and they found that the best performance was obtained 
with WNNs using a Morlet wavelet activation function 
with order 4 Daubechies wavelet for feature extraction. 
They used Bonn database to evaluate the performance 
of proposed method and achieved sensitivity and speci-
ficity up to 98%. Thus, algorithm proposed in [27] with 
Hilbert transform is much better in terms of sensitivity 
and specificity than algorithm proposed in [27] on Bonn 
database and can be used in real-time applications.

Niknazar et  al. [28] They used recurrence quantifi-
cation analysis (RQA) a well-known and well-suited 

analysis technique for nonlinear data on recorded EEG, 
and their alpha, beta, delta, theta, and gamma sub-bands 
are extracted by a four-level Daubechies wavelet trans-
form. The signal is decomposed into five levels. After 
extracting the features, an error-correcting output cod-
ing (ECOG) classifier is used on Bonn database to clas-
sify the three states like normal or healthy, inter-ictal, and 
ictal. They achieved an accuracy of 98.67%.

Therefore, from these three papers we can conclude 
that authors investigated different mother wavelets to 
decompose the signal and found that in many cases the 
results with Daubechies (db2, db4) and Morlet are excep-
tionally good.

Zhou et al. [29] This paper used lacunarity and fluctua-
tion index as features, and Bayesian linear discriminant 
analysis (BLDA) is used as classifier.

The lacunarity (gap) is a measure of heterogeneity, and 
fluctuation Index can measure the intensity of the fluc-
tuation of EEG signal. The ictal EEG epoch has larger 
fluctuations index and Lacunarity values than the inter-
ictal or normal epoch. Authors first decompose the EEG 
epochs into five decomposition levels (sub-bands). Three 
sub-bands or levels with scales three, four, and five are 
chosen for the extraction of features. Features like lacu-
narity and fluctuation index are computed from these 
selected frequency sub-bands. The performance of this 
algorithm is evaluated and investigated on Freiburg EEG 
database [2], and it is found a sensitivity and false detec-
tion rate of 96.25% and 0.13/h, respectively. This algo-
rithm mainly focused on sensitivity and false detection 
rate, whereas false detection rate is not mentioned in [25, 
27, 28].

Chen et al. [30] In this paper, they decompose the EEG 
signals up to six wavelet scales without down-sampling. 
Scales 3, 4, 5, and 6 are chosen for further processing. 
The fast Fourier transform on selected scales has been 
performed, and magnitude of the Fourier coefficients is 
chosen as features for seizure detection. Nearest neigh-
bour classifier is used to classify the input EEG signal into 
the seizure and non-seizure class. The performance of 
the proposed algorithm is tested on Bonn database and 
perfect correct classification rates achieved (100%) for all 
seven binary classification problems, and it is better than 
existing methods like [25, 27] in terms of classification 
rate.

Liu et al. [31] It is also a five-level decomposition tech-
nique. Three wavelet sub-bands are selected for feature 
extraction and feature selection. The feature used is rela-
tive amplitude, relative energy, coefficient of variation, 
and fluctuation index from the selected three levels. The 
fluctuation index is a measure of the intensity of a decom-
posed sub-band at hand. The classifier used here is SVM, 
and after classification some kind of post-processing like 
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smoothing, multichannel decision fusion, and collar is 
done to further enhance the seizure detection perfor-
mance. The collar processing is a technique that is used 
to maintain the data continuity during processing. The 
results are tested on 509 h for 21 epilepsy patients, and 
they found sensitivity, specificity and false detection rate 
of 94.46, 95.26%, and 0.58/h, respectively. This algorithm 
is robust as compared to above-mentioned techniques 
because algorithm is performing exceptionally well on 
long-range data.

Abbasi and Esmaeilpour [32] The objective of this 
paper was improving the precision of prediction and 
classifying different states of EEG signals into healthy, 
convulsive, and epileptic states. In this approach, they 
divide the signal into 5 levels. For further processing, they 
chose first 4 levels and last, i.e. 5th low-frequency level is 
rejected. Features like maximum, minimum, average and 
standard deviation for each sub-band are extracted. A 
multilayer perceptron (MLP) neural network was used as 
classifier. The confusion matrix was used to calculate the 
performance, and the algorithm tested on Bonn database 
achieved an accuracy, sensitivity and specificity of 98.33, 
100, and 97.1%, respectively. Mother wavelet used here is 
Daubechies-4.

