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Abstract 

Background:  Aspergillus niger is an important fungus used in industrial applications for enzyme and acid production. 
To enable rational metabolic engineering of the species, available information can be collected and integrated in a 
genome-scale model to devise strategies for improving its performance as a host organism.

Results:  In this paper, we update an existing model of A. niger metabolism to include the information collected from 
876 publications, thereby expanding the coverage of the model by 940 reactions, 777 metabolites and 454 genes. In 
the presented consensus genome-scale model of A. niger iJB1325 , we integrated experimental data from publica‑
tions and patents, as well as our own experiments, into a consistent network. This information has been included in 
a standardized way, allowing for automated testing and continuous improvements in the future. This repository of 
experimental data allowed the definition of 471 individual test cases, of which the model complies with 373 of them. 
We further re-analyzed existing transcriptomics and quantitative physiology data to gain new insights on metabo‑
lism. Additionally, the model contains 3482 checks on the model structure, thereby representing the best validated 
genome-scale model on A. niger developed until now. Strain-specific model versions for strains ATCC 1015 and CBS 
513.88 have been created containing all data used for model building, thereby allowing users to adopt the models 
and check the updated version against the experimental data. The resulting model is compliant with the SBML stand‑
ard and therefore enables users to easily simulate it using their preferred software solution.

Conclusion:  Experimental data on most organisms are scattered across hundreds of publications and several reposi‑
tories.To allow for a systems level understanding of metabolism, the data must be integrated in a consistent knowl‑
edge network. The A. niger iJB1325 model presented here integrates the available data into a highly curated genome-
scale model to facilitate the simulation of flux distributions, as well as the interpretation of other genome-scale data 
by providing the metabolic context.
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Background
Genome-scale metabolic models have been successfully 
used as tools for guiding metabolic engineering, analyz-
ing cellular phenotypes and contextualizing omics data 
[1–3]. For all of these tasks, high quality reconstruc-
tions are needed to minimize problems introduced by 
errors in the model. Today, there are multiple approaches 
for model generation spanning from classic manual 

model building, semi-automated and fully-automated 
generation of genome-scale models [1, 4, 5]. The lat-
ter approaches are especially valuable for new or under-
characterized species as the genome sequence can form 
the basis for the construction of a draft genome-scale 
model. For well-characterized species, the classic model 
building approach provides the opportunity of integrat-
ing available experimental knowledge into a structured 
framework, allowing for consistency checking and iden-
tification of knowledge gaps. The probably best curated 
genome-scale models are available for widely used model 
species such as E. coli and S. cerevisiae. The consensus 
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reconstruction of S. cerevisiae has been curated in a 
community-driven effort for several years and is able to 
simulate gene deletions and growth performance with 
high accuracy [6]. In this paper we aimed at establishing 
a community consensus genome-scale model of A. niger 
that enables researchers to run constraint-based analyses 
like prediction of gene knockout phenotypes or maxi-
mum yields under different conditions. While particular 
areas of metabolism in Aspergilli have attracted signifi-
cant attention [7], there are still big gaps [8] in our under-
standing to be addressed.

Aspergillus niger described in 1867 by Van Tiegham, 
sparked considerable interest due to the observation of 
citric acid overproduction in the beginning of the last 
century [9]. Besides being an industrial work-horse in 
citric acid production, A. niger and its close relatives 
are also widely used hosts for enzyme production [10, 
11]. Owing to the commercial interest in A. niger and its 
metabolic flexibility with respect to utilizable substrates, 
there has been sustained research to elucidate the metab-
olism of this organism. The first genome-scale model of 
A. niger was published by one of the authors [12], which 
has been built on a former reconstruction of central car-
bon metabolism of A. niger[13]. The original model has 
been widely used for a variety of applications, e.g. for 
modeling acid production [14] and predicting protein 
yields [15]. However, these modeling efforts are based on 
the state of the art in 2008. During the last decade, sub-
stantial amounts of research have been conducted on A. 
niger metabolism as well as on the metabolism of closely 
related fungi, which can be used to greatly improve the 
predictions and metabolic network of A. niger. Addition-
ally, the organization of biological data has changed tre-
mendously in the last decade. Standards for structuring 
models (e.g. SBML), identifying chemical reactions (E.C. 
numbers and KEGG identifiers), referencing literature 
(e.g. DOIs, Pubmed IDs, and PMC IDs), and identifica-
tion of chemical compounds (ChEBI’s and InChI’s) have 
been established and/or updated, enabling a much higher 
degree of cross-referencing of information and establish-
ing interlinked data structures.

