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Introduction
Geogrids play a prominent role in flexible pavement construction, particularly in main-
taining subgrade restraint and stabilizing the base course. These applications either 
reduce the base course thickness or extend the pavement life. When used to build 
pavement working platforms, geogrids are installed at the base–subgrade interface to 
enhance the load-bearing capacity of the pavement foundation. For base stabilization, 
geogrids can be positioned at the center of the base course or at the base–subgrade 
interface [1–4]. The successful implementation of both methods has afforded reduction 
in permanent deformation in the base course [5].

Geogrids are widely recognized for their primary function of enhancing horizontal 
stiffness in mechanically stabilized base layers, a process known as lateral confinement. 
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Lateral confinement prevents excessive base course deformations and improves the bear-
ing capacity under vehicular loading due to the interlocking between the geogrid and 
aggregate particles. Various geogrid products, characterized by differences in properties 
such as aperture shapes and sizes, rib shape, and tensile strength, affect the interlocking 
mechanisms [6]. Previous studies have reported that optimal geogrid stabilization and 
interlock can be achieved when the geogrid aperture size matches the aggregate grain 
size [7, 8]. Tutumluer et al. [9] demonstrated the difference between the shear forces in 
case of triangular and rectangular geogrid aperture shapes using aggregate image–aided 
discrete element method simulation. Byun et al. [10] used shear wave transducers to suc-
cessfully quantify different horizontal stiffness profiles of aggregate specimens enhanced 
by rectangular and triangular geogrid apertures. However, without coring and sampling 
in the field, information regarding the geogrid reinforcement type and presence may not 
be readily available. This can potentially affect the assessment of pavement conditions 
and selection of appropriate maintenance techniques.

Numerous machine learning (ML) studies in geotechnical engineering focus on super-
vised learning. In supervised learning, labeled datasets are used to predict or classify 
outcomes, where most of the related studies target regression problems [11–14]. Never-
theless, some studies have explored classification problems. For instance, Eyo et al. [15] 
demonstrated that meta-ensemble models could classify three different binder combina-
tions previously used in predicting the unconfined compressive strength of reinforced 
soils. Ensemble classification algorithms have been used in slope stability analysis to 
determine landslide susceptibility based on field data [16, 17]. Furthermore, Ozsagir 
et al. [18] achieved a high prediction accuracy in assessing the liquefaction potential of 
fine-grained soils using a decision tree model, while Jas and Dodagoudar [19] explored 
the prediction of the liquefaction potential of soils using extreme gradient boosting-
Shapley additive explanations (SHAP). Soil classification based on physical and chemical 
properties has also been recently investigated [20–23]. However, a major limitation of 
some of these studies is their insufficient datasets for training ML models as well as the 
interpretability of the models [19]. Thus, more studies focusing on applying ML classifi-
cation algorithms and interpreting these models are required.

This study aims to investigate the efficacy of ML classification algorithms in distin-
guishing between unstabilized aggregate specimens and those stabilized with triangular 
and rectangular aperture geogrids. To resolve the problem of data insufficiency noted in 
previous studies, a relatively moderate dataset with 4500 experimental observations is 
employed herein to train five ML models, including single-learning and tree-ensemble 
algorithms. The performances of these models are compared using appropriate ML clas-
sification metrics. Furthermore, the global feature importance across all algorithms is 
examined to enhance the interpretability of the applied ML methods. Finally, the engi-
neering implications of the current study are discussed.

Methodology
Database generation

The database comprises numerical data obtained from repeated-load triaxial experi-
mental testing for the resilient modulus characterization of crushed aggregates. The 
crushed aggregates were obtained from a quarry located in North Carolina. Sieve 
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analysis results indicate that the material was well-graded, with a mean diameter of 
8.4 mm and a maximum particle size of 25 mm. A detailed description of the indexes 
and compaction properties of the aggregates can be found in previous studies [10, 
24]. The experimental program utilized an unstabilized specimen and two specimens 
stabilized with triangular and rectangular aperture geogrids. The two geogrids were 
designed for base course stabilization in flexible pavements, and the dimensions 
are also detailed in previous studies [10, 24]. Five confining pressures, 100 load rep-
etitions of varying deviatoric stresses, and 15 sequences were considered during the 
experimental program, following the procedure outlined in AASHTO T307 [25].

