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Abstract

In this paper, we discuss partial differential equations with multiple scales for which
scale resolution is needed in some subregions, while a separation of scale and
numerical homogenization is possible in the remaining part of the computational
domain. Departing from the classical coupling approach that often relies on artificial
boundary conditions computed from some coarse grain simulation, we propose a
coupling procedure in which virtual boundary conditions are obtained from the
minimization of a coarse grain and a fine-scale model in overlapping regions where
both models are valid. We discuss this method with a focus on interface control and a
numerical strategy based on non-matching meshes in the overlap. A fully discrete a
priori error analysis of the heterogeneous coupled multiscale method is derived, and
numerical experiments that illustrate the efficiency and flexibility of the proposed
strategy are presented.
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1 Introduction
The past few years have witnessed a growing number of new numerical schemes for
multiscale problems. Broadly speaking, the numerical challenge for the approximation of
such problems is to avoid scale resolution, i.e., the use of a fine mesh that resolves the
smallest scale in the problem. Indeed, such direct approaches are often computationally
too expensive for practical applications. In this paper, we consider in a polygonal domain
Ω ⊂ R

d, d = 1, 2, 3, with boundary Γ = ΓD ∪ ΓN , the model problem

−div (aε∇uε) = f in Ω ,

uε = gD onΓD,

n · (aε∇uε) = gN on ΓN , (1)

where f ∈ L2(Ω), gD ∈ H1/2(ΓD), and gN ∈ L2(ΓN ), and where aε ∈ (L∞(Ω))d×d is a
highly oscillatory tensor that satisfies, for 0 < α < β ,

α|ξ |2 ≤ aε(x)ξ · ξ , |aε(x)ξ | ≤ β|ξ | ∀ξ ∈ R
d, for a.e. x ∈ R. (2)
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For such a problem, one can identify two broad classes of multiscale methods, namely
numerical methods that seek to approximate an effective solution of the original problems
in which the small scales have been averaged out. The existence of such effective solutions
usually relies on homogenization theory [9,21]. The attractivity of such methods is the
possibility to obtain numerical approximations that correctly describe the macroscopic
behavior of the multiscale problem at a cost that, however, is independent of the smallest
scale. Another class of multiscale methods aims at building coarse basis functions that
encode the multiscale oscillations in the problem. This class of methods usually comes
with a cost that is no longer independent of the small scale, but the construction of the
basis functions can be localized and, once constructed, this basis can often be reused
in a multi-query context. We refer to [5] for a review and references of the first class
of methods and to [15,20,23] for review and references of the second class of methods.
The framework that makes the first class of methods efficient is that of a simultaneous
coupling of a macro- and a micro-method. In such approach, a separation of the scales is
often required. The second class ofmethods solves the fine-scale problems on overlapping
patches, and it has recently been shown that convergences can also be obtained without
assuming scale separation [20,23].
In this contribution, we address an intermediate situation between separated and non-

separated scales in the following sense: we assume that in a subsetω2 of the computational
domain Ω the macro-/micro-upscaling strategy can be applied but that in an other part
ω of the domain one needs full resolution of the scales. Here we assume that this second
domain is sufficiently small so that standard resolved finite element method (FEM) can
be used. In the region ω2, we chose to use the finite element heterogeneous multiscale
method (FE-HMM) [2]. While our method easily generalizes to multiple regions with and
without scale separation, we assume here for simplicity that Ω = ω2 ∪ ω. The main issue
for such a coupling strategy is to set adequate boundary conditions at the interfaces of
both computational domains.We note that such problems have numerous applications in
the sciences; we mention, for example, heterogeneous structures with defects [10,16] or
steady flow problems with singularities [17]. Coupling strategies between fine-scale and
upscaled models have already been studied in the literature, for example, in [27] where a
precomputed global homogenized solution is used to provide the boundary conditions in
the fine-scale subregions. More recently, a coupling strategy based on an L2 projection of
the homogenized solution onto harmonic fine-scale functions has been discussed [8].
The aim of this paper is to pursue the study of a new approach that we have proposed in

[6,7] relying on an optimization-based coupling strategy. By introducing small overlap-
ping regionω0 betweenω2 andω, where both fine-scale and homogenizedmodel are valid,
we consider the unknown boundary conditions for both models as (virtual) control and
minimize the discrepancy of the solutions from the twomodels in the overlap. Two possi-
ble scenarios are illustrated in Fig. 1. Such ideas have appeared earlier in the literature for
coupling different type of partial differential equations [18] or for atomistic-to-continuum
methods [28]. We also note, related to our method, the recent work on the coupling of
local and nonlocal diffusion models [13].
We briefly describe the main contribution of this paper. First, in [7], the theory and the

numerics have been developed for the cost function ‖·‖L2(ω0), called distributed observa-
tion in the classical terminology of optimal control. Here we consider the cost function
‖·‖L2(Γ1∪Γ2), called boundary or interface control. Such controls can reduce the cost of
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Fig. 1 Two scenarios for the domain decomposition of Ω

the iterative method to solve the optimality system compared to the cost of solving the
optimization problem with distributed observation [14]. Second, in [7] we used the same
mesh in the overlap ω0 with the consequence of having to use a mesh size that scales
with the fine mesh of ω. Here we discuss the use of independent meshes in the over-
lap through appropriate interpolation techniques. As a result, we have again a significant
reduction in the computational cost of the coupling as themacroscopic numericalmethod
in ω2 = Ω \ ω does not need an increasing number of micro-solvers as the mesh in ω1 is
refined. Finally, numerical examples were carried out in [7] only for the situation where
ω � Ω (Fig. 1, left); here we discuss also the scenario for which ∂ω∩∂Ω �= ∅ (Fig. 1, right).
The paper is organized as follows. In Sect. 2, we describe the model problem, introduce

the two minimization costs functions considered in this paper, and give an a priori error
analysis between the coupled and the fine-scale solutions. In Sect. 3, we define the multi-
scale numerical discretization of the optimization problem and perform a fully discrete a
priori error analysis. Finally, Sect. 4 contains several numerical experiments that illustrate
the theoretical results and the performance of the new coupling strategy.

Notations In what follows, C > 0 is used to denote a generic constant independent of ε.
We consider the usual Sobolev space H1(Ω) = {u ∈ L2(Ω) | Dru ∈ L2(Ω), |r| ≤ 1},
where r ∈ N

d, |r| = r1 + · · · + rd and Dr = ∂
r1
1 . . . ∂

rd
d . The notation | · | stands

for the standard Euclidean norm in R
d . Let Y denote the unit cube (0, 1)d and define

W 1
per(Y ) := {v ∈ H1

per(Y ) | ∫
Y vdy = 0} where the set H1

per(Y ) is the closure of C∞
per(Y ) for

the H1 norm.