Recently, a different update of the original genome-
scale model has been published by Lu et  al. [16]. The 
authors used a partially overlapping updating strategy. 
First, they updated the annotations of metabolites and 
reactions and balanced all unbalanced reactions. The 
authors then used the information from four databases 
to add new reactions to the model and update existing 
gene-protein-reaction associations (GPRs). While also 
making use of the structured information provided by 
those databases, we aimed for a systematic storage of 
the primary data in the model thereby ensuring long-
term evolution of the model. In this work, we present an 

updated genome-scale model of A. niger that has under-
gone major revisions with respect to the metabolic cov-
erage as well as the quality of gene assignments, and is 
in compliance with state-of-the-art data standards. 
The end result is a gold-standard curated and validated 
genome-scale model, incorporating the information of 
876 publications.

Results
Update methodology and statistics
The aim of the update was to improve the original 
genome-scale model of A. niger [12], both with respect 
to coverage as well as with respect to the annotations 
included in the model, in particular the assignment of 
genes to reactions. Furthermore, specific interests have 
been to include modeling of secreted secondary metab-
olites and the hundreds of proteins, which A. niger is 
known to produce. In a first step, metabolites have been 
annotated with their respective ChEBI identifier [17] to 
enable their unequivocal identification in relevant data-
bases. The undissociated form of the individual metab-
olites has been used to avoid problems caused by the 
largely unknown proton stoichiometry of transport reac-
tions. Reactions have been checked for mass balance 
accordingly and have been adapted where needed, in par-
ticular to include protons in all reactions where they are 
known to be present.

In a second step, the model has been updated based on 
primary literature, patents, as well as on information con-
tained in the AspGD [18], BRENDA [19] and AMIGO2 
[20] databases. The total number of publications in Pub-
Med on A. niger has roughly doubled since the publica-
tion of the iMA871 model, and the abstracts of all these 
publications have been examined manually and comple-
mented by additional searches. Manual searches for lit-
erature have been further complemented by comparing 
the genome sequence using the BLAST algorithm against 
the non-redundant patent sequence database [21] as well 
as the UniProtKB/Swiss-Prot database [22]. The experi-
mental information included in those resources have 
been tracked back to the primary source and added in a 
structured way to the model with a reference to its origin.

As an integrated part of the model update process, we 
have implemented the model in fully functional SBML. 
Genome-scale metabolic models are usually shared in the 
standardized SBML format [23]. This format is routinely 
read by popular modeling software packages thereby pre-
venting the error prone process of custom model parsing 
[24]. While the standard focuses on the safe distribution 
of models, the XML basis of the format allows for the 
introduction of additional information without breaking 
the format. We have therefore further improved the asso-
ciation of literature and model reactions by integrating 
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the references and their level of support directly in the 
SBML file. We separated the experimental data into two 
classes: Evidence items (see panels B and C in Fig. 1) and 
Test cases (see panel A in Fig.  1). Tests can be viewed 
as simple Input/Output tests and consist of a list of test 
conditions i.e. medium composition and gene knockouts 
and a list of reported outcomes that are tested for. With 
this setup, the differential growth of strains of A. niger 
on combinations of C- and N-sources can be saved in a 
structured way that can later be tested through simula-
tion in an automated manner. Evidence items are used 
for the storage of information containing the presence/
absence of a specific reaction or metabolite, as well as 
for the presence/absence of a connection between a gene 
and reaction. Additionally localization of a gene product 
to a specific compartment can be represented as well. 
Relevant information contained in the literature used for 
building the model has been saved as corresponding test 
case or evidence information.

As a third step, and in order to further improve the 
amount of available experimental information for A. 
niger, we employed phenotype arrays to screen the capa-
bility of A. niger spores to germinate and grow on 190 
different C-sources as well as 95 N-sources using pheno-
type screening plates from Biolog Inc. If A. niger showed 
ability to grow on the substrate (Additional files 1 and 2), 
the model was updated to include the relevant catabolic 
pathway if possible. This led to a further addition of 34 
pathways to the model. The absence of growth has not 
been used as information in the modelling process as this 
might be either caused by absence of transport, a missing 
catabolic route or lack of expression of the former two 
and might therefore represent a false negative result.

Fourthly, two other expanded models for A. niger have 
been published during the development of this one, one 
de novo-generated based on an advanced automated 
method [5], and one by Lu et  al. [16], expanding our 
previous iMA871 model. We have analyzed the content 
of these models and integrated information from these 
where appropriate, thus generating a consensus-type 
model.

The update strategy described led to the expansion of 
the model with respect to several pathways (Table 1) as 
well as the update of pathways already included in the 
model. The final version presented here was named A. 
niger iJB1325. The comparison of the key statistics of 
the different models is shown in Table  2. The current 
update of the model includes 1325 genes and therefore 
adds 454 genes to the original model, which is on par 
with the model published by Lu et al. [16]. The number 
of metabolites has been increased by 773–1818 while 
including 1130 additional reactions. Overall experimen-
tal information from 876 sources has been included in 
the model, which represents an addition of 505 publica-
tions in comparison to our first model. The experimental 
information has been broken up into evidence items and 
test cases thereby allowing for the easy backtracking of 
the experimental information as well as for the automatic 
validation of the model structure, growth/production 
capabilities against the knowledge of the 876 publications 
used for building the model.