Figure  1a illustrates the typical haversine pulse obtained from each loading cycle 
of the repeated-load triaxial test, representing a standard wheel loading involving a 
100 ms loading period and a 900 ms rest period. Furthermore, recoverable and plas-
tic strains were recorded for each cycle and subsequently used to calculate the resil-
ient modulus and permanent deformation. Herein, the accumulated permanent strain 
(εz) (Fig. 1b) was considered as an input feature alongside the resilient modulus (MR), 
number of cycles (N), confining pressure (σc), and deviatoric stress (σd). Notably, pre-
vious studies demonstrated that the deviatoric stress and number of cycles are major 
factors influencing the accumulated permanent strain [26, 27]. Finally, each datum 
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Fig. 1 Typical responses of repeated‑load triaxial texts: a axial stress at different cycles and (b) accumulated 
permanent strain for unstabilized specimen (ninth sequence)
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was assigned to one of three classes: rectangular geogrid, triangular geogrid, and 
unstabilized.

Data preprocessing and exploratory data analysis

Data preprocessing is an important step that allows the examination and assurance 
of database integrity. Herein, no missing values or duplicate data points were found. 
Upon further investigation, the database was found to comprise 4500 observations, 
with the statistics summarized in Table 1. All classes were equally represented in the 
database used for this study, with 1500 data points for each class. This equal distribu-
tion was due to the consistent application of N, σc, and σd for each specimen, result-
ing in varied MR and εz values. A common issue with multiclass ML models is class 
imbalance, often leading to biased models [28, 29]. The class balance in this study 
helps avoid this problem and aids reliable performance evaluation.

The distribution of values for each input feature across the three classes was pre-
sented along the diagonal of the plot shown in Fig.  2. The input features N, σc, and 
σd exhibited the same distribution across all the classes. However, the unstabilized 
specimen showed higher MR values than the triangular and rectangular stabilized 
specimens (Fig.  3) because the two geogrid-stabilized specimens had slightly lower 
densities [10]. When examining the relation between MR and N, overlapping MR val-
ues were observed between the triangular and rectangular specimens. For the relation 
between εz and N, the εz for the triangular specimen was higher than those of the 
other classes. Owing to this general trend of overlapping MR and εz values, linear ML 
models might face challenges in accurately separating the classes.

The dataset was partitioned into training and testing sets with a ratio of 0.8, as rec-
ommended in the literature [30, 31]. Subsequently, the values of the input features 
must be scaled using a standard scaler so that they have a mean of 0 and a standard 
deviation of 1. This standard scaling can be mathematically represented as

where x is the feature value, u is the mean of the feature value, and s is the corresponding 
standard deviation.

(1)z =
x − u

s

Table 1 Relevant statistics of independent features in the database

Variable Min Max Mean

N 1.00 100.00 50.50

σc (kPa) 20.70 137.90 73.08

σd (kPa) 20.70 275.80 103.40

MR (MPa) 75.57 117.26 85.30

εz (%) 0.00 0.30 0.05
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Machine learning algorithms
Logistic regression

Logistic regression (LR) employs a logistic function to establish the relation between 
a binary target variable and a set of predictor variables [22]. Given a binary target 
variable represented as Y and a vector of predictor variables denoted as X = (X1, X2, 
… Xp), LR formulates the probability of Y equaling 1 as follows:

where Z is the linear predictor defined by Z = β0 + β1X1 + β2X2 + … + βpXp, and β0, β1, β2, 
…, βp are the regression coefficients.

The key assumptions of LR include the absence of influential outliers and multi-
collinearity, the independence of errors, and linearity in the logit. The regression 
coefficients are typically estimated using maximum likelihood estimation tech-
niques, such as iterative reweighted least squares and the Newton–Raphson method. 
Although LR is well suited for binary classification problems, a one-vs.-rest (OvR) 
approach can be applied to multiclass problems. The OvR approach involves train-
ing a separate binary LR model for each class, treating that class as positive while all 
other classes as negative.

