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Introduction
Discontinuities such as cracks, faults, fractures and joints always exist in rocks as 
a result of various geological processes [21]. Moreover, strength, deformability and 
flow properties of these discontinuities are strongly affected not only by their sur-
face morphology but also size scale [16]. Therefore, investigating size effect of surface 
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morphology by accurate description method is a critically important to understand 
discontinuities mechanics characterization.

Since Barton and Bandis [3] introduced the scale effect of rock structural surfaces, 
the scholars in related fields have carried out discussions on this issue and formed 
three academic views. (1) Some scholars believe that as the size of structural surfaces 
increases, its roughness will decrease, which is the negative scale effect of structural 
surfaces [2, 6, 8, 10, 12]. (2) Some scholars believe that as the size of structural sur-
faces increases, its roughness also increases, namely the positive scale effect [11, 18]. 
(3) Others believe that there is no scale effect on roughness of structural surfaces [23]. 
The possible reasons for these three different views are the size and morphological 
characteristics of investigated structural surfaces, as well as using differences descrip-
tion methods. In addition, the measurement resolution is another reason for different 
views about understanding size effect of structure surfaces [26]. Based on the above 
analysis, comprehensive understanding size effect of structure surfaces still need to 
study.

The size effect of structural surfaces is mostly studied by the morphological charac-
terization parameters. At present, these methods describing structure surfaces can be 
categorized broadly into Barton typical contour method, statistical parameters, and 
fractal dimensions [13]. Among them, the statistical parameters mainly include fluctua-
tion amplitude parameters [22, 27]: mean square value (MS), root mean square (RMS), 
central line average (CLA), first derivative root mean square (Z2), second derivative 
root mean square (Z3), average fluctuation amplitude parameters (Z4), autocorrelation 
function (ACF), structure function (SF), Angle parameters [4, 14, 29]: standard devia-
tion of undulation Angle (SD), The mean positive inclination angle of the profile (Sp+), 
The mean negative inclination angle of the profile (Sp-), The mean inclination angle for 
the surface (θs), The maximum apparent dip angle in the shear direction(θMax/C + 1), 
The roughness profiles or surfaces index [6, 9, 13]: the ratio of actual length of a rough-
ness profile to its projected length on the horizontal surface (Rp), the ratio of actual area 
of a roughness surface to its projected area on the horizontal surface(Rs), bright area 
percentage (BAP) and quantifying joint surfaces anisotropic behavior by Variogram 
Approach (SRv). The aforementioned parameters, statistical parameters describing 
the roughness of structural surfaces is influenced by sampling interval [15, 25, 28, 30]. 
And the Barton typical contour method has the shortcomings of subjective judgment. 
Although the fractal dimension description method is also controversial, its calculation 
process is substantially different from the other methods, and has more advantages.

The fractal method for describing 3d structural surfaces are mainly included as fol-
lowing: Triangular prism surface area method(TPSAM) [7], Projective covering 
method(PCM) [32, 31], Modification of projective covering method(MPCM) [17], 
Cube covering method(CCM) [33], Improved cubic covering method (ICCM) [19, 20, 
34], Differential cubic covering method(DCCM) and relative differential cubic covering 
method(RDCCM) [1]. Among the above-mentioned methods of direct measurement, 
the PCM is an early proposed method for estimating the roughness of structural sur-
faces, and it is a very effective method for quantitative description of 3d structural sur-
faces. But, there is a small defect in calculating the area of grid cell about PCM. So, based 
on stochastic analysis, we proposed improved projective covering method (IPCM).
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In this paper, using the IPCM, we investigated size effect of the large size structural 
surfaces (2 m × 2 m). And, we proposed a method using the fractal parameter �DSD

max to 
estimate reasonable size of structural surfaces for laboratory test. The parameter �DSD

max 
means the maximum dimension difference of the same size structure surfaces but from 
different regions. This research provides a new approach for understanding comprehen-
sively the size effect characteristics of structural surfaces.

Algorithms and steps of the IPCM
The shortcoming of the PCM

In the PCM method, the analyzed surface is divided into a lot of small grid cells and the 
area of rough surface surrounded by points abcd (see Fig. 1) can be approximately calcu-
lated by [31]

Here, Ak(δ) is the area of the kth cell square; the hak, hbk, hck and hdk are the heights of a 
fracture surface at points a, b, c and d, respectively; the δ means step size.