2 Problem formulation
Let ω ⊂ Ω be the region without scale separation and ω0 be the overlap region. Assume
thatΓ1 = ∂ω1 \Γ andΓ2 = ∂ω2 \Γ are Lipschitz continuous boundaries.We decompose
the tensor aε of problem (1) into aε = aω + aε

2, where a
ε
2 = aε1ω2 and aω = aε1ω are

tensorswith andwithout scale separation, respectively. The tensoraε
2H-converges toward

an homogenized tensor a02 [25]. Further, we set a1 = aε1ω1 , u1 = uε
1, and u2 = u02. The

heterogeneous control restricted to Dirichlet boundary controls is given by the following
problem: find uε

1 ∈ H1(ω1) and u02 ∈ H1(ω2), such that 1
2

∥
∥uε

1 − u02
∥
∥2
H is minimized under

the following constraints, for i = 1, 2,
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−div (ai∇ui) = f in ωi,
ui = θi on Γi,
ui = gD on ∂ωi ∩ ΓD,

n · (ai∇vi) = gN on ∂ωi ∩ ΓN ,

(3)

where the boundary conditions θi, called the virtual controls, are to be determined;
(H, ‖·‖H) is a Hilbert space specified below. Further, we define the space of admissible
Dirichlet controls

UD
i = {

μi ∈ H1/2(Γi) | ∃u ∈ H1(ωi), u|Γi = μi, in the sense of the trace
}
.

The strategy is to solve a minimization problem in the space of admissible controls, where
we minimize the cost

J (θ1, θ2) = 1
2

∥
∥uε

1(θ1) − u02(θ2)
∥
∥2
H .

In this paper, two Hilbert spaces (H, ‖·‖H) are considered.

Case 1. Minimization in L2(ω0), with

J (θ1, θ2) = 1
2

∥
∥uε

1(θ1) − u02(θ2)
∥
∥2
L2(ω0) . (case 1)

Case 2. Minimization in L2(Γ1 ∪ Γ2), with

J (θ1, θ2) = 1
2

∥
∥uε

1(θ1) − u02(θ2)
∥
∥2
L2(Γ1∪Γ2) . (case 2)

The solutions are split into

uε
1(θ1) = uε

1,0 + vε
1(θ1), u02(θ2) = u02,0 + v02(θ2),

where (vε
1, v

0
2) are called the state variables and satisfy, for i = 1, 2,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−div (ai∇vi) = 0 in ωi,
vi = θi on Γi,
vi = 0 on ∂ωi ∩ ΓD,

n · (ai∇vi) = 0 on ∂ωi ∩ ΓN ,

(4)

where v1 = vε
1, and v2 = v02. The functions ui,0 are solutions of problem (3) with zero

controls on Γi, for i = 1, 2. LetH1
D(ωi), i = 1, 2, denote the functions inH1(ωi) that vanish

on ∂ωi ∩ ΓD. The solutions uε
1,0 and u02,0 exist and are unique, thank to the Lax–Milgram

lemma, and the solutions vε
1 and v02 can be uniquely determined if the controls θ1 and θ2

are known. As uε
1,0 and u02,0 are independent of the virtual controls (θ1, θ2), they can be

computed beforehand.
The well posedness of the optimization problem is proved following Lions [22]. The key

point consists in proving that the cost function induces a norm over U = (UD
1 ,UD

2 ). One
consider then the completion of U (still denoted by U ) with respect to the cost induced
norm, and the minimization problem admits a unique solution (θ1, θ2) ∈ U satisfying the
Euler–Lagrange formulation

∫

O

(
vε
1 (θ1) − v02 (θ2)

) (
vε
1 (μ1) − v02 (θ2)

)
dx

= −
∫

O

(
vε
1 (μ1) − v02 (μ2)

) (
uε
1,0 − u02,0

)
dx, (5)
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for all (μ1,μ2) ∈ U , and whereO is either ω0 or Γ1 ∪ Γ2. While the optimization problem
with the cost function of case 1 has been considered in [7], we prove that the optimal
controls problem is well posed with the cost function of case 2.
For the homogenization theory (H-convergence), we consider a family of problems (1)

indexed by ε. In what follows, we will often assume ε ≤ ε0, where ε0 is a parameter used
in a strong Cauchy–Schwarz inequality (see Lemma 6.3). We assume that θi ∈ UD

i and
hence ui(θi) is in H1(ωi), for i = 1, 2.

2.1 Minimization over Γ1 ∪ Γ2

As a fist step, we write the cost in terms of the state variables vε
1 and v02,

J (θ1, θ2) = 1
2

∥
∥vε

1 (θ1) − v02 (θ2)
∥
∥2
L2(Γ1∪Γ2) + ∥

∥(
vε
1 (θ1) − v02 (θ2)

) (
uε
1,0 − u02,0

)∥∥2
L2(Γ1∪Γ2)

+ 1
2

∥
∥uε

1,0 − u02,0
∥
∥2
L2(Γ1∪Γ2)

.

We set

π ((θ1, θ2) , (μ1,μ2)) =
∫

Γ1∪Γ2

(
vε
1 (θ1) − v02 (θ2)

) (
vε
1 (μ1) − v02 (θ2)

)
ds

and show that π induce a norm over U .

Lemma 2.1 The bilinear form π is a scalar product over U .

Proof The symmetry and positivity are clear, and it remains to prove that the form is
positive definite; π (θ1, θ2) = 0 if and only if θ1 = 0 and θ2 = 0. We use the short-hand
notation π (θ1, θ2) to denote π ((θ1, θ2), (θ1, θ2)).
Assuming that θ1 and θ2 are zero, the state variables vε

1 and v
0
2 are solutions of boundary

value problems with zero data; thus, vε
1 and v02 are zero over ω1 and ω2, respectively. This

leads to π (θ1, θ2) = 0.
Assume now that π (θ1, θ2) = 0. It holds that

∫

Γ1∪Γ2
(vε

1(θ1) − v02(θ2))
2ds =

∫

Γ1
(θ1 − v02(θ2))

2ds +
∫

Γ2
(vε

1(θ1) − θ2)2ds = 0,

and
∫

Γ1
(θ1 − v02(θ2))

2ds = 0,
∫

Γ2
(vε

1(θ1) − θ2)2ds = 0.

This implies that vε
1(θ1)|Γ1 = θ1 = v02(θ2)|Γ1 a.e. and v02(θ2)|Γ2 = θ2 = vε

1|Γ2 (θ1) a.e. As vε
1

and v02 are H1 functions on ω1 and ω2, respectively, we obtain
∥
∥θ1 − v02(θ2)

∥
∥
H1/2(Γ1) = 0 and

∥
∥vε

1(θ1) − θ2
∥
∥
H1/2(Γ2) = 0.

We now use H-convergence on the tensor aε
1, to obtain an homogenized tensor a01 in ω1.

It holds that vε
1 converges weakly in H1 toward v01 the homogenized solution of

−div (a01(x)∇v01) = 0 in ω1,

v01 = θ1 on Γ1,

v01 = 0 on ∂ω1 ∩ ΓD,

n · (a01(x)∇v01) = 0 on ∂ω1 ∩ ΓN .
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Using the compact embedding of H1 in L2, the solution vε
1 converges strongly, up to a

subsequence, toward v01 in L2, and it holds that
∥
∥v01 − v02

∥
∥
L2(Γ1∪Γ2) = lim

ε→0

∥
∥vε

1 − v02
∥
∥
L2(Γ1∪Γ2) = 0,

hence v01|Γ2 = θ2 = v02|Γ2 . Consequently, it holds
∥
∥v01 − v02

∥
∥
H1/2(Γ1∪Γ2) = 0.

