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Introduction
History of weaving

Weaving is an evolving technology used for producing fabrics through the interlacement 
of two perpendicular sets of yarns. It has been in use since the Neolithic/Endolithic 
period (Adovasio et al. 2014). Traces of woven fabrics had been found in archaeological 
sites around the world. According to the archaeologist Kramrisch, the knowledge and 
mastery of the skill have long been a matter of intellectual pride (Kramrisch 1968). In 
the early stages, the primary objective of woven fabrics was to give protection through 
clothing and shelter. However, with a growing population and ever-improving advanced 
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3D fabric preforms are used as reinforcements in composite applications. 3D woven 
preforms have a huge demand in ballistic applications, aircraft industry, automobiles 
and structural reinforcements. A variety of 3D woven fabric reinforced composites 
and two dimensional woven fabric reinforced laminates can be found in the literature. 
However, the majority of the said products lack in delamination resistance and pos-
sess poor out-of-plane mechanical characteristics, due to the absence or insufficiency 
of through-thickness reinforcement. 3D fully interlaced preform weaving introduces 
a method of producing fully interlaced 3D woven fabric structures with through-
thickness reinforcement, which enhances the delamination resistance as well as 
out-of-plane mechanical characteristics. 3D woven fabric preforms made from 3D fully 
interlaced preform weaving, using high-performance fiber yarns such as Dyneema, 
Carbon, Kevlar and Zylon, have exceptional mechanical properties with light-weight 
characteristics, which make them suitable candidates for high-end technical com-
posite applications. In this work, a brief introduction is given to the history of weaving 
followed by an introduction to 3D woven fabrics. In the existing literature, an emphasis 
is given to the 3D fully interlaced preform weaving process, distinguishing it from other 
3D woven fabric manufacturing methods. Subsequently, a comprehensive review is 
made on the existing literature on 3D fully interlaced preform weaving devices, such as 
primary and secondary mechanisms as well as modelling of 3D woven fabric structures 
produced by 3D fully interlaced preform weaving. Finally, the authors attempted to 
discuss the existing research gaps with potential directions for future research.
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technologies, nowadays fabrics are mostly used for fashion and performance, thus 
enhancing the standard of living of human beings.

At the inception, a set of warp yarns was hanged from a branch of a tree and the wefts 
were inserted manually. This can be stated as the first appearance of a ‘loom’. The term 
‘loom’ in this context, is defined more generally as any frame or contrivance for hold-
ing the warp threads parallel to each other, to permit the interlacing of the weft at right 
angles to form a web (Broudy 1993). With the inspiration from this, the ‘vertical loom’ 
had been developed and eventually, the ‘horizontal loom’ came into existence which is 
the predecessor of the modern weaving loom. But the transition of the handloom into 
the modern loom is widespread throughout the history and underwent many phases of 
evolution as studied by Broudy (1993). However, all of these technologies were dedicated 
to only two dimensional (2D) woven fabrics.

Modern days, the Computer-Aided Design (CAD) and simulation platforms, have 
opened up new avenues for traditional weaving (Vassiliadis et al. 2011). These include 
but not limited to, smart integrations of electronics, reinforcements, medical applica-
tions, 3D contour weaving in 2D platforms  and multi-axial weaving. Even though the 
concept of 3D fabrics is treated as a new concept, it has been in existence for a long 
period. Evidence of 3D weaving can be seen in pre-historic ages as the pre-historic 
humans had used weaving to produce baskets and other utensils for their day-to-day 
needs. The earliest evidence of basketry comes from the Guitarrero Cave in Peru, during 
the period 8600–8000 B.C. (Broudy 1993). However, during these early stages manual 
processes were used and the application of a machine in 3D weaving had first appeared 
in the form of the ‘tablet loom’. Since this development, technologies focused on the 
manufacturing of 3D woven fabrics have been developed and used for the reinforcement 
of concrete structures, 3D woven vehicle components, woven sacks and many other 
applications.

Not only the development of the machines and the technology but the simple applica-
tion possibilities, the ability to produce very complex parts without the requirement of 
assembling and very low production costs have fueled the growth of 3D woven fabrics 
(Tong et al. 2002). Another major factor that has contributed to the growth of the 3D 
weaving technology was the introduction of new high-performance fibres. The natural 
fibres have a high aesthetic appeal in fashion fabrics. Until 100 years ago, these fibres 
were also used in engineering applications, which were called technical or industrial tex-
tiles. With the introduction of man-made fibres in the first half of the twentieth century, 
new textile fibres were available for fashion fabrics, with excellent performance charac-
teristics. For example, the reinforcements in automobile tires moved from cotton cords 
in 1900, to a sequence of improved rayons from 1935 to 1955, and then to nylon, poly-
ester and steel, which dominate the market now. A similar replacement of natural and 
regenerated fibres by synthetic fibres occurred in many technical textiles (Hearle 2001). 
In the scope of 3D woven fabrics, the performance of fibres is very critical for the pro-
duction and also the integrity of the produced structures. The fibres should possess high 
strength and rigidity. In 3D woven fabrics, high crimp can be observed due to the inter-
lacing of yarns in different dimensions, and therefore, the chance for a yarn breakage 
is high and these breakages should be prevented by the high yarn strength (Tong et al. 
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2002). The rigidity of the yarn is important as the 3D woven fabric has to maintain its 
integrity and the final shape.

Early developments of the fibres were mainly focused on the tactile comfort properties 
of fabrics, as the main application of the fibres was to manufacture textiles for apparel 
applications. With the developments in the technical textiles sector, usage of textiles 
in high-end technical applications has increased. Consequently, the performance char-
acteristics became much more important than the tactile comfort properties of the 
textiles. As the fibres were developed with good performance and lightweight character-
istics, using these fibres for the development of 3D woven structures has become feasible 
(Tong et al. 2002).

Woven reinforcements are mostly produced with high-performance fiber yarns such 
as glass, carbon and aramid (Ogin & Potluri 2016). In two dimensional (2D) woven fab-
ric reinforcements, two orthogonal sets of yarns are interlaced together and in some 
cases, multiple layers of such fabrics are present in the cross-section of the composite. 
Therefore, the stability of the composite is observed along two axes or a maximum of 
three axes only, and this was not sufficient for most of the applications. Consequently, 
laying of the yarns in different axes and the production of multi-axis fabrics have been 
experimented (Curiskis et al. 1997).

The first approach was to increase the stability of the third dimension of a two dimen-
sional (2D) woven fabric produced on a regular weaving machine. This was achieved by 
the addition of a binding yarn to bind off the wefts in between warp yarns. This had 
been carried out using a set of needles passing in between warp yarns, threaded with the 
binding yarns form a different warp beam. This technique is known as the lappet weav-
ing technique (Curiskis et  al. 1997). However, this technique provided stability in two 
dimensions only and the torsional and bending rigidness of the fabric was not sufficient. 
Therefore, another approach had been developed, which is known as tri-axial weaving. 
In this technique, the warp sheet is moved orthogonally to its arrangement and the wefts 
are inserted. This created a stable structure for two dimensional (2D) woven structures, 
and later on, this technique had been combined with the lappet weaving technique and 
the concept of multi-axial weaving was introduced. In the multi-axial weaving tech-
nique, the fabrics produced possessed good stability as well as sufficient thickness and 
strength to bear the loads and they were ideal for simple planar composites. But when it 
comes to complex-shaped composites, these fabrics were not suitable as they cannot be 
molded into different shapes due to the high planar stability. To overcome this issue, 3D 
woven fabric structures for composites were developed.

Introduction to 3D woven fabrics

A slight distinction can be made between 2D and 3D fibrous assemblies, based on the 
dimensions of the assembly. Textile structures with a negligible thickness compared to 
the length and width can be loosely defined as two dimensional (2D) fabrics (Umair et al. 
2015). Two dimensional (2D) biaxial woven structures have two sets of yarns, warp and 
weft, intersecting and interlacing at right angles with one another (Hu 2008). On the 
other hand, three dimensional (3D) fabrics are textile structures with a substantial thick-
ness. 3D woven fabric structures consist of three yarn components in three orthogonal 
directions x, y and z, where the z-yarn reinforces the through-thickness direction of the 
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fabric (Yang et al. 2004). A further distinction among three fabric classes, namely 2D, 
2.5D and 3D fabrics, is described by Khokar (1996). According to this distinction, a 2D 
fabric has its constituent yarns disposed of in a single plane, a 2.5D fabric such as the 
terry pile fabric, has its constituent yarns disposed of in a two-mutually-perpendicular-
planes relationship, while a 3D fabric has its constituent yarns disposed of in a three-
mutually-perpendicular-planes relationship. However, it should be noted that a 3D 
fabric need not necessarily comprise three sets of yarns, instead may comprise two or 
more than three sets of yarns (Khokar 2001).

Two dimensional (2D) woven fabrics are widely used in ballistic applications, to pro-
tect against projectiles, hand grenades, stabbing, etc. The high in-plane properties of 
plain, basket and twill weave make them more suitable fabric structures for soft vest 
applications, while satin weaves are more suitable for rigid composite armor applications 
(Bilisik 2017). Multi-stitched fabrics can also be produced by stitching two dimensional 
(2D) woven fabrics in the fabric out-of-plane direction. Polymer laminates reinforced 
with 2D fabric structures have long been used in maritime crafts, aircraft, automobiles 
and buildings and bridges. However, the manual lay-up of fabric plies leads to high labor 
requirement, resulting in high manufacturing costs. Furthermore, their inferior impact 
resistance and low through-thickness mechanical properties compared to traditional 
aerospace and automotive materials restrict the use of 2D laminates in certain aircraft 
and automobile applications. Another problem related to 2D laminates is the low resist-
ance to delamination cracking under impact loading, due to poor inter-laminar frac-
ture toughness (Mouritz et al. 1999). In aeronautics, delamination in laminated woven 
composites occurs under high vibrations leading to a failure (Nawab et  al. 2012). To 
overcome the poor delamination resistance and improve impact damage tolerance, com-
posites can be reinforced in the through-thickness direction, using fibrous yarns, rods 
or pins, which is collectively known as z-reinforcement. This can be achieved through 
3D weaving, stitching and z-pinning (Mouritz 2008). Stitching and z-pinning improve 
impact damage tolerance, but at the expense of in-plane properties (Umair et al. 2019). 
The z-yarns in the 3D woven fabric reinforced composites, provide better impact energy 
absorption and delamination resistance (Zhang et al. 2013).

3D woven fabrics can be produced with complex near-net-shape geometries, which 
reduces the cost by reducing material wastage, the need for machining and joining and 
the amount of material handled during lay-up. The through-thickness properties of 3D 
woven fabrics can be tailored to suit a particular application. They have high delamina-
tion resistance, ballistic damage resistance and impact damage tolerance (Mouritz et al. 
1999).

3D woven fabric forming methods

A specific classification described by Bilisik (1991), categorized 3D woven preforms 
based on the type of interlacement and yarn orientation. In another study, 3D woven 
fabrics were categorized based on the type of weaving and the fabric structure (Behera 
& Mishra 2008). Based on the type of weaving process, 3D woven fabrics were classi-
fied into three categories; 2D weaving—3D fabrics, 3D weaving—3D fabrics and noob-
ing. Based on the fabric structure, they were classified into four categories; 3D solid, 3D 
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hollow, 3D shell and 3D nodal. Khokar (1996) clearly distinguished between three meth-
ods of manufacturing 3D fabrics; 2D weaving, 3D weaving and noobing.

Using the conventional 2D weaving process, three classes of fabrics, namely 2D, 2.5D 
and 3D fabrics can be produced (Khokar 1996). The 3D fabrics can be produced primar-
ily in two different ways using the conventional 2D weaving process; which are called 
‘multi-layer weaving’ and ‘noobing’. A clear distinction between these two methods is 
provided by Khokar (1996) and Khokar (2002a). Khokar claimed that noobing does not 
comply with the principles of 2D weaving, due to the absence of the shedding mecha-
nism, which is a primary mechanism of 2D weaving.