Panda et  al. [33] It is also a five-level decomposition 
technique for features extraction. The extracted features 
are energy, standard deviation, and entropy. Reference 
wavelet used here is Daubechies (db-2), and SVM is used 
as a classifier. They compared the results of individual 
features and found energy feature has highest accuracy 
of 91.2%. The algorithm is tested by detecting the seizure 
activity on 500 epochs of EEG data (100 epochs from 
each activity) from five different brain activities like eye 
close, eye open, seizure, hippocampal region, and oppo-
site of epileptogenic zone.

Khan et  al. [34] Authors use the same technique as 
Panda et al. [33], but choose different set of features like 
relative energy and a normalized coefficient of variation 
(NCOV). It works on wavelet coefficients acquired in the 
frequency range of 0–32 Hz. The algorithm is tested on 
five patients from CHB-MIT scalp EEG database, and 
they found the performance of NCOV ( σ

2/

µa
 ) over the 

traditionally used COV ( σ 2/µ2 ) is better. Reference wave-
let used here is Daubechies (db-4), and they achieved an 
overall accuracy, sensitivity, specificity, and precession of 
83.6, 100, 91.8, and 86.7% respectively. σ 2 andµa are vari-
ance and mean, respectively, of the epoch. After studying 
these six papers, we can conclude that five-level decom-
position of the signal is sufficient for seizure detection.

Shoaib et al. [35] They develop a processor for seizure 
detection that directly uses compressively sensed elec-
troencephalograms for embedded signal analysis. Their 
main aim to present this method is that it saves energy of 

the processor through compressive sensing. The wavelet 
energy is used as features. By analysing the compressed 
signals directly, it avoids reconstruction costs, computa-
tional energy of signal analysis due to the reduced num-
ber of signal samples. Their results showed that, because 
of compressive sensing there is 4% decline in sensitivity, 
0.15/h increase in false alarm rate, and a latency of 1  s 
as compared to baseline performance. The results were 
tested on CHB-MIT database with SVM as classifier. For 
linear SVMs, the total processor energy lies in the range 
of 0.3–2.2  μJ, for nonlinear support vector machines 
energy lies in the range of 12.6–38.5 μJ by using fourth-
order polynomial kernel, and 18.1–53.3 μJ for SVMs with 
an RBF kernel. After every 2  s, classification results are 
produced, and for all SVMs kernels the total processor 
power appears in the range 0.6–107 W.

Observations Applications of wavelets in signal pro-
cessing tremendously increased the accuracy in signal 
processing techniques. We can conclude that decom-
position level up to 5 is sufficient for seizure detection. 
It is difficult to recommend a particular classifier while 
dealing with wavelets but SVM, artificial neural network 
and KNN may be good options for classifications. Daube-
chies wavelet is frequently used, and results are quite 
interesting.

4 � Section 3
4.1 � Empirical mode decomposition (EMD)
In this section, first we will give introduction about EMD 
and Hilbert transform since the selected papers here are 
mainly based on these two techniques. EMD is also a 
time–frequency analytical technique which is independ-
ent from the Fourier and wavelet domains. Fourier and 
wavelet transforms have prior fixed basis, whereas EMD 
is adaptive in nature and do not require any prior fixed 
basis for analysing nonlinear and non-stationary signals 
like EEG. It is a nonlinear data decomposition technique, 
which is developed by Huang et al. [36]. In signal process-
ing, EMD is a signal decomposition technique, in which a 
signal is transformed into a group of functions or com-
ponents called intrinsic mode functions (IMFs), which 
preserve the inherent properties of the original signal. As 
the decomposition level increases, the complexity of the 
IMFs decreases, and so does the scale of the signal. When 
there are abnormal activities in brain signals, these IMFs 
show different behaviour than normal activities. There-
fore, various features can also be extracted from the IMFs 
and even IMFs itself can be used as features for seizure 
detection. EMD algorithm is given below:

Given a signal x(t),

1.	 Extract the maxima and minima points of the signal 
and
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2.	 interpolate between them to determine the maxi-
mum and minim envelopes.