Using the strong Cauchy–Schwarz lemma, Lemma 6.3, we obtain
∥
∥v01 − v02

∥
∥2
H1(ω0) ≥ ∥

∥v01 − v02
∥
∥2
L2(ω0)

≥ (1 − Cs)
(∥
∥v01

∥
∥2
L2(ω0) + ∥

∥v02
∥
∥2
L2(ω0)

)
,

where Cs < 1 is the strong Cauchy–Schwarz constant. The tensors a02 and a01 are equal
in the overlapping region ω0, due to the locality of H-convergence, the difference v01 − v02
satisfies

−div
(
a02∇

(
v01 − v02

)) = 0 in ω0,

and one can bound theH1 norm over ω0 by theH1/2 norm over its boundary Γ1 ∪Γ2; i.e.,
∥
∥v01 − v02

∥
∥
H1(ω0) ≤ C

∥
∥v01 − v02

∥
∥
H1/2(Γ1∪Γ2) = 0.

Collecting the results leads to v01 = 0 and v02 = 0 a.e. in ω0. Further from the Caccioppoli
inequality, Theorem 6.1, it holds v01 = 0 a.e. in ω1 and v02 = 0 a.e. in ω2. We can conclude
that θi = 0 a.e. in Γi, i = 1, 2, by using the trace inequality; i.e.,

‖θi‖H1/2(Γi) ≤ C
∥
∥v0i

∥
∥
H1(ωi) = 0.

��
The norm induced from the scalar product π is given by

∥
∥(μ1,μ2)

∥
∥
L∗(U) :=

(∫

O
(vε

1(μ1) − v02(μ2))2dx
)1/2

, ∀(μ1,μ2) ∈ U , (6)

whereO is either ω0 or Γ1 ∪ Γ2.

2.2 A priori error analysis

Let uε be the solution of the heterogeneous problem (1), and let us derive a priori error
bounds between uε and the solution of the coupling

ū =
⎧
⎨

⎩

uε
1(θ1) in ω+,

urec2 (θ2) in Ω \ ω+,
(7)

where urec2 is the reconstructed homogeneous solution u02, given by problem CITE, with
periodic correctors, and ω+ is a subdomain of Ω such that ω ⊆ ω+ ⊆ ω1. The recon-
structed homogeneous solution needs to be considered here instead of u02, as the later is
a good approximation of the heterogeneous solution uε only in the L2 norm, but fails in
the H1 norm. The term urec2 is given by

urec2 (x) = u02(x) + ε

d∑

j=1
χ j(x, x/ε)

∂u02(x)
∂xj

, x ∈ Ω\ω+, (8)

where u02 = u02(θ2).
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We consider the cost function of case 2, and we refer to [7] for an analysis of case 1. For
ε fixed, we consider a homogenized problem on ω2 with boundary conditions on Γ2 given
by the trace of the heterogeneous solution uε . The problem reads: find u0 the solution of

−div (a02∇u0) = f in ω2,
u0 = γ2(uε) on Γ2,
u0 = gD on ∂ω2 ∩ ΓD,

n · (a02∇u0) = gN on ∂ω2 ∩ ΓN ,

(9)

where γ2 : H1(ω2) → H1/2(Γ2) denotes the trace operator on Γ2. Similarly, we define the
trace operator γ1 on Γ1. Assuming that the tensor aε

2 is periodic in the fast variable, i.e.,
aε
2(x) = a2(x, x/ε) = a2(x, y) is Y -periodic in y, where Y = (0, 1)d , explicit equations are

available to compute the homogenized tensor a02

a02(x) = 1
|Y |

∫

Y
a2(x, y) (I + ∇χ ) dy,

where ∇χ = (∇χ1, . . . ,∇χd) and I is the d × d identity matrix. The functions χ j ∈
W 1

per(Y ) are called the first-order correctors and, for j = 1, . . . , d, χ j is solution of the cell
problem

∫

Y
a2(x, y)∇χ j · ∇vdy = −

∫

Y
a2(x, y)ej∇vdy, ∀v ∈ W 1

per(Y ),

with periodic boundary conditions, and where (ei)di=1 denotes the canonical basis of R
d .

Assuming sufficient regularity on u0 and on χ j , it can be proved that
∥
∥uε − u0

∥
∥
L2(ω2) ≤ Cε, (10)

where the constant is independent of ε. For proofs, we refer to [9,21,24].

Estimates for the fine solution Let us define an operator P : U → H1(ω1)×H1(Ω \ω1)
such that

P(μ1,μ2) �→
⎧
⎨

⎩

uε
1(μ1) in ω1,

u02(μ2) in Ω \ ω1.

It can be split into P = Q + U0, where Q : U → H1(ω1) × H1(Ω \ ω1) is defined by

Q(μ1,μ2) �→
⎧
⎨

⎩

vε
1(μ1) in ω1,

v02(μ2) in Ω \ ω1,

where the state variables vε
1 and v

0
2 are solutions of (4) for i = 1, 2, respectively, and where

U0 is given by

U0 =
⎧
⎨

⎩

uε
1,0 in ω1,

u02,0 in Ω \ ω1.

For the cost function of case 1, it has been shown in [7] that the operator Q is bounded
in the operator norm, i.e.,

‖Q‖ := sup
(μ1,μ2)∈U

Q(μ1,μ2)∥
∥(μ1,μ2)

∥
∥
L∗(U)

≤ C.
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Here we assume that Q is bounded for the norm in U induced by the scalar product (6)
for the cost function of case 2.

Theorem 2.2 Let uε be solution of (1) and ū be given by (7). Assume that u0 and χ j are
smooth enough for (10) to hold, and that ‖Q‖ ≤ C. Then we have

∥
∥uε − ū

∥
∥
H1(ω+) ≤ Cε,

where the constant C depends on the constant of the Caccioppoli inequality, the bound
‖Q‖, and the trace constants associated with the trace operators γ1 and γ2 on Γ1 and Γ2,
respectively.

To prove Theorem 2.2, we note that the difference uε − ū is aε
1-harmonic in ω1; thus,

Caccioppoli inequality (see Theorem 6.1) can be applied,

∥
∥uε − ū

∥
∥
H1(ω+) ≤ C

1
τ

∥
∥uε − ū

∥
∥
L2(ω1)

= C
1
τ

∥
∥P(γ1(uε), γ2(uε)) − P(θ1, θ2)

∥
∥
L2(ω1)

≤ C
τ

‖Q‖ ∥
∥(γ1(uε), γ2(uε)) − (θ1, θ2)

∥
∥
L∗(U) . (11)

Assuming that ‖Q‖ is bounded and using Lemmas 2.3 and 6.2, we can show that
∥
∥(γ1(uε), γ2(uε)) − (θ1, θ2)

∥
∥
L∗(U) is bounded by Cε, which concludes the proof of The-

orem 2.2.

Lemma 2.3 Let uε and u0 solve (1) and (9), respectively, and let (θ1, θ2) ∈ U be the optimal
virtual controls. Then

∥
∥(

γ1(uε), γ2(uε)
) − (θ1, θ2)

∥
∥
L∗(U) ≤ ∥

∥uε − u0
∥
∥
L2(Γ1∪Γ2) .

Proof From the definition, it holds

∥
∥
(
γ1(uε), γ2(uε)

) − (θ1, θ2)
∥
∥
L∗(U)

= sup
(μ1 ,μ2)∈U

|π(
(γ1(uε), γ2(uε)), (μ1,μ2)

) − π
(
(θ1, θ2), (μ1,μ2)

)|
∥
∥(μ1,μ2)

∥
∥
L∗(U)

.