(2)P(Y = 1|X) =
1

1+ e−Z

Fig. 2 Pairwise relation between variables in the dataset



Page 6 of 17Aregbesola and Byun  International Journal of Geo-Engineering            (2024) 15:4 

Fig. 3 Resilient modulus distribution for all classes: (a) unstabilized, (b) triangular geogrid, and (c) rectangular 
geogrid
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Support vector machines

Support vector machines (SVMs) are used to find an optimal hyperplane in a high-
dimensional feature space that maximizes the separation of data points between dif-
ferent classes. This is achieved using a kernel function, such as a linear, polynomial, or 
radial basis function (RBF), suitable for solving complex nonlinear problems [32, 33]. 
Using the RBF, the SVM can be expressed as

where X1 and X2 represent the input vectors and γ defines the influence of a single train-
ing point on nearby data points.

SVMs aim to identify support vectors, which are the data points closest to the decision 
boundary. These support vectors are crucial for defining the margin used to optimize 
the hyperplane. Generally, SVMs effectively handle high-dimensional data and are less 
susceptible to overfitting. However, they can be sensitive to hyperparameter tuning and 
may become computationally expensive when handling large datasets.

Tree‑ensemble models

This study considered three tree-based/ensemble algorithms: random forest (RF), extra 
trees classifier (ETC), and light gradient boosting machine (LGBM). RF creates decision 
trees by training each tree using a random subset of data and features. The outcome is 
determined by combining the predictions from all individual trees [34]. Meanwhile, ETC 
shares similarities with RF but introduces additional randomness in the tree-building 
process. Random thresholds are used instead of identifying the optimal split of features 
based on a quality criterion, such as Gini impurity or entropy [35]. LGBM employs a 
unique method called gradient-based one-side sampling, which reduces the number of 
data instances required to build each tree while maintaining accuracy. This method con-
siderably reduces the training time without compromising performance.

Generally, tree-ensemble methods combine multiple decision trees to create a robust 
and accurate predictive model. The primary difference between the methods lies in the 
way the decision trees are constructed. These methods are known for their interpretabil-
ity based on embedded feature importance, ability to generalize when using new data-
sets, and computational efficiency, particularly concerning the tree-ensemble methods 
selected in this study. The fundamental equation for tree-ensemble methods is given by

where F(x) is the prediction, γm denotes the weight assigned to the mth tree, and hm(x) 
represents the prediction from the mth tree for input x.

Machine learning implementation

The ML process typically comprises training, validation, and testing phases. During 
training, the model attempts to learn about the patterns and correlations that exist in the 
data. Optimization algorithms are used during model training to reduce errors. In addi-
tion, each ML algorithm includes hyperparameters that can be combined to improve 

(3)f(X1,X2) = exp(−γ||X1 − X2||
2)

(4)F(x) =
∑M

m=1
γmhm(x)
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model performance. Techniques, such as grid search, help to assess the different model 
hyperparameters and choose the best combination using the validation set [36]. Finally, 
the model is evaluated on the test set using suitable predefined metrics. Model evalua-
tion helps to assess the generalization of the model and determine its performance on 
unseen data.

Herein, ML model training and validation were conducted using Python programming 
language. After separating the datasets into training and testing sets, the input features 
were scaled for both sets. A parameter grid containing a range of hyperparameters for 
each model was defined. Only significant hyperparameters were considered to expe-
dite the training process. A grid search algorithm [36] was used to identify the optimal 
combination of hyperparameters for each model, as outlined in Table 2. Subsequently, 
each model was trained and tested using the metrics defined in Sub Sect. “Performance 
evaluation metrics”. The k-fold cross-validation method was also adopted in this study. 
This method divides the entire training set into k subsets or folds. The model was then 
trained using all but one of the subsets and validated using the remaining subset. This 
process was repeated iteratively k times. A recommended tenfold cross-validation was 
used in this study [37, 38].

Performance evaluation metrics

Herein, the capability of each model to identify and correctly classify specimens was 
evaluated using the metrics detailed below. The first metric is accuracy, which is the ratio 
of correct predictions to the total number of predictions, mathematically expressed as

where TP refers to the true positive, i.e., the model correctly predicts a positive class; an 
example is when a model correctly classifies an unstabilized specimen as unstabilized. 

