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Abstract

Background: Triaxial tests are often used to determine the behavior and strength
characteristics of soils. Specimen size can have a significant impact on the measured
shear strength. Accordingly, the selected parameters affect the related geotechnical
engineering analysis and design.

Methods: We tested three different specimen sizes of loose Ottawa sand in triaxial
compression tests. The measured shear strength and friction angle are used to explain
some of the observed scale effects in engineering design and analysis. Critical state
parameter and shear strength from the laboratory tests are employed to assess the
static and seismic slope stability of an embankment dam, to calibrate a critical state soil
constitutive model, to study the soil behavior under shallow foundations, and to evaluate
liquefaction triggering and failure of retaining structures.

Results: We show that all of these analyses can be significantly affected by the choice of
the specimen size used to determine shear strength parameters.

Conclusion: While using small size samples for determining shear strength parameters
might result in un-conservative design, a large sample size is consequently a more
accurate representation of soil strength conditions and field deformations.
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Introduction
For cohesionless soils, the friction angle plays a decisive role in the shear strength and

stability behavior. Accurate assessment of shear strength parameters for these soils is

required for the analysis and design of soil structures (e.g., earth embankment dams,

highway embankments, earth-retaining structures, foundations, slopes) involving cohe-

sionless soil types. However, the size of the specimen used to determine soil strength

parameters can have a significant impact on these parameters selected for analysis or

design, making it difficult to extrapolate laboratory test results to real field situations.

Different studies employ different specimen diameters (D) and heights (H) in triaxial

compression tests. The behavior of a particular soil from different studies are often

compared without due attention to the differences in specimen size and its effect on

soil shear behavior. Therefore, this phenomenon is either totally neglected in extending

laboratory test results on a small specimens to engineering design and analysis, or

laboratory test results are simply distrusted and the design or analysis is based on em-

pirical interpretations of in-situ field tests (e.g., SPT or CPT) which could also involve
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a wide range of uncertainties. In this study, a comprehensive experimental program is

conducted to investigate the sample size effect associated with shear banding and

specimen boundary conditions on the consolidation, drained and undrained shear be-

havior of very loose Ottawa sand specimens. The measured sand shear strength and

friction angle in triaxial compression tests on three different specimen sizes are used to

explain some of the scale effects observed in engineering design and analysis.

Experimental program and results

Static triaxial compression tests (24 number drained and undrained tests) were per-

formed on loose sand specimens with different cylinder sizes sealed in a water-tight

rubber membrane and confined in a water-filled acrylic cell. The details of the mono-

tonic triaxial compression shear tests are briefly described below.

Properties of the tested sand

The experiments were conducted on a clean, uniformly-graded Ottawa sand – classified as

a SP according to the Unified Soil Classification System (ASTM Standard D2487 2011) -

with round to sub-round particle shapes. Sieve analysis was performed on the sand, and

average mean particle size (D50), coefficient of uniformity (CU), and coefficient of curvature

(CC) of 0.22 mm, 1.71, and 1.07 were determined, respectively. Specific gravity of the sand

particles (GS), and maximum and minimum void ratios of respectively 2.65, 0.821, and

0.487 were measured following the ASTM standard procedures (ASTM Standard D854

2014; ASTM Standard D4253 (2006; ASTM Standard D4254 2006).

Specimen preparation

Non-uniform deformations in triaxial testing often result from the physical boundary

restraints as a result of friction between the soil specimen and the end platens (Bishop

and Green 1965; Lee 1978). This end restraint could affect the pore pressure or volume

change measurements and lead to incorrect shear strength parameters. In order to

reduce specimen non-uniform deformation and strain localization at large strains

(Rowe and Barden 1964; Bishop and Green 1965; Colliat-Dangus et al. 1988), cylin-

drical specimens of 38, 50, and 70 mm diameters were prepared with equal height and

diameter (H/D = 1) and the end restraints were nearly eliminated by employing

enlarged and lubricated end platens. As illustrated in Fig. 1, two latex membranes discs

of 0.3 mm thickness were trimmed to the same specimen diameter with a central hole

cut to the diameter of the porous stone to allow drainage. The two discs were smeared

with a very thin layer of silicon grease and placed over the specimen caps. An

additional layer of high vacuum silicon grease was smeared on the rubber discs in order

to provide a smooth and frictionless sliding on the end platens. The smear of silicon

grease between the latex sheets allowed nearly frictionless sliding of the specimen on

the loading platens and minimized end restrains. Specially designed split moulds were

constructed to accommodate the enlarged platens during specimen preparation.