3.	 Using these envelopes we calculate the local mean, 
m(t) as: m(t) =

(

emin(t)+ emax(t)
)

/2 here emin 
and emax denotes the minimum and maximum enve-
lope

4.	 Extract the detail d(t) = x(t) − m(t)
5.	 If d(t) does not match the criteria of an IMF then the 

procedure is iterated at step 1 with the new input d(t) 
and we skip steps 6 & 7

6.	 If h(t) matches the criteria of an IMF, it is stored as 
an IMF, gi(t) = d(t) and subtracted from the origi-
nal signal, r(t) = x(t)− gi(t) , where i refers to the ith 
IMF

7.	 We then begin from step 1, with the new signal r(t), 
and store gi(t) as an IMF.

The output of this algorithm is a series of IMFs and a 
final residual, r(t). There are two different stopping crite-
ria for this algorithm: (1) based on definition of an IMF 
and (2) based on how many IMFs are produced. The 
definition of an IMF is related to the frequency span of 
the window of signal analysed. The original criteria used 
definitions based on narrowband frequency definitions 
in terms of the difference in number of extrema (maxima 
and minima) and zero crossings (that they must differ 
at most by 1). The number of IMFs produced depends 
on the methodology used to interpolate through the 
extrema. In conventional Hermite cubic spline methods, 
we are limited by three points.

Advantages of EMD

1.	 The EMD reduces the size or span of given signal by 
producing a collection of intrinsic mode functions 
(IMF).

2.	 Hilbert spectral analysis of IMFs result in empiri-
cal time–frequency, from which instantaneous fre-
quency can be calculated easily.

3.	 Instead of unvarying amplitude and frequency in 
a simple harmonic component, an IMF can have 
changeable amplitude and frequency along the time 
axis.

4.	 No requirement of any kind of prior fixed basis func-
tions.

4.2 � Hilbert transform
Instantaneous frequency (IF) is a frequency of the sig-
nal at particular instant of time t. In Fourier analysis, 
one complete oscillation of a sine or cosine function is 
needed to find out the local frequency (Huang et  al.), 
but it could not make sense for non-stationary signals 
like EEG. There are dissimilar techniques to determine 
instantaneous frequency, but the preamble of the Hilbert 

transform with EMD is made easy and meaningful to dis-
cover IF.

In 1743, Leonard Euler (1707–1783) gave the formula 
ejz = cos (z)+ j sin (z) is called Euler formula. After 
150  years, Kennelly and P. Steinmetz used this formula 
to symbolize the complex notation of harmonic wave 
forms, i.e.ejωt = cos (ωt)+ j sin (ωt) . In the commence-
ment of the twentieth century, Hilbert demonstrated that 
the sin(ωt) function is the Hilbert transform of cos(ωt), 
and this gave the ± π2  phase-shift operator which is an 
essential and basic property of the Hilbert transform. A 
real function f(t) and its Hilbert transform f̃ (t) are cor-
related to each other in such a manner that they jointly 
make a strong analytic signal, and such signal can be rep-
resented by amplitude and a phase. The derivative of the 
phase can be identified as the instantaneous frequency 
(IF) of the signal at that instant of time. Function and its 
Hilbert transform have the same energy, and hence, the 
energy can be used to measure the calculated accuracy of 
the approximated Hilbert transform. The Hilbert trans-
form in the time domain is characterized as a convolu-
tion between the Hilbert transformer 1

(π t) and capacity 
f(t). The Hilbert transform f̃ (t) of a function f(t) for all 
time t is defined as follows:

when the integral exists. Here the P in front of the inte-
gral is known as Cauchy principal value.

Hilbert transform is used to produce an analytic signal. 
For a given signal f(t), and its Hilbert transform f̃ (t), the 
analytical signal fA(t) is given as follows:

The analytical signal is a complex signal that can be 
articulated in exponential notation:

where A(t) is the instantaneous amplitude (envelope), 
ψ(t) is the instantaneous phase.

Given the phase, we can calculate the instantaneous 
frequency:

IMF is a capacity or function with a similar number of 
extrema (minima and maxima) and zero intersections or 
crossing points, where envelopes are symmetric concern-
ing zero. Therefore, definition of IMF guarantees a well-
behaved  Hilbert transform of the IMF. Hilbert spectral 

(4)f̃ (t) =
1

π
P

+∞
∫

−∞

f (τ )

t − τ
dτ .

(5)fA(t) = f (t)+ jf̃ (t)

(6)fA(t) = A(t)ejΨ (t)

(7)I(t) =
1

2π
ψ(t)dt.
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analysis  (HSA), i.e. examination of each IMF’s  instan-
taneous frequency  as functions of time results in a fre-
quency–time distribution of signal amplitude or energy, 
which allows the identification of localized features. 
The reason of choosing these papers is to motivate the 
researchers to do some investigation in this domain 
because in many cases the methods based on this domain 
are performing very well as compared to popular wavelet 
domain. Combination of features from different domain 
especially (IMFs + Frequency) is producing very domi-
nating results. In this section, we have presented eight 
papers which make the readers familiar with famous 
time–frequency domain called EMD and a well-known 
and very useful transformation called Hilbert transform. 
All eight papers have different core ideas and approaches 
to detect seizures from EEG signals. Relationships among 
a variety of techniques have also been demonstrated. 
Results of EMD-based techniques are compared to wave-
let and Fourier domain techniques and are better in many 
cases which motivate the researchers to carry out more 
investigation in EMD domain. Papers also help the read-
ers to find the appropriate classifier and number of levels 
of IMFs.

