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Abstract 

An attempt was carried out by using a neural network to predict the maximum deflec‑
tion and its position caused by braced excavation in homogeneous clay. Six input 
variables, including excavation depth, Ratio of EI wall/EI of brace, the vertical distance 
between bracing, Length to width ratio of an excavation, shear strength, and the coef‑
ficient of lateral earth pressure, were adopted. Two models were developed, one is to 
estimate the maximum deflection and the other one to estimate the position of maxi‑
mum deflection. The ANN models were developed and verified using a database of 
(169) cases of actual measured and presumptive cases using the analysis with the Finite 
element of maximum deflection. A sensitivity analysis was accomplished, to examine 
the relative significance of the parameters that influence the maximum deflection of 
the wall and its position; it indicates that the Ratio of EI wall/EI of brace has the most 
significant effect on the maximum wall deflection, while the properties of the soil 
have the most considerable effects on the position. The results show that the ANN can 
reasonably forecast the magnitude of the maximum deflection of the wall, as well as its 
position. Design charts are developed based on the ANN model.

Highlights 

• Neural Networks was used to forecast maximum deflection of braced excavation 
in homogeneous clay and its position.

• A sensitivity analysis was accomplished to examine the relative significance of the 
parameters that influence the models.

• The results confirm that the developed ANN model is able to predict maximum 
deflection and its position reliably.

• Design charts were developed based on the ANN model.
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Introduction
Geotechnical engineers facing complicated multivariate problems, which include sev-
eral interacting factors. Generally, the relationship among these factors is not exactly 
known. The extraction of information to develop a relationship between these factors 
required advanced techniques for modeling beside a human experience. Braced exca-
vation is popular in construction such as high multistoried buildings with basements, 
underground structures for transportation stations, and parking.

A safe excavation can be achieved using a satisfactorily braced wall; the braced wall 
also reduces deformations in the surrounding ground due to excessive wall deflections, 
which are most important to avoid costly damages to neighboring structures and build-
ings. In deep excavation projects, observational methods are involved to ensure safe 
construction, as well as used a finite element to forecast deflections of the wall in deep 
excavations [1, 15, 16].

Some design charts were established for predicting the maximum lateral deflection of 
the wall based on depth of excavation, support system, and wall length [7, 9] see Fig. 1.

Artificial neural networks (ANNs) form a category of frameworks, which are mimicked 
neural networks in living creatures. An important merit of ANNs is learning, learning 
models, (ANNs) can deal with incomplete, qualitative, and uncertain data effectively. 
Therefore, for modeling sophisticated problems in which the equations that govern the 
problems are difficult to set, ANN is a highly promising tool. ANNs can be performed 
in mapping, transitory and optimization problems, besides modeling dynamic processes 
[3]. Generally, the number of input parameters used should be small in artificial neu-
ral networks to predict the maximum lateral deflection of the wall in clays with soft to 
medium consistency. The database used to develop the ANN is generated from pre-
sumptive cases employing the method of finite element (FEM) [11] and case histories of 
deep excavations for training, testing, and verification [8]. The objective of this work is 

Fig. 1 design chart obtained by Hashash and Whittle [7]
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to employ (ANNs) to build a model to forecast maximum lateral wall deflection and its 
position in homogenous clays.

Methodology
Artificial neural networks

Artificial neural networks (ANNs) are simulated the nerve cells in the brain, they are 
considered as computational devices. Despite the complexity of the brain that cannot be 
approached by ANNs, there are two kinds of similarities. First, the computational units 
of networks are simple and interconnected to a high degree. The second one is that the 
connections among neurons set the function and feature of the network [5].

By adjusting weights among neurons, ANNs may be trained to perform a selected 
function. Neural networks are trained to perform complicated functions in extraordi-
nary fields of application such as identification, pattern recognition, speech, vision, clas-
sification, and control systems.