The 3D multi-layer interlock woven structures produced using the conventional 2D 
weaving process can be categorized as orthogonal interlock and angle interlock struc-
tures (Umair et  al. 2018). These fabric classes may further be categorized as layer-to-
layer interlock and through-thickness interlock, based on the crossing pattern of yarns. 
Umair et  al. (2018) produced three different types of 3D orthogonal layer-to-layer 
interlock woven composite preforms (i.e. warp, weft and bi-directional) and evaluated 
their effect on the mechanical properties. Based on the results, the authors recom-
mended bi-directional interlock composites for transversal direction applications, due 
to the improved mechanical performance compared to warp and weft interlock com-
posites. Ali et al. (2018) developed 3D woven T-shaped preforms using a narrow multi-
layer weaving machine and observed significant improvements in peel-off strength and 
impact strength in composites reinforced with the developed preforms. Kashif et  al. 
(2019) investigated the effect of different interlocking patterns (i.e. warp interlock, weft 
interlock and hybrid) on the mechanical properties of layer-to-layer and through-thick-
ness fabric preforms made of jute yarns.

Multi-axis 3D woven fabrics can be produced by incorporating bias yarns into the 
structure. Bilisik (2010b) introduced two 3D multi-axis weaving methods called tube-
rapier weaving and tube-carrier weaving. The incorporation of bias yarns into the struc-
ture improves the delamination resistance as well as in-plane properties (Bilisik 2012). 
However, the bias yarns cause a reduction in bending properties in comparison to 3D 
orthogonal woven structures (Bilisik et al. 2013). Bilisik (2012) provided a comprehen-
sive review of different classes of multi-axis 3D woven fabrics and their manufacturing 
methods.

Khokar (1996) further established a clear-cut distinction between the 2D weav-
ing method of forming 3D woven fabrics and the 3D fully interlaced preform weaving 
method. Since the focus of this review is on the 3D fully interlaced preform weaving 
process, it is worthwhile for the reader to understand this distinction between the two 
processes.

In the multi-layer weaving process described above, the shedding mechanism forms 
a shed in the fabric-width direction, which allows the interlacement of the multi-layer 
warp with the weft. However, if another set of yarns are to be laid across the fabric-thick-
ness direction, the conventional 2D weaving process cannot enable the interlacement of 
this set of yarns with the other two sets of yarns, as the conventional 2D weaving process 
cannot form a shed in the fabric-thickness direction. Therefore, the conventional 2D 
weaving process is not capable of producing a ‘fully interlaced 3D woven fabric’, in which 
all the three orthogonal sets of yarns are interlaced with each other (Khokar 1996).



Page 6 of 31Perera et al. Fash Text            (2021) 8:11 

A process developed by Fukuta et al. (1982), enabled the production of a fully inter-
laced 3D fabric, by interlacing three orthogonal sets of yarns with each other and 
complies with the principles of weaving. The process can carry out the shedding 
mechanism across both fabric-width and fabric-thickness directions, which allows 
the multi-layer warp to be interlaced with the horizontal and vertical weft yarns. This 
shedding mechanism is termed ‘dual-directional shedding’. Fukuta et  al. (1982) pro-
vided the earliest evidence for a 3D fully interlaced preform weaving device. Khokar 
(1996) referred to this process as ‘true 3D weaving’, but the term ‘3D fully interlaced 
preform weaving’ will be used consistently throughout this paper, to refer to this 
process. Fabrics produced using such a 3D fully interlaced preform weaving process 
can be referred to as 3D woven 3D fabrics (Khokar 1996) and this term will be used 
consistently throughout this paper to describe such fabrics. Despite the ability of the 
conventional 2D weaving process to produce 3D fabric structures, it cannot be con-
sidered as a 3D fully interlaced preform weaving process, as it does not incorporate 
dual-directional shedding.

Analysis of the existing research on 3D fully interlaced preform weaving
Existing 3D fully interlaced preform weaving devices

With the development of the dual-directional shedding mechanism, it has become 
possible to interlace a multi-layer warp with a set of horizontal and vertical wefts, in 
the fabric-width and fabric-thickness directions, respectively. The resultant fabric has 
a fully interlaced 3D woven structure. Khokar (2001) set out three essential require-
ments that must be satisfied, to successfully carry out the 3D fully interlaced preform 
weaving process.

	 i.	 A multi-layer warp disposed of in a grid-like arrangement.
	 ii.	 A dual-directional shedding operation (to form column-wise and row-wise sheds).
	iii.	 Two orthogonal sets of weft yarns (horizontal and vertical sets of wefts).

Fukuta et al. (1982) disclosed the construction of an apparatus which is capable of 
producing a fully interlaced 3D woven structure, through what is previously estab-
lished as the 3D fully interlaced preform weaving process. This process complies with 
the three essential requirements that must be satisfied, to carry out the 3D fully inter-
laced preform weaving process, as set out by Khokar (2001). The 3D fully interlaced 
preform weaving apparatus disclosed by Fukuta et al. (1982), is illustrated in Fig. 1.

The apparatus shown in Fig. 1 comprises two heald bars, which have a special heald 
eye arrangement and can reciprocate horizontally. These two heald bars are respon-
sible for the shedding operation of the device, which forms two sets of sheds suc-
cessively, one in the fabric-width direction and the other in the fabric-thickness 
direction. This enables the insertion of a set of wefts across each set of sheds to form a 
fully interlaced 3D woven fabric.

Fukuta et al. (1986) disclosed another apparatus that can be used to produce fully 
interlaced 3D woven structures, which is illustrated in Fig. 2. This device is similar in 
construction to the 3D fully interlaced preform weaving device disclosed by Fukuta 
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et  al. (1982), but it does not employ a dual-directional shedding mechanism. The 
mechanisms involved in producing a fabric using this device are explained in detail by 
Fukuta et al. (1986). However, despite its ability to produce fully interlaced 3D woven 
fabrics, the process does not qualify as 3D fully interlaced preform weaving, as it does 
not employ a shedding mechanism, which is the foremost operation of weaving.

Khokar (2001) presented an experimental 3D fully interlaced preform weaving device, 
which incorporates a dual-directional shedding method called the linear–linear method, 
disclosed by Khokar (2002b). 400 warp ends can be accommodated in the grid-like warp 
sheet, arranged in twenty rows and twenty columns. Weft insertion is carried out using 
specially constructed shuttles. The shedding and weft insertion mechanisms are pneu-
matically controlled. Each heald frame of the device contains ten healds which allow the 
formation of twenty sheds simultaneously, in a given direction. Hence, twenty wefts can 
be inserted simultaneously in corresponding directions. Consequently, the device has a 
total of forty shuttles, twenty for each direction. Two pairs of shuttle banks are located 
for housing the shuttles, one for the vertical shuttles and the other for the horizontal 
shuttles. Each shuttle has a pair of boxes in the corresponding banks. A linear fabric 
take-up system with a profile holder is incorporated, which holds the leading ends of 
the warp yarns according to the profile of the cross-section of the fabric, to maintain the 
structure and the profile of the constructed fabric.

A similar device was presented by Khokar (2014), which employs the linear–linear 
method of dual-directional shedding. The multi-layer warp is disposed of in such a 
way, that the produced fabric has a ‘T’ shaped cross-section. A linear fabric take-up 

Fig. 1  Plan view of the 3D fully interlaced preform weaving device by Fukuta et al. (1982). 1—frame, 2—
support plate, 3—setting frames, 4—motor, 5—screw shafts, 6—weights, 7—heald device, 8—first heald 
bar, 9—second heald bar, 11—holes, 14—slits, 16—drive for the second heald bar, 17—frame member that 
defines the outside dimensions of the 3D fabric, Z—longitudinal strings
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device with a ‘T’ shaped profile holder is incorporated and a creel that accommodates 
multiple warp spools is used to feed the warp yarns.

In another research, an experimental 3D weaving prototype had been developed 
which employs the linear–linear method of dual-directional shedding (Weerasinghe 
et al. 2017). The prototype is capable of accommodating a grid-like warp consisting 
of 100 warp ends arranged in 10 rows and 10 columns. The dual-directional shedding 
requires the two orthogonal sets of wefts to be inserted in two directions; horizon-
tally and vertically, so that the wefts are inserted in both row-wise and column-wise 
sheds. However, in this system, both sets of wefts are inserted from one direction (i.e. 
horizontally), using rapiers. To accommodate this, the shedding, take-up and let-off 
mechanisms are rotated by 90°, for every weaving cycle, which allows the wefts to be 
inserted from one direction, in both column-wise and row-wise sheds. The sequence 
of operations of the prototype for producing a plain-weave fully interlaced 3D woven 
fabric was explained by Weerasinghe et al. (2017). This device employs a linear take-
up system, similar to the one employed in the device developed by Khokar (2001). 
However, the take-up system in the device developed by Weerasinghe et  al. (2017) 
rotates during the weaving process, whereas the take-up system of the device devel-
oped by Khokar (2001) is stationary. The let-off and take-up distances are maintained 
as required to regulate the warp tension and the warp crimp.

Various researches had been carried out on producing 3D woven fabric structures 
using circular weaving technology (Bilisik 1998, 2000, 2010a; Bilisik & Mohamed 2009). 
However, these techniques do not employ the dual-directional shedding mechanism 
and hence do not qualify as 3D fully interlaced preform weaving and the developed 

Fig. 2  Plan view of the device by Fukuta et al. (1986). 102—vertical yarn supporting plate, 103—fixing frame, 
104—motor, 105—threaded shafts, 106—weights, 107,108—package stations, 109—weaving device, 110—
carrier fixing plate, 111—carriers, 112—coiled yarns for lateral yarns, 113—coiled yarns for longitudinal yarns, 
Z—vertical yarns
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structures do not possess a fully interlaced 3D woven structure. Bilisik et  al. (2014) 
proposed a method which employs the dual-directional shedding in circular weaving, 
which enables the production of a fully interlaced circular 3D woven preform. Details of 
the experimental device were not disclosed by Bilisik et al. (2014), however, the device 
employs a set of warp or axial yarns which are arranged in a matrix of circular rows and 
radial columns, a dual-directional shedding mechanism which forms two sets of sheds in 
the radial and circumferential directions and two orthogonal sets of weft yarns inserted 
in the radial and circumferential directions. Hence, the device satisfies the requirements 
set out by Khokar (2001) to be qualified as a 3D fully interlaced preform weaving device.

Shedding mechanisms

Dual‑directional shedding mechanism disclosed by Fukuta et al. (1982)

The apparatus disclosed by Fukuta et  al. (1982) comprises two heald bars, which can 
reciprocate rectilinearly in the horizontal direction. The construction and the arrange-
ment of the two heald bars are shown in Fig. 3. A detailed description of the sequences 
involved in achieving the shedding and picking mechanisms was given by Fukuta et al. 
(1982). Slight variations in the fabric structure can be obtained by slightly varying the 
shedding sequence, to realize either successive or alternate picking of the two sets of 
wefts.

Linear–linear method of dual‑directional shedding

Khokar (2002b) disclosed a dual-directional shedding mechanism, called the linear–lin-
ear method of dual-directional shedding, which can be employed in a weaving device 
to produce a fully interlaced 3D woven fabric structure. As illustrated in Fig. 4, the lin-
ear–linear method of dual-directional shedding incorporates two mutually perpendicu-
lar heald frames, consisting of a set of heald wires with specially designed heald eyes. 
One heald frame reciprocates rectilinearly in the vertical direction, while the other heald 
frame reciprocates rectilinearly in the horizontal direction to form row-wise and col-
umn-wise sheds respectively.

Figure  4a illustrates the construction and arrangement of the heald frames, while 
Fig. 4b illustrates a slight modification done to the heald frames to accommodate addi-
tional non-interlacing stuffer warp yarns into the fabric structure. A small clearance is 

Fig. 3  Heald shafts by Fukuta et al. (1982). a Standard position, b individual heald bars. 8—first heald bar, 9—
second heald bar, 11,13—holes, 12,14—slits, 15—drive for the first heald bar, 16—drive for the second heald 
bar
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provided at the ‘corners’ of the superimposed heald wires of the two heald frames. Inclu-
sion of such non-interlacing, crimp-less stuffer warp yarns is expected to improve the 
mechanical properties of the fabric. Figure 5 illustrates the structure of a fully interlaced 
3D woven fabric produced from a 3D fully interlaced preform weaving process, which 
employs the linear–linear method of dual-directional shedding. A slight variation in the 
interlacing pattern of the 3D woven structure can be obtained by simply altering the 
order of shedding to realize successive picking of the wefts in the ‘to and fro’ directions 
(Fig.  5a) or alternate picking of the wefts in the ‘to and fro’ directions (Fig.  5b). Both 
these constructions have a fully interlaced network-like structure. The resulting struc-
ture has hollow pockets, which can be filled with longitudinally oriented non-interlacing 
additional stuffer warp yarns, by employing slightly modified heald frames as shown in 
Fig. 4b.