Strain‑specific model implementations
In order to provide strain-specific models for the most 
commonly used strains of A. niger we generated indi-
vidual models for the sequenced strains ATCC 1015, 

Table 1  Newly introduced pathways

Degradation Biosynthesis Secondary metabolites

Agmatine degradation CoQ biosynthesis Azanigerones

Amide degradation Coprogen biosynthesis Malformins

Aromatics degradation Storage compounds Nigragillin

Peroxisomal beta oxidation Ferrichrome Kotanin

Cyanide degradation Iron assimilation Funalenone

Galacturonic acid degradation Lipoic acid biosynthesis Pyranonigrin

Detoxification of compounds Metabolite repair Aurasperone

Glucuronate degradation NAD biosynthesis Tetraacetic acid lactone

Isoleucine degradation Thiamin biosynthesis

Leucine degradation Vitamin metabolism

Lipid degradation Molybdenum cofactor

Plant biomass degradation Riboflavin biosynthesis

Purine degradation

Valine degradation

L-Rhamnose metabolism
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and CBS 513.88 (see Additional files 2 and 3). Reciprocal 
best blast hits have been used to transfer reaction assign-
ments and the experimental evidence from the develop-
ment model to the individual models.There are 18 genes 
in ATCC1015 that have no hit in the CBS513.88 genome 
(see Additional file 4: Table 4).

Validation, iterative improvements, and test cases
In the iJB1325 model, we included 471 test cases that 
can be run when updating the model in order to ensure 
consistency with the information that has been used for 
building the model. Those tests mainly comprise absence 
or presence of growth on different combinations of car-
bon and nitrogen sources (392 cases). A smaller set con-
sists of tests for gene deletion phenotype i.e. absence or 
presence of growth of deletion mutants (73 cases). An 
even smaller number of tests comprise overall system 

checks i.e. possibility to produce biomass precursors, no 
growth in the absence of known essential medium com-
ponents, and a check for the possibility to oxidize fatty 
acids in the peroxisome (6 cases). Running all tests with 
the current version of the model leads to 373 (79%) pass-
ing and 98 (21%) failing test cases. The failing tests consist 
of 75 cases failing due to an unknown metabolic pathway, 
15 failing due to inconsistencies between experiments, 
and 8 tests failing due to reasons we have not been able 
to determine (see Additional file 5 for more information).

Having a collection of test conditions enables the 
identification of missing reactions in the model. One 
such example is the utilization of L-histidine as single 
N-source in combination with D-galactose. This was 
reported by Hayer et  al. [25] as well as in combination 
with glycerol by Steinberg [26]. Growth on L-histidine 
in combination with glucose can also be observed in our 
own phenotype screening arrays. The previous version of 
the model was incapable of simulating growth on L-histi-
dine as single N-source. The metabolic reactions involved 
in the utilization of L-histidine have not been reported 
to our knowledge. In A. nidulans, the presence of a histi-
dase (histidine ammonia-lyase, E.C. 4.3.1.3) has been 
reported, but the corresponding gene remains to be iden-
tified. Using the reviewed entries in Uniprot, we could 
identify three candidate genes for histidase in A. niger 
(JGI A. niger ATCC 1015 (Aspni7) ProteinIDs 1129557, 
1126350 and 1081533). Sequence comparison with the 
characterized enzyme from P. putida [27] showed high 
conservation for the active site residues for the three can-
didates (see Additional file 6); therefore, all three candi-
date genes have been added to the model.

Another example for the identification of missing reac-
tions in the model is the growth on L-methionine or 
L-cysteine as single N-source. Growth of A. niger on both 
nitrogen sources has been observed by Hayer et al. 2014 
[25] as well as in our Biolog experiments. Failing tests for 
growth of A. niger on those two N-sources hinted to the 
absence of the corresponding pathway. Evidence shown 
in A. nidulans by Sienko et al. [28] hints towards the deg-
radation of L-methionine towards L-cysteine by a reverse 
transsulfuration reaction involving the genes mecA and 
mecB. Putative orthologs for these genes are present in A. 
niger. The metabolic fate of L-cysteine as single N-source 
has to our knowledge not been demonstrated conclu-
sively in A. niger or any related fungus. We therefore did 
not include a L-cysteine degradation pathway and left 
this gap for future improvements.

