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Abstract

How heterogeneous multiscale methods (HMM) handle fluctuations acting on the slow
variables in fast–slow systems is investigated. In particular, it is shown via analysis of
central limit theorem (CLT) and large deviation principle (LDP) that the standard version
of HMM artificially amplifies these fluctuations. A simple modification of HMM, termed
parallel HMM, is introduced and is shown to remedy this problem, capturing
fluctuations correctly both at the level of the CLT and the LDP. All results in this article
assume the HMM speedup factor λ to be constant and in particular independent of the
scale parameter ε. Similar type of arguments can also be used to justify that the
τ -leaping method used in the context of Gillespie’s stochastic simulation algorithm for
Markov jump processes also captures the right CLT and LDP for these processes.

1 Background
The heterogeneous multiscale methods (HMM) [1,21,23,24] provide an efficient strategy
for integrating fast–slow systems of the type

dXε

dt
= f (Xε , Y ε),

dY ε

dt
= 1

ε
g(Xε , Y ε).

(1.1)

The method relies on an averaging principle that holds under some assumption of ergod-
icity and states that as ε → 0 the slow variables Xε can be uniformly approximated by the
solution to the following averaged equation

˙̄X = F (X̄). (1.2)

Here F (x) = ∫
f (x, y)μx(dy) is the averaged vector field, with μx(dy) being the ergodic

invariantmeasure of the fast variables Yx with a frozen x variable. This averaging principle
is akin to the law of large number (LLN) in the present context and it suggests to simulate
the evolution of the slow variables using (1.2) rather than (1.1) when ε is small. This
requires to estimate F (x), which typically has to be done on-the-fly given the current
value of the slow variables. To this end, note that if Euler’s method with time step �t
is used as integrator for the slow variables in (1.1), we can approximate Xε(n�t) by xn
satisfying the recurrence
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xε
n+1 = xε

n +
∫ (n+1)�t

n�t
f (xε

n, Y
ε
xε
n
(s))ds, (1.3)

where Y ε
x denotes the solution to the second equation in (1.1) with Xε kept fixed at the

value x. If ε is small enough that �t/ε is larger than the mixing time of Y ε
x , the Birkhoff

integral in (1.4) is in fact close to the averaged coefficient in (1.2), in the sense that

F (x) ≈ 1
�t

∫ (n+1)�t

n�t
f (x, Y ε

x (s))ds. (1.4)

Therefore, (1.3) can also be thought of as an integrator for the averaged equation (1.2). In
fact, when ε is small, one can obtain a good approximation of F (x) using only a fraction
of the macro-time step. In particular, we expect that

1
�t

∫ (n+1)�t

n�t
f (x, Y ε

x (s))ds ≈ λ

�t

∫ (n+1/λ)�t

n�t
f (x, Y ε

x (s))ds =: F�t (x) (1.5)

with λ ≥ 1 provided that �t/(ελ) remains larger than the mixing time of Y ε
x . This obser-

vation is at the core of HMM-type methods—in essence, they amount to replacing (1.3)
by

xn+1 = xn + �t F�t (xn). (1.6)

Since the number of computations required to compute the effective vector field Fn(x) is
reduced by a factor λ, this is also the speedup factor for an HMM-type method. We note
that the choice of initial condition Y ε

x (0) is immaterial in principle, since almost surely
all choices will lead to the same statistical average by the ergodic theorem. However, the
choice is of computational consequence and will be elaborated on later.
From the argument above, it is apparent that there is another, equivalent way to think

about HMM-type methods, as was first pointed out in [14] (see also [2,4,22,26]). Indeed,
the integral defining Fn(x) in (1.5) can be recast into an integral on the full interval
[n�t, (n+1)�t] by a change in integration variables, which amount to rescaling the inter-
nal clock of the variables Y ε

x . In other words, HMM-type methods can also be thought of
as approximating the fast–slow system in (1.1) by

dX̃ε

dt
= f (X̃ε , Ỹ ε),

dỸ ε

dt
= 1

ελ
g(X̃ε , Ỹ ε).

(1.7)

If ε � 1, we can reasonably replace ε with ελ, provided that this product still remains
small—in particular, the evolution of the slow variables in (1.7) is still captured by the
limiting equation (1.2). Hence, HMM-type methods are akin to artificial compressibility
[9] in fluid simulations and Car–Parrinello methods [10] in molecular dynamics.
The approximations in (1.5) or (1.7) are perfectly reasonable if we are only interested in

staying faithful to the averaged equation (1.2)—that is to say, HMM-type approximations
will have the correct lawof large numbers (LLN) behavior.However, the fluctuations about
that average will be enhanced by a factor of λ. This is quite clear from the interpretation
(1.7), since in the original model (1.1), the local fluctuations about the average are of order√

ε and in (1.7) they are of order
√

ελ. The large fluctuations about the average caused
by rare events are similarly inflated by a factor of λ. This can be an issue, for example, in
metastable fast–slow systems, where the large fluctuations about the average determine
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the waiting times for transitions between metastable states. In particular, we shall see
that an HMM-type scheme drastically decreases these waiting times due to the enhanced
fluctuations.
In this article, we propose a simple modification of HMM which corrects the problem

of enhanced fluctuations. The key idea is to replace the approximation (1.5) with

1
�t

∫ (n+1)�t

n�t
f (x, Y ε

x (s))ds ≈
λ∑

j=1

1
�t

∫ (n+1/λ)�t

n�t
f (x, Y ε,j

x (s))ds, (1.8)

where eachY ε,j
x is an independent copy ofY ε

x . By comparing (1.5)with (1.8), we see that the
first approximation is essentially replacing a sum of λ weakly correlated random variables
with one random variable, multiplied by λ. This introduces correlations that should not
be there and in particular results in enhanced fluctuations. In (1.8), we instead replace
the sum of λ weakly correlated random variables with a sum of λ independent random
variables. This is a much more reasonable approximation to make, since these random
variables are becoming less and less correlated as ε gets smaller. Since the terms appearing
on the right-hand side are independent of each other, they can be computed in parallel.
Thus, if one has λ CPUs available; then, the real time of the computations is identical to
HMM. For this reason, we call the modification the parallelized HMM (PHMM). Note
that, in analogy to (1.7), one can interpret PHMM as approximating (1.1) by the system

dX̃ε

dt
= 1

λ

λ∑

j=1
f (X̃ε , Ỹ ε,j),

dỸ ε,j

dt
= 1

ελ
g(X̃ε , Ỹ ε,j) for j = 1, . . . , λ.