Following the Eq. 1, in fact, each area of the grid cell is calculated as sum of two trian-
gles. Unfortunately, the triangle areas of grid cells are not accurately calculated, which 

(1)
Ak(δ) =

1

2

{

[

δ
2
+ (hak − hdk)

2

]1/2[

δ
2
+ (hdk − hck)

2

]1/2

+

[

δ
2
+ (hak − hbk)

2

]1/2[

δ
2
+ (hbk − hck)

2

]1/2
}

(a)                   (b) 

a b cd

B

A

a

b c

d

hak

hbk hck

hdk

projective covering cell

fracture surface

Fig. 1  The projective covering method

(a) (b)

¦ Ä

a

b

c

d

¦ Ä

S

hak

hbk

hck

hdk

¦ Ä

a

b

c

d

¦ Ä

S

hak

hbk

hck

hdk

Fig. 2  Two schemes of triangulation of an elementary surface



Page 4 of 19Chen et al. Geo-Engineering           (2020) 11:18 

was pointed out by Kwaśny [17]. So, the author modified the PCM by introducing a 
more precise area calculation method. Nevertheless, the area of the fracture surface 
is still approximate because there are two ways to divide the field surrounded by four 
points on fracture surfaces into two triangles (as shown in Fig. 2). In this way, the small 
grid cell is divided by different triangulation division scheme, and the calculated fractal 
dimension is different, which has been confirmed [33].

In order to overcome the above shortcoming, the random number is introduced into 
the PCM. Specifically speaking, a random connection method is adopted to determine 
triangulation division scheme of each grid cell. So, the millions of grid cells in whole 
structural surfaces are more consistent with the actual morphology. This fractal dimen-
sion method expressing structural surfaces is called Improved projective covering 
method (IPCM).

Algorithms of the IPCM

In fractal geometry, the measure of a fractal object in E-dimensional space can be 
expressed in a general form [31]

where E represents Euclidean dimension. This equation can be used for the measure-
ment of a fractal object in a form of either curve, area or volume. For instance, if E = 2, G 
and δ in Eq. 2 correspond to a fractal area, then Eq. 2 yields

where AT0 denotes the apparent area of the rough surface.  AT (δ) means the entire 
area of the rough surface under a certain scale measurement and it can be expressed by

where N (δ) is the total number of cells with scale of δ × δ needed to cover the rough 
surface.

From Eqs. 3 and 4, we have the following relation

where β is the slope of the ln-ln plot AT (δ) vs δ.

Analysis steps of the IPCM

(1) We obtain the three-dimensional topography data of the studied fracture surface. As 
far as obtaining methods, there are the digital image processing (DIP) method and 3d 
laser scanning method.

(2) We divide the fracture surface into small grid cells with the step size δ.

(2)G(δ) = G0δ
E−D

(3)AT (δ) = AT0δ
2−D

(4)AT (δ) =
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(3) We determine triangulation division scheme of each grid cell by random connec-
tion method and calculate the area. Specifically speaking, a random number is generated 
by the random function and the parity of the random number is determined. If the num-
ber is odd, the area of the small grid cell is calculated using the triangular connection 
scheme of Fig. 2a. Otherwise, the area of the grid cell is calculated by the triangular con-
nection scheme of Fig. 2b.

(4) Given a step size δ , the total area of the fracture surface is calculated with the Eq. 4. 
And then, calculate point pairs 

{

In
(

Ar(δ)
/

Ar0

)

, In(δ)
}

.
(5) The procedure (2)–(4) is repeated for each different step size. We can calculate the 

value of the different points 
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/

Ar0
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}

 at different δ × δ scale. And then, 
the slope β is fitted by the least square method. Thus, the fractal dimension (D) can be 
calculated by Eq. 5.

(6) Perform repetition calculations according to above steps (2)–(5) and form a sam-
ple space of fractal dimension. And then, the fractal dimension samples are tested by 
distribution fitting method. When the test results show that the sample data belong to 
some probability distribution, the samples mean is taken as the exact value of the frac-
tal dimension of the studied structural plane. Otherwise, the number of samples will be 
increased and the sample distribution fit test will be repeated.

The IPCM method calculation program is shown in Fig. 3.