Various tools have been used by engineers to perform informal modeling (mapping 
from cause to effect for estimation and prediction) and inverse mapping (mapping 
from effects to causes) which include knowledge-based systems, optimization, regres-
sion, statistics, probability, and others. Thus, ANN can be considered as another tool for 
engineers to perform either the modeling or inverse mapping [10]. Neural networks are 
applied in different fields of geotechnical engineering including parameter assessment, 
underground openings, foundations, site investigation, liquefaction, retaining struc-
tures, slopes, and ground movement [17].

Back‑propagations

One of the neural networks is back-propagation which is vastly used in solving prob-
lems that need modeling nonlinear relationships. By modifying the weights so the error 
among the actual target and the desired target is minimized, as a result, the simulation of 
the networks will produce the output units, and the forecasting of the neural networks 
to the outputs is highly more correct.

When the internal parameters of the network have been corrected, the mechanism 
of correction begins with the output layers then the error back-propagates backward 
through each internal (hidden) layer. Hence, for this kind of network, the backpropaga-
tion is used [2].

Levenberg Marquardt algorithm.

The algorithm is based on the newton method variation in which the functions which 
are the sum of squares of other nonlinear functions are minimized, it is appropriate 
when MSE (Mean Square Error) is the index of performance.

The basic step of the Levenberg–Marquardt algorithm is:

where (e) is a vector of network errors, (J) is the Jacobian matrix, (I) is a unit matrix, and 
(μ) is a positive scalar. The algorithm becomes gradient descent with a small step size 
when μ is large. For some input/output patterns, the Levenberg–Marquardt algorithm 
is very fast and effective compared to the standard gradient algorithms. Thus, in this 

(1)XK+1 = XK − [JT J + µI]
−1

JT e
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study, the training algorithm used is the Levenberg–Marquardt algorithm with the mean 
square of errors as a performance function.

Prediction of maximum wall deflection and it’s position by ANN
Development of ANN Models

The database includes a total of (169) cases recorded from site observations and finite 
element analysis for homogeneous clayey soil types. The six parameters used as the ANN 
model inputs have the most considerable effect on the deep excavations in homogeneous 
clayey soil. Parameters include: Excavation depth (H) m, Ratio of Length of wall/width of 
excavation (L/B), ratio of EI of the wall / EI of the brace, the vertical distance of bracing 
 (hs) m, undrained shear strength of soil (Su, kN/m2), and the earth pressure coefficient of 
at rest (Ko). Table 1 shows the dataset used and its sources.

In this work, a computer program MATLAB (2015) Neural Network Toolbox is used 
for modeling the neural network. A summary of the basic characteristics of the ANN 
model utilized in this study is as follows: Type of network: Feed-forward backpropaga-
tion, Algorithm of training: (TRAINLM) Levenberg–Marquardt algorithm, the function 
of Learning: (LEARNGDM) Gradient descent with momentum, the function of perfor-
mance: (MSE) Mean square error and the coefficient of correlation (R), the first layer 
transfer function: Sigmoid, the second transfer function: tangent-sigmoid.

The functions of the Sigmoid (logsig) and the hyperbolic tangent-sigmoid (tansig) can 
be expressed as in Eqs. 2 and 3 respectively:

where: n is any value between (− ∞) and (+ ∞). Figure 2 shows the details of (ANN).

Data division and pre‑processing

The data set was randomly divided into three sets through the nntools box using the 
default percentages. The percentage of the training, testing, and validation are, 70%, 
15% and 15% respectively. Before building the neural network, the data Pre-processing 
is essential to put them into proportional form, which is carried out by scaling (normal-
izing) them so that they fall into a standard range − 1 to 1. In the output layer, the vari-
ables have to be normalized to be proportional to the transfer function limits that used 
in the output layer [5].

Scaling the data is important to assure that during the training, all the variables will 
receive equal attention. The scaled value Xn is calculated as follows:

Results and discussion
Two models were built one for maximum wall deflection and the other to the position of 
the maximum deflection, each model has six nodes that represent the inputs used and 
one node for the output required.