(1.9)

It is clear that this approximationwill be as goodas (1.7) in termsof theLLN, but in contrast
with (1.7), we will show below that it captures the fluctuations about the average correctly,
both in terms of small Gaussian fluctuations via the CLT and large fluctuations describing
rare events via a LDP. A similar observation in the context of numerical homogenization
was made in [7,8]. It is also worth pointing out that for many fast–slow systems it is
possible to extend CLT and LDP results to longer timescales on which rare events are
no longer rare. While we will not address this scenario from a theoretical perspective (all
our theoretical results will be restricted toO(1) timescales), we do investigate numerically
what happens on much larger timescales and find that the PHMM performs quite well in
the particular examples we study. We stress, however, that such an extension will not be
possible in general; see the discussion for further details.
We also stress that the theoretical results of this article are all obtained under the

approximation scenario above, namely that we have discretized the slow variables and
worked with fast variables Y ε

x that solve the exact evolution equations, but with frozen
x variables. In practice, one must in general discretize the fast variables, which adds
another layer of complexity to the analysis of fluctuations. We restrict ourselves to the
simpler theoretical setting for the sake of simplicity and to ensure ‘proof of concept.’
In the numerical investigations, we find that the theoretical results derived in the above
scenario are robust even with relatively crude fast integrators. It has been shown [20] that
numerical schemes donot always inherit themixing properties of the underlying evolution
equation. Thus, in some situations, it is advisable to use sophisticated methods that are
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known to capture longtime statistics [5]. Due to the relative simplicity of the numerical
models studied in this article, we do not encounter this problem and hence can employ
simple methods.
It is important to note that the averaging approximation in (1.5) still holds for a class

of λ that is ε-dependent, provided that ελ → 0 as ε → 0. This is clearly a computational
benefit, with greater timescale separation leading to greater computational speedup. In
this article, we will assume for simplicity that λ does not depend on ε, and will comment
on the results in the ε dependent case in Appendix 1.
The outline of the remainder of this article is as follows. In Section 2, we recall the

averaging principle for stochastic fast–slow systems and describe how to characterize the
fluctuations about this average, including local Gaussian fluctuations and large deviation
principles. In Sect. 3, we recall the HMM-type methods. In Sect. 4, we show that they
lead to enhanced fluctuations. In Sect. 5, we introduce the PHMM modification, and in
Sect. 6, we show that this approximation yields the correct fluctuations, both in terms of
local Gaussian fluctuations and large deviations. In Sect. 7, we test PHMM for a variety of
simple models and conclude in Sect. 8 with a discussion.

2 Average and fluctuations in fast–slow systems
For simplicity, we will from here on assume that the fast variables are stochastic. This
assumption is convenient, but not necessary, since all the averaging and fluctuation prop-
erties stated below are known to hold for large classes of fast–slow systems with deter-
ministically chaotic fast variables [12,17–19]. The fast–slow systems we investigate are
given by

dXε

dt
= f (Xε , Y ε),

dY ε = 1
ε
g(Xε , Y ε)dt + 1√

ε
σ (Xε , Y ε)dW,

(2.1)

where f : Rd ×R
e → R

d , g : Rd ×R
e → R

e, σ : Rd ×R
e → R

e ×R
e, andW is a standard

Wiener process in R
e. We assume that for every x ∈ R

d , the Markov process described
by the SDE

dYx = g(x, Yx)dt + σ (x, Yx)dW (2.2)

is ergodic, with invariant measureμx, and has sufficient mixing properties. For full details
on the necessary mixing properties, see, for instance [15].
In this section, we briefly recall the averaging principle for stochastic fast–slow systems

and discuss two results that characterize the fluctuations about the average, the central
limit theorem (CLT) and the large deviations principle (LDP).

2.1 Averaging principle

As ε → 0, each realization of Xε , with initial condition Xε(0) = x, tends toward a
trajectory of a deterministic system

dX̄
dt

= F (X̄), X̄(0) = x, (2.3)
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whereF (x) = ∫
f (x, y)μx(dy) andμx is the invariantmeasure corresponding to theMarkov

process dYx = g(x, Yx)dt+σ (x, Yx)dW . The convergence is in an almost sure and uniform
sense:

lim
ε→0

sup
t≤T

|Xε(t) − X̄(t)| = 0

for every fixed T > 0, every choice of initial condition x and almost surely every initial
condition Y ε(0) (a.s. with respect to μx) as well as every realization of the Brownian paths
driving the fast variables. Details of this convergence result in the setting above are given
in (for instance) [15, Chapter 7.2].

2.2 Small fluctuations: CLT

The small fluctuations of Xε about the averaged system X̄ can be understood by charac-
terizing the limiting behavior of

Zε := Xε − X̄√
ε

,

as ε → 0. It can be shown that the process Zε converges in distribution (on the space of
continuous functions C([0, T ];Rd) endowed with the sup-norm topology) to a process Z
defined by the SDE

dZ = B0(X̄)Zdt + η(X̄)dV, Z(0) = 0, (2.4)

Here X̄ solves the averaged system in (2.3),V is a standardWiener process, B0 := B1 +B2
with

B1(x) =
∫

∇xf (x, y)μx(dy),

B2(x) =
∫ ∞

0
dτ

∫
μx(dy)∇yEy

(

f̃ (x, Yx(τ ))
)

∇xg(x, y)

and

η(x)ηT (x) =
∫ ∞

0
dτ Ef̃ (x, Yx(0)) ⊗ f̃ (x, Yx(τ ),

where f̃ (x, y) = f (x, y)−F (x),Ey denotes expectationover realizations ofYxwithYx(0) = y,
and E denotes expectation over realization of Yx with Yx(0) ∼ μx. We include next a
formal argument deriving this limit, as it will prove useful when analyzing the multiscale
approximation methods. We will replicate the argument given in [6]; a more complete
and rigorous argument can be found in [15, Chapter 7.3].
First, we write a system of equations for the triple (X̄ , Zε , Y ε) in the following approx-

imated form, which uses nothing more than Taylor expansions of the original system
in (1.1):

dX̄
dt

= F (X̄),

dZε

dt
= 1√

ε
f̃ (X̄ , Y ε) + ∇xf (X̄ , Y ε) + O(

√
ε),

dY ε = 1
ε
g(X̄ , Y ε)dt + 1√

ε
∇xg(X̄ , Y ε)Zεdt + 1√

ε
σ (X̄ , Y ε)dW + O(1).