Linear–angular method of dual‑directional shedding

Figure  6 illustrates the elements which are employed in effecting the linear–angu-
lar method of dual-directional shedding, which was disclosed by Khokar (2002c). The 
arrangement of the multi-layer warp is shown in Fig. 7. In this system, cylindrical heald 
shafts are used, unlike the mutually perpendicular heald frames used in the linear–lin-
ear method. These assemblies are constructed such that they can be reciprocated in two 
directions; along the shaft axis and about the shaft axis. These two reciprocating move-
ments constitute the linear and the angular motions of the healds respectively, to form 
the sheds in the width and thickness directions of the fabric, hence the name linear–
angular method of dual-directional shedding.

A fully interlaced (plain-weave) 3D woven fabric as shown in Fig. 8 can be obtained 
through the alternate column-wise and row-wise shed formation and the corresponding 

Fig. 4  Linear–linear method (Khokar 2002b). a General construction of heald wires, b modified heald wires. 
1,2—heald frames, 3—heald wires, 4ne—heald eye, 4se—superimposed heald eyes, 5—openings, 6a—
active warp ends, 6p—passive warp ends, 6ps—additional axial warp ends, 10—clearance
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weft insertion. Similar to the linear–linear method, slight variations in the fabric con-
struction can be obtained by changing the order of shedding so that the wefts of a given 
set occur successively or alternatively. Furthermore, non-interlacing stuffer yarns can be 
integrated into the fabric structure in the fabric-width, thickness and the two diagonal 
directions, by slightly changing the shedding and picking order.

Fig. 5  Fully interlaced 3D woven structure (Khokar 2002b). a Successive picking, b alternate picking. 6a—
active warp ends,  6p—passive warp ends, 7,8—orthogonal sets of wefts, 11—hollow pockets

Fig. 6  Heald shaft arrangement in linear–angular method of dual-directional shedding (Khokar 2002c). 2—
heald shafts, 3—flat healds, 4—heald eye, 5—heald guide, S—supports
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Rotating disk shedding mechanism

A recent invention describes a newly developed dual-directional shedding mecha-
nism, which involves an array of rotating disks (Kale 2015). The array of rotating disks 
is arranged horizontally on the weaving machine surface. The number of disks in the 
array is determined by the required width and the thickness of the fabric structure to 
be produced. As shown in Fig. 9a, each disk is equipped with four perpendicular guides, 
through which the warp ends are threaded. As shown in Fig.  9b an optional guide is 
provided in the middle of each disk, through which non-interlacing warp ends can be 
introduced to the fabric structure, if required.

Weft insertion is carried out using a set of rapiers, which carry the two orthogonal sets 
of weft yarns. One set of rapiers are used to insert the weft yarns across the fabric-width 
direction, while another set of rapiers are used to insert the weft yarns in the fabric-
thickness direction. The weft threads are inserted in the gaps between the thread guides 
of the disks (Fig. 10a). The hairpin-like wefts are locked by a locking needle and a locking 
thread and a crowbar is used to hold them in position. The inserted weft is beaten up 
to the fell of the fabric after which, the disks in the array are rotated by 90° about their 
axes (Fig. 10b), to form a new shed. The rotation of the disks, changes the position of the 
warp threads in such a way, that the wefts inserted during the previous shed, interlace 
with the warp threads (Fig. 10c). The wefts are again inserted in both orthogonal direc-
tions and beaten up to the fell of the fabric (Fig.  10d). The above sequence of opera-
tions combined with the other primary and secondary motions of the weaving machine 
results in a highly integrated 3D woven fabric of plain weave construction.

Dual‑directional shedding in circular weaving

The dual-directional shedding mechanism employed in the experimental device pre-
sented by Bilisik et al. (2014) is explained here. To produce a fully interlaced 3D woven 
fabric structure using the circular weaving technology, the multi-layer warp must be 
arranged in circular rows and radial columns as shown in Fig. 11a. First, multiple sheds 
are formed by the sequential movement of the warp yarns in the radial column direction 

Fig. 7  Arrangement of the multi-layer warp (Khokar 2002c). a Cross sectional view, b longitudinal view. 
2—heald shafts, 3—flat healds, 6—multi-layer warp, 7—active warp yarns, 8—passive warp yarns, A,C,E,G,I—
columns of active warp yarns, B,D,F,H—columns of passive warp yarns, a,c,e,g,i—rows of active warp yarns, 
b,d,f,h—rows of passive warp yarns
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as shown in Fig.  11b. Subsequently, the circumferential weft is inserted between each 
layer of the multi-layer warp, in the circular row direction as shown in Fig. 11c. Next, 
another set of sheds are formed by the sequential movement of the warp yarns in the cir-
cular row direction as shown in Fig. 11d. Finally, the radial weft is inserted in the radial 
column direction and a fully interlaced circular 3D woven fabric structure is obtained as 
shown in Fig. 11e.

Fig. 8  Fully interlaced 3D woven structure produced by the linear–angular method (Khokar 2002c). 7-active 
warp yarns, 8-passive warp yarns, 12c,12r-wefts, 101–104, 111–114, 121–124, 131–134, 141–144, 151–154, 
161–164, 171–174 and 181–184—occurrence of active warp yarns in a square helix in the fabric interiors, 
A–D, J–M, P–S and W–Z—occurrence of active warp yarns in a triangular helix at the fabric edges and 
surfaces

Fig. 9  Rotating disks (Kale 2015). a Isometric view, b top view. 1—disk, 2–5—thread guides, 6—warp 
threads, 7—extra non-interlacing warp threads
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When comparing the different types of shedding mechanisms discussed above, sev-
eral important differences can be identified. Due to the manner in which the heald eyes 
are distributed on the heald frames disclosed by Fukuta et al. (1982), the weft insertion 
should be carried out in the two diagonal directions of the heald frames. In contrast, the 
linear–linear (Khokar 2002b) and linear–angular (Khokar 2002c) methods of dual-direc-
tional shedding as well as the rotating disk shedding mechanism (Kale 2015), require the 
weft insertion to be carried out horizontally and vertically. The dual-directional shed-
ding mechanism used in circular weaving, disclosed by Bilisik et al. (2014), requires the 
weft insertion to be carried out in the circumferential and radial directions. However, 
it should be noted that in 3D fully interlaced preform weaving, despite the direction of 
weft insertion, it must be carried out in such a way that the weft carrier is positively 
guided across the multiple sheds, as each weft carrier should precisely move in a linear 
path inside the corresponding column or row of the multi-layer warp, without disturbing 
the neighboring weft carriers. Furthermore, the linear–linear, linear–angular and rotat-
ing disk methods of dual-directional shedding enable the incorporation of additional 
non-interlacing stuffer warp ends in the longitudinal direction and it is not possible with 
the construction of the heald frames disclosed by Fukuta et al. (1982). It will be further 

Fig. 10  a–d Interlacement mechanism (Kale 2015). 1—disk, 2–5—thread guides, TX1,TX2,TY1,TY2—wefts, 
TX3,TX4,TY3,TY4—next set of wefts

Fig. 11  a–e Shedding sequence in circular 3D fully interlaced preform weaving (Bilisik et al. 2014)
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clarified in a later section of this paper, that the inclusion of non-interlacing stuffer warp 
yarns is important for improving the mechanical properties of the resultant 3D woven 
fabric structure. The rotating disk shedding mechanism offers the advantage of carrying 
out the weft insertion in both orthogonal directions in one shed formation, compared 
to the other methods of dual-directional shedding and this enhances the efficiency of 
the weaving process. Furthermore, the rotating disk shedding mechanism enables the 
production of 4-end leno weaves. The dual-directional shedding mechanism employed 
in circular weaving is capable of producing fully interlaced circular 3D woven preforms, 
which is not possible using the dual-directional shedding mechanisms employed in flat 
weaving. The device disclosed by Fukuta et al. (1986) is capable of producing preforms 
with circular cross-sections, but the device does not employ any shedding mechanism, 
and hence it was not considered as a 3D fully interlaced preform weaving device.

Picking and beat‑up mechanisms

In the existing literature, either shuttles or rapiers had been used in carrying out weft 
insertion in the 3D fully interlaced preform weaving devices. The 3D fully interlaced pre-
form weaving process demands a weft insertion mechanism, which is more advanced 
than what is available on conventional 2D weaving machines. In case of multi-phase 
weaving, 2D weaving machines form multiple sheds, but in only one direction and sev-
eral weft carriers are required. However, the 3D fully interlaced preform weaving devices 
form two sets of sheds in two directions, hence several weft carriers equal to the total 
number of sheds formed are required, which can move across the sheds in a highly pre-
cise manner. Several drawbacks of the shuttle weft insertion mechanism employed in 
the experimental device developed by Khokar (2001) can be identified. The use of shut-
tles as the weft carrier requires large shed openings to be formed, which develops more 
strain on the warp, affects the packing density of the fabric produced and it adversely 
affects the efficiency of the weaving process. The large shed openings create large con-
verging angles of warp to the fell of the fabric, which creates more stress for the beat-
up mechanism, leading to tension variations in the warp. The weft cannot be laid very 
close to the fabric fell, leading to larger weft movements during beat up, causing more 
abrasion between the warp and the weft. During the weft insertion, the shuttles come in 
contact with the warp, leading to more abrasion in the warp. Two pairs of shuttle banks 
are employed in the device, which contains individual shuttle boxes for each shuttle. 
This consumes a large space, more energy, requires the pirn winding process and gener-
ates noise and vibration. Despite these drawbacks, the shuttle weft insertion mechanism 
allows the direct formation of selvedges without any additional process.

The inventor of the rotating disk shedding mechanism claimed that the linear–linear 
and the linear–angular methods of dual-directional shedding, form large sheds, to facili-
tate the passage of the weft carriers such as shuttles or rapiers, and identified this as a 
disadvantage of those shedding mechanisms (Kale 2015). However, this claim may not 
be completely accurate. The height of the shed formed is usually determined by the size 
of the weft carrier, where shuttles, due to their larger size, require larger shed openings 
than rapiers. The experimental 3D weaving device developed by Khokar (2001), which 
employs the linear–linear method of dual-directional shedding, uses shuttles of specific 
construction as the weft carrier. However, it is also possible to use other types of weft 
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carriers such as rapiers, in conjunction with the linear–linear method of dual-direc-
tional shedding, as evident from Weerasinghe et al. (2017). The prototype 3D weaving 
device developed by Weerasinghe et al. (2017) employs rapiers as the weft carriers and 
the linear–linear method as the shedding mechanism and the authors claimed that the 
shed height is about 5  mm. The rapiers employed in this device have an outer diam-
eter of 2 mm, which allows them to pass through the shed comfortably without abrad-
ing against the warp. The small shed opening reduces the strain on the warp, allows the 
warp ends to be closely packed and reduces the time required for shed formation result-
ing in higher efficiency. It also reduces the converging angle of the warp to the fell of the 
fabric, to a value as small as 2.89° (Weerasinghe et al. 2017), which consequently eases 
the beat-up mechanism and reduces the tension variation in the warp. The rapiers lay 
the weft about 16 mm towards the fabric fell away from the shedding zone (Weerasinghe 
et al. 2017), reducing the abrasion between the warp and the weft during beat-up.