As this study was focused on investigating the effects of specimen size on the behavior of

loose sands, static liquefaction, and critical state testing, all specimens were prepared at an

initial void ratio (ei) of 0.821, corresponding to an initial relative density (Dri) of 0 %. Moist

tamping was used for preparing loose specimens which would exhibit entirely strain-

softening and liquefaction (in undrained shear) or contractive (in drained shear) behavior



Fig. 1 Procedure of developing lubricated end platens (stainless steel)
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(Ishihara 1993; Sadrekarimi and Olson 2011). In order to minimize density variations and

void ratio non-uniformities within a specimen, the undercompaction technique introduced

by Ladd (1978) was employed to produce a relatively uniform void ratio throughout the

specimen height. This method involves the compaction of each layer slightly looser than the

target global density, with the bottom layer compacted the least and the top layer com-

pacted the most, so that the final density of each layer, even with the effects of compaction

of the successive overlaying layers, would be equal to the target global density. The moist

unit weight and void ratio of each layer were calculated based on the target overall Dri = 0 %

with a maximum undercompaction ratio of 10 % for the bottom layer. The percent under-

compaction used for calculating the moist weight of each layer was linearly decreased from

10 % at the bottom to 0 % at the top layer. Specimen uniformity was assessed by preparing

a similar specimen with several small containers embedded within the sand throughout the

specimen height. After specimen preparation, the specimen was gently excavated and these

small containers were extracted. The weight and volume of sand in each container were

then carefully measured in order to determine sand void ratio. We observed that the void

ratio of these samples deviated by less than ±0.6 % (±0.005) from the average void ratio of

the specimen. This is consistent with the void ratio variations of undercompacted moist-

tamped specimens found by Sasitharan (1994).

Triaxial testing procedure

Monotonic triaxial compression tests were performed in this study using an automated

stress path triaxial testing system consists of loading frame, two electromechanical

pressure pumps, and a data acquisition and control system. The system also includes

an external load cell, a deformation sensor, and three fluid pressure sensors. Axial

deformation of the sample during shear is measured externally by a linear variable

displacement transducer (LVDT). Specimen saturation started by percolating carbon

dioxide (CO2) through the specimen followed by flushing with deaired water. As
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complete specimen saturation was necessary for accurate volume change and pore

pressure measurements, the saturation procedure was proceeding with a backpressure

saturation phase as recommended by Black and Lee (1973). A back pressure of 200

kPa was applied to the specimens’ pore water in order to drive any remaining air into

solution. Saturation was verified by ensuring that a Skempton’s pore water pressure

parameter, B of at least 0.98 was achieved in all specimens. Isotropic consolidation

commenced subsequent to the completion of specimen saturation by increasing of the

effective confining pressure (p’c). The volume of water driven out of the sample was

measured from the change in the pore pump volume before and after consolidation

and hence the post-consolidation void ratio (ec) was readily obtained. Specimens were

sheared following isotropic consolidation up to an axial strain of 30 % at an axial strain

rate of 5 %/h (corresponding to 0.032, 0.042, and 0.058 mm/min for the 38 mm,

50 mm, and 70 mm specimens, respectively) to ensure full pore pressure equalization

during undrained shearing and complete excess pore pressure dissipation during

drained shear. Specimen void ratio was calculated from the volume change measure-

ments during the drained shear tests while a constant specimen volume was main-

tained in the undrained shear tests. Table 1 summarizes the specifications of the

triaxial tests of this study.
Table 1 Specifications of the triaxial compression tests

Test No.a Ds p’c ec Drc

(mm) (kPa) (%)