Kelly and Vanden-Eijnden Res Math Sci (2017) 4:23 Page 6 of 26

We now proceed with a classical perturbation expansion on the generator of the triple
(X̄ , Zε , Y ε). In particular, we haveLε = 1

ε
L0 + 1√

ε
L1 + L2 + · · · where

L0 = g(x, y) · ∇y + a(x, y) : ∇2
y ,

L1 = f̃ (x, y) · ∇z + (∇xg(x, y)z) · ∇y,

L2 = F (x) · ∇x + (∇xf (x, y)z) · ∇z + operator in y,

and a = σσT . Let uε(x, z, y, t) = E(x,z,y)ϕ(X̄(t), Zε(t), Y ε(t)) and introduce the ansatz
uε = u0 + √

εu1 + εu2 + · · ·. By substituting uε into ∂tuε = Lεuε and equating powers
of ε, we obtain

O(ε−1) : L0u0 = 0,

O(ε−1/2) : L0u1 = −L1u0,

O(ε−1) : ∂tu0 = L2u0 + L1u1 + L0u2.

From the O(ε−1) identity, we obtain u0 = u0(x, z, t), confirming that the leading order
term is independent of y. By the Fredholm alternative, theO(ε−1/2) identity has a solution
u1 which has the Feynman–Kac representation

u1(x, y, z) =
∫ ∞

0
dτ Ey

(
f̃ (x, Yx(τ ))

)
· ∇zu0(x, z),

where Yx denotes the Markov process generated byL0, i.e., the solution of (2.2). Finally,
if we average the O(1) identity against the invariant measure corresponding to L0, we
obtain

∂tu0 = F (x)∇xu0 +
∫

μx(dy)(∇xf (x, y)z) · ∇zu0

+
∫

μx(dy)
∫ ∞

0
dτ f̃ (x, y) ⊗ Eyf̃ (x, Yx(τ )) : ∇2

z u0

+
∫

μx(dy)(∇xg(x, y)z)
∫ ∞

0
dτ ∇yEyf̃ (x, Yx(τ ))∇zu0.

Clearly, this is the forward Kolmogorov equation for the Markov process (X̄ , Z) defined
by

dX̄
dt

= F (X̄),

dZ = B0(X̄)Zdt + η(X̄)dV

with B0 and η defined as above.

2.3 Large fluctuations: LDP

A large deviation principle (LDP) for the fast–slow system (2.1) quantifies probabilities
of O(1) fluctuations of Xε away from the averaged trajectory X̄ . The probability of such
events vanishes exponentially quickly and as a consequence is not accounted for by the
CLT fluctuations; hence, a LDP accounts for the rare events.
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We say that the slow variables Xε satisfy a large deviation principle (LDP) with action
functionalS[0,T ] if for any set 
 ⊂ {γ ∈ C([0, T ],Rd) : γ (0) = x} we have

− inf
γ∈
̊

S[0,T ](γ ) ≤ lim inf
ε→0

ε log P (Xε ∈ 
)

≤ lim sup
ε→0

ε log P (Xε ∈ 
) ≤ − inf
γ∈
̄

S[0,T ](γ ), (2.5)

where 
̊ and 
̄ denote the interior and closure of 
, respectively.
An LDP also determines many important features of O(1) fluctuations that occur on

large timescales, such as the probability of transition from one metastable set to another.
For example, suppose thatXε is known to satisfy an LDPwith action functionalS[0,T ]. Let
D be an open domain inRd with smooth boundary ∂D and let x∗ ∈ D be an asymptotically
stable equilibrium for the averaged system ˙̄X = F (X̄). When ε � 1, we expect that a
trajectory of Xε that starts in D will tend toward the equilibrium x∗ and exhibit O(

√
ε)

fluctuations about the equilibrium—these fluctuations are described by the CLT. On very
large timescales, these small fluctuations have a chance to ‘pile up’ into anO(1) fluctuation,
producing behavior of the trajectory that would be considered impossible for the averaged
system. Such fluctuations are not accurately described by the CLT and require the LDP
instead. For example, the asymptotic behavior of escape time from the domain D,

τ ε = inf{t > 0 : Xε(t) /∈ D},
can be quantified in terms of the quasi-potential defined by

V (x, y) = inf
T>0

inf
γ (0)=x,γ (T )=y

S[0,T ](γ ). (2.6)

Under natural conditions, it can be shown that for any x ∈ D

lim
ε→0

ε log Exτ
ε = inf

y∈∂D
V (x∗, y).

Hence, the time it takes to pass from the neighborhood of one equilibrium to anothermay
be quantified using the LDP. Details on the escape time of fast–slow systems can be found
in [15, Chapter 7.6].
LDPs for fast–slow systems of the type (2.1) are well understood [15, Chapter 7.4]. First

define the HamiltonianH : Rd × R
d → R by

H(x, θ ) = lim
T→∞

1
T

log Ey exp
(

θ ·
∫ T

0
f (x, Yx(s))ds

)

, (2.7)

where Yx denotes the Markov process governed by dYx = g(x, Yx)dt + σ (x, Yx)dW . Let
L : Rd × R

d → R be the Legendre transform ofH:

L (x,β) = sup
θ

(θ · β − H(x, θ )) . (2.8)

Then the action functional is given by

S[0,T ](γ ) =
∫ T

0
L (γ (s), γ̇ (s))ds. (2.9)

It can also be shown that the function u(t, x) = infγ (0)=x S[0,t](γ ) satisfies the Hamilton–
Jacobi equation

∂tu(t, x) = H(x,∇u(t, x)). (2.10)