Another example of a failing test is the no growth 
phenotype for the �gaaA strain on  D-galacturo-
nate. Besides the gaaA gene, the putative H. jecorina 
ortholog (JGI A. niger ATCC 1015 (Aspni7) transcriptID 
1109007) has been included due to sequence similarity 

Table 2  Table depicting key statistics of  the  different 
models

Model iMA873 iJB1325 CoReCo iHL1210

Reactions

Total 1380 2320 4917 1764

Transport 189 447 0 285

Boundary 0 385 148 189

Unbalanced 40 68 148 –

Annotated 1013 1239 0 –

No genes 340 604 3049 –

Evidence for presence – 767 – –

Known gene – 654 – –

Metabolites

Total 1084 1818 4025 1254

Annotated 0 1533 0

Dead-End 270 295 1739

Genes

Total 871 1325 4533 1210

Verified location – 296 – –

Predicted location – 107

Known function – 707 – –

Evidences

Total – 3482 – –

Gene-reaction – 1677 – –

Metabolite presence – 333 – –

Reaction presence – 539 – –

Gene-compartment – 907 – –

Test cases

Total – 471 – 99

Passing – 373 – 83

Failing – 98 – 16

References

Total 371 876 – –
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as a  D-galacturonic acid reductase. The experimental 
data reported by Mojzita et  al. [29] however demon-
strate that a strain with a defect in gaaA is not able to 
grow on  D-galacturonate, indicating that the alternative 
gene either is not a  D-galacturonate reductase, or is not 
expressed under the experimental condition. However, 
Alazi et al. [30] found only a reduction of growth in the 
�gaaA strain indicating partial redundancy of the path-
way. The putative ortholog has therefore been kept in the 
model.

Evidence‑based support for reactions
In the iJB1325 model, we included several levels of evi-
dence from the literature to enable to continuous test-
ing of model connectivity during future improvements. 
The different types of evidence included in the model 
are depicted in Fig.  1. For a format description of the 
evidence items, see Additional file 7. For the assignment 
of genes to individual metabolic reactions, primary lit-
erature for A. niger as well as related species has been 
used. Making use of the evidence code ontology [31], 
we included a measure of certainty for the individual 
connections. The localization of the individual proteins 
has been predicted using Mitofates [32] for mitochon-
drial proteins as well as PTS1 predictor [33] for per-
oxisomal localization predictions. In order to identify 
secreted proteins, we compiled a list of published prot-
eomics experiments on A. niger [34–44]. Extracellular 

localization has been considered a true positive if the 
presence in the extracellular space has been reported by 
three independent publications. The prediction of locali-
zations is complicated by the fact that some proteins are 
localized in multiple compartments by alternative trans-
lational start sites [45], differential splicing [46, 47] as 
well as stop-codon readthrough [48]. However due to the 
lack of experimental validation of the localization of most 
proteins, predictions for mitochondrial and peroxisomal 
localization have been included as best guess.

Additionally, evidence items for the presence of indi-
vidual metabolites in A. niger have been included where 
reported in the literature. The presence and absence 
of reactions have also been included when reported. In 
total, we have been able to include 3482 pieces of evi-
dence that link individual components inside the model 
and are associated with an evidence code as a measure of 
certainty, a small description where appropriate describ-
ing the underlying experiment, and a link to the resource 
the conclusion has been drawn from. This small sum-
mary allows for a quick assessment of the quality of the 
gene assignment and thereby easing the interpretation.

The distribution of the experimental support of the 
individual reactions is shown in Fig.  2 panel A. About 
19% of the reactions included in the model have direct 
experimental support by either being measured in vitro 
or having a gene with a confirmed activity assigned. 
Another 17% of the reactions have a gene assigned 

Model

Input

matches 
expectation

for given

Output Reaction present

Reaction absent

Gene

Gene product
catalyzing reaction

Gene product not
catalyzing reactionGene

Gene product 
localizes to 
compartmentcytoplasm

mitochondrium

Gene

Metabolite present

a b

c

Fig. 1  Types of experimental evidence included in the current version of the model. Panel A) depicts the concept of model test cases included 
in iJB1325. The test cases consist of a set of active input reactions, inactive genes as well as conditions for the test to pass. Inputs therefore refer 
to metabolites present in the growth medium or the knockout of a specific gene. Test conditions can be the ability to produce biomass or other 
compounds. Panel B) shows the different pieces of evidence stored in the model for genes and reactions while Panel C) depicts the information 
stored about metabolites
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Experimental evidence for reactions

Inferred reactions
(1168)

60.4%

Other (32)

1.7%

Strong similarity to 
characterized enzyme (385)

19.9%

Reaction detected,
enzyme unkown (113)

5.8%

Characterized enzyme (237)