Eftekhar et  al. [37] Well-known time–frequency tech-
niques like spectrograms and wavelet analysis have some 
issues like: both require some a priori knowledge of the 
signal and the assumption of linearity. Eftekhar et  al. 
apply a new time–frequency technique called Hilbert-
Huang technique or empirical time–frequency technique 
in seizure detection using EEG and ECG signal, and it 
is a combination of two famous methodologies of signal 
processing like Hilbert and Huang transform (Hilbert–
Huang). It was initially proposed by Huang et  al. (1996, 
1998, 1999, 2003, 2009, 2012, 2013). They investigated 
this empirical time–frequency technique on EEG signal 
data (Freiburg [38]) and ECG signal data (CHB-MIT). 
After comparing the results with other existing time–fre-
quency techniques, they believe that the study and the 
understanding of their methods is imperative and com-
plimentary to existing time–frequency methodologies. 
Therefore, their results motivated the researchers to do 
more investigation by applying their proposed method 
for seizure detection.

Tafreshi et  al. [39] In this paper, they used means of 
the absolute values of the IMF’s Hilbert transform as fea-
ture. They also compared their approach with another 
approach where feature extraction is done with wavelet 
transform. Algorithm used self-organizing map (SOM) 
neural networks and multilayer perceptron (MLP) classi-
fiers for classification, and they showed that MLP are bet-
ter than SOM networks. Results are tested on Freiburg 
database, where data is taken from 5 patients using 128 
channels with 256-Hz samples. For each of the patients, 

there are datasets called “ictal” and seizures “inter-ictal”. 
They found window size of 1500 samples is optimum. In 
their findings, they revealed that the EMD approach is 
performing better than the wavelet approach, and they 
also mentioned that four empirical modes are enough 
to get better results. The MLP networks are superior in 
performance with 90.69% accuracy to the SOM networks 
having 87.28% accuracy for same four empirical modes.

Orosco et al. [40] In the proposed algorithm, energies 
of IMFs are used as discerning or discriminating features 
to differentiate seizure and non-seizure activities in an 
EEG signals at hand. In this approach, they compared 
the IMF energies with certain thresholds. The perfor-
mance of the proposed algorithm is evaluated and tested 
on 9 patient records taken from Freiburg database which 
is invasive in nature. They used 9 patients and six chan-
nels, i.e. 3 focal electrodes and 3 extrafocal electrodes. 
The records are divided into segments 1 h long, and there 
are a total of 90 segments per channel, out of which 51 
segments are non-seizure and 39 are epileptic seizures. 
The preprocessing of the data is done by notch filter, and 
then, EEG signals were band pass-filtered with a second-
order, bidirectional Butterworth filter with a bandwidth 
of 0.5–60 Hz. They found sensitivity of 56.41% and speci-
ficity of 75.86%, respectively. It is single-channel and 
threshold-based method of seizure detection. No classi-
fier is used here, and results are very poor as compared to 
the method proposed in [39].

Guarnizo and Delgado [41] In this paper, features used 
are amplitude, the average or instantaneous frequency 
for all EMD components, and also higher-order statistics 
such as the skewness and kurtosis in addition to Shan-
non’s entropy have been selected as features. The relevant 
features are selected with the help of mutual information 
(MI) which is the measure of relevance and redundancy 
among features. The classifier used here is linear Baye’s 
classifier, and a fivefold cross-validation is performed for 
different clinical cases. For classification, they integrated 
4 IMFs and the residue of the EMD process. Different 
sets of features are tested with different group of datasets 
(Bonn database), and they found that combination of all 
features with different group of datasets have more accu-
racy. Algorithm achieved an average accuracy of 98%. 
It shows that up to 4 IMFs are sufficient, and results are 
good as compared to techniques proposed in [40, 41].