Donsker–Varadhan theory tells us that the connection between Hamilton–Jacobi equa-
tions andLDPs is in factmuchdeeper. Firstly,Varadhan’s lemma states that if a processXε
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is known to satisfy an LDPwith some associatedHamiltonianH, then for any ϕ : Rd → R

we have the generalized Laplace method-type result

lim
ε→0

ε log Ex exp
(
ε−1ϕ(Xε(t))

) = Stϕ(x), (2.11)

where St is the semigroup associated with the Hamilton–Jacobi equation ∂tu = H(x,∇u).
Conversely, if it is known that (2.11) holds for all (x, t) and a suitable class of ϕ, then the
inverse Varadhan’s lemma states that Xε satisfies an LDP with action functional given by
(2.8), (2.9). Hence, we can use (2.11) to determine the action functional for a given process.
In the next few sections, we will exploit both sides of Varadhan’s lemma when investi-

gating the large fluctuations of theHMMand related schemes.More complete discussions
on Varadhan’s lemma can be found in [13, Chapters 4.3, 4.4].

3 HMM for fast–slow systems
When applied to the stochastic fast–slow system (2.1), HMM-type schemes rely on the
fact that the slow Xε variables, and the coefficients that govern them, converge to a set of
reduced variables as ε tends to zero. We will describe a simplest version of the method
below, which is more convenient to deal with mathematically.
Before proceeding, we digress briefly on notation. When referring to continuous time

variables, we will always use uppercase symbols (Xε , Y ε , etc.), and when referring to
discrete time approximations, we will always use lowercase symbols (xε

n, yε
n, etc.). We will

also encounter continuous time variables whose definition depends on the integer n for
whichwe have t ∈ [n�t, (n+1)�t).Wewill see below that such continuous time variables
are used to define discrete time approximations. In this situation, we will use uppercase
symbols with a subscript n (e.g., Xε

n).
Let us now describe a ‘high-level’ version of HMM. Fix a step size �t and define the

intervals In,�t := [n�t, (n + 1)�t). On each interval In,�t , we update xε
n ≈ Xε(n�t) to

xε
n+1 ≈ Xε((n + 1)�t) via an iteration of the following two steps:

1. (Micro-step) Integrate the fast variables over the interval In,�t , with the slow variable
frozen at Xε = xε

n. That is, the fast variables are approximated by

Y ε
n (t) = Y ε

n (n�t) + 1
ε

∫ t

n�t
g(xε

n, Y ε
n (s))ds + 1√

ε

∫ t

n�t
σ (xε

n, Y ε
n (s))dW (s) (3.1)

for n�t ≤ t ≤ (n+ 1/λ)�t with some λ ≥ 1 (that is, we do not necessarily integrate
the Y ε

n variables over the whole time window). Due to the ergodicity of Yx, the
initialization of Y ε

n is not crucial to the performance of the algorithm. It is, however,
convenient to use Y ε

n+1(0) = Y ε
n ((n+ 1/λ)�t), since this reinitialization leads to the

interpretation of the HMM scheme given in (3.5) below.
2. (Macro-step) Use the time series from the micro-step to update xε

n to xε
n+1 via

xε
n+1 = xε

n + λ

∫ (n+1/λ)�t

n�t
f (xε

n, Y ε
n (s))ds. (3.2)

Note that we do not require Y ε
n over the whole �t time step, but only a fraction

of the step large enough for Y ε
n to mix. Indeed, if ε is small enough, we have the

approximate equality
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λ

�t

∫ (n+1/λ)�t

n�t
f (xε

n, Y
ε
n (s))ds ≈ 1

�t

∫ (n+1)�t

n�t
f (xε

n, Y
ε
n (s))ds

since both sides are close the ergodic mean
∫
f (xε

n, y)dμxε
n (y).

Clearly, the efficiency of themethods comes from the fact that we do not need to compute
the fast variables on the whole time interval In,�t but only a 1/λ fraction of it. Hence, λ
should be considered the speedup factor of HMM. Note that λ can only take moderate
values for the above method to be justifiable; in particular, we require that ε/λ � 1.
As already stated, the algorithm above is a high-level version, in that one must do

further approximations to make the method implementable. For example, one typically
must specify some approximation scheme to integrate (3.1); for instance with Euler–
Maruyama, we compute the time series by

yε
n,m+1 = yε

n,m + δt
ε
g(xε

n, y
ε
n,m) +

√
δt
ε

σ (xε
n, y

ε
n,m)ξn,m, (3.3)

where 0 ≤ m ≤ M is the index within the micro-step, ξn,m are i.i.d. standard Gaussians
and the microscale step size δt is much smaller than the macroscale step size �t. In the
macro-step, we would similarly have

xε
n+1 = xε

n + �t Fn(xε
n), (3.4)

where Fn(x) = 1
M

∑M
m=1 f (x, yε

n,m) andM = �t/(δtλ).
The following observation, which is taken from [14], will allow us to easily describe the

average and fluctuations of the abovemethod. On each interval In,�t , the high-level HMM
scheme described above is equivalently given by xε

n+1 = Xε
n((n + 1)�t), where Xε

n solves
the system

dXε
n

dt
= f (xε

n, Ỹ
ε
n ),

dỸ ε
n = 1

ελ
g(xε

n, Ỹ
ε
n )dt + 1√

ελ
σ (xε

n, Ỹ
ε
n )dB,

(3.5)

defined on the interval n�t ≤ t ≤ (n + 1)�t, with the initial condition Xε
n(n�t) = xε

n.
This can be checked by a simple rescaling of time. It is clear that the efficiency of HMM
essentially comes from saying that the fast–slow system is not drastically changed if one
replaces ε with the slightly larger, but still very small ελ.