We look at the numerator. As the pair (θ1, θ2) minimizes the cost function J , the Euler–
Lagrange formulation (5) holds and

π ((γ1 (uε) , γ2 (uε)) , (μ1,μ2)) − π ((θ1, θ2), (μ1,μ2))

=
∫

Γ1∪Γ2

(
vε
1 (γ1 (u

ε)) − v02 (γ2 (u
ε))

) (
vε
1 (μ1) − v02 (μ2)

)
ds

+
∫

Γ1∪Γ2

(
vε
1 (μ1) − v02 (μ2)

) (
uε
1,0 − u02,0

)
ds

=
∫

Γ1∪Γ2

((
vε
1 (γ1 (u

ε)) + uε
1,0

) − (
v02 (γ2 (u

ε)) + u02,0
)) (

vε
1 (μ1) − v02 (μ2)

)
ds

=
∫

Γ1∪Γ2

(
uε − u0

) (
vε
1 (μ1) − v02 (μ2)

)
ds ≤ ∥

∥uε − u0
∥
∥
L2(Γ1∪Γ2)

∥
∥(μ1,μ2)

∥
∥
L∗(U) .

The result follows. ��
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The next lemma gives an upper bound to the norm in Lemma 2.3.

Lemma 2.4 Let uε and u0 be solution of (1) and (9), respectively. Assume that u0 and χ j

have enough regularity for (10) to hold. Then
∥
∥uε − u0

∥
∥
L2(Γ1∪Γ2) ≤ Cε,

where the constant C is independent of ε.

Proof It holds

∥
∥uε − u0

∥
∥
L2(Γ1∪Γ2) ≤ ∥

∥uε − u0
∥
∥
L2(Γ1) + ∥

∥uε − u0
∥
∥
L2(Γ2) .

Using the continuity of the traces, the first term can be bounded by
∥
∥uε − u0

∥
∥
L2(Γ1) ≤ C

∥
∥uε − u0

∥
∥
L2(ω2) ≤ Cε,

whereas the second term is zero because u0|Γ2 = γ2(uε) = uε|Γ2 . This prove the result.
��

The proof of Theorem 2.2 follows from (11) and Lemmas 2.3 and 2.4.

Estimates for the coarse solution The a priori error estimates to the coarse-scale solver
follow from [7, Theorem 3.6] using Lemma 2.4. We skip the details.

Theorem 2.5 Let uε be solution of (1) and urec2 (θ2) be given by (8). Let a2(x, y) ∈
C(ω2; L∞

per(Y )) and χ j ∈ Wper(Y ), j = 1, . . . , d. If in addition, uε ∈ H2(Ω), u02(θ2) ∈
H2(ω2), and χ j ∈ W 1,∞(Y ), j = 1, . . . , d, it holds

∥
∥uε − urec2 (θ2)

∥
∥
H1(Ω\ω+) ≤ Cε1/2,

where the constant C is independent of ε, but depends on τ , τ+, and the ellipticity constants
of aε

2.

3 Fully discrete couplingmethod
In this section, we describe the fully discrete overlapping coupling method and perform
an a priori error analysis. The fine-scale solver requires a triangulation of size h̃ sufficiently
small to resolve the multiscale nature of the tensor. In contrast, the coarse-scale solver on
ω2 takes full advantage of the scale separation and allows for a mesh size larger than the
fine scale.We use the FEM inω1 and the FE-HMM inω2. As the finite elements of the fine
and coarse meshes in ω0 are different, an interpolation between the two meshes should
be considered. One can also chose to use the same finite elements in the overlap, leading
to a discontinuity at Γ1 in the mesh over ω2. In that latter situation, the discontinuous
Galerkin FE-HMM [4] should be used instead of the FE-HMM.
In what follows, we consider for simplicity the problem (1) with homogeneous Dirichlet

boundary conditions, i.e., we set gD = 0 and ΓN = ∅. Further, we assume that ε is
small enough so that we can use the strong Cauchy–Schwarz lemma (Lemma 6.3) and its
discrete version (Lemma 6.5) hold.

Numerical method for the fine-scale problem Let Th̃ be a partition of ω1, in simplicial
or quadrilateral elements, with mesh size h̃ � ε where h̃ = maxK∈Th̃ hK , and hK is the
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diameter of the element K . In addition, we suppose that the family of partitions {Th̃} is
admissible and shape regular [11], i.e.,

(T1) admissible: ω1 = ∪K∈ThK and the intersection of two elements is either empty, a
vertex, or a common face;

(T2) shape regular: there exists σ > 0 such that hK /ρK ≤ σ , for all K ∈ Th̃ and for all
Th̃ ∈ {Th̃}, where ρK is the diameter of the largest circle contained in the element K .

For each partition Th̃ of the family {Th̃}, we define a FE space in ω1

Vp
D(ω1,Th̃) = {

w ∈ H1
D(ω1) | w|K ∈ Rp(K ), ∀K ∈ Th̃

}
,

whereRp is the spacePp of polynomials of degree atmost p onK ifK is a triangle, and the
space Qp of polynomials of degree at most p in each variable if K is a rectangle. Further,
Vp
0 (ω1,Th̃) denotes the space of functions in Vp

D(ω1,Th̃) that vanish on ∂ω1.
Let u1,h̃ be the numerical approximation of uε

1 satisfying problem (3) for i = 1. We can
split u1,h̃ into u1,h̃ = u1,0,h̃ + v1,h̃, where v1,h̃ ∈ Vp

D(ω1,Th̃) is obtained by the optimization
method and u1,0,h̃ ∈ Vp

0 (ω1,Th̃) satisfies

B1(u1,0,h̃, w1,h̃) =
∫

ω1
a1∇u1,0,h̃ · ∇w1,h̃dx = F1(w1,h̃), ∀w1,h̃ ∈ Vp

0 (ω1,Th̃),

where F1 is given by

F1(w1,h̃) =
∫

ω1
fw1,h̃dx.

Thanks to the Poincaré inequality, the coercivity and boundedness of the bilinear form
B1 can be proved; the existence and uniqueness of u1,0,h̃ follow.

Numerical method for the coarse-scale problem Let {TH } be a family of admissible
(T1) and shape regular (T2) partitions of ω2, with mesh size H = maxK∈TH hK . For each
partition TH of the family {TH }, we define a FE space over ω2

Vp
D(ω2,TH ) = {

v ∈ H1
D(ω2) | w|K ∈ Rp(K ), ∀K ∈ TH

}
,

and use Vp
0 (ω2,TH ) to denote the set of functions of Vp

D(ω2,TH ) that vanish over ∂ω2.