Fractal analysis of the synthetic surface by IPCM
In this paper, using IPCM, we investigate characteristics of the structural plane gen-
erated by Buzzi [5] based on the measured joint section. The grayscale images of the 
synthetic surface are shown in Fig.  4. The size of the synthetic surfaces both are 
2000 mm × 2000 mm. In order to satisfy the accurate calculation of fractal dimension, 
they are expressed as 2049 pixels × 2049 pixels.

Through the measurement of the gray image in Fig. 4a and b, the difference between 
the maximum gray value and the minimum are [251, 0]and [255, 0], respectively. In 
fact, the difference between the highest point and the lowest are 160 mm and 180 mm, 
respectively. Therefore, the ratio 160/251 and 180/255 are used for fractal calculation of 
the synthetic surfaces image.

Firstly, according to the procedure of IPCM method, we calculated the synthetic sur-
face in Fig. 4a, and analyzed the calculation results by IPCM and PCM, respectively. Sec-
ondly, on this basis, we proposed the simple program for fractal dimension. Finally, for 
two synthetic surfaces in Fig. 4, we calculated the fractal dimension by simple program 
of IPCM and analyzed the size effect characteristics.

Fractal calculation and analysis of the synthetic surface

Obtained fractal dimension samples

According to the calculation steps of the Fig. 3, the fractal dimension (D) of the synthetic 
surface in Fig. 4a is calculated and 100 samples of D are obtained. For each calculation, 
the scale space is 2 mm–32 mm. The 100 samples of D of the synthetic surface are shown 
in the Table 1.
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Distribution characteristics of the fractal dimension samples

The fractal dimension samples of the synthetic surface are tested based on the probabil-
istic and mathematical statistics method [24].

According to the data in Table  1, we know, the minimum and maximum fractal 
dimensions are 2.197516 and 2.197755, respectively. Now, we may set a range, which 
is [2.197515 5, 2.197755 5]. And then, the range is divided into 8 subsets and the each 
distance of the adjacent subsets is 0.00003. The statistical parameters of the subsets 
(such as interval, counts, frequency) are shown in Table 2.

Odd Even

Obtain structural surface topography data 

Divide into small grid cells with the step size δ

Generate random number 

The small grid cell 
area is calculated using 
the scheme of Fig.2b 

The small grid cell 
area is calculated using 
the scheme of Fig.2a 

Odd,Even?

Calculate the total surface area AT(δ) 

Record numbers of the point{ln AT(δ)/ AT0,lnδ}

Over predetermined 

numbers

C
hange the step size δ 

No
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Calculate the D and record numbers of it (n) 

Sample size (N) 
n<N 

n=N

Form a sample space of the D 

Distribution fitting test of the sample D 

obey some distribution

Increase the sam
ple size (N

) 

No

Take the samples mean as the exact value 
of fractal dimension

Fig. 3  Design procedure of IPCM method
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Fig. 4  The synthetic surfaces by random field model