4 Average and fluctuations in HMMmethods
In this section, we investigate whether the limit theorems discussed in Sect. 2, i.e., the
averaging principle, the CLT fluctuations and the LDP fluctuations, are also valid in the
HMM approximation for a fast–slow system. We will see that the averaging principle
is the only property that holds, and that both types of fluctuations are inflated by the
HMM method. It is important to note that the theory developed in this section (and
likewise in Sect. 6) is to understand the averaging and fluctuation properties of the HMM
approximation (3.2), where the slow variables have been discretized, but the fast variables
have not. We do not make any theoretical claims about the fully discretized case. We also
note that the LLN, CLT and LDP results derived for (3.2) can be used to derive the same
results for the non-discretized system (3.5). In particular, the CLT and LDP of (3.5) are
not the same as the original fast slow system (2.1).
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4.1 Averaging

By construction, HMM-type schemes capture the correct averaging principle. More pre-
cisely, if we take ε → 0, then the sequence xε

n converges to some x̄n, where x̄n is a
numerical approximation of the true averaged system X̄ . If this numerical approxima-
tion is well posed, the limits ε → 0 and �t → 0 commute with one another. Hence, the
HMMapproximation xε

n is consistent, in that it features approximately the same averaging
behavior as the original fast–slow system.
We will argue the claim by induction. Suppose that for some n ≥ 0 we know that

limε→0 xε
n = x̄n (the n = 0 claim is trivial, since they are both simply the initial condition).

Then, using the representation (3.5)we know that xε
n+1 = Xε

n((n+1)�t) whereXε
n(n�t) =

xε
n. Since (3.5) is a fast–slow system of the form (2.1) we can apply the averaging principle
from Sect. 2. In particular, it follows that Xε

n → X̄n uniformly (and almost surely) on In,�t ,
where X̄n satisfies the averaged ODE

dX̄n
dt

=
∫

f (x̄n, y)μx̄n (dy) = F (x̄n).

Since the right-hand side is a constant, it follows that xε
n+1 → x̄n+1 as ε → 0, where

x̄n+1 = x̄n + F (x̄n)�t.

This is nothingmore than the Euler approximation of the true averaged variables X̄ , which
completes the induction and hence the claim.
Introducing an integrator into the micro-step will make things more complicated, as

the invariant measures appearing will be those of the discretized fast variables. In [20],
it is shown that discretizations of SDEs often do not possess the ergodic properties of
the original system. For those situations where no such issues arise, rigorous arguments
concerning this scenario, including rates of convergence for the schemes, are given in [25].

4.2 Small fluctuations

For HMM-type methods, the CLT fluctuations about the average become inflated by a
factor of

√
λ. That is, if we define

zε
n+1 = xε

n+1 − x̄n+1√
ε

,

then as ε → 0, the fluctuations described by zε
n+1 are not consistent with (2.4), but rather

with the SDE

dZ = g(X̄)Zdt + √
λη(X̄)dV, Z(0) = 0, (4.1)

where X̄ satisfies the correct averaged system.
As above, by consistency we mean that when we take ε → 0, the sequence {zε

n}n≥0
converges to some well-posed discretization of the SDE (4.1). Since Z(0) = 0, it is easy to
see that the solution to this equation is simply

√
λ times the solution of (2.4). Hence, the

fluctuations of the HMM-type scheme are inflated by a factor of
√

λ.
It is convenient to look instead at the rescaled fluctuations

ẑε
n = zε

n/
√

λ = xε
n − x̄n√

ελ
,

since this allows us to reproduce the argument from Sect. 2.2, with ε′ = ελ playing the
role of ε. We will again argue by induction, assuming for some n ≥ 0 that ẑε

n → ẑn as
ε → 0 (the n = 0 case is trivial).
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The rescaled fluctuations are given by ẑε
n+1 = Zε

n((n + 1)�t) where Zε
n(t) = (Xε

n(t) −
X̄n(t))/

√
ελ and Xε

n(t) is governed by the system (3.5) with initial condition Xε
n(n�t) = xε

n
and X̄n satisfies

dX̄n
dt

= F (x̄n)

with initial condition X̄n(n�t) = x̄n. We can then obtain the reduced equations for the
pair (Xε

n, Zε
n) by arguing exactly as in Sect. 2. Indeed, the triple (X̄n, Zε

n, Ỹ ε
n ) is governed by

the system

dX̄n
dt

= F (x̄n),

dẐε
n

dt
= 1√

ελ
f̃ (x̄n, Ỹ ε

n ) + ∇xf (x̄n, Ỹ ε
n )ẑn + O(

√
ελ),

dỸ ε
n = 1

ελ
g(x̄n, Ỹ ε

n )dt + 1√
ελ

∇xg(x̄n, Ỹ ε
n )ẑndt + 1√

ελ
σ (x̄ε

n, Ỹ
ε
n )dW + O(1).

From here on, we can carry out the calculation precisely as in Sect. 2.2, with the added
convenience of the vector fields no longer depending on x as a variable. In doing so, we
obtain Ẑε

n → Ẑn (in distribution) as ε → 0, where

dẐn = B0(x̄n)ẑndt + η(x̄n)dV,

with the initial condition defined recursively by Ẑn(n�t) = ẑn. Using the fact that ẑn+1 =
Ẑn((n + 1)�t), we obtain

ẑn+1 = ẑn + B0(x̄n)ẑn�t + η(x̄n)
√

�tξn

where ξn are i.i.d. standard Gaussians. Hence, we obtain the Euler–Maruyama scheme for
the correct CLT (2.4). However, since ẑε

n describes the rescaled fluctuations, we see that
the true fluctuations zε

n of HMM are consistent with the inflated (4.1).

4.3 Large fluctuations

As with the CLT, the LDP of the HMM scheme is not consistent with the true LDP of the
fast–slow system, but rather a rescaled version of the true LDP. In particular, define uλ,�t
by

uλ,�t (t, x) = lim
ε→0

ε log Ex exp
(
1
ε
ϕ(xε

n+1)
)

for t ∈ In,�t . If theO(1) fluctuations of HMMwere consistent with those of the fast–slow
system, we would expect uλ,� to converge to the solution of (2.10) as�t → 0. Instead, we
find that as�t → 0, uλ,�t (t, x) converges to the solution to the Hamilton–Jacobi equation

∂tuλ = 1
λ
H(x, λ∇uλ) uλ(0, x) = ϕ(x). (4.2)

In light of the discussion in Sect. 2.3, the reverse Varadhan lemma suggests that the HMM
scheme is consistent with the wrong LDP. Before proving this claim, we first discuss some
implications.
The rescaled Hamilton–Jacobi equation implies that the action functional for HMM

will be a rescaled version of that for the true fast–slow system. Indeed, it is easy to see that
the Lagrangian corresponding to HMM simplifies to