Quadrature formula Amacroscopic quadrature formula is given by the pair {xj,K ,ωj,K }
of quadrature nodes xj,K and weights ωj,K , for j = 1, . . . , J . The sampling domain of size δ

around each quadrature point is denoted by Kδj = xj,K + δ[−1/2, 1/2]d . We assume that
the quadrature formula verifies the necessary assumptions to guarantee that the standard
error estimates for a FEM hold [11].
The numerically homogenized tensor a0,h2 (xj,K ) is obtained using numerical solutions

of micro-problems defined in Kδj . In each sampling domain, we consider a mesh Th in
simplicial or quadrilateral elements K with mesh size h = maxK∈Th hK satisfying h < ε.
The micro-FE space is

Sq(Kδj ,Th) =
{
wh ∈ W (Kδj ) | wh|K ∈ Rq(K ), ∀K ∈ Th

}
,

where the space W (Kδj ) depends on the boundary conditions in the micro-problems;
W (Kδj ) = H1

0 (Kδj ) for Dirichlet coupling, or W (Kδj ) = W 1
per(Kδj ) for periodic coupling.
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The discrete micro-problems read: find ψ
i,h
Kδj

∈ Sq(Kδj ,Th), i = 1, . . . , d, solution of

∫

Kδj

aε
2(x)∇ψ

i,h
Kδj

· ∇wh
j dx = −

∫

Kδj

aε
2(x)ei∇wh

j dx, ∀wh
j ∈ S1(Kδj ,Th). (12)

The numerically homogenized tensor can be computed by

a0,h2 (xj,K ) = 1
|Kδj |

∫

Kδj

aε
2(x)

(
I + ∇ψh

Kδj

)
dx,

where ∇ψh
Kδj

= (∇ψ
1,h
Kδj

, . . . ,∇ψ
d,h
Kδj

). We define a macro-bilinear form B2,H (·, ·) over

Vp
D(ω2,TH ) × Vp

D(ω2,TH ),

B2,H (v2,H , w2,H ) =
∑

K∈TH

J∑

j=1
ωj,K a0,h2 (xj,K )∇v2,H (xj,K ) · ∇w2,H (xj,K ).

The numerical homogenized solution u2,H is split into u2,H = u2,0,H + v2,H , where v2,H ∈
Vp
D(ω2,TH ) is given by the coupling and u2,0,H ∈ Vp

0 (ω2,TH ) is the solution of

B2,H (u2,0,H , w2,H ) = F2(w2,H ), ∀w2,H ∈ Vp
0 (ω2,TH ),

with F2 given by

F2(w2,H ) =
∫

ω2
fw2,Hdx.

Numerical algorithm In this section, we state the discrete coupling and give the main
convergence results. The well posedness and the proofs of the errors estimates are done
in details in [7]. In what follows, we useO to denote either ω0 or Γ1 ∪ Γ2.
The solution (u1,h̃, u2,H ) ∈ Vp

D(ω1,Th̃) × Vp
D(ω2,TH ) satisfies

min
μ1,h̃ ,μ2,H

1
2

∥
∥
∥u1,h̃(μ1,h̃) − u2,H (μ2,H )

∥
∥
∥
2

L2(O)
subject to

⎧
⎨

⎩

B1(u1,h̃, w1,h̃) = F1(w1,h̃),

B2,H (u2,H , w2,H ) = F2(w2,H ),

for all w1,h̃ ∈ Vp
0 (ω1,Th̃) and w2,H ∈ Vp

0 (ω2,TH ). We introduce discrete Lagrange
multipliers for each of the constraints and obtain a discrete optimality system: find
(v1,h̃, λ1,h̃, v2,H , λ2,H ) ∈ Vp

D(ω1,Th̃) × Vp
0 (ω1,Th̃) × Vp

D(ω2,TH ) × Vp
0 (ω2,TH ) satisfying

∫

O
(v1,h̃ − v2,H )w1,h̃dx − B1(w1,h̃, λ1,h̃) = −

∫

O
(u1,0,h̃ − u2,0,H )w1,h̃dx, (13)

B1(v1,h̃, ξ1,h̃) = F1(ξ1,h̃) − B1(u1,0,h̃, ξ1,h̃), (14)
∫

O
(v2,H − v1,h̃)w2,Hdx − B2,H (w2,H , λ2,H ) =

∫

O
(u1,0,h̃ − u2,0,H )w2,Hdx, (15)

B2,H (v2,H , ξ2,H ) = F2(ξ2,H ) − B2,H (u2,0,H , ξ2,H ), (16)

for all w1,h̃ ∈ Vp
D(ω1,Th̃), ξ1,h̃ ∈ Vp

0 (ω1,Th̃), w2,H ∈ Vp
D(ω2,TH ), and ξ2,H ∈ Vp

0 (ω2,TH ).
The optimality system (13)–(16) can be written in matrix form as

(
M −B�

B 0

)

U = G, (17)
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where the unknown vector U is given by U = (v1,h̃, v2,H , λ1,h̃, λ2,H )
�, and

M({v1,h̃, v2,H }, {w1,h̃, w2,H }) =
⎛

⎝

∫
O v1,h̃w1,h̃dx − ∫

O v2,Hw1,h̃dx

− ∫
O v1,h̃w2,Hdx

∫
O v2,Hw2,Hdx

⎞

⎠ ,

B({v1,h̃, v2,H }, {λ1,h̃, λ2,H }) =
(
B1(v1,h̃, λ1,h̃) 0

0 B2,H (v2,H , λ2,H )

)

.

Fully discrete error estimates The coupling solution, denoted by ūh̃H , is defined as

ūh̃H =
⎧
⎨

⎩

u1,h̃(θ1,h̃) in ω+,
urec2,H (θ2,H ) in Ω \ ω+,

(18)

where urec2,H (θ2,H ) is a fine-scale approximation obtained from the coarse-scale solution
u2,H (θ2,H ) using a post-processing procedure in the following way. We assume that the
tensor aε

2 is Y -periodic in y, and we restrict the FE spaces to piecewise FE spaces. Periodic
coupling is then used with sampling domains Kε of size ε. The reconstructed solution
urec2,H (θ2,H ) is given by

urec2,H (x) = u2,H (x) +
d∑

j=1
ψ

j,h
Kε
(x)

∂u2,H
∂xj

(x), x ∈ K,

where ψ
j,h
Kε

are the micro-solutions of (12) in the sampling domain Kε . As the numerical
solutions might be discontinuous in ω2, we consider a broken H1 semi-norm,

‖v‖2H̄1(Ω) :=
∑

K∈Th(ω+)
‖∇v‖2L2(K ) +

∑

K∈TH (Ω\ω+)
‖∇v‖2L2(K ) .

Wenext state ourmain convergence result for the optimization-based numerical solution.
Let uH ∈ V 1

0 (ω2,TH ) be the FE-HMM approximation of the homogenized solution u0.

Theorem 3.1 (A priori error analysis inω+)Let ε0 be given by the strongCauchy–Schwarz
lemma, Lemma 6.3, and consider ε ≤ ε0. Let uε and u0 be the exact solutions of problems
(1) and (9), respectively, and ūh̃H be the numerical solution of the coupling (18). Further,
let uH ∈ V 1

0 (ω2,TH ) be the FE-HMM approximation of u0. Assume uε ∈ Hs+1(Ω), with
s ≤ 1, u0 ∈ H2(ω2), and assume that (10) holds, then

∥
∥
∥uε − u1,h̃(θ1,h̃)

∥
∥
∥
H̄1(ω+)

≤ C1h̃s|uε|Hs+1(ω1)

+ C2
τ − τ+

(
h̃s+1|uε|Hs+1(ω1) + ε + eHMM,L2

)
,

where the constants are independent of ε, H, h̃, and h, and where the HMM error eHMM,L2

is given by eHMM,L2 = ∥
∥u0 − uH

∥
∥
L2(ω2).