(5)Accuracy =
TP + TN

TP + FP + TN + FN

Table 2 Selected hyperparameters for machine learning models

Model Hyperparameters Description Value

Random forest (RF) max_depth max_depth None

min_samples_split Minimum number of samples 
required to split a node in the tree

2

n_estimators Minimum number of samples 
required to split a node in the tree

300

Support vector machine (SVM) C Penalty for misclassifications 10

kernel Type of kernel rbf

Logistic regression (LR) C Penalty for misclassifications 1

solver Algorithm used to train model newton‑cg

Light gradient boosting machine 
(LGBM)

n_estimators Number of trees 500

max_depth Maximum depth of trees 20

Extra trees classifier (ETC) max_depth Maximum depth of trees 20

min_samples_leaf Number of samples required to be in 
a leaf node

1

min_samples_split Minimum number of samples 
required to split a node in the tree

2

n_estimators Number of trees 500
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Conversely, false positives (FPs) are instances where the model incorrectly predicts a 
negative class as positive. In this case, an example would be classifying the unstabilized 
specimen as rectangular. True negatives (TNs) occur when the model correctly identifies 
the negative class. An example is when a model correctly classifies an unstabilized speci-
men as not being a specimen stabilized by triangular or rectangular aperture geogrid. 
Finally, false negatives (FNs) arise when the model inaccurately predicts a positive class 
as negative.

Notably, in the case of unbalanced classes, relying solely on accuracy to assess the per-
formance of a model can be misleading. The next metric is thus precision, which gauges 
the FP rate of a model. A higher precision score implies a lower rate of FPs and vice 
versa. Precision should be computed as

Recall is another important metric that evaluates the FN rate of a model. A higher 
recall value indicates a low FN rate. Recall is calculated as follows:

Finally, the F1-score is the harmonic mean of precision and recall, balancing these two 
metrics. The F1-score is mathematically expressed as

Receiver operating characteristic curve

An effective method for visualizing the performance of ML models is using an “area 
under the curve–receiver operating characteristics” (AUC–ROC) curve. In this study, 
the AUC–ROC curve is used to assess the discriminatory capacity of the models. Dis-
criminatory capacity, as the term implies, is the ability of a model to accurately distin-
guish between classes. The ROC curve represents the probability distribution of the 
outcomes, while the AUC quantifies the degree of class separability. More specifically, 
the ROC curve plots the TP rate (TPR) against the FP rate (FPR), with the TPR on the 
y-axis and the FPR on the x-axis. Typically, the AUC values fall within the range of 0–1. 
High AUC values, particularly those approaching 1, are desirable as they reflect the 
capacity of a model to accurately predict classes. By contrast, models with an AUC close 
to 0 exhibit poor class separation. In the case of an AUC of 0.5, the model cannot dis-
criminate between the classes and essentially resorts to random guessing.

Shapley additive explanations

ML models are often considered black-box models because of their complex nature. 
Explainable artificial intelligence (XAI) has been developed to bridge the gap between 
the intricacies of artificial intelligence algorithms and human comprehension. An essen-
tial component of XAI is SHAP, which employs game theory to compute Shapley values 
[39]. In this study, SHAP feature importance was used to determine the rank of features 

(6)Precision =
TP

TP + FP

(7)Recall =
TP

TP + FN

(8)F1− score = 2×
precision× recall

precision+ recall
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across all models. The global feature importance was obtained by calculating the arith-
metic mean of the absolute Shapley values for each feature. The features with high abso-
lute Shapley values were deemed the most important. Notably, the kernel SHAP and tree 
SHAP [40] were used to determine the importance of the single-learning and tree-based 
models, respectively. Generally, the feature importance is given by

where n represents the total number of instances or samples in the dataset and øj denotes 
the Shapley value of an observation j, given by

where S denotes a subset of features excluding j, |S| represents the number of features in 
the subset S, and p denotes the total number of features. f (xs ∪ {j}) is the prediction out-
put when j is included in S, while f (xs) is the prediction output when j is excluded from S.