Table 1  100 Samples of fractal dimensions of the synthetic surfaces

No D value No D value No D value No D value No D value

1 2.197656 21 2.197632 41 2.197730 61 2.197516 81 2.197657

2 2.197577 22 2.197538 42 2.197724 62 2.197709 82 2.197750

3 2.197576 23 2.197630 43 2.197650 63 2.197685 83 2.197686

4 2.197615 24 2.197641 44 2.197656 64 2.197662 84 2.197519

5 2.197649 25 2.197651 45 2.197728 65 2.197681 85 2.197624

6 2.197675 26 2.197733 46 2.197663 66 2.197614 86 2.197675

7 2.197545 27 2.197584 47 2.197679 67 2.197602 87 2.197621

8 2.197621 28 2.197743 48 2.197611 68 2.197755 88 2.197671

9 2.197610 29 2.197603 49 2.197716 69 2.197611 89 2.197715

10 2.197718 30 2.197566 50 2.197665 70 2.197727 90 2.197660

11 2.197603 31 2.197599 51 2.197654 71 2.197612 91 2.197610

12 2.197745 32 2.197628 52 2.197702 72 2.197569 92 2.197663

13 2.197660 33 2.197678 53 2.197610 73 2.197651 93 2.197666

14 2.197582 34 2.197637 54 2.197608 74 2.197691 94 2.197588

15 2.197544 35 2.197600 55 2.197631 75 2.197657 95 2.197675

16 2.197590 36 2.197729 56 2.197743 76 2.197691 96 2.197639

17 2.197530 37 2.197625 57 2.197686 77 2.197634 97 2.197585

18 2.197592 38 2.197607 58 2.197589 78 2.197634 98 2.197642

19 2.197711 39 2.197729 59 2.197679 79 2.197590 99 2.197718

20 2.197640 40 2.197615 60 2.197628 80 2.197607 100 2.197576

Table 2  Statistical parameters of the samples of fractal dimensions

No 1 2 3 4 5 6 7 8

Subsets 2.1975155-
2.1975455

2.1975455-
2.1975755

2.1975755-
2.1976055

2.1976055-
2.1976355

2.1976355-
2.1976655

2.1976655-
2.1976955

2.1976955-
2.1977255

2.1977255-
2.1977555

Counts fi 6 2 16 23 20 14 8 11

Frequency 
fi/n

0.06 0.02 0.16 0.23 0.20 0.14 0.08 0.11
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According to the data in Table 2, a small rectangle with fin
/

� height is made in each 

small subset. Where fi is the counts of samples in the ith subset, n is the sample size 
and � is the distance of the adjacent subsets. In this way, we can get the distribution 
of fractal dimension samples, as shown in Fig. 5.

From the histogram of Fig. 5, the center section is high and both sides are low. The 
shape of distribution of the fractal dimension samples is approximate symmetry. So, 
we can preliminarily judge the samples belongs to the Normal distribution. Now, the 
χ
2 method is used for testing and the statistical variable χ2 is expressed by

where k is the number of sample subsets, and p̂i is the probability estimation of the ith 
subset.

Hypothesis testing:
H0: The probability density of X is

where µ and σ are the mean and variance of the samples, respectively, which is unknown 
in this hypothesis testing. In this example, the estimation value of µ and σ are 2.197644 
and 0.000056 by the maximum likelihood estimation method, respectively. If H0 is true, 
the probability density of X is expressed by,

Now, we define probability event as Ai . Here, i equals to 8. According to Eqs. 6 and 
7 and the Standard Normal Distribution Function Table [24], we can get the estimated 
value of probability P(Ai) . The results are shown in Table 3. Here, the parameter np̂i 
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Fig. 5  Histograph of 100 samples of fractal dimensions
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in Table 3 should be no less than 5 [24]. Otherwise, the adjacent subsets Ai should be 
properly merged.

According to Eq. 6, χ2 = 105.18–100 = 5.18.  χ2
0.05(k − r − 1) =χ2

0.05(4) = 9.488 > 5.18. 
Here, k is the number of valid subsets and it equals to 7, r means degrees of free-
dom and it equals to 2. Therefore, we accept H0 at level 0.05. From the above anal-
ysis, we can consider that the fractal dimension data are derived from the Normal 
distribution.

Determination of exact fractal dimension value of the synthetic surface

From the above analysis, the samples of the fractal dimension of the synthetic surface 
belong to the Normal distribution. Now, we can take the mean value of the samples as 
the exact fractal dimension of the synthetic surface. As thus, the exact fractal dimension 
of the synthetic surface is calculated as 2.197644.

Comparison IPCM with PCM
In order to investigate characteristics of fractal dimensions of structural surfaces 
obtained by the IPCM and PCM respectively, first, we calculated fractal dimension of 
the synthetic surface by PCM. This method has two connection modes as shown in 
Fig. 2. So, the calculation results are 2.197743 and 2.197528, respectively. And then, we 
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Fig. 6  Comparison IPCM with PCM

Table 4  Statistical parameter mean from a few samples

No Mean

1 2.197 624 2

2 2.197 619 7

3 2.197 632 1

4 2.197 644 7

5 2.197 682 2

6 2.197 653 0

7 2.197 656 2

8 2.197 633 6

9 2.197 657 8

10 2.197 636 2
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take the results by PCM and the data in Table 1 which were obtained through IPCM to 
be presented in the form of a graph, as shown in Fig. 6. Form Fig. 6, we can see, compar-
ing with results by IPCM, the calculation values by PCM are almost the maximum and 
minimum. Since random numbers are involved in the calculation of IPCM, the results of 
fractal dimension of structural surface obtained by this method is a series of data. And, 
this data is subject to normal distribution law from the previous section analysis. There-
fore, compared with results by PCM, it is more accurate to use the average value through 
IPCM as the fractal dimension for quantifing structural surface roughness.