Proof It follows the lines of [7, Theorem 4.3], using a continuousmacro-FEM (FE-HMM)
instead of a discontinuous Galerkin FEM (DG-FE-HMM). ��
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The analysis of the error eHMM,L2 is by now standard for the FE-HMM. One decompose
the error into [2]

eHMM,L2 = ∥
∥u0 − uH

∥
∥
L2(ω2) ≤ ∥

∥u0 − u0H
∥
∥
L2(ω2)︸ ︷︷ ︸

eMAC

+ ∥
∥u0H − ūH

∥
∥
H1(ω2)︸ ︷︷ ︸

eMOD

+ ∥
∥ūH − uH

∥
∥
H1(ω2)︸ ︷︷ ︸

eMIC

,

where u0H is a FEM approximation of u0 with numerical quadrature and ūH is a semi-
discrete FE-HMM approximation of u0, where the micro-functions are in the exact
Sobolev spaceW (Kδ). Under suitable regularity assumption [12], we have

eMAC ≤ CH2,

where the constant C is independent of ε, h̃, H , and h.
Next, following [1,2] we can bound the micro- and modeling errors. If we assume the

following regularity on ψ i
Kε

∈ W (Kδ), the non-discretized micro-solutions of problem
(12),

∣
∣
∣ψ i

Kδ

∣
∣
∣
H2(Kδ )

≤ Cε−1√|Kδ| for i = 1, . . . , d,

we obtain a bound on the micro-error

eMIC ≤ C
(
h
ε

)2
,

where the constantC is independent of ε, h̃,H , and h (we recall that for the reconstruction
we use periodic boundary conditions in the micro-problems (12) over sampling domains
are of size δ = ε). If we collocate (i.e., freeze) the slow variable x to the quadrature point
xK in the tensor aε

2, i.e., we consider a
ε
2(xK , x/ε) in the macro- and micro-bilinear forms,

we obtain an optimal modeling error

eMOD = 0 with S1(Kδ ,Th) ⊂ W 1
per(Kδ),

assuming that δ/ε ∈ N>0. Without collocation, the modeling error becomes

eMOD = Cε,

where the constant C is independent of ε, h̃, H , and h.

Remark 3.2 When δ/ε /∈ N and δ > ε, Dirichlet boundary conditions are used instead of
the periodic conditions in the micro-problems (12), and the modeling error becomes

eMOD =
⎧
⎨

⎩

C1
ε
δ
, with collocation and S1(Kδ ,Th) ⊂ H1

0 (Kδ),

C2
(
δ + ε

δ

)
, without collocation and S1(Kδ ,Th) ⊂ H1

0 (Kδ),

where the constants are independent of ε,δ, h̃, H , and h.

Remark 3.3 Higher-order FE macro- and micro-spaces can also be considered, and we
refer to [2,3] for details.

Next, we state an error estimates in the coarse-scale region for the optimization-based
numerical solution with correctors.
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Theorem 3.4 (Error estimates in Ω\ω+) Let uε be the exact solution of problem (1)
and ūh̃H be the numerical solution of the coupling (18). Let aε

2(x) = a2(x, x/ε), where
a2(x, y) is Y -periodic in y and satisfies a2(x, y) ∈ C(ω2; L∞

per(Y )). Let ψ
j
Kε
(x) ∈ W 1

per(Kε),
j = 1, . . . , d. If in addition, uε ∈ H2(Ω), u02(θ2) ∈ H2(ω2), uε

1 ∈ Hs+1(ω1), with s ≤ 1, and
ψ

j
Kε
(x) ∈ W 1,∞(Kε), j = 1, . . . , d. It holds,

∥
∥urec2 (θ2) − urec2,H (θ

H
2 )

∥
∥
H̄1(Ω\ω+) ≤ C1ε

1/2 + C2

(
h
ε

)

+ C3H |u02|H2(ω2)

+ C4
τ+

(
h̃s+1|uε

1|Hs+1(ω1) + ε + H2|u02|H2(ω2)

)
.

where the constants are independent of H, h̃, h, and ε.

Proof It follows the lines of [7, Theorem 4.4], where DG-FE-HMM is replaced by FE-
HMM. ��

Remark 3.5 We note that the above theorem is also valid when using discontinuous
Galerkin macro-solver (i.e., the DG-FE-HMM [4]). This has been studied in [7] for the
cost function of case case 1. A similar proof applies for the cost function of case 2.

4 Numerical experiments
In this section, we give three numerical experiments that can be seen as a complement
of the ones carried in [7], where we focused on a minimization in L2(ω0), with interior
subdomains andmatching grids in the overlapω0. In the first experiment, we still consider
the minimization over L2(ω0) and compare matching and non-matching meshes. The
second experiment illustrates the coupling with the cost function of case 2 over Γ1 ∪ Γ2
and comparisons with the cost function of case 1 overω0. In the last example, we combine
non-matching grids and a minimization over the boundary. We observe several order of
magnitude of saving in computational cost when compared to themethod proposed in [7].
In the experiments, we will use a tensor aε which is highly heterogeneous non-periodic
and oscillate at several non-separated scales in ω, and which has scale separation in ω2,
with a locally periodic structure.

Comparison of matching and non-matching grids on the overlap

Experiment 1 For this experiment, we use the cost function of case 1

J (μ1,μ2) = 1
2

∥
∥uε

1(μ1) − u02(μ2)
∥
∥2
L2(ω0) .

Using FEM and FE-HMM in ω1 and ω2, respectively, leads to two main restrictions: the
mesh size in ω1 should be smaller than the fine scale, whereas the mesh size in ω2 can
be larger than the fine scales, in order to take full advantage of the FE-HMM. Since both
methods are defined inω0,we can chose tohave the sameFE inbothmeshes on theoverlap,
or one can impose two different meshes. With the first choice, no interpolations must be
considered between Th̃ and TH over ω0, but TH is composed of FE with mesh size as small
as the fine scales. In that situation, DG-FE-HMM is chosen instead of FE-HMMdue to the
discontinuity at the interface Γ1. The second choice requires interpolation between the
meshes in ω0, but TH is not restricted by the size of the fine mesh Th̃. We show that both
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cases give similar convergence rates, but the computational cost is significantly reduced
in the second case.

Let us consider a Dirichlet elliptic boundary value in Ω = [0, 1]2,

−div (aε∇uε) = f in Ω ,
u = 0 on ∂Ω ,

with f ≡ 1 and aε is given by

aε
2(x1, x2) = 1

6

(
1.1 + sin(2π (x1/ε)(x2/ε))

1.1 + sin(2πx2/ε)
+ sin(4x21x

2
2) + 2

)

I2,

aω(x1, x2) = 3 + 1
7

4∑

j=0

j∑

i=0

2
j + 1

cos (�8 (ix2 − x1/(i + 1))� + �150ix1� + �150x2�) .