The use of rapiers for weft insertion, instead of shuttles, in the device described by 
Weerasinghe et  al. (2017), enables a simpler and more compact design of a 3D weav-
ing machine, compared to the experimental device developed by Khokar (2001). This 
is due to the elimination of the need for shuttle banks, which take up a large amount of 
space. Furthermore, the ability of the prototype to insert the wefts from only one direc-
tion (i.e. horizontally) into both the column-wise and row-wise sheds has also contrib-
uted to the compact design of the prototype. Weerasinghe et al. (2017) claimed that the 
gravitational pull to which the vertically inserted wefts are subjected, make the dual weft 
insertion mechanism impractical, which led to the use of the current design. However, 
the experimental device developed by Khokar (2001), employs the dual weft insertion 
mechanism, through positively driven shuttles, powered by a pneumatic system. Despite 
the direction of weft insertion, positive control of the weft carriers is necessary to guide 
the weft carriers across the sheds in a linear path, within the limited space available. 
Therefore, even if shuttle picking is employed in 3D fully interlaced preform weaving, 
the shuttles are not ‘picked’ as it is done on conventional two-dimensional weaving 
machines. However, the use of rapiers instead of shuttles by Weerasinghe et al. (2017) 
allowed achieving a weft insertion with more precision and stability. Furthermore, the 
use of rapiers eliminates the need for a reed with a guiding element, reduces power con-
sumption and eliminates the need for additional machinery (i.e. pirn winders). However, 
direct selvedges cannot be produced unlike in the device developed by Khokar (2001) 
and a separate mechanism is needed to form the selvedges.

The key advantage of the rotating disk shedding mechanism, over the linear–linear 
and linear–angular shedding mechanisms, lies in the fact that the two sets of orthogonal 
wefts can be inserted in one shed formation. This would significantly increase the effi-
ciency of the weaving process, compared to the linear–linear and linear–angular shed-
ding mechanisms, which require the insertion of the two sets of orthogonal wefts during 
separate stages. Furthermore, the system provides the benefits of its ability to form 
smaller shed heights, due to the use of rapiers for weft insertion. As shuttles are not used 
for weft insertion, an additional unit, which comprises of a locking thread needle, a lock-
ing thread and a crowbar, is required for producing the selvedges of the fabric. However, 
it allows the formation of closed selvedges, similar to the ones produced by shuttle weft 
insertion, at both the picking end and the receiving end of the fabric.
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There is no mention of the beat-up mechanism employed in the experimental device 
disclosed by Khokar (2001) and the author claimed that at the time of development of 
the device, no suitable reed had been developed to be employed in the device. The exper-
imental device disclosed by Weerasinghe et al. (2017) employs a comb-type reed. Due to 
the rotating motion of the shedding, warp let-off and fabric take-up mechanisms of the 
device as well as the insertion of wefts in two sets of sheds formed in two directions, a 
conventional reed cannot be used. The comb-type reed is employed as a separate beat-
up unit and can be lowered into the multi-layer warp only when required, so it does not 
disturb the rotating elements. At weft insertion, the reed is lowered and once the rapi-
ers are fully retracted, the reed performs a horizontal linear motion to press the newly 
inserted wefts to the fabric fell. Once the beating-up is completed, the reed is raised and 
retracted from the multi-layer warp to allow the next cycle of weft insertion.

As discussed above, the shuttle weft insertion has several limitations. To overcome 
these limitations, a novel weft carrier which can be used for weft insertion in 3D fully 
interlaced preform weaving devices was disclosed by Khokar (2005). Additionally, the 
weft carrier is equipped with a reed dent. Hence, the novel weft carrier is capable of 
performing the beat-up operation during the weft insertion, which results in improved 
weaving efficiency. Khokar claimed that the weft carrier can be employed in uniaxial 
noobing devices as well. To overcome the issues associated with the large shuttle height, 
the novel weft carrier was made thinner and wider, so that it was compact and could 
carry a relatively large amount of yarn. This had been made possible by arranging the 
yarn about two axes of rotation, inside a cartridge-like yarn supplying device. The yarn 
is arranged on a positively driven flanged belt which runs on two wheels. The novel weft 
carrier has several benefits over shuttles. It is less bulky than shuttles and can accommo-
date more yarn, making the weaving process more efficient. During withdrawal, it does 
not impart a twist into the yarn, unlike in the shuttles and due to the positive drive of the 
belt, the yarn is released with fewer tension variations. The weft carrier allows the weft 
to be laid close to the fell of the fabric. The yarn is protected from contamination as the 
cartridge-like yarn supplying device is enclosed. The shuttle has tips at the two corners, 
which guide the shuttle during its movement across the shed. These tips are arranged in 
a linear alignment and consequently, the back and forth movement of the shuttle has to 
be done in a rectangular path to lay the weft either in the upper/lower or right/left shed 
of a given warp yarn layer. This requires more space among the layers of the multi-layer 
warp. However, the novel weft carrier is equipped with tips that are offset oppositely 
about the central horizontal axis. This arrangement guides the carriers to lay the yarn 
in two different paths, relative to a layer of warp yarns in the multi-layer warp while tra-
versing back and forth in the same linear path.

The conventional reed with vertically oriented dents is not effective in beating-up 
the vertical wefts as they can slip through the space between the dents. The reed dent 
attached to the weft carrier is capable of overcoming this issue (Khokar 2005). As 
the weft carrier moves across the shed, the reed dent attached to it pushes the wefts 
inserted during the previous shed formation, to the fabric fell, while laying the new weft. 
Therefore, the weft carrier can combine the picking and beating-up operations, which 
improves the weaving efficiency and reduces the number of working elements in the 
machine. Despite the benefits of this novel weft carrier, there could be certain limitations 
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associated with it. As the yarn is arranged on a belt, there could be disturbances to the 
smooth withdrawal of the yarn as several layers of yarn may tend to come off the surface 
of the belt. Furthermore, since the picking and beat-up mechanisms are combined, it 
may not be possible to adjust the beat-up force independently.

Warp let‑off and fabric take‑up mechanisms

In the device disclosed by Fukuta et al. (1982), no positive warp-let off mechanism had 
been included. A negative warp let-off mechanism had been used, the motion of which 
was generated by the fabric take-up mechanism. The warp sheet is fed neither through 
a beam nor from packages. Instead, warp ends of a finite length are freely hung from a 
support plate 2 with weights 6 attached to the lower ends of each warp yarn to hold them 
under tension, as shown in Fig. 1. This imposes serious limitations to the weaving device. 
The length of the fabric preform produced is limited, the tension on each warp end may 
not be equal and tension variations can occur due to the negative warp let-off that takes 
place. The produced fabric cannot be wound onto a roller, as in the conventional two-
dimensional weaving processes. As can be seen from Fig. 1, the device employs a linear 
take-up system, with an opening 17, which determines the outer dimensions of the pro-
duced fabric preform.

No details can be found on the let-off mechanism of the weaving device developed by 
Khokar (2001), but the warp ends can be fed using a set of beams or directly from pack-
ages on a creel. A similar device was disclosed by Khokar (2014). This type of mecha-
nism allows the warp let-off to be controlled positively and the tension of the warp ends 
can be kept uniform across the warp sheet. This allows the production of a preform with 
a more uniform distribution of density and yarn crimp. A linear fabric take-up unit is 
employed in the device, and to hold the leading ends of the warp yarns according to the 
cross-section of the fabric preform to be produced, a profile holder is integrated into the 
take-up unit. The mechanism used to give motion to the take-up unit is not disclosed.

In the experimental device disclosed by Weerasinghe et al. (2017), the warp ends are 
directly taken from packages on a creel and fed to the weaving zone. Tensioners are used 
to positively control the tension of each warp end. A linear take-up unit similar to the 
one employed in the device by Khokar (2001), is used and the warp ends are suspended 
by a profile holder in the take-up unit. The profile holder is fixed to a screw, through 
which the profile holder can be moved to take-up the produced fabric. Weerasinghe 
et al. (2017) proposed that, using differential take-up and let-off systems, with the use 
of a rack and pinion would be a better option and that it would allow the concurrent 
motion of the two systems. Since the shedding, warp let-off and fabric take-up units 
need to be rotated after every shed formation, all the cylindrical units enclosed together 
are connected through a casing connector, to provide the same concurrent rotational 
movement. This concurrent movement minimizes the possibilities of any undesirable 
stresses from being developed in the warp ends. However, undesirable torsional stresses 
may still be developed in the length of yarn between the let-off frame and the supply 
packages, due to the rotational movement. Furthermore, there is a possibility of tension 
variations in the warp ends. Wear of the bearings on which the cylindrical casings are 
mounted may also disturb the concurrent movement of the three casings, leading to 
the development of undesirable stresses in the warp ends. The novelty approach of this 
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prototype in terms of weft insertion has great potential for the future developments of 
the 3D fully interlaced preform weaving process. However, the possibility of develop-
ing this experimental prototype into a fully functional 3D weaving machine is yet to be 
investigated.

The use of a linear take-up system limits the length of fabric that can be produced, 
however, since the 3D weaving process is not used for producing large continu-
ous lengths of fabrics unlike the conventional two-dimensional weaving process, this 
problem may not be highly significant. However, the linear take-up system increases 
the space taken up by the weaving machine, compared to a conventional take-up roll. 
Despite these limitations, using a linear take-up unit is necessary to maintain the con-
sistency of the structure of the produced preform.

Analysis of the existing literature on 3D woven 3D fabric structures
Different structures and characteristics

The 3D fully interlaced preform weaving process enables the production of fully inter-
laced, highly integrated 3D woven 3D fabric structures, which can be used as preforms 
for composite applications. All the dual-directional shedding mechanisms discussed in 
this paper are capable of producing such a fabric structure, through the interlacement 
of three orthogonal sets of yarns. Slight variations of the interlaced structure can be 
achieved through the selection of successive picking or alternate picking of wefts in ‘to 
and fro’ directions. The shedding mechanisms disclosed by Fukuta et al. (1982), the lin-
ear–linear method (Khokar 2002b) and the rotating disk method (Kale 2015) produce 
similar structures with hollow pockets in the axial direction. The size of the axial hollow 
pockets can be varied by properly disposing of the multi-layer warp. The use of rapiers 
instead of shuttles, for weft insertion, allows closer packing of warp yarns, which will 
lead to smaller hollow pockets. The smaller the hollow pockets, the higher will be the 
cover factor and the greater will be the load-bearing and shock-absorbing capacity of the 
structure. In the case of the linear–linear and rotating disk methods, the hollow pockets 
can be filled with non-interlacing stuffer warp yarns to enhance the mechanical proper-
ties. However, this flexibility is not present in the shedding mechanism in the device dis-
closed by Fukuta et al. (1982). The linear–angular method (Khokar 2002c) also produces 
fully interlaced, highly integrated 3D woven 3D fabric structures, but the occurrence of 
the constituent yarns in the resultant structure is somewhat different. The active warp 
yarns may be made to occur in the fabric-length direction either in a helical configura-
tion or additionally in the fabric-width and thickness direction by varying the shedding 
sequence. The active warp yarns occur in a ‘triangular helix’ at the edges and surfaces of 
the fabric and in a ‘square helix’ in the interiors. Consequently, no distinguishable axial 
hollow pockets can be seen in the structure. However, non-interlacing stuffer yarns can 
be incorporated in the fabric-width, thickness and diagonal directions of these structures 
made from the above-mentioned shedding systems. It further improves the mechanical 
properties of the structures. The circular 3D fully interlaced preform weaving process 
allows the production of 3D woven 3D fabric preforms with circular cross-sections.

In addition to the fully interlaced (plain-weave) structure, different weave patterns 
such as twills, satins, etc. can also be produced by reciprocating suitably threaded healds 
independently and selectively, using the linear–linear and linear–angular methods as 
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well as the method disclosed by Fukuta et al. (1982). The same is possible with the rotat-
ing disk method as well, by rotating the disks independently and selectively. In addition 
to the basic woven structures, all the above methods allow the production of tubular fab-
rics of either square or rectangular cross-section as well as solid profiles of shapes L, T, 
C, etc. by suitably disposing of the warp threads according to the cross-sectional shape 
of the profile required as well as carrying out the shedding and picking mechanisms in 
a suitable manner. Furthermore, core or sandwich type of fabrics can also be produced. 
The inventor of the rotating disk method claims that the production of 4-end leno weave 
is possible by rotating the disks by 180° and inserting the wefts, which is not possible 
on the other shedding mechanisms. In addition to the various types of 3D woven 3D 
fabric structures discussed above, noobed fabric structures, as well as multiple sheets of 
two-dimensional fabrics, can also be produced on 3D fully interlaced preform weaving 
devices. It should be noted that the circular 3D fully interlaced preform weaving process 
also allows the production of different weave patterns in addition to the plain-weave.