Sabrina et al. [42] The proposed technique for seizure 
detection is based on unsupervised learning (cluster-
ing techniques). Proposed algorithm used fast poten-
tial-based hierarchical agglomerative (PHA) clustering 
technique and empirical mode decomposition (EMD) 
process to distinguish a seizure from non-seizure activ-
ity. Distinguished features such as Euclidian, Bhat-
tacharya and kolomogorov distances were computed 
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between the IMFs and given as input for the PHA 
cluster algorithm. The performance of the proposed 
method is evaluated and tested on CHB-MIT, and they 
achieved promising results with an overall accuracy of 
98.84%.

Dattaprasad et  al. [43] In this paper, the EEG signal 
features are extracted using empirical mode decomposi-
tion (EMD) and artificial neural network (ANN) is used 
for classification and in the second step, classification 
to distinguish the signal class as seizure or non-seizure 
activities in EEG epochs in hand. Here, the signal is 
decomposed into intrinsic mode functions (IMFs) for the 
extraction of instantaneous frequencies; then, Hilbert 
transform is applied on each obtained IMFs by which fea-
ture coefficients are produced which tells the instantane-
ous frequency details. The performance of the proposed 
algorithm is tested on Bonn database and obtained an 
accuracy of 96%.

Alam and Bhuiyan [44] Here combined statistical and 
chaotic features like kurtosis, skewness, largest Lyapunov 
exponent, variance, approximate entropy, and correlation 
dimension from the first 4 IMFs components of EEG sig-
nals are used. Here an IMF is segmented into 16 blocks 
using a rectangular window of length 256. For each win-
dow, three chaotic features (LLE, CD, ApEn) and three 
statistical features (variance, skewness, kurtosis) are cal-
culated. They used artificial neural network classifiers 
(ANN) for classification. The results are tested on Bonn 
database and algorithm achieved a sensitivity, specificity, 
and accuracy for (D,E) set using IMF3 and IMF4 of 100, 
100, and 100%, respectively. They also showed that this 
method is superior as compared to other time–frequency 
algorithms like Liang et al., Tzallas, etc., in terms of com-
putational complexity.

Bajaj and Pachori [45] They proposed an EMD-based 
seizure detection method to detect focal temporal lobe 
epilepsy. Algorithm used Hilbert transformation of IMFs 
which were obtained by an EMD process. Epileptic sei-
zures are then detected based on the instantaneous area 
estimated from the trace of analytic IMFs of EEG signals. 
They decompose the signal up to IMF3 and found that 
IMF2 is sufficient to detect the onset seizures. The local 
mean of EMD can be used as a statistical feature for sei-
zure detection. The performance of this algorithm was 
evaluated on Freiburg database. The sensitivity, specific-
ity and error rate are of 90, 89.31, and 24.25%, respec-
tively. It is a patient-specific algorithm.

In summary, we say that combination of EMD with Hil-
bert transform is performing exceptionally well as com-
pared to other time–frequency domains. Up to four IMFs 
are sufficient to detect the onset seizure. Various classi-
fiers are investigated, and in many cases they found arti-
ficial neural network is performing well. Unsupervised 

classifiers are also applied and tested, and it is totally a 
new approach in seizure detection.

Observations EMD is time frequency and adaptive in 
nature transformation. IMFs itself can be used as fea-
tures because these components distinguish seizure and 
non-seizure portions very nicely. After analysing the 
above-mentioned methods, we can conclude that if EMD 
and wavelet transformations are combined, i.e. hybrid 
approach, this may give a new and better transformation 
in signal processing. But EMD still requires lot of investi-
gations for its efficient use in signal processing.

5 � Section 4
5.1 � Rational transform or free parameter domain
This is also a time–frequency domain which is based 
on rational functions. It is adaptive in nature, i.e. basis 
functions are not fixed unlike Fourier and wavelet trans-
forms. This method of feature extraction is already 
used in control theory and system to control the behav-
iour and identification of the system. The application 
of rational transform in seizure detection is totally new 
area. The coefficients of the rational transform decay very 
fast as compared to above-mentioned time–frequency 
domains. It is a free parameter-based technique where 
optimal basis are identified by using some optimization 
algorithms like particle swarm optimization (PSO) [46] 
or its variations. PSO is a population-based stochastic 
optimization algorithm developed by Dr. Eberhart and 
Dr. Kennedy in 1995, after inspiration from the social 
behaviour of bird flocking or fish schooling. The scenario 
is a group of birds are randomly searching for food, and 
there is only one piece of food in the area being searched. 
Initially, birds do not know where the food exactly is but 
they know how far the food is in each iteration. So the 
problem is to find the best strategy to find the food. The 
effective strategy is to follow the bird which is nearest to 
the food. PSO is initialized with a group of random solu-
tions and then searches for optimal one by updating gen-
erations. PSO learned from the scenario, and it is used to 
solve the optimization problems. For more details about 
PSO, please refer the reference. Once the system is iden-
tified, rational transform can be applied. System param-
eters, i.e. poles itself can be used as features. The problem 
with the technique is that it requires complex computa-
tions to find the optimal set of basis or parameters from 
large number of free parameters. A parameter (pole) with 
multiplicities can be used as basis.