Results and discussion
Performance evaluation of ML models

The performances of the multiclassification ML algorithms used to predict the geogrid 
stabilization category are plotted in Fig. 4. The tree-based learning models (LGBM, ETC, 
and RF) performed better than the single-learning models (LR and SVM). LR exhib-
ited the worst performance among all the models, with an average precision, recall, and 
F1-score of 0.71, 0.70, and 0.70, respectively. The major reason for the poor performance 
of the LR model might be the assumption of a linear relation between the input vari-
ables and the log-odds of the target variable by the algorithm [41]. Feature engineer-
ing, such as creating interaction terms, could potentially enhance the performance of 
the LR model. However, this might increase the risk of overfitting and degrade perfor-
mance when using new datasets. Meanwhile, the SVM model performed considerably 
better than the LR model, with a precision, recall, and F1-score of 0.85. This improved 

(9)Ij =
1

n

n∑

i=1

|∅
(i)
j |

(10)∅j =
∑
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performance could be attributed to the ability of SVM to transform the initial feature 
space into a higher dimension where classes are more easily separated using a suitable 
kernel function. The radial basis function kernel used in this study was especially effec-
tive in handling nonlinear and complex multiclass decision boundaries [32]. Among 
the five ML algorithms implemented in this study, the LGBM model showed the best 
performance, with a precision, recall, and F1-score of 0.91. The RF and ETC mod-
els also exhibited good performances, with precision, recall, and F1-scores of 0.89 and 
0.90, respectively. Notably, the three tree-based models did not assume a linear relation 
between features and targets, leading to an improved performance. Furthermore, tree-
based models combine the prediction of multiple base models to make a final predic-
tion. By aggregating predictions, tree-based models tend to produce more robust and 
generalized models. Finally, the tree-based models have been shown to outperform even 
deep-learning models when using tabular datasets with < 10,000 training examples [42].

Prediction uncertainty

The confusion matrix was used to illustrate the prediction uncertainties for each multi-
class model (Fig. 5). Overall, the unstabilized specimens were better classified than the 
specimens stabilized by triangular and rectangular aperture geogrids. Each model cor-
rectly identified unstabilized specimens at least 90% of the time, with the LGBM model 
making accurate predictions in 94% of such instances. This could be attributed to the 
fact that unstabilized specimens possessed higher and more distinguishable MR than the 
specimens stabilized by triangular and rectangular aperture geogrids, which exhibited 
overlapping MR values. Note that a previous study demonstrated that the MR obtained 
from repeated-load triaxial tests could not discern the effect of the geogrid on the sta-
bilization of aggregates [10]. The performance of the LR model was considerably poor 
when predicting specimens stabilized by triangular and rectangular aperture geogrids, 
correctly predicting the specimens only 59 and 62% of the time, respectively. The rea-
sons for the poor performance were explored in Sect.  “Performance evaluation of ML 
models”. The SVM model accurately predicted the specimens stabilized by triangular 
and rectangular aperture geogrids ~ 80% of the time. By contrast, the tree-based models 
exhibited less uncertainty than the single-learning models, making accurate predictions 
at least 85% of the time for RF and 88% of the time for both LGBM and ETC.

Sensitivity analysis

The average AUC and accuracy values of each model across all classes are summarized 
in Table  3. The models were found to demonstrate a strong capacity to distinguish 
positives from negatives. Both the SVM and tree-based models presented AUC values 
of > 0.96, while the LR model exhibited an AUC value of 0.87. However, this relatively 
high value for the LR model was considerably affected by the predictions of the unstabi-
lized class. Figure 6 shows the ROC curves for the LGBM model considering each clas-
sification. The unstabilized specimens and the specimens stabilized by triangular and 
rectangular aperture geogrids exhibit AUC values of 0.99, 0.98, and 0.97, respectively. 
These results emphasize the potential of applying these algorithms to geotechnical clas-
sification problems.
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Fig. 5 Confusion matrix for (a) light gradient boosting (b) extra trees classifier (c) random forest (d) support 
vector machine, and (e) logistic regression

Table 3 Performance of five models on test dataset

Model Area under the curve (AUC) value Accuracy

LGBM 0.98 0.91

ETC 0.98 0.90

RF 0.97 0.89

SVM 0.96 0.85

LR 0.87 0.70
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Feature importance