12.2%

Evidence codes of reaction gene assignments

a

b

Fig. 2  Experimental support for individual reactions. a Depicts the strongest experimental support for the presence of individual reactions in 
the model. The categories according to decreasing experimental support are: “Characterized enzyme”, “Measured, but unknown enzyme”, “Strong 
similarity to characterized enzyme”, “Other” and “No experimental evidence”. b Shows the evidence codes associated with the individual reaction 
gene assignments
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based on a strong similarity to a characterized enzyme 
in a closely related species. These gene reactions asso-
ciations are mainly derived from characterized genes of 
the related fungal model organisms A. nidulans and A. 
fumigatus. The remaining reactions either have no genes 
assigned or are inherited from the iMA871 model as the 
best candidates for a given reaction based on sequence 
similarity to characterized enzymes or domain predic-
tions. The distribution of the individual evidence codes of 
all reaction-gene-assignments is depicted in Fig. 2 panel 
B. The experimental support for individual metabolites 
are depicted in Fig.  3. About 12% of the metabolites 
included in the model have been measured experimen-
tally leaving 88% of the metabolites that were inferred 
during the reconstruction process.

Application of the model network for transcriptomics data 
analysis
In addition to our 471 modeling test cases, we wanted to 
acknowledge that a significant application of genome-
scale models is the use of the underlying metabolic net-
works for data analysis and interpretation [2, 49]. Using 
the current version of our genome-scale model, we ana-
lyzed an compendium of transcriptomics data based on 

published studies using a microarray developed for the A. 
niger ATCC 1015 strain [14, 15, 50–53], as well as a com-
pendium based on an A. niger CBS 513.88 array data [54].

One possible application for a genome-scale model is 
the analysis of expression data using the gene-protein-
reaction (GPR) associations included in the model. The 
grouping of reactions into pathways, thereby also group-
ing the associated genes, allows for overall contextual-
ization of expression changes in transcriptomics data 
as depicted in Fig.  4 for the ATCC 1015 transcriptome 
data (see Additional file 8: Figure 8 for the corresponding 
analysis for the CBS 513.88 dataset). In both cases, plot-
ting the expression level of different subnetworks demon-
strates the expected up-regulation of the genes associated 
with  D-xylose and L-arabinose catabolism on those 
two carbon sources while there appears to be no overall 
change of genes involved in glycolysis or the TCA cycle. 
Some of the genes associated with plant biomass degra-
dation which consists mainly of polysaccharide degrading 
enzymes are upregulated, but the majority of these genes 
does not show a change in expression under these condi-
tions. Using the correlation of gene expression levels to 
individual pathways the transporter with the JGI Aspni7 
TranscriptID 1178899 appeared to be co-regulated with 

Inferred metabolites (1599)

Measured metabolites (219)

olites (1599)

Measured metabolit

88.0%

12.0%

Experimentally veri�ed metabolites

Fig. 3  Experimental support for individual metabolites
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the known members of the ada cluster that has been 
characterized by Li et al. [55]. The transporter is located 
next to the adaA gene and therefore we named this gene 
adaE and included it as a putative TAN-1612 transporter 
in the model.

Transcriptomics data can also be used for the valida-
tion of genome-scale models as performed by Lu et  al. 
[16]. Unfortunately only the part of the data set covering 
the genes in their model has been published, therefore 
not allowing a direct comparison of the model presented 
here to their transcriptomics data set.

Discussion
Aspergillus niger has been used as a biotechnological 
workhorse for about a century producing citric acid and 
several enzymes in high amounts. During this time much 
research has been dedicated to shedding light on the 
underlying metabolic network. The resulting informa-
tion has been published in several hundreds to thousands 
of papers containing the individual pieces of the puz-
zle. With the advent of the genomic era, databases have 
been developed that try to catalog the literature infor-
mation on the individual genes [18]. However, in order 
to be able to analyze and understand the metabolism at 
a systems level, integration into a coherent framework is 
needed. Genome-scale models can provide such a frame-
work in which the knowledge about metabolism can be 

integrated, tested for logical consistency, and predictions 
made.