MT-1D 70 500 0.771 15

MT-2D 300 0.779 13

MT-3D 200 0.785 11

MT-4D 100 0.797 7

MT-5UD 500 0.775 14

MT-6UD 300 0.782 12

MT-7UD 200 0.791 9

MT-8UD 100 0.797 7

MT-9D 50 500 0.761 18

MT-10D 300 0.769 16

MT-11D 200 0.773 14

MT-12D 100 0.786 10

MT-13UD 500 0.769 16

MT-14UD 300 0.775 14

MT-15UD 200 0.785 11

MT-16UD 100 0.795 8

MT-17D 38 500 0.76 18

MT-18D 300 0.766 16

MT-19D 200 0.775 14

MT-20D 100 0.786 10

MT-21UD 500 0.766 16

MT-22UD 300 0.773 14

MT-23UD 200 0.784 11

MT-24UD 100 0.794 8
a D and UD in test labels indicate drained and undrained shearing, respectively
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Corrections for triaxial compression test results

Triaxial shear tests involve several sources of errors that could significantly affect test

results if not corrected. Corrections were made in this study to account for: 1) volume

change due to backpressure saturation (ASTM Standard D4767 2011), 2) membrane

penetration (Baldi and Nova 1984), 3) axial deformation due to bedding errors (Sarsby

et al. 1980; Russell and Khalili 2004) during both isotropic compression and shearing,

4) membrane resistance (ASTM Standard D7181 2011), and 5) change of specimen

cross-sectional area during shear (Garga and Zhang 1997). As explained earlier,

slenderness ratio of unity and enlarged and lubricated end platens were employed in

the experiments of this study to allow free radial expansion of the specimen and

minimize bulging deformation during shear. Fig. 2 demonstrates the effectiveness of

lubricated ends and the adopted slenderness ratio in producing a uniform specimen

deformation pattern at an axial strain of 30 %.

Corrections for membrane resistance, area correction and enlarged/lubricated platens

resulted in cumulative reductions of about 11 % and 3.5° of undrained shear strength

and critical state friction angle, while correction for specimen volume and cross sec-

tional area change during saturation increased these strength parameters by about

1.5 % and 0.9°, respectively. Membrane penetration resulted only in an average of

0.36 % decrease in void ratio during isotropic consolidation and undrained shear tests

as the fine gradation of the tested sand limited the amount of membrane penetration

into the surface irregularities of the specimen. The bedding errors due to the applica-

tion of lubricated ends led to a maximum increase in volumetric strain of 1.7 % during

isotropic compression and an additional 0.38 mm or 2.5 % increase in the measured

axial strain during shearing. The corrected results are presented to compare the

responses for different specimen sizes during isotropic compression and shearing in the

following paragraphs.
Isotropic compression response

Figure 3 presents the isotropic compression lines following the consolidation phase for

the different specimen sizes tested in this study where the 38 mm specimens display

the most compressive response during isotropic compression (i.e., steepest compression

line) followed by the 50 and 70 mm specimen sizes. In other words, the 70 mm
Fig. 2 Deformation pattern of a loose sand specimen (a) without, and (b) with enlarged and lubricated end
platens in triaxial compression tests at 30 % axial strain



Fig. 3 Effect of specimen size on the isotropic compression behavior of loose Ottawa sand at (a) p’c = 100 kPa,
(b) p’c = 200 kPa, (c) p’c = 300 kPa, and (d) p’c = 500 kPa
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specimens experienced less volumetric strains than the 38 and 50 mm specimens at the

same p’c in all tests. This indicates that larger sand specimens exhibit markedly stiffer

isotropic compression behavior and smaller compressibility during isotropic compres-

sion. The slight differences in ec is however within the void ratio variations of most

triaxial tests (Jefferies et al. 1990).
Undrained shear behavior

Figure 4 compares the undrained deviator stress versus axial strain behavior from the

triaxial compression tests on different specimen sizes. Although, all of the specimens

exhibit strain-softening behaviors, the deviator stress mobilized throughout the tests is

consistently larger in the smaller specimens and the axial strain (εa) corresponding to

the peak deviator stress increases with decreasing specimen size. Although the lower

deviator stresses mobilized in the 70 mm specimens could be partly due to their slightly

looser void ratios, the 50 and 38 mm specimens were sheared from the same ec and

still exhibit specimen size effects. On the other hand, Fig. 5 shows the excess pore

water pressures (Δu) developed during undrained shear in the different specimen sizes

consolidated to the same p’c. An equal Δu are developed after an axial strain of 10 %

where a critical state is reached. This implies that although the contraction tendency of

the sand fabric was the same for all specimen sizes, the mobilized strength, deviator

stress, and the strain-softening behaviors include an inherent specimen size depend-

ency at similar εa.