L̂ (x,β) := sup
θ

(

θ · β − 1
λ
H(x, λθ )

)

= 1
λ
L (x,β),
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where L is the Lagrangian for the true fast–slow system. Thus, the action of the HMM
approximation is given by Ŝ[0,T ] = λ−1S[0,T ] whereS is the action of the true fast–slow
system.
In particular, it follows immediately from the definition that the HMM approximation

has quasi-potential V̂ (x, y) = λ−1V (x, y), where V is the true quasi-potential. As a con-
sequence, the escape times for the HMM scheme will be drastically faster than those of
the fast–slow system. In the terminology of Sect. 2.3, if we let τ ε,�t be the escape time for
the HMM scheme then for ε,�t � 1 we expect

Eτ ε,�t � exp
( 1

ελ
V (x∗, ∂D)

)
, (4.3)

where � log-asymptotic equality. Thus, the log-expected escape times are decreasing
proportionally with λ. On the other hand, since the HMM action is a multiple of the true
action, the minimizers will be unchanged by the HMM approximation. Hence, the large
deviation transition pathways will be unchanged by the HMM approximation.
To justify the claim for uλ,�t (4.2), we first introduce some notation. Let S(α)t be the

semigroup associated with the Hamilton–Jacobi equation

∂tv(t, x) = H(α,∇v(t, x)), (4.4)

notice that this is the same as the true Hamilton–Jacobi equation (2.10) but with the first
argument of theHamiltonian now frozen as a parameter α. The necessity of the parameter
α is due to the fact that in the system for (Xε

n, Y ε
n ), the x variable in the fast process is frozen

to its value at the left endpoint of the interval and hence is treated as a parameter on each
interval.We also introduce the operator Stψ(x) = S(α)t ψ(x)|α=x and also Sλ,t = λ−1St (λ·).
In this notation, it is simple to show that

Ex exp
(
ε−1ϕ(xε

n)
) � exp

(
ε−1(Sλ,�t )nϕ(x)

)
. (4.5)

We will verify (4.5) by induction, starting with the n = 1 case. Since, on the interval
I0,�t , the pair (Xε

0 , Ỹ
ε
0 ) is a fast–slow system of the form (2.1) with ε replaced by ελ, it

follows from Sect. 2.3 that Xε
0 satisfies an LDP with action functional derived from the

Hamiltonian–Jacobi equation (4.4), with the parameter α set to the value of Xε
0 at the

left endpoint, which is Xε
0 (0) = x. Hence, it follows from Varadhan’s lemma that for any

suitable ψ : Rd → R

Ex exp
(
(ελ)−1ψ(Xε

0 (�t))
) � exp

(
(ελ)−1S(α)�t ψ(x)|α=x

)
.

Hence, since xε
1 = Xε

0 (�t) with Xε
0 (0) = x, we have

Ex exp
(
ε−1ϕ(xε

1)
) = Ex exp

(
(ελ)−1λϕ(Xε

1 (�t))
)

� exp
(
(ελ)−1S(α)�t (λϕ)(x)|α=x

)
= exp

(
ε−1Sλ,�tϕ(x)

)

as claimed. Now, suppose (4.5) holds for all k with n ≥ k ≥ 1, then

Ex exp
(
ε−1ϕ(xε

n+1)
) = ExExε

1
exp

(
ε−1ϕ(xε

n+1)
)
. (4.6)

By the inductive hypothesis, we have that

Exε
1
exp

(
ε−1ϕ(xε

n+1)
) � exp

(
ε−1(Sλ,�t )nϕ(xε

1)
)
. (4.7)

Applying (4.7) under the expectation in (4.6) (see Remark 4.1), we see that

Ex exp
(
ε−1ϕ(xε

n+1)
) = ExExε

1
exp

(
ε−1ϕ(xε

n+1)
) � Ex exp

(
ε−1(Sλ,�t )nϕ(xε

1)
)
.
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Now applying the inductive hypothesis with n = 1 and ψ(·) = (Sλ,�t )nϕ(·)
Ex exp

(
ε−1(Sλ,�t )nϕ(xε

1)
) � exp

(
ε−1Sλ,�t (Sλ,�t )nϕ(x)

)
,

which completes the induction.
By definition, we therefore have uλ,�t (t, x) = (Sλ,�t )nϕ(x) when t ∈ In,�t . All that

remains is to argue that uλ,�t converges to the solution of (4.2) as �t → 0. But this can
be seen from the expansion of the semigroup

uλ,�t (t + �t, x) − uλ,�t (t, x)
�t

= (Sλ,�t )n+1ϕ(x) − (Sλ,�t )nϕ(x)
�t

= Sλ,�t (S�t)nϕ(x) − (Sλ,�t )nϕ(x)
�t

= λ−1H(α, λ∇(Sλ,�t )nϕ(x))|α=x + O(�t)

= λ−1H(x, λ∇uλ,�t (t, x))) + O(�t), (4.8)

which yields the desired limiting equation.

Remark 4.1 Regarding the operation of taking the log-asymptotic result inside the expec-
tation, one can find such calculations done rigorously in (for instance) [15, Lemma 4.3].

Remark 4.2 From the discussion above, it appears that the mean transition time can be
estimated from HMM upon exponential rescaling; see (4.3). This is true, but only at the
level of the (rough) log-asymptotic estimate of this time. How to rescale the prefactor is
by no means obvious. As we will see below, PHMM avoids this issue altogether since it
does not necessitate any rescaling.

5 Parallelized HMM
There is a simple variant of the above HMM-type scheme which captures the correct
average behavior and fluctuations, both at the level of the CLT and LDP. In a usual HMM-
type method, the key approximation is given by

∫ (n+1)�t

n�t
f (xε

n, Y
ε
n (s))ds ≈ λ

∫ (n+1/λ)�t

n�t
f (xε

n, Y
ε
n (s))ds, (5.1)

which only requires computation of the fast variables on the interval [n�t, (n + 1/λ)�t].
This approximation is effective at replicating averages, but poor at replicating fluctuations.
Indeed, for each j, the time series Y ε

n on the interval [(n + j/λ)�t, (n + (j + 1)/λ)�t] is
replaced with an identical copy of the time series from the interval [n�t, (n + 1/λ)�t].
This introduces strong correlations between random variables that should be essentially
independent. Parallelized HMM avoids this issue by employing the approximation

∫ (n+1)�t

n�t
f (xε

n, Y ε
n (s))ds ≈

λ∑

j=1

∫ (n+1/λ)�t

n�t
f (xε

n, Y
ε,j
n (s))ds,

where Y ε,j
n are for each j independent copies of the time series computed in (5.1). Due to

their independence, each copy of the fast variables can be computed in parallel; hence, we
refer to the method as parallel HMM (PHMM). The method is summarized below.