Let xc be the center ofΩ , we considerω1 = xc+[−1/4, 1/4]I2 andω = xc+[−1/8, 1/8]I2.
Let H = 1/8, ε = 1/10, and a micro-mesh size h = ε/L, so that the micro-error is
negligible. We initialize the fine mesh to h̃ = 1/16. We use uniform simplicial meshes
in ω1 and ω2 and assume that Th̃ is obtained from TH using a uniform refinement in ω0.
This allows simplification in the interpolation between the two meshes in the overlap.
We couple the FEM over ω1 with the mesh Th̃(ω1) with the FE-HMM over ω2 with mesh
TH (ω2) and compare it with a coupling between FEMover Th̃(ω1) withDG-FE-HMMover
a mesh composed of coarse FE from TH (ω2 \ω0) with small FE from the finemesh Th̃(ω0).
The reference fine-scale solution is computed on a very finemesh, andwe compare the two
numerical solutions with the reference one. After three iterations, we plot the numerical
approximations of the fine-scale solution uε

1 and coarse-scale solution u02 (in transparent),
for a coupling with minimization of the cost function of case 1 with non-matching grid
(Fig. 2a) and with matching grids (Fig. 2b). A zoom of the coarse-scale solutions in the
overlap region ω0 is shown in Fig. 2c for the coupling with non-matching grids and in Fig.
2d with matching grids, where the coupling is performed with the cost function of case
1 (as the fine meshes become too dense after three iterations, we plot for the zoom the
solution after one iteration to better visualize the difference in the meshes).
We refine either only in ω1 for the fine-scale solver (non-matching grids) or in addition

in ω0 for the coarse-scale solver (matching grids). We set δ = ε for the sampling domains
and consider a micro-mesh size h = ε/L, so that the micro-error is negligible. Figure
3a shows the H1 norm in ω with non-matching grids (bullet) and with matching grids
(diamond); we see that the errors are similar.We alsomeasured the times, usingMATLAB
timer, to compute the numerical solutions. We see in Fig. 3b that using non-matching
grids is faster as the number of micro-problems that have to be computed with the coarse
solver, is smaller and fixed, whereas it increases when matching grids are used, causing a
significant time overhead.
The rate of convergence in ω is influenced byH and ε, and when h̃ is refined, we expect

a saturation, depending on H and ε, in the convergence. Let ε = 1/20 and initialize the
fine mesh to h̃ = 1/64. We set H = 1/8, 1/16, and 1/32 and refine h̃ in each iteration. In
Fig. 4, we plot theH1 norm between the reference and numerical solutions w.r.t the mesh
size in ω. We see indeed that the error saturates at a threshold value that depends on H .
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Fig. 2 Experiment 1: numerical solutions of the coupling with minimization of the cost function of case 1
using non-matching grids (a) and matching grids (b), zoom in ω0 of the coarse-scale solution with the cost
function of case 1 and non-matching grids (c) and with matching grids (d)
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Fig. 3 Experiment 1: a H1 norm in ω with minimization of the cost function of case 1 using non-matching
grids (bullet) and matching grids (diamond), b CPU time with the cost function of case 1 using non-matching
grids (bullet) and matching grids (diamond)

Minimization with interface control For this experiment, we compare the coupling
done with the cost function of case 1 and of case 2 on an elliptic problem with ω ⊆ Ω ,
i.e., when the boundaries of ω and Ω intersect (see Fig. 1, right picture).
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Fig. 4 Experiment 1: H1 norm between the reference and numerical solution using non-matching grids and
cost function of case 1 for different macro-mesh size H = 1/8 (dashes), H = 1/16 (dash-dots), and H = 1/32
(full)

Experiment 2 Let us consider a Dirichlet elliptic boundary value in Ω = [0, 1]2,

−div (aε∇uε) = f in Ω ,
u = 0 on ∂Ω ,

with f ≡ 1 and aε—plotted in Fig. 5b—is given by

aε
2(x1, x2) = (cos(2πx1/ε) + 2)I2,

aω(x1, x2) = 3 + 1
7

4∑

j=0

j∑

i=0

2
j + 1

cos (�8 (ix2 − x1/(i + 1))� + �150ix1� + �150x2�) .

The tensor aε in ω2 has scale separation and is Y -periodic in the fast variable, and the
homogeneous tensor a02 can be explicitly derived as

a02(x) =
⎛

⎝

(∫ 1
0

1
a(y1)dy1

)−1
0

0 2

⎞

⎠ .

Let ω1 = [0, 1/2] × y and ω = [0, 1/4] × y, with y ∈ [0, 1]. An illustration of a numerical
solution is given in Fig. 6a. At first, we consider the cost of case 1,

J (μ1,μ2) = 1
2

∥
∥uε

1(μ1) − u02(μ2)
∥
∥2
L2(ω0) .

Let ε = 1/50, and h/ε = 1/L be small enough to neglect the micro-error. We initialize
the fine mesh to h̃ = 1/128. For different macro-mesh sizes H = 1/8, 1/16, 1/32 and
1/64, we refine h̃ and monitor the convergence rates between the numerical solution of
the coupling and the reference solution. In Fig. 5a, the H1 norm is displayed for H = 1/8
(dots), H = 1/16 (dashes-dots), H = 1/32 (dashes) and H = 1/64 (full lines). One can
see that the error saturates at a value depending on the macro-mesh size H .

Now, we compare the costs of case 1 over ω0 with the cost of case 2 over Γ1 ∪ Γ2. We
fix ε = 1/10, H = 1/16, and h = ε/L small enough in order to neglect the micro-error.
We initialize the fine mesh to h̃ = 1/32 and refine the mesh only in ω1. The numerical



Abdulle and Jecker Res Math Sci (2017) 4:28 Page 18 of 23
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H = 1/8
H = 1/16
H = 1/32
H = 1/64

(a) (b)

Fig. 5 Experiment 2: a H1 errors between the numerical and the reference solutions in ω using matching
grids and the cost function of case 1 with different macro-mesh size H = 1/8 (stars), H = 1/16 (diamonds),
H = 1/32 (bullets), and H = 1/64 (plus), b tensor aε over Ω for ε = 1/10

(a) (b)

10−3 10−2

10−3

10−2

mesh size h̃ with H=1/16

‖∇
·‖

L
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(ω

)

matching grids

min. in ω0

min. in Γ1 ∪ Γ2

(c)
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‖·
‖ L

2
(ω

)

matching grids

min. in ω0

min. in Γ1 ∪ Γ2

(d)

Fig. 6 Experiment 2: numerical solutions using matching grids and the cost function of case 1 (a) and of
case 2 (b), c H1 error between the numerical and reference solutions in ω using matching grids and the cost
function of case 1 (diamond) and the cost function of case 2 (bullet), d L2 error between the numerical and
reference solutions in ω, using matching grids and the cost function of case 1 (diamond) and the cost
function of case 2 (bullet)

approximations of uε
1 and u

0
2 are shown in Fig. 6a, for the cost of case 1 over ω0, and in Fig.

6b, for the cost of case 2 over Γ1 ∪ Γ2. The H1 and L2 errors between uH and a reference
solution in ω0 are shown in Fig. 6c, d, respectively. Computational times are compared
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as well in Fig. 7, for the cost over ω0 (diamonds) and the cost over Γ1 ∪ Γ2 (bullets).
As the number of degrees of freedom of the saddle point problem (17) is reduced when
minimizing over the boundaries Γ1 ∪ Γ2, we see that the coupling over ω0 is more costly
than the coupling over Γ1 ∪ Γ2. Considering an interpolation between the two meshes
in the interface ω0 gives similar results as, due to the periodicity of aε

2, we need only to
resolve one cell problem to compute the homogenized tensor a02.
We next vary the size of the overlap ω0 and consider ω1 = [0, 1/4 + mH ] × y, for

m = 1, 4, 8, where H = 1/32 is the coarse mesh size, and initialize h̃ = 1/64. We
minimize over the overlap ω0. We observe that both couplings are influenced by the size
of τ = dist(Γ1 ∪ Γ2) and this is shown in the H1 errors in Fig. 8. The rates deteriorate
when τ goes to zero.

Minimization with interface control on non-matching grids For the last experiment,
we combine the two previous effects. The fastest coupling is obtained by performing by
considering the minimization with of the cost of case 2 with interpolation of the two
meshes in the overlap, whereas the slowest coupling is obtained by the minimization with
the cost function of case 1 using identical meshes in the overlap.