(2)logsig(n) = 1/(1+ exp(−n))

(3)Tansig(n) = [2/(1+ exp(−2n))] − 1

(4)Xn =
2× (X − Xmin)

(Xmax − Xmin)
− 1
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Table 1 Data used in building the neural networks

References Input variables Output

Excavation 
Depth, H 
(m)

Length 
to width 
ratio of 
excavation 
L/B

Ratio of 
EI wall/
EI of 
brace

Vertical 
Spacing 
between 
bracing, S 
(m)

Undrained 
Shear 
strength 
of clay, Su 
(kN/m2)

Coefficient 
of earth 
pressure at 
rest, Ko

Maximum 
deflection, 
δH (mm)

Position of 
maximum 
deflection, 
(m)

Lam et al. 
[12]

2.16 0.204 0.108 1 25.5 0.53 92 3

4.32 0.204 0.108 2 25.5 0.53 78 5.6

5.15 0.204 0.108 3 25.5 0.53 38 6

2.16 0.204 2.808 1 25.5 0.53 34 9

4.32 0.204 2.808 2 25.5 0.53 12 9

5.15 0.204 2.808 3 25.5 0.53 7 9

2.16 0.204 8.509 1 25.5 0.53 90 8

4.32 0.204 8.509 2 25.5 0.53 23 8

5.15 0.204 8.509 3 25.5 0.53 3 8

Hashash 
et al. [6]

2.5 1 3.117 1 15 0.53 10 0

5 1 3.117 2 15 0.53 15 12

7.5 1 3.117 3 15 0.53 28 15

10 1 3.117 4 15 0.53 45 17.5

12.5 1 3.117 5 15 0.53 62 20

15 1 3.117 6 15 0.53 84 22.5

2.5 1 3.229 1 15 0.59 47 20

5 1 3.229 2 15 0.59 37 20

7.5 1 3.229 3 15 0.59 27 17.5

10 1 3.229 4 15 0.59 16 15

12.5 1 3.229 5 15 0.59 11 10

15 1 3.229 6 15 0.59 8 0

Nicholson 
[14]

2.6 0.15 0.796 2.5 16 0.6 1 70

7.6 0.15 0.796 2.5 16 0.6 8 80

14.7 0.15 0.796 2.5 16 0.6 10.5 95

Lam [13] 17.5 1.333 3.229 2.5 80 0.53 100 25

17.5 1 3.229 2.5 80 0.53 110 25

17.5 0.8 3.229 2.5 80 0.53 120 25

17.5 0.667 3.229 2.5 80 0.53 130 25

Jen [9] 5 0.625 3.229 2.5 80 0.53 17 10

5 0.625 12.915 2.5 80 0.53 17 10

5 0.625 19.355 2.5 80 0.53 17 10

5 0.625 25.806 2.5 80 0.53 17 10

5 0.625 32.287 2.5 80 0.53 17 10

5 0.625 38.71 2.5 80 0.53 17 10

7.5 0.625 6.455 2.5 80 0.53 35 14

7.5 0.625 12.915 2.5 80 0.53 38 14

7.5 0.625 19.355 2.5 80 0.53 38 14

7.5 0.625 25.806 2.5 80 0.53 38 14

7.5 0.625 32.287 2.5 80 0.53 38 14

7.5 0.625 38.71 2.5 80 0.53 40 14

10 0.625 6.455 2.5 80 0.53 50 16

10 0.625 12.915 2.5 80 0.53 55 16

10 0.625 19.355 2.5 80 0.53 56 16

10 0.625 25.806 2.5 80 0.53 57 16

10 0.625 32.287 2.5 80 0.53 58 16

10 0.625 38.71 2.5 80 0.53 60 16
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Table 1 (continued)

References Input variables Output

Excavation 
Depth, H 
(m)

Length 
to width 
ratio of 
excavation 
L/B

Ratio of 
EI wall/
EI of 
brace

Vertical 
Spacing 
between 
bracing, S 
(m)

Undrained 
Shear 
strength 
of clay, Su 
(kN/m2)

Coefficient 
of earth 
pressure at 
rest, Ko

Maximum 
deflection, 
δH (mm)