1. (Micro-step)On the interval In,�t , simulateλ independent copies of the fast variables,
each copy simulated precisely as in the usual HMM. That is, let

Y ε,j
n = Y ε,j

n (n�t) + 1
ε

∫ t

n�t
g(xε

n, Y
ε,j
n (s))ds + 1√

ε

∫ t

n�t
σ (xε

n, Y
ε,j
n (s))dWj(s) (5.2)
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for j = 1, . . . , λ with Wj independent Brownian motions. As with ordinary HMM,
we will not require the time series of the whole interval In,�t but only over the subset
[n�t, (n + 1/λ)�t).

2. (Macro-step) Use the time series from the micro-step to update xε
n to xε

n+1 by

xε
n+1 = xε

n +
λ∑

j=1

∫ (n+1/λ)�t

n�t
f (xε

n, Y
ε,j
n (s))ds. (5.3)

As with the HMM-type method, it will be convenient to write PHMM as a fast–slow
system (when restricted to an interval In,�t ). Akin to (3.5), it is easy to verify that the
parallel HMM scheme is described by the system

dXε
n

dt
= 1

λ

λ∑

j=1
f (xε

n, Ỹ
ε,j
n ),

dỸ ε
n,j = 1

ελ
g(xε

n, Ỹ
ε,j
n )dt + 1√

ελ
σ (xε

n, Ỹ
ε,j
n )dWj,

(5.4)

for j = 1, . . . , λ with the initial condition Xε
n(n�t) = xε

n.

6 Average and fluctuations in parallelized HMM
In this section, we check that the averaged behavior and the fluctuations in the PHMM
method are consistent with those in the original fast slow system. Just as noted at the
beginning of Sect. 4.1, the LLN, CLT and LDP results derived for (5.3) can be extended to
the non-discretized system (3.5). In particular, the CLT and LDP of the PHMM approxi-
mation (5.4) are the same as the original fast slow system (2.1).

6.1 Averaging

Proceeding exactly as in Sect. 4.1, it follows that as ε → 0 the PHMM scheme xε
n+1

converges to x̄n+1 = X̄n((n + 1)�t) where

dX̄n
dt

= 1
λ

λ∑

j=1
F (x̄n) = F (x̄n) (6.1)

with initial condition X̄n(n�t) = x̄n. Hence, we are in the exact same situation as with
ordinary HMM, so the averaged behavior is consistent with that of the original fast slow
system.

6.2 Small fluctuations

We now show that the fluctuations

zε
n = xε

n − x̄n√
ε

are consistent with the correct CLT fluctuations, described by (2.4). As in Sect. 4.2, we
instead look at the rescaled fluctuations

ẑε
n = xε

n − x̄n√
ελ

.

In particular, we will show that these rescaled fluctuations are consistent with

dẐ = B0(X̄)Ẑdt + λ−1/2η(X̄)dV. (6.2)
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The claim for zε will follow immediately from the claim for ẑε .
We have that ẑε

n+1 = Ẑε
n((n + 1)�t) where

Ẑε
n(t) = Xε

n(t) − X̄n(t)√
ελ

,

with Xε
n given by the system (5.4) and X̄n given by the averaged equation (6.1). As in

Sect. 4.2, we derive a system for the triple (X̄n, Ẑε
n, Ỹ ε

n ), where now the fast process has λ

independent components Ỹ ε
n = (Ỹ ε,1

n , . . . , Ỹ ε,λ
n ):

dX̄n
dt

= F (x̄n),

dẐε
n

dt
= 1√

ελ

1
λ

λ∑

j=1
f̃ (x̄n, Ỹ

ε,j
n ) + 1

λ

λ∑

j=1
∇xf (x̄n, Ỹ

ε,j
n )ẑn + O(

√
ελ),

dỸ ε,j
n = 1

ελ
g(x̄n, Ỹ

ε,j
n )dt + 1√

ελ
∇xg(x̄n, Ỹ

ε,j
n )ẑndt + 1√

ελ
σ (x̄n, Ỹ

ε,j
n )dWj + O(1).

(6.3)

With a modicum added difficulty, we can now argue as in Sect. 2.2 with ε′ = ελ playing
the role of ε. The invariant measureμλ

x (dy) associated with the generator of Y ε
n is now the

product measure

μλ
x (dy1, . . . , dyλ) = μx(dy1) . . . μx(dyλ),

where μx is the invariant measure associated withL0 from Sect. 2.2. This product struc-
ture simplifies the seemingly complicated expressions arising in the perturbation expan-
sion of (6.3). In the setting of Sect. 2.2, we have that u0 = u0(x, z, t) and

u1(x, z, y, t) = (−L (1)
0 − · · · − L (λ)

0 )−1L1u0(x, z, y, t), (6.4)

whereL (j)
0 = g(x̄n, yj)∇yj + 1

2σσT (x̄n, yj) : ∇2
yj

Since

L1u0(x, z, y, t) = 1
λ

λ∑

j=1
f̃ (x̄n, yj) · ∇zu0(x, z, t),

the Feynman–Kac representation of (6.4) yields

u1(x, z, y, t) = 1
λ

λ∑

j=1

∫ ∞

0
dτEyj f̃ (x̄n, Yx̄n,j(τ )) · ∇zu0(x, z, t).