In this study we present an update of the genome-scale 
model that has been developed in our group almost a 
decade ago [12]. The updated model integrates the knowl-
edge from 876 publications into a consistent framework, 
thereby representing the experimentally best supported 
model currently available. As the model update process 
represents an iterative process spanning years to decades, 
a sustainable way of keeping track of the information 
used in the curation process is needed. With this in mind, 
we created a new structure to store all information used 
for the model building in the model file, thereby allow-
ing users to modify the model and check the changed 
version against all literature information in an automated 
fashion. This approach led to the inclusion of 3482 evi-
dence items and 471 test cases. Whereas test cases allow 
for the representation of both quantitative and qualitative 
macroscopic observations representing overall model 
predictions (e.g. growth or production capacities), evi-
dence items represent the experimental support for the 
model structure (e.g. presence/absence of a compound 
or biochemical reaction). In order to allow backtrack-
ing, we stored the primary literature references with the 
individual evidence items and test cases. As the informa-
tion used for model building is currently not shared in 
a standardized form, we aimed at extending the SBML 
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Fig. 4  Change in transcription level of the genes assigned to metabolic pathways under different conditions. Violin plots showing the change of 
expression of genes involved in different metabolic pathways depending on the carbon source used
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format [23] in a manner compliant with the specification, 
making it usable by other researchers. To our knowledge 
this is the first time a model has been presented, which 
allows for efficient continuous improvement making use 
of automated testing. While this strategy increases the 
complexity of the reconstruction, it allows backtrack-
ing of the experimental information used for the model 
building. This feature makes the model a true knowledge-
base for A. niger metabolism that is not only valuable for 
future improvements, but also provides a structured way 
for the search of existing experimental knowledge. The 
usefulness of having this information has been demon-
strated by the ability for identifying missing reactions, as 
well as in checking the connectivity of the network.

The model development has been focused on the 
update of the information and gene assignments for the 
A. niger ATCC1015 strain. However, as the strains are 
very similar and in order to allow the utilization of the 
model by more users, we used reciprocal best blast hits 
to translate the genes in the model to the identifier of the 
A. niger CBS513.88 strain.

Recently a model has been published by Lu et al. [16] 
that already included improvements to the metabolite 
annotation and reaction quality that are presented in 
the current publication. The authors also validated their 
model using 99 growth tests for different carbon and 
nitrogen sources where the model performed success-
fully in 83 of 99 tests. We also included tests for those 
growth conditions if not already present in the model. 
While 373 passing tests out of 471 seems worse than the 
relation presented by Lu et al. the number of failing tests 
is explained by the wider coverage thereby including sub-
strates with unknown metabolic pathways that could not 
be included in the model. Inclusion of these test cases 
leads to presence of a substantial number of dead-end 
metabolites in the current version of the model which are 
frequently removed from genome-scale models as reac-
tions associated with those metabolites are guaranteed to 
carry no flux. We decided to keep those metabolites in 
the model as points for future model improvement and to 
contain the experimental data that led to the inclusion of 
those reactions.

One important aspect of eukaryotic metabolism is the 
compartmentalization of reactions into different orga-
nelles. Unfortunately, information about the subcellular 
localization of individual enzymes is only scarcely avail-
able in Aspergillus niger. Another existing challenge for 
genome-scale modelling in filamentous fungi is the pres-
ence of multiple seemingly orthologous genes for many 
metabolic functions. The existence of these multiple cop-
ies poses the challenge to assign the individual contribu-
tion of those genes to the metabolic activity. One way of 
identifying the best candidate for a function is comparing 

the expression values of a gene to verified genes upstream 
or downstream in the same pathway. If known constitu-
ents of the pathway are expressed at a very high level 
(e.g. see Glycolysis or TCA cycle in Fig. 4) missing mem-
bers are expected to have an expression level in the same 
range as the known members. We tried using transcrip-
tomics data in such a manner as proxy for the individual 
contribution. This proved to be challenging as for most 
reactions the expected activity level is unknown, as well 
as for many genes the correct assignment is not evident. 
Due to the mentioned difficulties we did not include the 
transcript level as experimental evidence in the majority 
of the reactions. With the development of the CRISPR/
Cas9 system in filamentous fungi, large-scale genetic 
manipulations become increasingly feasible thereby 
allowing the assessment of the contribution of indi-
vidual genes to a specific phenotype on a genome-scale 
model. The development of a large-scale knockout library 
would be an interesting project for the validation of the 
genome-scale model presented here.

Conclusion
Here we presented the largest and most thoroughly 
curated genome-scale model of A. niger metabolism to 
date. The model has been built on an extensive body of 
primary literature which has been structured and saved 
along with the model. We therefore extended the SBML 
format of the model to include the literature informa-
tion about reactions and gene functions resulting in 
1677 evidence items for gene reaction links, 539 items 
for the presence or absence of reactions, and 907 items 
for subcellular protein localization. At the same time we 
integrated the growth capabilities of A. niger as reported 
in the literature with our own experimental data, lead-
ing to the validation of the model against 471 test cases. 
From this validated model, strain specific models have 
been generated for A. niger ATCC1015, and CBS513.88. 
Finally, the model has been demonstrated to be useful for 
the interpretation of -omics data providing the metabolic 
context of the individual genes .

Methods
Software
During the process of updating the model we used a 
newly developed software for the editing of the model. 
This software will be published separately and is based 
on existing open source software packages COBRApy 
[56] and Escher [57] for simulation and visualization, 
respectively. The software is already available at https​://
githu​b.com/JuBra​/GEMEd​itor. Users interested in test-
ing, updating and viewing the experimental information 
included in the model are referred to the GEMEditor 

https://github.com/JuBra/GEMEditor
https://github.com/JuBra/GEMEditor
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wiki for instructions about installation and analysis of the 
model.