The 3D fully interlaced preform weaving process has several beneficial features which 
have led to the increased demand for the 3D woven 3D fabrics. The fully interlaced 
structure provides high structural integrity, through the binding of the yarns well into 
the structure. Consequently, it has much better stability and structural integrity com-
pared to a noobed fabric structure. In a noobed fabric structure, binding of yarns takes 
place only at the surface. As a result, yarns can easily be pulled out of the structure due 
to which splitting up of the fabric structure may occur. Therefore, it is not possible to cut 
a noobed fabric structure into any desired shape, unlike a 3D woven 3D fabric structure. 
The main benefit of 3D fully interlaced preform weaving is its ability to produce near-
net-shaped preforms (i.e. preforms with certain cross-sectional shapes). This minimizes 
material wastage as well as the need for additional binding. However, it should be noted 
that preforms of cross-sections with any desired shape cannot be manufactured.

Compared to a 3D woven 3D fabric structure, yarns in a noobed structure have insig-
nificant or very small crimp, due to the non-interlacing nature of the yarns involved. The 
absence of crimp contributes to better flexural, tensile and compressive strength. How-
ever, the 3D fully interlaced preform weaving process is more flexible than the noobing 
process, due to its near-net-shaping ability and the mechanical properties of 3D woven 
3D fabrics can be enhanced through the introduction of non-interlacing stuffer yarns 
into the structure.

Biteam, founded by Fredrik Winberg and Nandan Khokar, is a specialist manufac-
turer of 3D woven profiled materials (“Biteam—High Performance Profiled 3D Woven 
Reinforcements for Load-bearing Composite Material Structural Members” 2020). A 
variety of profiled 3D woven preforms of up to 60 × 60 mm and 3 m lengths are manu-
factured using carbon and other fibres, which are used in load-bearing and other com-
posite material applications. This presents evidence for the commercial applications of 
3D woven 3D fabric preforms produced from 3D fully interlaced preform weaving.

Mechanical and permeability properties

One of the main design challenges for 3D woven composites is the trade-off between 
the in-plane and out-of-plane mechanical properties (Chen 2015). The decrease in in-
plane stiffness and tensile strength of composites made from 3D woven preforms can 
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be attributed to the presence of crimp in the woven structure. However, since the initial 
applications of the 3D multi-layer warp interlock woven fabrics did not require high in-
plane stiffness or strength, the presence of crimp was insignificant. As the 3D woven 
preforms found broader scope in structural applications, the high out-of-plane tensile 
properties and fracture toughness properties were found to be beneficial.

Since the development of dual-directional shedding for 3D fully interlaced preform 
weaving, Stig and Hallström (2009) presented the first experimental results for a car-
bon fiber composite sample reinforced with a 3D woven 3D fabric preform, constructed 
using the 3D fully interlaced preform weaving process. In-plane and out-of-plane 
mechanical properties had been evaluated on flat beam specimens produced from the 
3D fully interlaced preform weaving process and compared against the results for a 2 × 2 
twill fabric 4-ply laminate and two non-crimp laminates. The test results suggested that 
the out-of-plane tensile strength and the shear strength are higher for the 3D woven 
composite compared to the other three composites. However, the exact strength values 
had not been determined for the out-of-plane tensile strength of the 3D woven compos-
ite, due to a limitation in the non-standardized test method used. It can be seen from 
the test results, that the 3D woven 3D fabric preforms have higher out-of-plane prop-
erties and lower in-plane properties compared to the traditional 2D-laminates (Stig & 
Hallström 2009). However, the inclusion of additional stuffer warp yarns is expected to 
improve the fibre volume fraction and in-plane mechanical properties.

Bilisik et  al. (2013) investigated the effects of the weave pattern and the number of 
layers on 3D woven 3D fabric preforms. 3D woven 3D fabric preforms with plain, twill 
and satin weaves had been produced. Based on the results the authors claimed that the 
yarn-to-yarn spaces of the 3D woven 3D fabric preforms were high compared to the tra-
ditional 3D woven structures (i.e. orthogonal, through-thickness and angle interlock) in 
the fabric width. The weave patterns had shown a slight influence on the angles and the 
crimps of the yarn in the 3D woven 3D fabric preforms. Furthermore, the number of lay-
ers had slightly affected the yarn crimps and significantly affected the arc length and the 
length of z-yarn in the fabric thickness direction. The authors further claimed that the 
3D woven 3D fabric preforms could improve the energy absorption properties in soft 
ballistic applications and improve damping properties in structural applications.

Yarn crimp has a significant impact on the stiffness of textile composites (Chan & 
Wang 1994) and the stiffness of textile composites made from 3D woven 3D fabric rein-
forcements are inherently anisotropic and governed by the fiber material, density and 
the crimp of yarn (Stig & Hallström 2013). Three non-linear analytical models had been 
developed by Stig and Hallström (2013) to predict the effect of three-dimensional yarn 
crimp on the longitudinal Young’s modulus of carbon fiber composite materials con-
taining a 3D woven 3D fabric reinforcement. The three models assumed three different 
yarn path shapes; zigzag, trapezoid and helix. The predicted longitudinal stiffness val-
ues from the three analytical models had been compared with the experimental results. 
All the models had predicted similar behavior, where the longitudinal stiffness decreases 
non-linearly with increasing crimp and the trapezoid model seemed to be in very good 
agreement with the experimental results. However, the authors claimed that changes in 
strand cross-section shape have a significant influence on the predicted stiffness values 
from the zigzag and trapezoid models. One of the problems is that a large number of 
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parameters must be known or estimated beforehand, some of which may be difficult to 
obtain before weaving and producing the composite. However, the complexity of the 
structure of a 3D woven 3D fabric demands such a high number of parameters, regard-
less of the type of model used. The developed model would be beneficial in setting the 
weaving parameters during the design stage, to achieve the required level of yarn crimp 
so that the produced fabric has the desired stiffness properties.

Composite beams with various cross-sectional beams such as ‘T’ or ‘I’ beams are used 
in a variety of constructional applications. Currently, these beams are produced by bend-
ing or folding fabric sheets as per the required cross-section, to create webs and flanges 
and joining them as required. For example, a ‘T’ beam can be produced by attaching 
a laminate called a ‘web’, perpendicular to another laminate called a ‘skin’ by splitting 
the web into two equally thick flanges forming a double-sided ‘L’ and attaching the two 
flanges to the skin (Ekermann & Hallström 2019). This creates a cavity at the root of the 
web, between the web, the flanges and the skin and due to the absence of through-thick-
ness reinforcement, this junction is susceptible to delamination. The current practice is 
to fill this cavity with a ‘fillet’ material and in the aerospace industry, a unidirectional 
prepreg lamina is used. Ekermann and Hallström (2019) presented a study which inves-
tigates the suitability of 3D woven 3D fabric preforms to be used as a fillet material. The 
response of carbon fiber reinforced polymer T-joints with 3D woven 3D fabric rein-
forced fillets as well as conventional unidirectional fillets, to pull-off tests had been stud-
ied. The results indicate that the T-joints with unidirectional fillets have higher failure 
loads than the 3D fillets, however, the spread of the strength values is less for the 3D 
fillets compared to the unidirectional fillets. This enables the use of lower safety margins 
for T-joints with 3D fillets, than what is practiced currently. However, the positive effects 
of using 3D fillets in T-joints should be further investigated.

To overcome the drawbacks of the composite beams with different cross-sections 
formed under the current practice, a novel add-on weaving method had been introduced 
by Khokar (2016). This method allows the production of preforms for such beams, with 
through-thickness reinforcement at the joints, which improves the delamination resist-
ance. Since this method is out of the scope of this paper, the reader is referred to the 
literature for further reading (Kazemahvazi et al. 2016; Khokar 2016; Khokar et al. 2019). 
Furthermore, it should be noted that, as discussed previously, 3D fully interlaced pre-
form weaving is capable of producing preforms of various cross-sections in a single pro-
cess. Hence, it should be useful to investigate the properties of such preforms to assess 
their suitability to replace the current manufacturing methods for producing composite 
beams with different cross-sections.

In the context of 3D woven composites, permeability is a key parameter that affects the 
time required for the resin to impregnate the 3D woven reinforcement (Stig et al. 2015). 
Research had been carried out to investigate the permeability properties of various 2D 
and 3D woven fabric structures (Endruweit & Long 2010; Parnas et al. 1995; Pearce et al. 
1998; Xiao et al. 2011). However, Stig et al. (2015) claimed that no prior research had 
been done to study the permeability of 3D woven 3D fabrics produced using 3D fully 
interlaced preform weaving. Furthermore, the authors presented an experimental study 
to investigate the effect of different textile parameters on the longitudinal permeabil-
ity of such fabric preforms, using the unsaturated parallel flow method. Based on the 
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results, the authors claimed that there is no significant influence on permeability by the 
fraction of surface layers or the warp crimp of the preforms. Furthermore, the fiber vol-
ume fraction had indicated a significant effect on the permeability, as higher fiber vol-
ume fraction results in less permeability, due to reduced inter-yarn porosity. The method 
of increasing or decreasing the fiber volume fraction also strongly relates to permeability 
characteristics. For example, uniform transverse compaction of the preform had a more 
significant influence on the permeability than the influence of adding stuffer warp yarns 
or using coarser weft yarns in the structure. The results of the study are useful for the 
reader to gain some insight into the permeability characteristics of 3D woven 3D fabric 
preforms. However, the authors claimed that the number of specimens tested is small 
and not consistent for all preform samples, due to shortages of material supply. Hence, 
the statistical significance of the results had not been established.

A Computational Fluid Dynamics (CFD) model had been developed to investigate the 
effect of the fibrous architecture and the level of detail in the CFD model on permeability 
predictions and to predict the effect of inter-yarn porosity and locally varying intra-yarn 
porosity on the permeability of 3D woven 3D fabric preforms (Tahir et  al. 2015). The 
results had indicated that the inter-yarn porosity has a significant influence on the per-
meability, while the effect of intra-yarn porosity is insignificant. Therefore, an accurate 
representation of geometrical features in the space between yarns is highly important. 
Furthermore, from the results, it can be seen that the overall permeability is anisotropic, 
but as the inter-yarn porosity increases, the permeability becomes more isotropic. The 
authors of the study claimed that the results from the numerical simulation are in good 
agreement with the experimental results of Stig et al. (2015). The model would be ben-
eficial in establishing a trade-off between the resin impregnation time and the amount of 
stuffer warp yarns to be used to improve in-plane properties.

Modelling of 3D woven 3D fabric structures

Advanced modelling of composite materials is important when determining the mechan-
ical properties of these composites, to gain acceptance for a particular application (Stig 
& Hallström 2012b). To analyze and predict the mechanical and permeability behavior 
of 3D woven 3D fabrics, used as reinforcements in composites, it is desirable to have 
a geometric representation of the structure, the development of which has been a key 
issue due to the complex nature of the structure. The existing modelling techniques used 
for two-dimensional fabrics are not suitable for 3D woven 3D fabrics. Stig and Hallström 
(2012b) presented a framework to model the internal strand geometry of 3D woven 3D 
fabric preforms, on a mesoscale, using a finite element simulation. The strands or yarns 
are represented by tubes, the properties of which mimic dry yarn properties. One of the 
main benefits of the model is that it does not require any geometrical measurements as 
inputs and requires only a relatively small number of input parameters which include the 
weave pattern, warp and weft yarn counts, yarn crimp, fiber diameter, the average vol-
ume fraction of the strands and the dimensions of the Representative Volume Element 
(RVE). Validation of the developed model had been performed through the comparison 
of the model against Computer Tomography (CT) scanned images of a carbon fiber 3D 
woven 3D fabric preform and the authors claimed that excellent correlation between the 
model and the real sample had been established despite certain deviations. The authors 
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claimed that some of the deviations may be attributed to the difficulties in measuring 
the yarn crimp as well as the imperfections in the real structure, rather than flaws in the 
model. However, through a parameter study, the authors claimed that the model is fairly 
insensitive to the variations of the tube properties. The modelled geometry can subse-
quently be used for mechanical analysis or flow simulations.