Fig. 7  Division scheme of varisized structure surface

Table 5  Fractal dimensions for samples with different size at five schemes

Size (mm × mm) 2000 × 2000 1000 × 1000 500 × 500 250 × 250 125 × 125 62.5 × 62.5

Case 1 2.197624 2.179174 2.192371 2.245221 2.276409 2.313967

Case 2 2.197624 2.208777 2.164691 2.130095 2.158039 2.152421

Figure 3a Case 3 2.197624 2.230114 2.242755 2.179879 2.064291 2.062817

Case 4 2.197624 2.189423 2.189950 2.197605 2.171516 2.154560

Case 5 2.197624 2.156866 2.144126 2.165214 2.178987 2.186229

DSD
A

2.197624 2.192871 2.186779 2.183603 2.169848 2.173999

�DSD
max

0.073248 0.098629 0.115126 0.212118 0.251150

Case 1 2.447770 2.452522 2.450057 2.463435 2.444199 2.382865

Case 2 2.447770 2.458964 2.475679 2.456437 2.388016 2.365948

Figure 3b Case 3 2.447770 2.442293 2.443463 2.438059 2.444947 2.377290

Case 4 2.447770 2.448461 2.453102 2.466008 2.398627 2.364124

Case 5 2.447770 2.440806 2.438959 2.453740 2.456107 2.431264

DSD
A

2.447770 2.448609 2.452252 2.455536 2.426379 2.384298

�DSD
max

0.073248 0.036720 0.027949 0.068091 0.06714
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A simple program of IPCM for fractal dimension
Considering probability, by random connection method, the thousands of small grid 
cells in the whole structure plane are more consistent with the actual morphology. 
From the calculation results as shown in Fig.  6, the fractal dimension by PCM is 
almost the limit value. So, we think that it will be more reasonable that the mean 
of fractal dimension samples by IPCM is taken as the accurate fractal dimension of 
structure surfaces.

However, from the above analysis process of the IPCM, to estimate fractal dimension 
of fracture surfaces is gruelling and time-consuming work. Whether it is possible, with 
the mean of a few samples, to regard as the result of structural surfaces by fractal dimen-
sion is still to be discussed. In this paper, 100 datum in Table 1 are divided into 10 groups 
in sequence. And then, the mean of each group is calculated, as shown in Table 4.

If the mean of 100 samples can be considered as the exact values of the fractal 
dimension of the studied structure surface, and then there are 10 groups which the 
calculation accuracy of each mean can achieve 0.0001. From the above results, we can 

(a) The map of changing trend for Fig.4a 

(b) The map of changing trend for Fig.4b 
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Fig. 8  The relationship between the fractal dimension and the size growth multiple at five schemes
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use the mean of a few samples to represent fractal dimension of structural surfaces 
when satisfying a certain accuracy requirement. In this way, compared with the more 
samples, it can save many time and effort. So, it is also feasible to use the mean of a 
few samples to represent the fractal dimension of structural planes.

Application of IPCM in the size effect of structural surfaces
Division scheme for structure surfaces

In this paper, we take the random model structural surface [5] as the researched 
object for the size effect analysis, as shown Fig. 4. Figure 4a and b are obviously dif-
ferent in their morphological features. Comparatively speaking, the asperity distri-
bution about Fig.  4a structural surface is uneven and that of Fig.  4b is uniform. In 
order to investigate size effect of the structural surfaces, we divide the each surface 
into six small surfaces and their size (pixel × pixel) are 65 × 65, 129 × 129, 257 × 257, 
513 × 513, 1025 × 1025, 2049 × 2049 respectively. In addition, we choose five repre-
sentative schemes as shown in Fig. 7. In order to obtain the data of the specified range 
structure surface, we developed data reading program.

Fractal dimension calculation and results analysis

According to IPCM method, we calculated the fractal dimension of different size 
structure surfaces with different area. The fractal dimension of each structure surface 
is calculated 10 times and the average is regarded as the result of fractal dimension. 
The results of calculation fractal dimension are shown in Table 5. In the Table 5, the 
parameter DSD

A  means average of fractal dimensions of the same size structure surface 
but from different area, and the parameter �DSD

max means the maximum difference of 
fractal dimensions of the same size structure surfaces but from different area.