Bibliomic data
In order to identify extracellular proteins, available extra-
cellular proteomics data has been collected [34–44]. 
Characterized proteins have been identified from pri-
mary literature, individual patents by searching for pat-
ents on Aspergillus niger as well as by blasting against the 
non-redundant patent sequence database [21]. Proteins 
not accounted for in the model have additionally been 
blasted against the UniProtKB/Swiss-Prot database [22] 
to identify proteins with known functions.

Integration of public experimental data
Experimental data have been gathered from several lit-
erature resources. We combined all available proteom-
ics information for A. niger for assessing the sub-cellular 
localization of different gene products. Additionally, sub-
cellular prediction of proteins has been performed using 
MitoFates [32] for mitochondrial and PTS1 predictor 
[33] for peroxisomal localization prediction. The analy-
sis of the transcriptomics data has been performed on 
a dataset for A. niger ATCC1015 collected from [14, 15, 
50–53] and for A. niger CBS513.88 (GEO accession num-
ber GSE98572, Samples: GSM2600962, GSM2600963, 
GSM2600941, GSM2600942, GSM2600992 and 
GSM2600993) collected from Gruben et al. [58].

Phenotype arrays
Screening for growth on nitrogen and carbon-sources 
has been performed using the phenotype plates PM1, 
PM2A and PM3B from Biolog Inc. The plates have been 
prepared according to the manufacturers manual with 
the spore density being adjusted to 107 spores per ml. 
The plates have been incubated at 28 ◦

C for up to 10 days. 
Growth has been assessed by inspecting the plates visu-
ally for sporulation, see Additional files 1 and 9.

Test cases
The test cases introduced in the current version of the 
model consist of a list of settings representing the simu-
lation conditions, a list of deactivated genes and a list of 
outcomes the resulting solution is checked against. All 
boundary reactions that are not specified in the settings 
list are set to only being able to consume the metabo-
lite. Outcomes are a combination of a specific reaction, a 
greater than or less than modifier and a numerical value 
(see Additional file 10).

Model simulation
Test simulations have been run using the FBA or pFBA 
method as implemented in COBRApy [56] (see Addi-
tional file 11).

Additional file

Additional file 1. Image of Biolog PM3B screening plate. The image 
shows a picture of a Biolog PM3B screening plate inoculated with A. niger 
ATCC1015 after 4 days of incubation at 32 °C. Nitrogen sources on plate: 
Control; Ammonia; Nitrite; Nitrate; Urea; Biuret; L-Alanine;  L-Arginine;  
L-Asparagine;  L-Aspartic Acid;  L-Cysteine;  L-Glutamic Acid;  L-Glutamine; 
Glycine;  L-Histidine;  L-Isoleucine;  L-Leucine;  L-Lysine;  L-Methionine;  
L-Phenylalanine;  L-Proline;  L-Serine;  L-Threonine;  L-Tryptophan;  L-Tyros‑
ine;  L-Valine; D-Alanine;  D-Asparagine;  D-Aspartic Acid;  D-Glutamic Acid;  
D-Lysine;  D-Serine;  D-Valine;  L-Citrulline;  L-Homoserine;  L-Ornithine; 
N-Acetyl- L-Glutamic Acid; N-Phthaloyl- L-Glutamic Acid;  L-Pyroglutamic 
Acid; Hydroxylamine; Methylamine; N-Amylamine; N-Butylamine; 
Ethylamine; Ethanolamine; Ethylenediamine; Putrescine; Agmatine; 
Histamine; beta-Phenylethyl- amine; Tyramine; Acetamide; Formamide; 
Glucuronamide; D, L-Lactamide;  D-Glucosamine;  D-Galactosamine;  
D-Mannosamine; N-Acetyl- D-Glucosamine; N-Acetyl- D-Galactosamine; 
N-Acetyl- D-Mannosamine; Adenine; Adenosine; Cytidine; Cytosine; Gua‑
nine; Guanosine; Thymine; Thymidine; Uracil; Uridine; Inosine; Xanthine; 
Xanthosine; Uric Acid; Alloxan; Allantoin; Parabanic Acid; D, L-alpha-
Amino-N-Butyric Acid; gamma-Amino-N-Butyric Acid; epsilon-Amino-N-
Caproic Acid; D, L-alpha-Amino- Caprylic Acid; delta-Amino-N-Valeric Acid; 
alpha-Amino-N-Valeric Acid; Ala-Asp; Ala-Gln; Ala-Glu; Ala-Gly; Ala-His; 
Ala-Leu; Ala-Thr; Gly-Asn; Gly-Gln; Gly-Glu; Gly-Met; Met-Ala.