Position of 
maximum 
deflection, 
(m)

12.5 0.625 6.455 2.5 80 0.53 79 20

12.5 0.625 12.915 2.5 80 0.53 84 20

12.5 0.625 19.355 2.5 80 0.53 86 20

12.5 0.625 25.806 2.5 80 0.53 89 20

12.5 0.625 32.287 2.5 80 0.53 92 20

12.5 0.625 38.71 2.5 80 0.53 97 20

15 0.625 6.455 2.5 80 0.53 150 25

15 0.625 12.915 2.5 80 0.53 200 25

17.5 0.625 6.455 2.5 80 0.53 300 25

2.5 0.625 3.229 0 80 0.53 17 0

2.5 0.75 3.229 0 80 0.53 17 0

2.5 0.875 3.229 0 80 0.53 17 0

2.5 1 3.229 0 80 0.53 17 0

5 0.625 3.229 2.5 80 0.53 20 15

5 0.75 3.229 2.5 80 0.53 20 15

5 0.875 3.229 2.5 80 0.53 20 15

5 1 3.229 2.5 80 0.53 20 15

7.5 0.625 3.229 2.5 80 0.53 39 18

7.5 0.75 3.229 2.5 80 0.53 39 18

7.5 0.875 3.229 2.5 80 0.53 39 18

7.5 1 3.229 2.5 80 0.53 39 18

10 0.625 3.229 2.5 80 0.53 60 22.5

10 0.75 3.229 2.5 80 0.53 55 22.5

10 0.875 3.229 2.5 80 0.53 55 22.5

10 1 3.229 2.5 80 0.53 55 22.5

12.5 0.625 3.229 2.5 80 0.53 95 25

12.5 0.75 3.229 2.5 80 0.53 80 23

12.5 0.875 3.229 2.5 80 0.53 80 23

12.5 1 3.229 2.5 80 0.53 80 23

15 0.625 3.229 2.5 80 0.53 150 25

15 0.75 3.229 2.5 80 0.53 120 25

15 0.875 3.229 2.5 80 0.53 110 25

15 1 3.229 2.5 80 0.53 110 25

17.5 0.625 3.229 2.5 80 0.53 210 25

17.5 0.75 3.229 2.5 80 0.53 185 30

17.5 0.875 3.229 2.5 80 0.53 150 27

17.5 1 3.229 2.5 80 0.53 14.5 27

17.5 2.667 3.229 2.5 80 0.53 70 25

17.5 2 3.229 2.5 80 0.53 80 25

17.5 1.333 3.229 2.5 80 0.53 95 27

17.5 1 3.229 2.5 80 0.53 105 27

17.5 0.8 3.229 2.5 80 0.53 115 27

17.5 0.667 3.229 2.5 80 0.53 125 27

17.5 0.571 3.229 2.5 80 0.53 135 27

17.5 0.5 3.229 2.5 80 0.53 145 27

2.5 0.313 3.229 0 100 0.56 10 0

2.5 0.375 3.229 0 100 0.56 10 0

2.5 0.438 3.229 0 100 0.56 10 0
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Table 1 (continued)

References Input variables Output

Excavation 
Depth, H 
(m)

Length 
to width 
ratio of 
excavation 
L/B

Ratio of 
EI wall/
EI of 
brace

Vertical 
Spacing 
between 
bracing, S 
(m)

Undrained 
Shear 
strength 
of clay, Su 
(kN/m2)

Coefficient 
of earth 
pressure at 
rest, Ko

Maximum 
deflection, 
δH (mm)

Position of 
maximum 
deflection, 
(m)