Fig. 4 Undrained stress – strain behaviors of different specimen sizes in triaxial compression shear tests at
(a) p’c = 100 kPa, (b) p’c = 200 kPa, (c) p’c = 300 kPa, and (d) p’c = 500 kPa
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Drained shear behavior

Figure 6 compares the drained shearing behaviors of different specimen sizes where lar-

ger deviator stresses are mobilized in the smaller specimens. Similar to the undrained

shear tests, although the lower deviator stress of the 70 mm specimens could be partly

associated with their slightly looser ec, the 50 and 38 mm diameter specimens were

sheared from the same ec and exhibit specimen size effects. Fig. 7 compares the rate of

volumetric contraction (C = ∂εv/∂εa) obtained from specimens of different sizes during

the drained shear tests. All specimens show volumetric contraction with a steady re-

duction in the rate of volume change with εa (i.e., dilatancy) followed by an almost flat

plateau of constant-volume behavior (εv = 0) at the critical state with some specimens

exhibiting slight volumetric dilation at large strains. Hypothetically, the same sand at

the same p’c and ec should exhibit similar volumetric strains during shear. However,

these plots demonstrate that εv and C increase with decreasing specimen size, with the

peak volumetric contraction occurring at an early εa of about 1 %.

Effective stress paths

The effective stress paths obtained from the testing of different specimen sizes are

compared in Figs. 8 and 9 for drained and undrained shearing conditions, respectively.

The undrained effective stress paths of all specimen sizes reach an instability line (IL)

which defines the lower bound of all the possible unstable conditions (Lade 1992). The

undrained stress paths then move into the region of instability, and approach a critical



Fig. 5 Excess pore water pressure developed during undrained triaxial compression tests on different
specimen sizes at (a) p’c = 100 kPa, (b) p’c = 200 kPa, (c) p’c = 300 kPa, and (d) p’c = 500 kPa
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stress ratio (CSR), corresponding to the CSL of each specimen size. The drained stress

paths also reach the CSR, but without exhibiting unstable behavior. Unique CSR are

obtained from both the undrained and drained stress paths for each specimen size,

which become steeper with decreasing specimen size.

Effective friction angle

Granular soils mobilize shear resistance through their internal friction angle, and there-

fore friction angle is considered as the most important mechanical property to analyze

granular soils’ response to loading. The friction angle (ϕ’mob) mobilized in a triaxial

compression shear test is calculated from the effective stress ratio (M = q/p’) using the

following equation

φ′mob ¼ sin−1
3M

6þM

� �
ð1Þ

The mobilized friction angle corresponding to the slope of the instability line (in
Fig. 9) is referred to as the yield friction angle (ϕ’yield) which is obtained from the un-

drained shear tests. Table 2 summarizes the measured ϕ’yield and ϕ’cs for each specimen

subject to different confining stresses and drainage conditions. The effect of specimen

size on ϕ’yield and ϕ’cs is summarized in Fig. 10 which shows that the size of a specimen

can have a profound effect on the ϕ’yield and ϕ’cs measured from triaxial compression

shear tests.



Fig. 6 Drained stress – strain behaviors of different specimen sizes in triaxial compression shear tests at
(a) p’c = 100 kPa, (b) p’c = 200 kPa, (c) p’c = 300 kPa, and (d) p’c = 500 kPa
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Critical state parameters

The projection of the CSL in the e – log (p’c) plane from the undrained and drained tri-

axial compression tests on different specimen sizes is illustrated in Fig. 11. According

to this figure, although unique CSLs are established from drained and undrained shear

tests for each specimen size, the CSLs become steeper and largely shift to denser void

ratios with decreasing specimens’ diameter from 70 mm to 38 mm, reflecting the less

compressible response of the larger specimens. The significant change of the CSL and

the critical state parameters (λcs, Γcs, and ϕ’cs) would have large effects in estimating

soil state parameter.