In another research, Stig and Hallström (2012a) used the method described above 
to develop a finite element based model to predict the elastic properties of composite 
materials containing 3D woven 3D fabric reinforcements. Four models had been created 
for four different weaves and the results had been compared against the experimental 
results from composite samples with reinforcements of the same weaves. According to 
the results, Young’s modulus values from the model seem to agree with the experimen-
tal values and the authors claimed that the deviation of the longitudinal stiffness values 
predicted by the model is about 10%, compared to a maximum of 30–40% deviations 
between the predicted and experimental values, reported by previous works on 3D tex-
tile reinforced composites. From the results, it is clear that the warp crimp has a signifi-
cant effect on the longitudinal Young’s modulus, while the effect of warp crimp on the 
transverse modulus, shear moduli and the Poisson’s ratios is relatively small. Further-
more, the results indicate that the inclusion of stuffer warp yarns had increased the lon-
gitudinal stiffness, transverse stiffness and shear moduli. The authors claimed that the 
stress and strain distributions obtained from the model can further be used for damage 
analysis.

Stig and Hallström (2020) presented an extended framework for developing an 
improved model, which attempts to overcome the limitations associated with the previ-
ous models (Stig & Hallström 2012a, b), while improving the overall yarn cross-section 
shapes. The results had proven this approach to be more realistic and successful com-
pared to the framework presented by Stig and Hallström (2012b). A python framework 
had also been developed to automate the creation of the finite element models and to 
generate and store information about the models, which helps to reduce the effort in 
processing the modelling steps and computing time (Stig 2019). For mildly crimped 
yarns, both the old and new models generate similarly accurate yarn shapes, while for 
highly crimped yarns, the new method generates smoother and more realistic shapes, 
which is a key benefit of the new method. The cross-section variability along a warp yarn 
in the new model is less than that of the old model and more closely resembles the meas-
ured values (Stig & Hallström 2020).

Koumpias et al. (2014) presented a progressive damage model to simulate the mechan-
ical behavior and failure mechanisms of 3D woven 3D fabric preform reinforced com-
posites. A progressive damage model comprising three modules; stress analysis, failure 
analysis and material property degradation had been developed. Hashin-type failure cri-
teria had been used for the failure analysis, taking into account, all basic failure modes, 
considering the highly complex nature of the failure of composite materials. The pro-
gressive damage model had been validated through a comparison with the experimen-
tal results from the study done by Stig and Hallström (2009). The predicted mechanical 
properties indicate good out-of-plane characteristics, which can be attributed to the 
reinforcement in the normal direction. Damage initiation and progression of different 
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damage modes had also been predicted using the progressive damage model and the 
results were presented (Koumpias et al. 2014). The progressive damage model would be 
beneficial in identifying the failure modes of 3D woven 3D fabric preforms, under differ-
ent loading conditions, to assess their suitability for various applications.

Discussion
In this paper, the technological advancements in 3D fully interlaced preform weaving, 
as well as characteristics and modelling of 3D woven 3D fabrics, have been reviewed in 
detail. A summary of the existing literature that has been reviewed in this study is shown 
in Table 1.

3D weaving is a process that allows the manufacturing of 3D woven fabrics, in which 
all three sets of yarns are interlaced with each other to provide a highly integrated struc-
ture. 3D fully interlaced preform weaving differs from other 3D woven fabric manufac-
turing methods in that it allows the formation of two sets of sheds in two orthogonal 
directions, which is not possible with any other weaving method. The earliest evidence 
of a 3D fully interlaced preform weaving device can be found in 1982, from the device 
introduced by Fukuta et al. (1982), while Khokar (2001) had established a clear distinc-
tion between the 3D fully interlaced preform weaving process and other 3D woven fabric 
manufacturing methods. Furthermore, he had proposed the term ‘3D woven 3D fabrics’ 
to distinguish the fabrics produced using the 3D fully interlaced preform weaving pro-
cess from other 3D woven fabrics (Khokar 2001).

As evident from the literature, 3D fully interlaced preform weaving is a versatile fab-
ric manufacturing method, which allows the production of a wide range of 3D woven 
3D fabric structures such as plain, twill and satin weave, tubular fabrics, solid profiled 
fabrics, core or sandwich type of fabrics, etc. The ability to incorporate weft yarns in the 
bias directions (i.e. diagonal directions) allows the production of multi-axis 3D woven 
3D fabrics with improved mechanical properties. Furthermore, it allows the production 
of noobed fabric structures. In addition to 3D woven fabrics, multiple two-dimensional 
woven fabrics can also be produced using a 3D fully interlaced preform weaving device. 
One of the most important features of the 3D fully interlaced preform weaving process 
is its ability to produce near-net-shaped preforms, which minimizes material wastage 
and the need for additional binding. The z-reinforcement provides excellent mechanical 
properties in the through-thickness direction of the 3D woven 3D fabrics, which is not 
found in the other types of 3D woven fabrics. This makes them suitable candidates for 
various composite applications.

Possible future directions and challenges

Most of the developments in 3D fully interlaced preform weaving devices had been 
focused on improving the primary weaving mechanisms. Since the dual-directional 
shedding mechanism introduced by Fukuta et al. (1982), several other improved shed-
ding mechanisms had been introduced (Kale 2015; Khokar 2002b, c). The rotating 
disk shedding mechanism had shown significant improvements over the other shed-
ding mechanisms, especially in terms of efficiency. This shedding mechanism has 
great potential and further research is required to optimize its performance and to 
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incorporate it in a commercial 3D fully interlaced preform weaving device. Future 
research on dual-directional shedding mechanisms should focus on creating smaller 
sheds, so that a more compact multi-layer warp sheet can be used with an increased 
number of warp-ends, taking up the same space. Furthermore, smaller shed heights 
contribute to improved efficiency. The shed height is largely influenced by the size 
of the weft carrier, hence the possibility of using alternative weft carriers to replace 
shuttles should be investigated. The weft carrier developed by Khokar (2005) is a 
promising solution, which is more compact and precisely controlled, compared to 
a shuttle. The use of rapiers as a weft carrier can be seen in the literature (Weeras-
inghe et al. 2017) and further reductions in the size of the rapier could prove to be 
beneficial. Hence, there is room for further improvements in weft carriers to reduce 
their size and to achieve more precisely and positively controlled continuous weft 

Table 1  Summary of the existing literature reviewed in the paper

Publication Year Research output/invention

Fukuta et al. (1982) 1982 Introduced a method for producing a fully interlaced 3D woven fabric 
structure

Khokar (2001) 2001 Described the 3D fully interlaced preform weaving process in detail and 
presented an experimental device developed to carry out the process

Khokar (2002b) 2002 Introduced a dual-directional shedding mechanism (linear–linear 
method)

Khokar (2002c) 2002 Introduced a dual-directional shedding mechanism (linear–angular 
method)

Khokar (2005) 2005 Introduced a method and device for simultaneously inserting the weft 
yarns and beating them up

Stig and Hallström (2009) 2009 Analyzed the mechanical properties of a carbon fiber composite sample 
reinforced with a 3D woven 3D fabric preform, constructed using the 
3D fully interlaced preform weaving process

Stig and Hallström (2012b) 2012 Introduced a method to model internal strand geometry of 3D woven 
3D fabrics on a mesoscale

Stig and Hallström (2012a) 2012 Introduced a numerical model to predict the mechanical behavior of 
composites reinforced with 3D woven 3D fabric preforms

Bilisik et al. (2013) 2013 Investigated the effects of the weave pattern and the number of layers 
on 3D woven 3D fabric preforms

Stig and Hallström (2013) 2013 Investigated the influence of crimp-on composites reinforced with 3D 
woven 3D fabric preforms

Bilisik et al. (2014) 2014 Introduced fully interlaced circular 3D woven preforms produced using 
circular 3D fully interlaced preform weaving

Koumpias et al. (2014) 2014 Introduced a progressive damage model to simulate the mechanical 
behavior and predict the strength of 3D woven 3D fabric reinforced 
composites

Stig et al. (2015) 2015 Presented an experimental study on the influence of fiber architecture 
on the permeability of 3D woven 3D fabric preforms

Tahir et al. (2015) 2015 Presented a numerical study on the influence of fiber architecture on the 
permeability of 3D woven 3D fabric preforms

Kale (2015) 2015 Introduced a dual-directional shedding mechanism that improves the 
weaving efficiency (Rotating disk method)

Weerasinghe et al. (2017) 2017 Introduced an experimental device with a novel method of weft inser-
tion that allows the weft to be inserted from only one direction

Ekermann and Hallström (2019) 2019 Presented a study on the performance of CFRP T-joints with 3D woven 
3D fabric reinforced fillets

Stig and Hallström (2020) 2020 Introduced an improved framework to model the geometries of 3D 
woven 3D fabric preforms on a mesoscale
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insertion, without the need to replenish the weft yarn. The weft insertion technique 
introduced by Weerasinghe et  al. (2017) is a promising development, which signifi-
cantly reduces the size and the energy consumption of the weaving device, but further 
research is required to investigate the possibility of incorporating it in a commercial 
3D fully interlaced preform weaving device. The effects of rotating the shedding, warp 
let-off and fabric take-up units on the warp sheet should be further studied. The reed 
dent introduced by Khokar (2005) provides an efficient way of performing the beat-
up mechanism. Further improvements may be directed towards positively controlling 
the beat-up force to achieve the desired level of pick density.

The existing research had not been focused on developing the secondary weaving 
mechanisms (i.e. warp let-off and fabric take-up). In most of the existing devices, neg-
ative warp let-off is carried out, which does not allow the tension of the warp ends 
to be precisely controlled. Tension variations may occur in the warp ends and it may 
lead to uneven crimp and density distribution in the fabric structure as well as an 
improper fabric formation. Hence, future research should be directed towards imple-
menting positive warp let-off mechanisms. The fabric take-up mechanism should be 
properly synchronized with the warp let-off mechanism. The linear take-up units 
consume more floor space and inhibit the possibility of producing compact weaving 
devices. Hence, further research should be done to investigate the possibility of intro-
ducing an alternative form of a take-up unit.

When considering the fabric structure, future research should be directed towards 
improving in-plane mechanical properties. The existing researches suggest that the 
introduction of stuffer warp yarns into the structure results in improved mechani-
cal characteristics (Stig & Hallström 2012a). However, this may adversely affect the 
permeability of the structure, inhibiting proper impregnation of the matrix material 
of the composite (Stig et al. 2015). Therefore, a compromise between the mechanical 
characteristics and the permeability properties should be made. Most of the exist-
ing research investigated the properties of 3D woven 3D fabric preforms made out of 
carbon fibres. The effect of using other high-performance fibres on the in-plane and 
out-of-plane mechanical properties should also be investigated so that a more suita-
ble material could be selected for a particular application. To the authors’ knowledge, 
no evidence of any research carried out on evaluating the mechanical performance 
of profiled structures made using 3D fully interlaced preform weaving is available in 
the literature. It may be worthwhile to investigate the delamination resistance at the 
joints of such profiled structures, in comparison with structures produced by the add-
on weaving method introduced by Khokar (2016).

Conclusion
Textile based preforms as reinforcements are becoming increasingly popular in com-
posite applications. Developments in high-performance fiber yarns and advancements 
in fabric manufacturing technologies have led to the production of textile structures 
with high strength to weight ratio, compared to traditional reinforcement materials 
such as steel. 3D fully interlaced preform weaving enables the production of fully inter-
laced 3D woven 3D fabric preforms, which can be used as reinforcements in composite 
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applications that demand high out-of-plane mechanical properties. A comprehensive 
review of the existing 3D fully interlaced preform weaving mechanisms and devices as 
well as 3D woven 3D fabrics had been carried out in this study. The study has led to the 
following conclusions.