5.2 � Rational function system and orthogonality
Here we will discuss briefly about rational functions ant 
their orthonormality and orthogonality. Let C represent 
the set of complex numbers, D : = {z ǫC : |z| < 1} the 
open unit disc, ℕ: = {1,2,3…} the set of natural numbers 
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and T : = {z ǫC : |z| = 1} the unit circle. Then the basic 
rational functions (RF) are defined as follows:

The parameter “a” is referred to as the inverse pole 
(because 1ā is a pole), k is the order of the basic function. 
Using a terminology similar to the trigonometric case, 
the value k = 1 corresponds to the fundamental tone and 
k > 1 the overtones. Let us denote the proper rational 
functions that are analytic on the closed unit disc by R. 
Then, it can be shown that ℜ = span

{

ra,k : a ǫD, k ǫN
}

 , 
i.e. any function f ϵ ℜ can be written as

The basic rational functions in Eq.  (1) are linearly 
independent, but do not form an orthogonal basis, so it 
is difficult to compute the cj coefficients in Eq. (2). This 
problem can be solved by using the Gram–Schmidt 
orthogonalization procedure. The corresponding 
rational function system is the so-called Malmquist–
Takenaka (MT) system. A handy property of the MT 
system is that the elements can be explicitly expressed 
as Blaschke products. Namely, taking a sequence of 
inverse poles a0, . . . , an ǫD.

For a given n ǫN , the MT system can be written as:

where 0 ≤ k ≤ n where Baj(z) is called Blaschke function 
defined by:

Although we have an orthonormal set of functions, 
the time localization property of the basic rational form 
has been lost. Fortunately, biorthogonal rational func-
tions (BRF) cure this problem by keeping the orthogo-
nality while avoiding the drawbacks of the MT system. 
This type of biorthogonal systems can be defined by 
taking n + 1 different poles a0, . . . , an with multiplicities 
m0, . . . ,mn , and the corresponding modified rational 
base functions (MRF)

(8)ra,k(z) =
1

(1− āz)k
, (a ǫD, z ǫ D̄, k ǫN)

(9)f =
n

∑

j=0

cjrajkj ,
(

aj ǫD, kj ǫN
)

Φk(z) =
√

1− |an|2

(1− ākz)

k−1
∏

j=0

Baj(z),

Baj(z) =
z − a

1− āz
,

(

z ǫC

∖{

1

ā

})

ϕk ,i(z) =
zi−1

(1− ākz)
i

(k = 0, . . . n, i = 1,mk)

We note that, the system of ra,k and ϕa,k span the same 
subspaces of R for a ≠ 0. For the definition of a biorthogo-
nal system, the following functions are needed:

By theorem 1 in [47] the (BRF) functions

(0 ≤ ℓ ≤ n, 1 ≤ j ≤ mℓ ) are biorthogonal to ϕa,k with 
respect to the scalar product:

(1 ≤ r ≤ n, 1 ≤ mℓ, 1 ≤ s ≤ mk , 0 ≤ k, ℓ ≤ n) and δij is 
well-known Kronecker delta symbol. We note that the 
previously defined rational function systems are com-
plete in the Hardy space H2(H) ; if and only if the so-
called Blaschke condition is satisfied [48]:

Then for a finite set of poles, the MT and the biorthog-
onal systems span the n and N dimensional subspaces of 
H2(H) , respectively:

where N = m0 +m1 + · · · +mn−1.
We note that the MT and the biorthogonal systems 

Φ and Ψ with the basic rational functions are referred 
as the rational orthogonal basis (ROB) in the literature. 

Ωℓn(z) =
1

(1− āℓz)
mℓ

n
∏

i=0,i �=ℓ

(

(z − aℓ)

(1− āiz)

)mi

ωℓn(z)
Ωℓn(aℓ)

Ωℓn(z)
, Where(0 ≤ ℓ ≤ n).