Undrained shear strength

Based on the Mohr-Coulomb failure theory, the undrained shear strength (su) is

obtained from the deviator stress (q) as below:

su ¼ q
2
cos φ′

mob

� � ð2Þ

Accordingly, as presented in the stress–strain plots of Fig. 4, a peak undrained shear
strength, su (yield) is attained at εa ≈ 1 %. This is followed by significant drop of the

undrained shear resistance as a result of rapid increase in the excess pore pressure at

constant volume. Strain-softening continues until a more-or-less constant undrained

strength is mobilized at the critical state, su (cs). Fig. 12 describes the increasing

of su (yield) and su (cs) with increasing p’c for each specimen size. According to

this figure, su (yield) and su (cs) increase not only with increasing p’c and Drc, but



Fig. 7 Rate of volumetric contraction during drained triaxial compression shear tests on different specimen
sizes at (a) p’c = 100 kPa, (b) p’c = 200 kPa, (c) p’c = 300 kPa, and (d) p’c = 500 kPa
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also with decreasing specimen size. Again the lower undrained shear strengths of

the 70 mm specimens partly results from their slightly looser Drc besides the effect of

specimen size, whereas the effect of specimen size on the undrained strengths of the

50 mm and 38 mm specimens is undeniable as they were sheared from the same con-

solidation conditions.
Influence of sample size in engineering practice

The higher compressibility of smaller specimens during isotropic compression and

drained shearing could be due to the larger volumetric fraction of the sand particles

near the specimen’s sides. Additional compression of the latex and grease layers (at the

top and bottom caps) associated with possible inaccuracies of the employed bedding

error correction method (Sarsby et al. 1980; Russell and Khalili 2004) may have also

contributed to the larger compressibility of the smaller specimens. Although no shear

bands were observed at the end of the tests on the exterior surface of the specimens, as

suggested by earlier studies (Tatsuoka et al. 1991; Desrues et al. 1996; Finno et al. 1996;

Jang and Frost 2000; Alshibli and Sture 2000) it is quite possible that a complex and

diffuse mode of failure and shear localization (involving multiple shear bands) devel-

oped in the specimens. The lower deviator stresses of the larger specimens (in Figs. 4

and 6) could be associated with the more intense strain-softening resulting from shear-

ing along longer and larger number of shear bands formed in larger specimens and the



Fig. 8 Effect of specimen size on drained effective stress paths of Ottawa sand at (a) p’c = 100 kPa,
(b) p’c = 200 kPa, (c) p’c = 300 kPa, and (d) p’c = 500 kPa
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differences in the available space or freedom for particle rearrangement in the speci-

mens of different sizes. Similar mechanisms leading to specimen size effects have been

also observed in compression tests (Andrews et al. 2001; Bastawros et al. 2000; Chen

and Fleck 2002; Hakamada et al. 2007; Jeon and Asahina 2005; Park and Nutt 2001)

and in numerical modeling studies (Chen and Fleck 2002; Onck et al. 2001; Tekoglu

et al. 2011) of foam materials. While results from the current study are focused on a

narrow set of very loose Drc (7 – 18 %), specimen size effect on the shear strength

parameters can affect the design and analysis of many geotechnical applications and are

explained in the following paragraphs.

Sample size effect on liquefaction triggering analysis

The instability line (IL) obtained from undrained triaxial compression tests separates

the potentially unstable stress states from the stable stress states and therefore consti-

tutes the triggering stress conditions for soil liquefaction (Lade 1992). A soil specimen

would liquefy with a rapid reduction of its undrained strength when the undrained

stress path crosses IL. According to Fig. 9, IL becomes steeper with decreasing speci-

men size, which can have significant implications for liquefaction triggering and stabil-

ity analysis. As liquefaction is triggered when the effective stress path crosses the IL,

hence liquefaction triggering resistance increases with decreasing specimen size. Since

a larger specimen (70 mm in Fig. 9) is a closer replicate of field soil, the in-situ



Fig. 9 Effect of specimen size on undrained effective stress paths of Ottawa sand at (a) p’c = 100 kPa,
(b) p’c = 200 kPa, (c) p’c = 300 kPa, and (d) p’c = 500 kPa
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liquefaction potential could be underestimated by triaxial test results on smaller 38 mm

specimens.