2.5 0.5 3.229 0 100 0.56 10 0

5 0.313 3.229 2.5 100 0.56 15 12

5 0.375 3.229 2.5 100 0.56 15 12

5 0.438 3.229 2.5 100 0.56 15 12

5 0.5 3.229 2.5 100 0.56 15 12

7.5 0.313 3.229 2.5 100 0.56 30 17

7.5 0.375 3.229 2.5 100 0.56 30 17

7.5 0.438 3.229 2.5 100 0.56 30 17

7.5 0.5 3.229 2.5 100 0.56 30 17

10 0.313 3.229 2.5 100 0.56 45 20

10 0.375 3.229 2.5 100 0.56 45 20

10 0.438 3.229 2.5 100 0.56 45 20

10 0.5 3.229 2.5 100 0.56 45 20

12.5 0.313 3.229 2.5 100 0.56 65 25

12.5 0.375 3.229 2.5 100 0.56 60 20

12.5 0.438 3.229 2.5 100 0.56 60 20

12.5 0.5 3.229 2.5 100 0.56 60 20

15 0.313 3.229 2.5 100 0.56 95 25

15 0.375 3.229 2.5 100 0.56 80 24

15 0.438 3.229 2.5 100 0.56 80 24

15 0.5 3.229 2.5 100 0.56 80 24

17.5 0.313 3.229 2.5 100 0.56 127 25

17.5 0.375 3.229 2.5 100 0.56 108 30

17.5 0.438 3.229 2.5 100 0.56 102 27

17.5 0.5 3.229 2.5 100 0.56 102 27

20 0.313 3.229 2.5 100 0.56 152 25

20 0.375 3.229 2.5 100 0.56 14.6 30

20 0.438 3.229 2.5 100 0.56 126 30

20 0.5 3.229 2.5 100 0.56 124 30

17.5 0.313 3.229 2.5 110 0.58 105 25

17.5 0.375 3.229 2.5 110 0.58 87 30

17.5 0.438 3.229 2.5 110 0.58 83 27

17.5 0.5 3.229 2.5 110 0.58 83 27

20 0.313 3.229 2.5 110 0.58 125 25

20 0.375 3.229 2.5 110 0.58 115 30

20 0.438 3.229 2.5 110 0.58 102 28

20 0.5 3.229 2.5 110 0.58 102 28

17.5 0.313 3.229 2.5 130 0.64 70 25

17.5 0.375 3.229 2.5 130 0.64 63 30

17.5 0.438 3.229 2.5 130 0.64 63 28

17.5 0.5 3.229 2.5 130 0.64 63 28

20 0.313 3.229 2.5 130 0.64 80 25

20 0.375 3.229 2.5 130 0.64 75 30

20 0.438 3.229 2.5 130 0.64 73 28

20 0.5 3.229 2.5 130 0.64 73 28

17.5 0.313 3.229 2.5 140 0.7 62 25

17.5 0.375 3.229 2.5 140 0.7 57 30

17.5 0.438 3.229 2.5 140 0.7 57 28
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Table 1 (continued)

References Input variables Output

Excavation 
Depth, H 
(m)

Length 
to width 
ratio of 
excavation 
L/B

Ratio of 
EI wall/
EI of 
brace

Vertical 
Spacing 
between 
bracing, S 
(m)

Undrained 
Shear 
strength 
of clay, Su 
(kN/m2)

Coefficient 
of earth 
pressure at 
rest, Ko

Maximum 
deflection, 
δH (mm)

Position of 
maximum 
deflection, 
(m)