Ψl,j(z) =
Ωℓn(z)(z − aℓ)

j−1

Ωℓn(aℓ)

mℓ−j
∑

s=0

ω
(s)
ℓn (aℓ)

s!
(z − aℓ)

s

1

2π

π
∫

−π

F
(

eit
)

Ḡ
(

eit
)

dt
(

F ,G ǫH2(T)

)

�Ψkℓ,ϕks� = δkℓδrs

∞
∑

n=0

(1− |an|) = ∞

pnφ f =
n−1
∑

k=0

〈

f ,Φk

〉

Φk

pnΨ f =
n−1
∑

k=0

〈

f ,Φki

〉

Φki
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The construction of these generalized orthogonal bases 
was introduced by Heuberger et  al. [48]. Till now we 
have seen many transformations and decomposition 
techniques to extract the features from the EEG signal. 
In this section, we are giving the overview of the vari-
ous papers which are based on rational function system. 
The idea of feature extraction is totally new in the field 
of EEG seizure detection. The advantages of rational 
function systems over the other well-known transfor-
mation methods are: (a) flexibility, which means, not 
only the coefficients but also the system (orthogonal 
system) itself can be changed (system can be personal-
ized or adapted to the EEG biomedical signal), (b) the 
coefficients generated from the rational system give a 
very compact representation of the signal, and hence, 
they can be used as features to detect the seizures, (c) 
the elementary waves are contained or localized in 
time, and hence, the basis functions can hold time–fre-
quency information, (d) rational system gives a simple 
analytic representation of the original signal, (e) only a 
small number of arithmetic operations are required to 
recover the signal.

Samiee et  al. [49] Proposed a new method of feature 
extraction in time–frequency domain called MT rational 
DSTFT which relies on rational function, and it is adap-
tive in nature. Their method proposed a sparse repre-
sentation of the signal while the components remain 
orthogonal. They investigated that the best window and 
coefficients size are 256 samples (1.5 s) and first 32 coef-
ficients of the proposed transform. Authors applied sto-
chastic hyperbolic particle swarm optimization (PSO) 
algorithm to find the optimal position of the pole of each 
EEG epoch which gives the compact t–f representation of 
the proposed system. For seizure detection, features used 
are absolute mean value, absolute median value, absolute 
standard deviation, absolute maximum value, absolute 
minimum value of the coefficients. The performance of 
the proposed method is evaluated on Bonn database and 
showed that the algorithm has more accuracy (in terms 
of sensitivity keeping specificity fixed) than other t–f 
transforms like DSTFT and 13 Cohen’s transforms with 
the same number of nonzero coefficients and achieved 
an accuracy of 99.8 and 99.3 for the combination of E–A 
and E–B datasets, respectively. They also showed that the 
inverse rational DSTFT has smaller MSEs as compared to 
classical inverse DSTFT. But reliability of the algorithm 
needs to be checked for long EEG data. They investigated 
various algorithms and found feed-forward MLP as opti-
mal classifier. Their proposed future work is to improve 
this proposed algorithm by using multidimensional (MD) 

PSO to determine the optimal number of unique poles so 
that rational DSTFT can be used in multichannel long-
term epileptic seizure detection algorithm.

Samiee et  al. [50] Here, they concentrated and solved 
the problem of off-line supervised detection of epilep-
tic seizures in long-term EEG recording. To achieve the 
goal, they developed a new feature extraction method, 
which is based on the sparse rational decomposition and 
the local Gabor binary patterns (LGBP). In the proposed 
algorithm, they decompose the EEG channels or signals 
into 8 sparse rational components by using a set of most 
favourable coefficients. Next, a modified 1D LGBP opera-
tor is applied, which is followed by down-sampling of the 
data. The efficiency or success of the proposed method 
of feature extraction is tested by means of dissimilar clas-
sifiers. The proposed algorithm is tested on CHB-MIT 
scalp EEG database from PhysioNet using EEG recording 
of 163 h. Their proposed technique performs better over 
dedicated and well-known techniques (wavelet, STFT, 
etc.) by showing an overall sensitivity and specificity of 
70.4 and 99.1%, respectively. Their algorithm detects 
commencement of seizures with an average overall sen-
sitivity of 91.13% and false alarms per hour rate of 0.35.