Sample size effect on the calibration of a soil constitutive model

Modeling of soil constitutive behavior as an elastic–plastic material has been the main

area of development by many researchers (Lade and Duncan 1975, Jefferies and Shuttle

2002). The differences in sand behavior from different specimen sizes would affect the

calibration of soil constitutive models, particularly those based on the critical state the-

ory (Jefferies 1993; Manzari and Dafalias 1997), and their application in advanced nu-

merical analysis. Large errors could arise in the application of soil constitutive models

calibrated based on small specimens (e.g., 38 mm in this study) for predicting the be-

havior of in-situ soils, or modeling larger soil masses for field applications which could

lead to a false assessment of the safety of a soil structure (e.g., slope, foundation, retain-

ing wall) or unsafe designs using numerical analysis with advanced soil constitutive

models.

Sample size effect on settlement analysis

Granular soils are relatively pervious materials that have high permeability and

much lower compressibility compared to those of cohesive soils. Accordingly, their



Table 2 Summary of ϕ’yield and ϕ’cs for triaxial tests of this study
D (mm) Drainagea p’c Drc ϕ’yield ϕ’cs

(kPa) (%) (degs.) (degs.)

70 D 500 15 - 27.1

300 13 - 27.8

200 11 - 28.2

100 7 - 28.6

UD 500 14 14.2 27.3

300 12 14.7 27.9

200 9 16.4 28.4

100 7 18.2 28.7

50 D 500 18 - 30.4

300 16 - 31.0

200 14 - 31.2

100 10 - 31.4

UD 500 16 16.2 30.6

300 14 17.3 31.1

200 11 18.5 31.3

100 8 20.0 31.6

38 D 500 18 - 31.5

300 16 - 31.9

200 14 - 32.1

100 10 - 32.3

UD 500 16 16.9 31.7

300 14 18.5 32.1

200 11 19.7 32.3

100 8 21.1 32.5
a D and UD indicate drained and undrained shear, respectively
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consolidation settlement is often assumed negligible compared to those of more

compressible cohesive soils. However, the compression of sands could be important in

the design and analysis of critical structures (e.g., nuclear power plants, advanced labora-

tories, large dams) to minimize differential settlements. As illustrated in Fig. 3, Ottawa

sand exhibits a stiffer isotropic compression behavior in a large specimen (70 mm).

Since no particle crushing was found in any of the conducted triaxial compression tests,

we expect that this difference in compressibility resulted from the larger volumetric frac-

tion of the sand particles near the specimen’s sides. Accordingly, the specimen size from

which soil compressibility is obtained could affect settlement calculations as with

smaller specimens, the immediate settlement could be overestimated.

Sample size effect on slope stability analysis

The accuracy of shear strength parameters is crucial for the analysis of slope failures or

the design of new slopes, earth dams, etc. The critical state friction angle (ϕ’cs) is used

to analyse the stability of slopes in granular soils, except under very rapid loading con-

ditions (e.g., earthquakes, blasting, vibrations, flow-slides) of saturated granular soils

where shear-induced excess pore pressure accumulates and the undrained shear



Fig. 10 Effect of specimen size on (a) ϕ’yield, and (b) ϕ’cs from undrained triaxial compression shear tests
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strength (su) would apply. The CSL slope in the stress path diagrams of Fig. 9 reflects

ϕ’cs. Accordingly, the steeper CSL of the smaller specimen would indicate a higher

stability and safety of a slope, while being less stable or even at failure based on a more

representative ϕ’cs from the larger specimen. Testing of larger specimens is recom-

mended and the specimen size effect should be carefully considered in landslides risk

assessment.

Sample size effect on bearing capacity of shallow foundations

Several researchers have investigated the scale effect of different foundation sizes on

the bearing capacity factor Nγ for shallow foundations (De Beer 1965; Habib 1974;

Shiraishi 1990; Zhu et al. 2001; Ueno et al. 2001; Cerato and Lutenegger 2007; Zhu

et al. 2001). Zhu et al. (2001) present numerical and physical modeling (with centrifuge

tests) studies of scale effect on the bearing capacity of strip and circular footings on

dense silica sands. Their findings indicate that the bearing capacity of both strip and

circular footings increase with decreasing footing size. Cerato and Lutenegger (2007)

further evaluated the trend of decreasing Nγ with increasing footing width by testing a

large range of model-scale square and circular footing sizes, ranging in width from