The Shapley multiclass output of each model using mean absolute values is illustrated in 
Fig. 7. Herein, 100 simulations were selected for each ML model to expedite the feature 
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importance algorithm and ensure consistent ranking of the models. First, the mean 
absolute Shapley values for the LGBM model were found to be considerably higher than 
those for the ETC, RF, SVC, and LR models. This indicates a wider value range for the 
LGBM model compared with the narrow range displayed by the other models. In prac-
tice, the wider range of mean absolute Shapley values indicates that the LGBM model is 
better at distinguishing between important and unimportant features for making predic-
tions. MR emerged as the most important feature across all the models. The final rank of 
feature importance is presented in Table 4, where σc, σd, εz, and N complete the ranking 
in the specified order. For the LGBM model, εz and σd emerged as the third- and fourth-
ranked features, respectively, whereas the ETC, RF, and single-learning models showed 
a ranking pattern similar to the final ranking. Generally, the feature ranking for all the 
models was remarkably consistent and almost identical. Figure 7 also reveals the con-
tribution of each feature to the prediction of each class across all the models. For each 
model, MR considerably contributes in predicting the class of the unstabilized specimen, 
which could be attributed to the higher and easily separable MR values for the unstabi-
lized specimen. In addition, the specimen stabilized by the triangular aperture geogrid 
was effectively explained by MR. Furthermore, σc predicted unstabilized specimens more 
than the specimens stabilized by triangular and rectangular aperture geogrids. However, 
for the specimens stabilized by rectangular geogrid, εz and σd considerably contributed 
to predicting the class.

Engineering implications

Unbound aggregate base layers play a crucial role in pavement systems, providing 
structural support, distributing loads to the subgrade, and facilitating drainage. The 
resilient and permanent deformation behaviors of the base course are the two key 
aspects of the pavement design and performance analysis. Accordingly, the resilient 
modulus and rutting, representing recoverable and permanent deformation under 
repeated traffic loading, respectively, were evaluated. The resilient modulus and per-
manent deformation can be influenced by various factors, such as deviatoric stress 
and the number of load cycles. For pavement rehabilitation, the resilient modulus and 
permanent deformation can also be assessed using nondestructive field-testing meth-
ods, such as using falling weight deflectometers. These deflectometers are typically 
used to estimate elastic-layer moduli based on the impulse load and measured deflec-
tion [43]. However, detecting geogrid insertion into the base course can be challeng-
ing when using a specific nondestructive field-testing method because of the lesser 

Table 4 Feature importance rank using Shapley absolute mean values

Model N σc σd MR εz

LGBM 5 2 4 1 3

ETC 5 2 4 1 3

RF 5 2 3 1 4

SVM 5 2 3 1 4

LR 5 2 3 1 4

Rank 5 2 3 1 4
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thickness of the geogrid than that of the base course. Furthermore, identifying the 
geogrid type without coring and sampling can be quite difficult in the context of pave-
ment rehabilitation. However, using the five features, either measured from field tests 
or computed from numerical analyses, the ML technique can identify the type and 
presence of geogrid reinforcement in aggregates. Therefore, the ML classification of 
geogrid-stabilized aggregates proposed in this study may be a promising approach 
for assessing pavement conditions and help further selecting adequate maintenance 
techniques.

Conclusions
This study proposed a novel ML technique to distinguish between unstabilized aggre-
gate specimens and the specimens stabilized with triangular and rectangular aperture 
geogrids. Five ML models were employed using an experimental database, comprising 
five input variables and 4500 data points equally distributed among the three classes. 
In addition, the feature importance across all the models was examined to improve 
the interpretability of the ML models. All models could correctly identify the unsta-
bilized specimen with a minimum accuracy of 0.90. This result could be attributed to 
the higher, more distinguishable resilient modulus values of the unstabilized speci-
men than those of the stabilized specimens. The single-learning algorithms, especially 
the LR model, produced less accurate predictions than the tree-ensemble algorithms 
for the geogrid-reinforced specimens. Generally, the LGBM model exhibited the high-
est accuracy, with an overall score of 0.91, which could be attributed to the robustness 
of the algorithm and its high nonlinear mapping capabilities. The results from the 
sensitivity analysis showed that the SVM and tree-based models correctly identified 
the positive class, with a minimum AUC value of 0.96 The LGBM model exhibited 
the highest AUC value of 0.98, while LR showed the lowest AUC value (0.87), consid-
erably affected by the accuracy scores obtained from the prediction of the unstabi-
lized specimen. Eventually, the resilient modulus was identified as the most important 
variable in classification, followed by confining pressure, deviatoric stress, permanent 
strain, and the number of cycles in that order. The ML approach proposed in this 
study may efficiently assess pavement conditions by providing information regard-
ing the type and presence of geogrid reinforcement in aggregates without coring and 
sampling.
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