17.5 0.5 3.229 2.5 140 0.7 57 28

20 0.313 3.229 2.5 140 0.7 73 25

20 0.375 3.229 2.5 140 0.7 66 28

20 0.438 3.229 2.5 140 0.7 66 28

20 0.5 3.229 2.5 140 0.7 66 28

5 0.625 3.229 2.5 80 0.53 16 12

5 0.625 0.172 2.5 80 0.53 27 8

5 0.625 0.113 2.5 80 0.53 30 8

5 0.625 0.043 2.5 80 0.53 34 7

5 0.625 0.024 2.5 80 0.53 37 6.5

5 0.625 0.01 2.5 80 0.53 40 6

7.5 0.625 3.229 2.5 80 0.53 25 15

7.5 0.625 0.172 2.5 80 0.53 50 12

7.5 0.625 0.113 2.5 80 0.53 55 11

7.5 0.625 0.043 2.5 80 0.53 67 10.5

7.5 0.625 0.024 2.5 80 0.53 72 10

7.5 0.625 0.01 2.5 80 0.53 78 9.5

10 0.625 3.229 2.5 80 0.53 45 20

10 0.625 0.172 2.5 80 0.53 81 14

10 0.625 0.113 2.5 80 0.53 88 13

10 0.625 0.043 2.5 80 0.53 105 12.5

10 0.625 0.024 2.5 80 0.53 120 12

10 0.625 0.01 2.5 80 0.53 162 12

12.5 0.625 3.229 2.5 80 0.53 72 25

12.5 0.625 0.172 2.5 80 0.53 122 17

12.5 0.625 0.113 2.5 80 0.53 138 16.5

12.5 0.625 0.043 2.5 80 0.53 21.4 16

Fig. 2 Flow chart algorithm and structure of ANN for predicting max. Wall deflection



Page 9 of 18Aljanabi and AL‑Azzawi  Geo-Engineering           (2021) 12:29  

ANNs with 1 to 12 hidden layer nodes are trained, to determine the optimum net-
work geometry.

Training of data

Table 2 summarizes statistical parameters of variables used to construct and validate 
the network and their histograms are shown in Fig.  3. The retaining structures are 
formed of either stiff or flexible walls with Excavation depth up to 20  m and maxi-
mum width up to 80 m was considered.

Figures 4 and 5 indicate the variation of the average of Mean Squared Error (MSE) 
with the number of hidden neurons of the networks for the maximum deflection 
and its position respectively. The difference in (MSE) is relatively small after hidden 
neuron no. 4 and hidden neuron no. 3 for the maximum deflection and its position 
respectively. Figure  4 shows that the networks for max. deflection and its position 
with 4 and 3 hidden layer node respectively. It is considered optimal, as its predic-
tion error (MSE) is not far from the network with 12 hidden layer nodes coupled with 
smaller number of connection weights and with high coefficient of correlation as 
shown in Fig. 5

Figures 6 and 7 show a comparison between the measured and predicted value of 
the maximum deflection and  it’s position respectively. It shows a good agreement 
between the measured and predicted values.

Sensitivity analysis of the ANN model inputs

Garson [4] proposed an innovative and simple technique that is used to explain the 
relative significance of the input variables by examining the connection weights of the 
trained network. For a network with 4 hidden nodes, the technique involves a process 
of partitioning the hidden output connection weights into components associated 
with each input node.

The results indicate that the ratio of the EI wall/EI of brace has the most consider-
able effect on the predicted maximum deflection followed by Ko, L/B, H, Su, and hs 
respectively. The results are presented in Fig. 8a. Similarly, the results indicate that Su 
and Ko have the most significant effect on the predicted position of maximum deflec-
tion followed by L/B, H, hs, and EI/Ks, the results are presented in Fig. 8b.

Table 2 Statistics parameters of Input and Output data used in (ANN)

Data 
set

Statistical
parameters

Input variables Output

Excavation 
depth, H 
(m)

Length 
to width 
ratio of 
excavation 
L/B

Ratio 
of EI 
wall/
EI of 
brace

Vertical 
Spacing 
between 
bracing, 
S (m)

Undrained 
Shear 
strength 
of clay, Su 
(kN/m2)

Coefficient 
of earth 
pressure 
at rest, Ko

Maximum 
deflection, 
δH (mm)

Position of 
maximum 
deflection, 
(m)

All Data
n = 169

Maximum 20.0 2.7 38.7 6 140.0 0.70 300.0 95.0

Minimum 2.2 0.2 0.010 0 15.0 0.53 1.0 0.0

Mean 11.3 0.6 5.7 2.4 81.8 0.6 65.4 19.5

Std.dv 5.6 0.3 8.2 0.8 30.7 0.0 46.5 11.8

Range 17.8 2.5 38.7 6.0 125.0 0.2 299.0 95.0
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Parametric study