Here, the 62.5 mm × 62.5 mm surface is taken as reference plane. And then, the 125 
mm × 125 mm、250 mm × 250 mm、500 mm × 500 mm、1000 mm × 1000 mm、2
000 mm × 2000 mm surfaces are as 4 times, 16 times, 64 times, 256 times and 1024 
times, respectively, as 62.5 mm × 62.5 mm surface. Now, we take size growth factor 
as the horizontal axis, and establish the relationship between the sizes and fractal 
dimensions as shown in Fig. 8.

From Fig.  8, for the different morphological feature surfaces, there are different 
trends of the parameter DSD

A  with the size increase. To the Fig. 4a structural surface, 

Fig. 9  The relationship between the parameter and the size of the sampling window
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its concavo-convex body is sparse and unevenly distributed, and corresponding, the 
trend of the parameter DSD

A  rises with the size increase on the whole. While, to the 
Fig. 4b structural surface, its concavo-convex body is dense and equally distributed, 
accordingly, the trend of the parameter DSD

A  rises and then reduces to the stable value.
In addition, to the same structure surface but different division schemes, there are 

different trends of fractal dimensions with the size increase. Now, we take the Fig. 4a 
structural surface for example. About Case 1, the trend of the fractal dimensions 
declines and gradually tend to the stable value as the structure surface size increases. 
However, about Case 2, the trend of the fractal dimensions goes up and gradually 
tend to the stable value with the size increases.

It can be seen from the above phenomenon that the structure surface with com-
plex morphology has both positive and negative size effect characteristics. This size 
effect rule can be understood as follows. To any structural surface, we can find a 
small smooth plane with a small fractal dimension. As the size of the structural plane 
increases, some complex morphology is gradually included, and the fractal dimen-
sion is also increasing. This is the positive size effect of the structural plane. When 
the structure surface continues to increase, the roughness information of the struc-
ture surface does not increase, on the contrary, some smooth information maybe is 
included. So, the fractal dimension will be decreasing. This is the negative size effect 
of the structure surface. For a regular structural plane, no matter how big, it contains 
the same morphological information. Therefore, the fractal dimensions for different 
size surfaces are stable on the whole. For an example, about the very smooth plane, its 
fractal dimensions are always 2 at any size. This is the dimensionless effect character-
istic of structural planes. According to the above analysis, the size effect of structural 
surfaces is related to the morphological characteristics.

A new method to determine reasonable size of structural surfaces

If the fractal dimensions expressing two surfaces which are the same size but from 
different area are close to each other, we can conclude that morphological character-
istics of the structural surfaces are generally consistent. Based on this understand-
ing, we can use the parameter �DSD

max to determine the reasonable size of structural 
planes.

lnAT(δ)/AT0 = -0.447776 lnδ - 1.565265 
R² = 0.989500 

lnAT(δ)/AT0 = -0.251369 lnδ - 0.478964 
R² = 0.861306 
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Fig. 10  Comparison diagram of fractal dimension fitting for the same surface at different scales
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About the Fig. 4 surfaces, the trends of the parameter �DSD
max are shown in Fig. 9. 

From Fig.  9, in general, the parameter �DSD
max decreases to the stable value as the 

structure surface size increases. Theoretically speaking, when the parameter �DSD
max 

equals to 0, it can be considered that morphology features of the studied surfaces are 
nearly the same, and this size can be considered as the standard size of structural 
planes. In fact, it is difficult to find the two structural surfaces which the parameter 
�DSD

max equals to 0 due to the complex morphology of natural structural surface. So, 
we can analyze the trend of the parameter �DSD

max and find the stable value, and then, 
the corresponding size is the standard size of structural planes. From Fig.  9, to the 
surface of Fig. 4a, there is no stable value of the �DSD

max,but to the surface of Fig. 4b, 
we think the parameter �DSD

max tend to be stable when the size is 250 mm × 250 mm.

Discussion
Determination of scale space for fractal dimension

The scale space has an important influence on the calculation result of fractal dimension. 
Take the Fig. 4b structural surface for example. If the scale space range is from 2 to 1024 
pixels, there are 10 pairs of { ln

[

AT(δ)
/

AT0

]

 ,      ln δ } to fit the fractal dimension, and the 
result is 2.251369. When the scale space range is from 2 to 32 pixels, there are 5 pairs of 
{ ln

[

AT(δ)
/

AT0

]

, ln δ } to fit the fractal dimension, and the result is 2.447776. The fitting 
results are shown in Fig. 10.