10−2 10−1

100

101

mesh size h̃ with H=1/16

C
P
U

ti
m
e
in

se
c.

matching grids

min. in ω0

min. in Γ1 ∪ Γ2

Fig. 7 Experiment 2: CPU time using matching grids with the cost function of case 1 (diamond) and the cost
function of case 2 (bullet)

10−2.5 10−2

10−3

10−2

mesh size h̃ with H=1/32

‖∇
·‖

L
2
(ω

)

matching grids
min in ω0 for τ = 9/32

for τ = 10/32
for τ = 1/2

min in Γ1 ∪ Γ2 for τ = 9/32
for τ = 10/32
for τ = 1/2

Fig. 8 Experiment 2: H1 errors between the numerical and reference solutions in ω with matching grids and
the cost function of case 1 (diamond) and the cost function of case 2 (bullet) for τ = 9/32 (dots), τ = 10/32
(dash-dots), and τ = 1/2 (full)
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Experiment 3 We consider a Dirichlet elliptic boundary value in Ω = [0, 1]2,

−div (aε∇uε) = f in Ω ,
u = 0 on ∂Ω ,

with f ≡ 1 and aε is given by

aε
2(x1, x2) = 1

6

(
1.1 + sin(2π (x1/ε)(x2/ε))

1.1 + sin(2πx2/ε)
+ sin(4x21x

2
2) + 2

)

I2,

aω(x1, x2) = 3 + 1
7

4∑

j=0

j∑

i=0

2
j + 1

cos (�8 (ix2 − x1/(i + 1))� + �150ix1� + �150x2�) .

We set H = 1/16 and ε = 1/10. We initialize h̃ = 1/32. In Fig. 9a, we see the H1 error
for the two settings is similar, whereas the computational cost using minimization over
the overlap and non-matching grid in ω0 dramatically decreases (see Fig. 9b).

5 Conclusion
In this paper, we aimed at reducing the computational cost of our optimization-based
method, proposed in [6,7].Our focuswas to reduce the total number of degrees of freedom
of our method by investigating two strategies; i.e.,

(i) to use a cost function over the boundary of the overlapping region;
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mesh size h̃ with H=1/16
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L
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(a)
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m
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min. in ω0 with matching grids
min. in Γ1 ∪ Γ2 with non-matching grids

(b)

Fig. 9 Experiment 3: a errors between the numerical and reference solutions with the cost function of case 1
and matching grids (diamond) and with the cost function of case 2 with non-matching grids (bullet), b CPU
time with the cost function of case 1 and matching grids (diamond) and with the cost function of case 2 with
non-matching grids (bullet)



Abdulle and Jecker Res Math Sci (2017) 4:28 Page 21 of 23

(ii) to consider independent meshes in the overlap and an interpolation procedure
between the fine and coarse meshes in the overlapping region.

We derived a fully discrete a priori error analysis of the couplingmethod based on the new
cost function and the heterogenous meshing strategy. Numerical experiments have been
carried out to assess the difference between the two costs functions and the two meshing
strategies, with and without matching grids in the overlap. In all numerical experiments,
we observe orders of magnitude of saving in the computational cost when we compare
the numerical settings used in [7] with a combination of the strategies (i) and (ii).

6 Appendix
Let us start by recalling the Caccioppoli inequality [19]. Let ω ⊂ ω1 be subdomains of Ω

with τ = dist(∂ω, ∂ω1) and set Γ = ∂Ω . For a tensor a, the set of a-harmonic functions
is denoted byH(ω1) and consists of functions u ∈ L2(ω1) ∩ H1

loc(ω1) such that
∫

ω1
a∇u · ∇vdx = 0 ∀v ∈ C∞

0 (ω1),

where H1
loc(ω1) := {u ∈ H1(O) | for any open set O with O ⊂ ω1}.

Theorem 6.1 (Caccioppoli inequality [19]) Let u ∈ H(ω1), then

‖∇u‖L2(ω) ≤ 2β1/2

α1/2τ
‖u‖L2(ω1) .

Further, it holds,

‖∇u‖L2(ω) ≤ 2β1/2

α1/2τ
‖u‖L2(ω0) .

We note that elliptic problems with a non-null right-hand side and problems where
∂ω ∩ Γ �= ∅, can also be considered and we refer to [19] for details. We give next a bound
of the L2 norm over ω by the L2 norm over the overlap ω0.

Lemma 6.2 Let vε
1 and v02 be solutions of (4), for i = 1, 2,, respectively. The following

bounds hold:
∥
∥vε

1
∥
∥
L2(ω) ≤ C

τ

∥
∥vε

1
∥
∥
L2(ω0) ,

∥
∥v02

∥
∥
L2(Ω\ω1) ≤ C

τ

∥
∥v02

∥
∥
L2(ω0) ,

where τ is the width of the overlap and C is a constant depending on α,β , and the Poincaré
constant is associated with ω1 and ω2, respectively.

Proof see [7, Lemma 2.1]. ��
In the next lemma, we state a strong version of the Cauchy–Schwarz inequality and

refer to [7] for the proof. Let us recall the problems for the state variables: find vi ∈ H1
D(ωi)

solution of

−div (ai∇vi) = 0 in ωi,
vi = θi on Γi,
vi = 0 on ∂ωi ∩ ΓD,

ni · (ai∇vi) = 0 on ∂ωi ∩ ΓN ,

(19)

where a1 = aε
1 and a2 = a02.
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Lemma 6.3 (Strong Cauchy–Schwarz) Let vε
1 ∈ H1

D(ω1) and v02 ∈ H1
D(ω2) be solutions of

(19) for i = 1, 2. Then, there exist an ε0 > 0 and a positive constant Cs < 1 such that for
all ε ≤ ε0, it holds

∫

ω0
vε
1v

0
2dx ≤ Cs

∥
∥vε

1
∥
∥
L2(ω0)

∥
∥v02

∥
∥
L2(ω0) .

Discrete versions of the Caccioppoli and the strong Cauchy–Schwarz inequalities are
stated below. vh ∈ Vp(ω1,Th) solution of

B1(vh, wh) :=
∫

ω1
a∇vh · ∇whdx = 0 ∀wh ∈ Vp

0 (ω1,Th). (20)

Lemma 6.4 (Discrete Caccioppoli inequality for interior domains, [26]) Let vh ∈
Vp(ω1,Th) satisfy Eq. (20) for all wh ∈ Vp

0 (ω1,Th); it holds
∥
∥
∥∇vh

∥
∥
∥
L2(ω)

≤ C
1
τ

∥
∥
∥vh

∥
∥
∥
L2(ω1)

,

where the constant C is independent of h.

Wenowgive thediscrete strongCauchy–Schwarz inequality, and to simplify thenotations,
we omit the ε dependency in v1.

Lemma 6.5 Let ε < ε0 and Cs < 1 be given by the strong Cauchy–Schwarz Lemma 6.3,
and let v1,h̃ ∈ Vp

D(ω1,Th̃) and v2,H ∈ Vp
D(ω2,TH ) be numerical solutions of (17). There

exist h̃0 > 0 and H0 > 0 such that
∫

ω0
v1,h̃v2,Hdx ≤ Cs

∥
∥
∥v1,h̃

∥
∥
∥
L2(ω0)

∥
∥v2,H

∥
∥
L2(ω0) ∀h̃ < h̃0, H < H0.
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