Additional file 2. Genome-scale model for Aspergillus niger ATCC1015. 
Model file in SBML level 3 version 1.

Additional file 3. Genome-scale model for Aspergillus niger CBS513.88. 
Model file in SBML level 3 version 1.

Additional file 4. Gene differences between strain ATCC1015 and 
CBS513.88. The list shows the genes for which no reciprocal best blast hit 
could be identified in A. niger CBS513.88.

Additional file 5. Failing test cases. The file consists of the currently failing 
test cases of the model with an explanation why they are failing.

Additional file 6. Sequence comparison of the candidates for histidase. 
Multiple sequence alignment of the candidates for the histidase activity.

Additional file 7. Example of the format for storing experimental data. 
Example entries for the experimental data as saved in the current version 
of the model.

Additional file 8. Changes in expression of genes belonging to different 
pathways. The change of gene expression in the CBS513.88 model.

Additional file 9. Image of Biolog PM1 screening plate. The image 
shows a picture of a Biolog PM1 screening plate inoculated with A. 
niger ATCC1015 after 9 days of incubation at 32 °C. Carbon sources 
on plate: Control; L-Arabinose; N-Acetyl-D-Glucosamine; D-Saccharic 
Acid; Succinic Acid; D-Galactose;  L-Aspartic Acid;  L-Proline; D-Alanine; 
D-Trehalose; D-Mannose; Dulcitol; D-Serine; D-Sorbitol; Glycerol;  L-Fucose; 
D-Glucuronic Acid; D-Gluconic Acid; D, L-alpha-Glycerol- Phosphate; 
D-Xylose;  L-Lactic Acid; Formic Acid; D-Mannitol;  L-Glutamic Acid; 
D-Glucose-6-Phosphate; D-Galactonic Acid-gamma-Lactone; D, L-Malic 
Acid; D-Ribose; Tween 20;  L-Rhamnose; D-Fructose; Acetic Acid; alpha-
D-Glucose; Maltose; D-Melibiose; Thymidine;  L-Asparagine; D-Aspartic 
Acid; D-Glucosaminic Acid; 1,2-Propanediol; Tween 40; alpha-Keto-
Glutaric Acid; alpha-Keto-Butyric Acid; alpha-Methyl-D-Galactoside; 
alpha-D-Lactose; Lactulose; Sucrose; Uridine;  L-Glutamine; m-Tartaric 
Acid; D-Glucose-1-Phosphate; D-Fructose-6-Phosphate; Tween 80; alpha-
Hydroxy Glutaric Acid-gamma-Lactone; alpha-Hydroxy Butyric Acid; 

https://doi.org/10.1186/s40694-018-0060-7
https://doi.org/10.1186/s40694-018-0060-7
https://doi.org/10.1186/s40694-018-0060-7
https://doi.org/10.1186/s40694-018-0060-7
https://doi.org/10.1186/s40694-018-0060-7
https://doi.org/10.1186/s40694-018-0060-7
https://doi.org/10.1186/s40694-018-0060-7
https://doi.org/10.1186/s40694-018-0060-7
https://doi.org/10.1186/s40694-018-0060-7
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beta-Methyl-D-Glucoside; Adonitol; Maltotriose; 2-Deoxy Adenosine; 
Adenosine; Glycyl- L-Aspartic Acid; Citric Acid; m-Inositol; D-Threonine; 
Fumaric Acid; Bromo Succinic Acid; Propionic Acid; Mucic Acid; Glycolic 
Acid; Glyoxylic Acid; D-Cellobiose; Inosine; Glycyl- L-Glutamic Acid; 
Tricarballylic Acid;  L-Serine;  L-Threonine;  L-Alanine;  L-Alanyl-Glycine; 
Acetoacetic Acid; N-Acetyl-beta-D-Mannosamine; Mono Methyl Succinate; 
Methyl Pyruvate; D-Malic Acid;  L-Malic Acid; Glycyl- L-Proline; p-Hydroxy 
Phenyl Acetic Acid; m-Hydroxy Phenyl Acetic Acid; Tyramine; D-Psicose;  
L-Lyxose; Glucuronamide; Pyruvic Acid;  L-Galactonic Acid-gamma-Lac‑
tone; D-Galacturonic Acid; Phenylethyl-amine; 2-Aminoethanol.

Additional file 10. Correlation of members of the Anthracenone cluster. 
The file shows the expression values for individual genes that have been 
identified to be part of the ada cluster. The adaD gene has not been 
included in the source microarray of the data.

Additional file 11. Export of the evidence items contained in the 
ATCC1015 model. Gene IDs correspond to ATCC1015 Aspni7 transcriptIds.
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