Fridli et al. [51] Used rational function system for the 
analysis of the ECG signals. Their technique has many 
advantages over the previously used generalized tech-
niques like wavelet transform. Their system is very spe-
cific for ECG signals and shape of the individual term 
correspond to the natural shape of the ECG signals. The 
system is flexible, i.e. the coefficients and the system itself 
can be optimized even from heartbeats to heartbeats. 
The system is simple and less number of calculations are 
required. They used the terminology fundamental tone 
for ra,1 and overtone for ra,k if k >1. Linear combinations 
of basic functions having the same pole will be called ele-
mentary functions or elementary waves:

The expression “elementary wave” is justified by the 
fact that such a function can be well localized in a proper 
neighbourhood of the pole. Although the elementary 
waves are defined on the entire set of complex numbers 
but interested mainly in the real parts of their restrictions 
on the torus T = {z ǫC : |z| = 1} . The result can be natu-
rally associated with the real–real function:

(10)Ea(z) =
n

∑

k=1

ckra,k(z) =
n

∑

k=1

1

(1− āz)k

[−π ,)∋t → eit → Re
(

Ea

(

eit
))
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The above-mentioned idea demonstrates their idea 
behind the proposed approach. Their idea is: Let us first 
choose 3 inverse poles, ai= |ai|eiαi within the unit disc. 
They are visualized in Fig. 1a.

Then they take the linear combination of two fun-
damental tones ra2,1 , ra3,1 and of one overtone of sec-
ond degree ra2,2 . In the bottom of Fig. 1b, there are the 
complex coefficients and the top part is the graph of the 
resulting rational function. The top entry in Fig.  1c is 
the overtone c1ra1,2 , the middle one is the fundamental 
tone c2ra2,1 , and the bottom one is c3ra3,1. It is visible that 
the shape of the rational function is similar to that of an 
ECG signal, the segmentation corresponds to the terms, 
and the αi parameters of the inverse poles carry time 
information.

Observations This type of domain is totally new in 
seizure detection where basis of the transformations 
are adaptive in nature. Rational function basis are well 
suited while doing the analysis of the ECG signals. Such 
types of systems are flexible, simple, and less number 
of calculations is required and can be used in real-time 
applications.

6 � Conclusion
The aim of this study is to help the researchers to get 
familiar with state-of-the-art techniques for seizure 
detection and give them the valid research directions in 
the field of seizure detection. In this paper, some hints 
about the amount of work that has already been done 
for various databases and self-recorded data are given. 
Various methods from various domains used to process 
long-term and short-term EEG signals are discussed. We 
have seen that almost all researchers have done the EEG 
analysis by similar four steps: (1) raw signal processing, 
(2) feature extraction, (3) best feature selection, and (4) 
two-class classification. In most of the papers, authors 

combine features from different domains to construct the 
feature vector and in many cases their methods are per-
forming exceptionally well as compared to features from 
single domain. Five-level decomposition using wavelet 
transform is good choice for extracting efficient features. 
We have seen that EMD-based methods outperformed 
than wavelet-based methods in many cases, and it is good 
choice to use IMFs for feature extraction but still requires 
further investigations. Rational transform is totally new 
method for feature extraction in seizure detection. The 
comparison and summary of various techniques is sum-
marized in Table 1. 

7 � Future research directions
After going through a large number of papers, we found 
that lot of work is done in time and frequency domain 
features and we feel that there is a need to find such fea-
tures which measure the gap of EEG patterns. There is a 
need to develop and implement high-speed and accurate 
algorithms in various hardware devices which are used 
to detect seizures. Furthermore, it is quite challenging 
to integrate the techniques with various datasets and 
therefore requires lot of efforts and investigation in this 
direction too and to concentrate to develop new meth-
odologies to extract features from the signals. The use of 
rational functional system to extract the features from 
EEG signals to detect seizures is completely new area 
but still lot of investigations are required in this field. 
Researchers may be required to try free parameter-based 
orthogonal basis (i.e. basis changing segments to seg-
ments) because P. Kovacs et  al. tried the same and got 
promising results with less computations. The EEG data 
is increasing day by day; the researchers need to develop 
the algorithms which are producing promising results on 
large data. Channel selection is also a quite challenging 
task, and some efforts are still needed in this area too. To 
find the exact start and end of the seizure period is chal-
lenging. One may try to use spectral analysis, because 
it is a very powerful feature of extraction techniques 
like wavelet. Parameter optimization may also require 
innovative way. Many researchers used single channel 
approach for seizure detection but multichannel tech-
niques are performing exceptionally well, so there is 
scope to carry out research in this area. Other transfor-
mations like piecewise linear transformations need to be 
tested on discrete type biomedical signals.
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