Parametric studies were carried out to estimate whether the model has convenient 
trends, to confirm the validation of the trained network and the generalization ability of 
the model. the first five input variables (i.e. (L/B), EI of wall/stiffness of braced, Vertical 
distance of bracing, Undrained shear strength of soil (Su), coefficient of Earth pressure 
at rest  (Ko)), except one, are fixed to their mean values used for training. The increasing 
values of artificial ranging (10–20%) of the total range between the minimum and maxi-
mum values. Figure 9a–d reveal that the general trend of the maximum wall deflection is 
to increase with an increase in excavation depth, increasing (L/B), (EI wall/EI of bracing) 
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ratios and vertical distance of bracing respectively as expected. Figure 9e shows that the 
changes in max. wall deflections were less significant for Su greater than 75 MPA, and 
increase with the increasing coefficient of lateral earth pressure as shown in Fig. 9f.

The general trend for the position of max. Wall deflection was revealed in Fig. 10a–
f, it increases with the increase in excavation depth, while decreases with (L/B) ratios, 
(EI/stiffness of bracing) ratios, and the vertical distance of bracing  (hs), on the other 
hand the position of max. deflection increases with the increase in shear strength of 
the soil (Su) up to 60 kN/m2 then decreases, and the same trend observed with the 
coefficient of lateral earth pressure  (Ko). Consequently, the trained neural network 
model was approved to give reasonable and appropriate relationships between the 
diverse input variables. The developed ANN has shown satisfactory performance.
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Fig. 6 Comparison between predicted and Observed max. deflection δH for All data set, Training data Set, 
Testing Data Set, and Validation Data Set

Fig. 7 Comparison between Predicted and Observed position of max. deflection δH for All data set, Training 
data Set, Testing Data Set, and Validation Data Set
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A set of design charts are developed. It`s carried out by using synthetic input val-
ues within the ranges of data shown in Table 2. Figure 11 is an illustrative sample of 
the design charts obtained for L/B = 1,  Ko = 0.53,  hs = 2.5 m, the increasing trend of 
varying with excavation depth (H) for all cases, maximum deflection increases as the 
excavation depth increases and as expected.
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On the other hand, the robustness of the (ANN) for the position of max. deflection 
can be determined by examining with input values within the ranges of data shown in 
Table 2, the sample of design chart obtained for L/B = 1, Ko = 0.53, hs = 2.5 m, EI wall/EI 
brace = 7, It was found that the trends of the design charts are in good agreement with 
what one would expect as shown in Fig. 12

Summary and conclusions
In this study, a neural network-based procedure to predict maximum wall excavation 
during excavation has been proposed. Based on a large number of case studies gener-
ated by observation techniques and FEM, the ANN model is developed to predict the 
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max. wall deflection induced by excavation. Six input variables are adopted to build 
the ANN model; they are excavation depth, system stiffness, the vertical distance 
between bracing, excavation width/wall length ratio, shear strength, and the lateral 
earth pressure coefficient. The effect of using a various number of a hidden layer on 
the ANN model results was investigated. The relative importance of the factors that 
affect maximum lateral deflection and its position was achieved by sensitivity analy-
sis. The typical behavior of braced excavation in soft to medium clay is confirmed by 
the results of the extensive assessment of the ANN model developed.

The results showed that the sensitivity analysis indicates that the system stiffness 
has the most significant effect on the maximum wall deflection. The soil properties 
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have the most significant effects on the position, alternately the system stiffness and 
the vertical distance between bracing were found to have minor effects compared to 
the soil properties depending on the position of max. wall deflection.

The ANN developed has shown to be able to predict the wall deflections satisfactorily 
as showed by the results of the validation. Degree of accuracy was acceptable (R = 0.922, 
MSE = 0.4%, and the number of optimum hidden layer nodes was found to be four) for 
predicted maximum wall deflection, and (R = 0.978, MSE = 0.22%, and the number hid-
den layer nodes was found to be three hidden layer nodes) for predicted position of 
maximum wall deflection. The developed ANN trend to improved results based on the 
mean of case histories.
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