•	 Two-dimensional woven fabric reinforced laminates and 3D woven fabric preforms 
used in composite applications suffer from poor delamination resistance and out-of-
plane mechanical properties due to the lack of through-thickness reinforcement.

•	 The dual-directional shedding mechanism employed in 3D fully interlaced preform 
weaving devices, enables the production of fully interlaced 3D woven 3D fabrics, 
which is not possible on conventional two-dimensional weaving machines.

•	 3D woven 3D fabrics possess good delamination resistance and out-of-plane 
mechanical properties due to the z-reinforcement introduced by the dual-directional 
shedding mechanism, but exhibit poor in-plane mechanical properties.

•	 The in-plane mechanical characteristics can be improved through the introduction 
of stuffer warp yarns and bias yarns into the fabric structure, but it could adversely 
affect the permeability properties leading to increased resin impregnation time.

•	 The simulation models developed to model 3D woven 3D fabrics can aid in mechani-
cal analysis, damage analysis, flow simulations and predicting failure modes under 
different loading conditions.

•	 The existing research had focused on improving the primary weaving mechanisms of 
3D fully interlaced preform weaving devices and further research should be carried 
out to improve the secondary weaving mechanisms as well.

Over the years, only a few researches had been carried out in developing 3D fully 
interlaced preform weaving devices. The main challenges faced in developing 3D fully 
interlaced preform weaving devices can be identified as the difficulties in developing a 
compact device with improved efficiency, due to the complex mechanisms involved with 
such devices. However, with the advancements in automation and mechatronics, it has 
become possible to realize complex mechanisms with simpler machine designs and less 
energy consumption. Developing less versatile machines (i.e. machines specialized in 
producing only one or a few types of structures) could make it possible to increase pro-
duction rates.

In the future, 3D woven 3D fabric structures will find increased applications in con-
struction, ballistic, industrial, aerospace, aviation and automotive fields. Further research 
into 3D fully interlaced preform weaving could open new avenues for 3D woven 3D pre-
forms in composite applications.

Abbreviations
CAD: Computer-Aided Design; UHDPE: Ultra high-density polyethylene; CFD: Computational Fluid Dynamics; RVE: Repre-
sentative Volume Element; CT: Computer Tomography.

Acknowledgements
The authors acknowledge the support extended by the University of Moratuwa in publishing this research.

Authors’ contributions
YSP, RMHWM and PRF contributed in preparing the manuscript. SKF and TSSJ contributed with feedback and comments. 
All authors read and approved the final manuscript.



Page 29 of 31Perera et al. Fash Text            (2021) 8:11 	

Authors’ Information
YSP was born in Colombo, Sri Lanka, in 1993. He received a B.Sc. (Eng.) degree in Textile and Clothing Technology from 
the University of Moratuwa. Currently, he is serving as a Junior Lecturer attached to the Department of Textile & Clothing 
Technology, Faculty of Engineering, University of Moratuwa, Sri Lanka. YSP is an Associate Member of the Institute of 
Engineers Sri Lanka.

RMHWM was born in Kurunegala, Sri Lanka, in 1992. He received a B.Sc. (Eng.) degree in Textile and Clothing Technology 
from the University of Moratuwa. Currently, he is serving as a Junior Lecturer attached to the Department of Textile & 
Clothing Technology, Faculty of Engineering, University of Moratuwa, Sri Lanka. RMHWM is an Associate Member of the 
Institute of Engineers Sri Lanka.

PRF was born in Kurunegala, Sri Lanka, in May 1990. He received a B.Sc. (Eng.) degree in Textile and Clothing Technology 
from the University of Moratuwa, and is reading an M.Sc. in Materials Science from the same university. Currently, he is 
serving as a Junior Lecturer attached to the Department of Textile & Clothing Technology, Faculty of Engineering, Univer-
sity of Moratuwa, Sri Lanka. PRF is an Associate Member of the Institute of Engineers Sri Lanka.

SKF was born in Colombo, Sri Lanka, in 1961. He obtained an MSc in Mechanical Engineering in 1987 and a PhD in 1992 
from the Textile Institute of Ivanovo, Russia. After his doctoral studies, he joined as a Senior Lecturer in the Department 
of Textile and Clothing Technology and became a Professor in Weaving Technology in 2015. SKF became a Fellow of 
the Textile Institute (UK) in 2014 and has been serving as the Treasurer of the Textile Institute Sri Lanka Section for 3 
consecutive years. He served as the Head of Department of Textile and Clothing Technology from 2006 to 2009. He has 
authored more than 25 journal papers, more than 30 conference papers and holder of 5 patents. He renders his service 
as a reviewer to many international reputed journals, including the Journal of the Textile Institute.

TSSJ was born in Matara, Sri Lanka, in November 1970. He received a B.Sc. (Eng.) degree in Electronics and Telecommuni-
cations from the University of Moratuwa, an M.Sc. in Operations Research from the same university, and a Ph.D. in Robot-
ics and Systems Control from the Saga University, Japan, in 1996, 2003, and 2005, respectively. Currently, he is serving 
as a Senior Lecturer attached to the Department of Textile and Clothing Technology, Faculty of Engineering, University 
of Moratuwa, Sri Lanka. TSSJ became a Senior Member (SM) of IEEE and a Fellow of the Textile Institute (UK) in 2017. He 
is also a Chartered Engineer, a founding member of the Applied Statistics Association, Sri Lanka, and a member of the 
Institute of Engineers Sri Lanka. TSSJ served as the Chair of the IEEE Sri Lanka Section in 2017, and he served as the editor 
of the Sri Lanka Section for 2 years. He has authored more than 20 journal papers, more than 20 conference papers, and 
holder of 2 patents. He renders his service as a reviewer to many internationally reputed journals, including IEEE journals, 
Science Citation indexed journals.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Lecturer, Department of Textile and Clothing Technology, Faculty of Engineering, University of Moratuwa, Moratuwa, 
Sri Lanka. 2 Professor, Department of Textile and Clothing Technology, Faculty of Engineering, University of Moratuwa, 
Moratuwa, Sri Lanka. 3 Senior Lecturer, Department of Textile and Clothing Technology, Faculty of Engineering, University 
of Moratuwa, Moratuwa, Sri Lanka. 

Received: 5 November 2020   Accepted: 21 December 2020

References
Adovasio, J. M., Soffer, O., Illingworth, J. S., & Hyland, D. C. (2014). Perishable fiber artifacts and Paleoindians: New implica-

tions. North American Archaeologist, 35(4), 331–352. https​://doi.org/10.2190/NA.35.4.d.
Ali, M., Kausar, F., Shahid, S., Zeeshan, M., Nawab, Y., Riaz, R., et al. (2019). Novel derivatives of 3D woven T-shaped compos- 

ites with improved performance. The Journal of The Textile Institute, 110(2), 267–273. https​://doi.org/10.1080/00405​
000.2018.14809​14.

Behera, B. K., & Mishra, R. (2008). 3-Dimensional weaving. Indian Journal of Fibre & Textile Research, 33, 274–287.
Bilisik, A. K. (1998). Multiaxial three-dimensional (3-D) circular weaving and multiaxial 3-D circular woven preforms 

for composite. In Y. M. Haddad (Ed.), Advanced multilayered and fibre-reinforced composites (Vol. 43, pp. 477–487). 
Dordrecht: Springer.

Bilisik, A. K. (2000). Multiaxial three-dimensional (3-D) circular woven fabric (U.S. Patent No. 6,129,122). U.S. Patent and 
Trademark Office.

Bilisik, K. (1991). Three dimensional (3D) weaving and Braiding [Unpublished doctoral dissertation].
Bilisik, K. (2010a). Multiaxis three-dimensional circular woven preforms—“Radial crossing weaving” and “radial in–out 

weaving”: Preliminary investigation of feasibility of weaving and methods. Journal of the Textile Institute, 101(11), 
967–987. https​://doi.org/10.1080/00405​00090​30809​85.

https://doi.org/10.2190/NA.35.4.d
https://doi.org/10.1080/00405000.2018.1480914
https://doi.org/10.1080/00405000.2018.1480914
https://doi.org/10.1080/00405000903080985


Page 30 of 31Perera et al. Fash Text            (2021) 8:11 

Bilisik, K. (2010b). Multiaxis 3D weaving: Comparison of developed two weaving methods (tube-rapier weaving versus 
tube-carrier weaving) and effects of bias yarn path to the preform properties. Fibers and Polymers, 11(1), 104–114. 
https​://doi.org/10.1007/s1222​1-010-0104-y.

Bilisik, K. (2012). Multiaxis three-dimensional weaving for composites: A review. Textile Research Journal, 82(7), 725–743. 
https​://doi.org/10.1177/00405​17511​43501​3.

Bilisik, K. (2017). Two-dimensional (2D) fabrics and three-dimensional (3D) preforms for ballistic and stabbing protection: 
A review. Textile Research Journal, 87(18), 2275–2304. https​://doi.org/10.1177/00405​17516​66907​5.

Bilisik, K., Karaduman, N. S., Bilisik, N. E., & Bilisik, H. E. (2013). Three-dimensional fully interlaced woven preforms for com-
posites. Textile Research Journal, 83(19), 2060–2084. https​://doi.org/10.1177/00405​17513​48779​1.

Bilisik, K., Karaduman, N. S., Bilisik, N. E., & Bilisik, H. E. (2014). Three-dimensional circular various weave patterns in woven 
preform structures. Textile Research Journal, 84(6), 638–654. https​://doi.org/10.1177/00405​17513​49943​7.

Bilisik, K., & Mohamed, M. H. (2009). Multiaxis three-dimensional flat woven preform (tube rapier weaving) and circular 
woven preform (radial crossing weaving). Textile Research Journal, 79(12), 1067–1084. https​://doi.org/10.1177/00405​
17508​09939​5.

Biteam—High performance profiled 3D woven reinforcements for load-bearing composite material structural members. 
Biteam.com. (2020). Retrieved October 22, 2020, from http://bitea​m.com/profi​led-3d-woven​-reinf​orcem​ents.htm.

Broudy, E. (1993). The book of looms: A history of the handloom from ancient times to the present. Providence: Brown Univer-
sity Press.

Chan, W. S., & Wang, J. S. (1994). Influence of fiber waviness on the structural response of composite laminates. Journal of 
Thermoplastic Composite Materials, 7(3), 243–260. https​://doi.org/10.1177/08927​05794​00700​306.

Chen, X. (Ed.). (2015). Advances in 3D textiles. Cambridge: Elsevier/WP, Woodhead Publ.
Curiskis, J. I., Durie, A., Nicolaidis, A., & Herszberg, I. (1997). Developments in multiaxial weaving for advanced composite 

materials. In Proceedings of ICCM-11, Australia (pp. 86–96).
Ekermann, T., & Hallström, S. (2019). Pull-off tests of CFRP T-joints with conventional and 3D reinforced fillets. Composite 

Structures, 223, 110893. https​://doi.org/10.1016/j.comps​truct​.2019.11089​3.
Endruweit, A., & Long, A. C. (2010). Analysis of compressibility and permeability of selected 3D woven reinforcements. 