0.025 to 0.914 m, on two well-graded sands at three relative densities. Their results

indicated that Nγ was dependent on the width of the footing for both square and
Fig. 11 Effect of specimen size on the CSLs from both drained and undrained triaxial compression
shear tests



Fig. 12 Effect of specimen size on (a) su (yield), and (b) su (cs) in undrained triaxial compression shear tests
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circular footings with the smaller footings exhibiting higher Nγ values. Bearing capacity

factors (Vesic 1975) of Nγ = 30.2, 26.0, and 16.7 is obtained from ϕ’cs of the 38 mm,

50 mm, and 75 mm specimen sizes, respectively. Therefore, differences in ϕ’cs of differ-

ent specimen sizes can lead to different bearing capacity factors, with the smaller speci-

men size producing a higher Nγ value. For example, an increase of 4° in ϕ’cs from the

70 mm to the 38 mm specimen diameter leads to an 80 % increase in Nγ. Accordingly,

the allowable bearing capacity would be significantly overestimated using strength

parameters of small specimens (e.g., 38 mm), which could then lead to less safe founda-

tion dimensions and the possibility of unexpected large settlements associated with soil

failure. The observed specimen size effect is similar to the particle size effect intro-

duced by Tatsuoka et al. (1991) and Kusakabe (1995). In both cases, larger number of

longer shear bands form in a larger triaxial specimen or beneath a larger footing, which

reduces the overall amount of the shear resistance mobilized along multiple shear

bands.

Sample size effect on lateral earth pressure

The design of earth retaining walls, abutments, mechanically stabilized earth walls, and

reinforced soil slopes is a challenging geotechnical problem (Holtz et al. 2001). The

basic design approach for these structures is to design against sliding, overturning, or

bearing capacity failure. In all of these phases of design, the lateral active earth pressure

coefficient, ka, plays a vital role. The measured ϕ’cs for different sample sizes indicate

lower ka for larger specimens. Accordingly, the ϕ’cs differences realized as a result of

differences in specimen size could significantly affect the lateral earth pressures and

therefore the sliding and overturning analysis and design of retaining structures. There-

fore, obtaining the soil strength properties by testing of larger specimens allows for

building safer structures. These results further explain the reduced cone penetration

resistance of larger cones (Eid 1987), and the smaller effective lateral stresses of large

diameter piles (Lehane et al. 2005).

Conclusions
Scale effects have been observed in many practical engineering problems by several re-

searchers and presented in this study. The triaxial test results on very loose Ottawa

sand indicated that sand behavior was affected by the size of the specimen during

isotropic compression as well as during drained and undrained shear. The larger
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specimens presented less compressible isotropic compression behavior than the smaller

specimens. During shear, the smaller specimens exhibited steeper CSL, reflecting a

higher compressibility and mobilized larger friction angles and shear strengths. The

smaller volumetric fraction of the more compressible sand zones near the specimen

sides and the stiffer regions adjacent to the specimen caps as well as the longer and lar-

ger number of shear bands and failure planes in the larger specimens could have pro-

duced the observed specimen size effects. The shear strength parameters obtained from

testing samples with different sizes could largely affect almost all geotechnical engineer-

ing applications in which soil shear strength and friction angle play important roles.

The results of using shear strength parameters of three different specimen sizes indi-

cated that: the liquefaction triggering resistance increases with decreasing specimen

size, large errors could arise in the calibration and application of constitutive models,

uncertainty in stability analyses and safety of slopes and retaining structures, and the

bearing capacity factor Nγ increases with decreasing specimen size. Accordingly, using

the results of smaller specimens could lead to falsely higher liquefaction triggering

resistance (and thus underestimated liquefaction potential), unsafe designs with numer-

ical analysis which use advanced soil constitutive models, higher static and seismic fac-

tors of safety in slope stability analyses, less safe foundation dimensions, and a falsely

higher factors of safety in designing retaining structures. These outcomes highlight the

significant influence of specimen size in geotechnical engineering design. Testing larger

specimen sizes provides better representation of field shear and deformation behavior,

and therefore building safer structures.
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