From the above analysis, we know the calculating results of fractal dimension are 
different with the different scale space. So, we investigate the size effect of structural 
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surfaces using fractal dimension method, the uniform scale space should be adopted. 
Otherwise, there is no comparison. In this paper, because the minimum structure sur-
face is 62.5 mm × 62.5 mm (65 pixels × 65 pixels), it’s maximum scale space is 32 pixels. 
So, in this article, in order to make the calculating results comparable, the scale space 
range is set from 2 to 32 pixels.

Determination of the parameter �D
SD
max value

Theoretically, when the parameter �DSD
max value is 0, it can be considered that the fractal 

surfaces are the same morphological features. And, this size can be seen as the stand-
ard size of structural surfaces. However, it is difficult to find such standard size with the 
same fractal dimension in different regions due to the complex morphology of natural 
structural surfaces. Therefore, it is necessary to determine the parameter �DSD

max by not 
only the variation trend but also studying the mechanical properties.

The characteristics of the parameter intercept relating with fractal dimension

As shown in Fig.  10, for the same structural plane, the parameter intercept relating 
with fractal dimension is different as different scale space by PCM. But, to different 
sizes structural planes, even if the scale space is the same, the intercept varies greatly, 
as shown in Fig. 11. The Fig. 11 is the fitting results of the Case 2 of the Fig. 4b with dif-
ferent sizes but the same scale space which is from 2 to 32 pixels. As can be seen from 
Fig. 11, the larger size of the structure surface, in order to get the fitting points in small 
scale space, the smaller lnδ value is. So, the intercept is smaller.

Fractal dimension has been widely recognized by many scholars to describe the mor-
phological characteristics of structural surfaces. And some scholars have tried to use 
the parameter intercept to describe the size effect characteristics of structural sur-
faces [10]. However, from the above analysis, there is a defect in describing the struc-
tural surface by the parameter intercept. For Fig. 11, the intercept value of the surface 
62.5 mm × 62.5 mm is much larger than that of the 2000 mm × 2000 mm. The main rea-
son for this result is that the fitting points are distributed different location in the hori-
zontal axis, rather than mainly depending on the morphology features.

Fortunately, in the following cases, the intercept can be used to further distinguish 
the roughness of structural surfaces, as shown in Fig.  12. The Line b in the Fig.  12 is 
formed by the overall downward shift of 0.304269 of the Line a. Although the slope 
of the two lines is the same, that is, the fractal dimensions are the same, the values of 
ln
[

AT(δ)
/

AT0

]

 on Line b are all smaller than the values of that on Line a. Therefore, it 
can be concluded that the structural surface corresponding to Line a is rougher than that 
corresponding to Line b. In this case, the roughness of structural surfaces a and b can be 
further distinguished by the parameter intercept.
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Conclusion
In this article, considering the shortcoming of the projective covering method, we put 
forward the improved projective covering method. Based on this, we analyzed the size 
effect characteristics of the two structural planes. By comparing and analyzing the frac-
tal dimension trend of different size structural planes under different division schemes, 
the following conclusions are drawn.

1.	 Considering probability, by random connection method, the thousands of small grid 
cells in the whole structure plane are more consistent with the actual morphology. 
From the calculations, the fractal dimension by PCM is almost the limit value. So, 
it will be more reasonable that the mean of fractal dimension samples by IPCM is 
taken as the accurate fractal dimension of structure surfaces.

2.	 The size effect of structural surfaces roughness is related to the morphological char-
acteristics of structural surfaces. Generally, as the size increases, the roughness of 
the structure surface first increases and then decreases. That is, it shows positive size 
effect in the small size range and negative size effect in the large size range.

3.	 Different size division schemes have an important influence on the size effect law of 
structural surfaces. In other words, the size division schemes of the same structural 
surface are different, and the size effect characteristics are also different. Therefore, 
the study of the size effect of structural surfaces cannot be limited to a certain size 
division scheme. Otherwise, the results are one-sided.

4.	 With the increase of the size of structural surfaces, the parameter �DSD
max generally 

decreases and gradually tends to be stable. The stability value can be used to deter-
mine the reasonable size of structural planes. This parameter provides a new way to 
determine the reasonable size of structural surfaces.
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