Journal of Composite Materials, 44(24), 2833–2862. https​://doi.org/10.1177/00219​98310​36958​6.
Fukuta, K., Aoki, E., Nagatsuka, Y., & Kitano, T. (1986). Method for formation of three-dimensional woven fabric and apparatus 

therefor (U.S. Patent No. 4,615,256). U.S. Patent and Trademark Office.
Fukuta, K., Onooka, R., Aoki, E., & Tsumuraya, S. (1982). Three-dimensionally latticed flexible-structure composite (U.S. Patent 

No. 4336296). U.S. Patent and Trademark Office.
Hearle, J. W. S. (2001). High-performance fibres. Boca Raton: CRC Press, Woodhead Publ.
Hu, J. (2008). 3-D fibrous assemblies: Properties, applications and modelling of three-dimensional textile structures. Boca Raton: 

CRC Press.
Kale, S. (2015). Rotating disk shedding system for producing a woven 3D multilayer orthogonal interlaced fabric and its cor-

responding method (WO/2015/044956). World Intellectual Property Organization.
Kashif, M., Hamdani, S. T., Zubair, M., & Nawab, Y. (2019). Effect of interlocking pattern on short beam strength of 3D 

woven composites. Journal of Composite Materials, 53(20), 2789–2799. https​://doi.org/10.1177/00219​98319​83944​1.
Kazemahvazi, S., Khokar, N., Hallstrom, S., Wadley, H. N. G., & Deshpande, V. S. (2016). Confluent 3D-assembly of fibrous 

structures. Composites Science and Technology, 127, 95–105. https​://doi.org/10.1016/j.comps​citec​h.2016.02.034.
Khokar, N. (1996). 3D fabric-forming processes: Distinguishing between 2D-weaving, 3D-weaving and an unspecified 

non-interlacing process. Journal of the Textile Institute, 87(1), 97–106. https​://doi.org/10.1080/00405​00960​86590​59.
Khokar, N. (2001). 3D-weaving: Theory and practice. Journal of the Textile Institute, 92(2), 193–207. https​://doi.

org/10.1080/00405​00010​86595​70.
Khokar, N. (2002a). Noobing: A nonwoven 3D fabric-forming process explained. Journal of the Textile Institute, 93(1), 52–74. 

https​://doi.org/10.1080/00405​00020​86305​52.
Khokar, N. (2002b). Woven 3D fabric material (U.S. Patent No. 6,338,367). U.S. Patent and Trademark Office.
Khokar, N. (2002c). Network-like woven 3D fabric material (U.S. Patent No. 6,431,222). U.S. Patent and Trademark Office.
Khokar, N. (2005). Method and means for textile manufacture (U.S. Patent No. 6,889,720). U.S. Patent and Trademark Office.
Khokar, N. (2014). Development of innovative 2D and 3D fabric-forming processes for manufacturing reinforcements for com-

posite materials. In Proceedings of the 8th Aachen-Dresden International Textile Conference, Germany.
Khokar, N. (2016). Method and means for weaving, 3D fabric items thereof and their use (U.S. Patent No. 20160201234A1). 

U.S. Patent and Trademark Office.
Khokar, N., Hallström, S., & Winberg, F. (2019). Increasing energy absorption and reliability of beams by improved architec-

ture and web-flange junctions. Key Engineering Materials, 812, 114–119. https​://doi.org/10.4028/www.scien​tific​.net/
KEM.812.114.

Koumpias, A. S., Tserpes, K. I., & Pantelakis, S. (2014). Progressive damage modelling of 3D fully interlaced woven com-
posite materials: Progressive damage modelling of 3D woven fabrics. Fatigue & Fracture of Engineering Materials & 
Structures, 37(7), 696–706. https​://doi.org/10.1111/ffe.12142​.

Kramrisch, S. (1968). Unknown India: Ritual art in tribe and village. Philadelphia Museum of Art.
Mouritz, A. P. (2008). Tensile fatigue properties of 3D composites with through-thickness reinforcement. Composites Sci-

ence and Technology, 68(12), 2503–2510. https​://doi.org/10.1016/j.comps​citec​h.2008.05.003.
Mouritz, A. P., Bannister, M. K., Falzon, P. J., & Leong, K. H. (1999). Review of applications for advanced three-dimensional 

fibre textile composites. Composites Part A: Applied Science and Manufacturing, 30(12), 1445–1461. https​://doi.
org/10.1016/S1359​-835X(99)00034​-2.

Nawab, Y., Legrand, X., & Koncar, V. (2012). Study of changes in 3D-woven multilayer interlock fabric preforms while form-
ing. Journal of the Textile Institute, 103(12), 1273–1279. https​://doi.org/10.1080/00405​000.2012.67626​7.

Ogin, S. L., & Potluri, P. (2016). Textile-reinforced composite materials. Handbook of technical textiles (pp. 1–26). New York: 
Elsevier. https​://doi.org/10.1016/B978-1-78242​-465-9.00001​-X.

Parnas, R. S., Howard, J. G., Luce, T. L., & Advani, S. G. (1995). Permeability characterization. Part 1: A proposed standard 
reference fabric for permeability. Polymer Composites, 16(6), 429–445. https​://doi.org/10.1002/pc.75016​0602.

https://doi.org/10.1007/s12221-010-0104-y
https://doi.org/10.1177/0040517511435013
https://doi.org/10.1177/0040517516669075
https://doi.org/10.1177/0040517513487791
https://doi.org/10.1177/0040517513499437
https://doi.org/10.1177/0040517508099395
https://doi.org/10.1177/0040517508099395
http://biteam.com/profiled-3d-woven-reinforcements.htm
https://doi.org/10.1177/089270579400700306
https://doi.org/10.1016/j.compstruct.2019.110893
https://doi.org/10.1177/0021998310369586
https://doi.org/10.1177/0021998319839441
https://doi.org/10.1016/j.compscitech.2016.02.034
https://doi.org/10.1080/00405009608659059
https://doi.org/10.1080/00405000108659570
https://doi.org/10.1080/00405000108659570
https://doi.org/10.1080/00405000208630552
https://doi.org/10.4028/www.scientific.net/KEM.812.114
https://doi.org/10.4028/www.scientific.net/KEM.812.114
https://doi.org/10.1111/ffe.12142
https://doi.org/10.1016/j.compscitech.2008.05.003
https://doi.org/10.1016/S1359-835X(99)00034-2
https://doi.org/10.1016/S1359-835X(99)00034-2
https://doi.org/10.1080/00405000.2012.676267
https://doi.org/10.1016/B978-1-78242-465-9.00001-X
https://doi.org/10.1002/pc.750160602


Page 31 of 31Perera et al. Fash Text            (2021) 8:11 	

Pearce, N. R. L., Guild, F. J., & Summerscales, J. (1998). An investigation into the effects of fabric architecture on the 
processing and properties of fibre reinforced composites produced by resin transfer moulding. Composites Part A: 
Applied Science and Manufacturing, 29(1–2), 19–27. https​://doi.org/10.1016/S1359​-835X(97)00028​-6.

Stig, F. (2019). Framework to facilitate textile composite modelling. In Proceedings of the 2019 NAFEMS World Congress, 
Canada.

Stig, F., & Hallström, S. (2009). Assessment of the mechanical properties of a new 3D woven fibre composite material. 
Composites Science and Technology, 69(11–12), 1686–1692. https​://doi.org/10.1016/j.comps​citec​h.2008.04.047.

Stig, F., & Hallström, S. (2012a). A modelling framework for composites containing 3D reinforcement. Composite Structures, 
94(9), 2895–2901. https​://doi.org/10.1016/j.comps​truct​.2012.03.009.

Stig, F., & Hallström, S. (2012b). Spatial modelling of 3D-woven textiles. Composite Structures, 94(5), 1495–1502. https​://doi.
org/10.1016/j.comps​truct​.2011.12.003.

Stig, F., & Hallström, S. (2013). Influence of crimp on 3D-woven fibre reinforced composites. Composite Structures, 95, 
114–122. https​://doi.org/10.1016/j.comps​truct​.2012.07.022.

Stig, F., & Hallström, S. (2020). Extended framework for geometric modelling of textile architectures. Composite Structures, 
244, 112239. https​://doi.org/10.1016/j.comps​truct​.2020.11223​9.

Stig, F., Tahir, M. W., Åkermo, M., & Hallström, S. (2015). An experimental study of the influence from fibre architecture on 
the permeability of 3D-woven textiles. Journal of Reinforced Plastics and Composites, 34(17), 1444–1453. https​://doi.
org/10.1177/07316​84415​59335​1.

Tahir, M. W., Stig, F., Åkermo, M., & Hallström, S. (2015). A numerical study of the influence from architecture on the perme-
ability of 3D-woven fibre reinforcement. Composites Part A: Applied Science and Manufacturing, 74, 18–25. https​://doi.
org/10.1016/j.compo​sites​a.2015.02.019.

Tong, L., Mouritz, A. P., & Bannister, M. K. (2002). 3D fibre reinforced polymer composites (1st ed.). New York: Elsevier.
Umair, M., Hamdani, S. T. A., Asghar, M. A., Hussain, T., Karahan, M., Nawab, Y., & Ali, M. (2018). Study of influence of inter-

locking patterns on the mechanical performance of 3D multilayer woven composites. Journal of Reinforced Plastics 
and Composites, 37(7), 429–440. https​://doi.org/10.1177/07316​84417​75105​9.

Umair, M., Hamdani, S. T. A., Nawab, Y., Asghar, M. A., & Hussain, T. (2019). Compression and recovery behavior of three-
dimensional woven spacer composites. Journal of Industrial Textiles. https​://doi.org/10.1177/15280​83719​87447​7.

Umair, M., Nawab, Y., Malik, M. H., & Shaker, K. (2015). Development and characterization of three-dimensional woven-
shaped preforms and their associated composites. Journal of Reinforced Plastics and Composites, 34(24), 2018–2028. 
https​://doi.org/10.1177/07316​84415​60895​8.

Vassiliadis, S., Kallivretaki, A., Domvoglou, D., & Provatidis, C. (2011). Mechanical analysis of woven fabrics: The State of the 
Art. In S. Vassiliadis (Ed.), Advances in modern woven fabrics technology. InTech: Rijeka. https​://doi.org/10.5772/25255​.

Weerasinghe, S., Osara, E. V., Senarathna, K., Senarath, S., & Fernando, E. (2017). Method and apparatus to weave a fully 
interlaced three-dimensional textile structure. In Proceedings of the 2017 Moratuwa engineering research conference, 
Sri Lanka (pp 187–192). https​://doi.org/10.1109/MERCo​n.2017.79804​79.

Xiao, X., Zeng, X., Long, A., & Endruweit, A. (2011). Modeling of through-thickness permeability for 3D woven fabrics. In 
Proceedings of the 3rd world conference on 3D fabrics and their applications, China (pp. 206–211).

Yang, C., Kim, Y. K., Qidwai, U. A., & Wilson, A. R. (2004). Related strength properties of 3D fabrics. Textile Research Journal, 
74(7), 634–639. https​://doi.org/10.1177/00405​17504​07400​714.

Zhang, D., Sun, Y., Chen, L., & Pan, N. (2013). A comparative study on low-velocity impact response of fabric composite 
laminates. Materials & Design, 50, 750–756. https​://doi.org/10.1016/j.matde​s.2013.03.044.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/S1359-835X(97)00028-6
https://doi.org/10.1016/j.compscitech.2008.04.047
https://doi.org/10.1016/j.compstruct.2012.03.009
https://doi.org/10.1016/j.compstruct.2011.12.003
https://doi.org/10.1016/j.compstruct.2011.12.003
https://doi.org/10.1016/j.compstruct.2012.07.022
https://doi.org/10.1016/j.compstruct.2020.112239
https://doi.org/10.1177/0731684415593351
https://doi.org/10.1177/0731684415593351
https://doi.org/10.1016/j.compositesa.2015.02.019
https://doi.org/10.1016/j.compositesa.2015.02.019
https://doi.org/10.1177/0731684417751059
https://doi.org/10.1177/1528083719874477
https://doi.org/10.1177/0731684415608958
https://doi.org/10.5772/25255
https://doi.org/10.1109/MERCon.2017.7980479
https://doi.org/10.1177/004051750407400714
https://doi.org/10.1016/j.matdes.2013.03.044

	Evolution of 3D weaving and 3D woven fabric structures
	Abstract 
	Introduction
	History of weaving
	Introduction to 3D woven fabrics
	3D woven fabric forming methods

	Analysis of the existing research on 3D fully interlaced preform weaving
	Existing 3D fully interlaced preform weaving devices
	Shedding mechanisms
	Dual-directional shedding mechanism disclosed by Fukuta et al. (1982)
	Linear–linear method of dual-directional shedding
	Linear–angular method of dual-directional shedding
	Rotating disk shedding mechanism
	Dual-directional shedding in circular weaving

	Picking and beat-up mechanisms
	Warp let-off and fabric take-up mechanisms

	Analysis of the existing literature on 3D woven 3D fabric structures
	Different structures and characteristics
	Mechanical and permeability properties
	Modelling of 3D woven 3D fabric structures

	Discussion
	Possible future directions and challenges

	Conclusion
	Acknowledgements
	References