The equation for u0 is now given by

∂tu0 = F (x̄n)∇xu0 +
∫

μx̄n (dy1) . . . μx̄n (dyλ)

⎛

⎝1
λ

λ∑

j=1
∇xf (x̄n, yj)ẑn

⎞

⎠ ∇zu0

+
∫

μx̄n (dy1) . . . μx̄n (dyλ)

×
(∫ ∞

0
dτ

⎛

⎝1
λ

λ∑

j=1
f̃ (x̄n, yj)

⎞

⎠ ⊗
(
1
λ

λ∑

k=1
Eyf̃ (x̄n, Y k

x̄n (τ ))
)

: ∇2
z u0

+
λ∑

j=1
(∇xg(x̄n, yj)ẑn)

∫ ∞

0
dτ ∇yj

1
λ

λ∑

k=1
Eyk f̃ (x̄n, Y

k
x̄n (τ ))∇zu0

)

. (6.5)
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By expanding the product measure, the second term on the right-hand side of (6.5)
becomes

1
λ

λ∑

j=1

∫
μx̄n (dyj)(∇xf (x̄n, yj)ẑn) · ∇zu0

=
∫

μx̄n (dy1)(∇xf (x̄n, y1)ẑn) · ∇zu0 = (B1(x̄n)ẑn) · ∇zu0.

Likewise, using the independence of Y j
x for distinct j, the third term becomes

1
λ2

λ∑

j,k=1

∫ ∞

0
dτEf̃ (x̄n, Y j

x̄n (0)) ⊗ f̃ (x̄n, Y k
x̄n (τ )) : ∇2

z u0

= 1
λ2

λ∑

j=1

∫ ∞

0
dτEf̃ (x̄n, Y j

x̄n (0)) ⊗ f̃ (x̄n, Y
j
x̄n (τ )) : ∇2

z u0

= 1
λ

∫ ∞

0
dτEf̃ (x̄n, Y 1

x̄n (0)) ⊗ f̃ (x̄n, Y 1
x̄n (τ )) : ∇2

z u0 = 1
λ

η(x̄n)η(x̄n)T : ∇2
z u0,

where the expectation is taken over realizations of Y j
x with Y j

x(0) ∼ μx. Finally, since the
∇yjEyk term vanishes on the off-diagonal, the last term in (6.5) reduces to

1
λ

λ∑

j,k=1

∫ ∞

0
dτ

∫
μx̄n (dyj)μx̄n (dyk )(∇xg(x̄n, yj)ẑn) · ∇yjEyk f̃ (x̄n, Y

k
x̄n (τ )) · ∇zu0

= 1
λ

λ∑

j=1

∫ ∞

0
dτ

∫
μx̄n (dyj)μx̄n (dyk )(∇xg(x̄n, yj)ẑn)∇yjEyj f̃ (x̄n, Y

j
x̄n (τ ))∇zu0

=
∫ ∞

0
dτ

∫
μx̄n (dy1)μx̄n (dyk )(∇xg(x, y1)ẑn)∇y1Ey1 f̃ (x̄n, Y 1

x̄n (τ ))∇zu0

= (B2(x̄n)ẑn) · ∇zu0.

It follows immediately that the reduced equation for the pair (X̄n, Ẑε
n) is

dX̄n
dt

= F (x̄n)

dẐn = B0(x̄n)Ẑndt + λ−1/2η(x̄n)dV,

with initial conditions Ẑn(n�t) = ẑn and X̄n(n�t) = x̄n. Hence, we see that ẑn+1 is
described by

ẑn+1 = ẑn + B(x̄n)ẑn�t + λ−1/2η(x̄n)
√

�t ξn,

which is the Euler–Maruyama scheme for (6.2).

6.3 Large fluctuations

In this section, we show that the LDP for PHMM is consistent with the true LDP from
Sect. 2.3. In particular, let

uλ,�t (t, x) = lim
ε→0

ε log Ex exp
(
ε−1ϕ(xε

n)
)

for t ∈ In,�t , wherexε
n is thePHMMapproximation.Wewill argue thatuλ,�t (t, x) → u(t, x)

as �t → 0, where u solves the correct Hamilton–Jacobi equation (2.10).



Kelly and Vanden-Eijnden Res Math Sci (2017) 4:23 Page 17 of 26

The argument is a slight modification of that given in Sect. 4.3. Before proceeding, we
recall the notation S(α)�t for the semigroup associated with the Hamilton–Jacobi equation

∂tu(t, x) = H(α,∇u(t, x)), (6.6)

where H is the Hamiltonian defined by (2.7). We also define the operator S�tϕ(x) =
S(α)�t ϕ(x)|α=x.
As in Sect. 4.3, the claim follows from the asymptotic statement

Ex exp
(
ε−1ϕ(xε

n)
) � exp

(
ε−1(S�t )nϕ(x)

)
, ε → 0. (6.7)

Given (6.7), by an identical argument to that started in Eq. (4.8), it follows from (6.7) that
uλ,�t is indeed a numerical approximation of the solution to (6.6) and hence uλ,�t → u
as �t → 0.
We will verify (6.7) by induction, starting with the n = 1 case. Since (Xε

, Ỹ ε
0,1, . . . , Ỹ

ε
0,λ)

is a fast–slow system of the form (2.1) with ε replaced by ελ, it follows from Sect. 2.3
(Varadhan’s lemma) that

Ex exp
(
(ελ)−1ψ(Xε

1 (�t))
) � exp

(
(ελ)−1Ŝ(α)�t ψ(x)|α=x

)
,

where Ŝ(α)�t is the semigroup associated with ∂tv(t, x) = Ĥ(α,∇v(t, x)) and

Ĥ(α, θ ) = lim
T→∞T−1 log E exp

⎛

⎝θ ·
∫ T

0
dτ

1
λ

λ∑

j=1
f (α, Y j

α(τ ))

⎞

⎠ .

Hence, we have

Ex exp
(
ε−1ϕ(xε

1)
) = Ex exp

(
(ελ)−1λϕ(Xε

0 (�t))
)

� Ex exp
(
(ελ)−1Ŝ(α)�t (λϕ)(x)|α=x

)
.

(6.8)

But since Y j
α are i.i.d. for distinct j, the Hamiltonian Ĥ reduces to

lim
T→∞T−1 log E exp

⎛

⎝θ ·
∫ T

0
dτ

1
λ

λ∑

j=1
f (α, Y j

α(τ ))

⎞

⎠

= λ lim
T→∞T−1 log E exp

(
θ

λ
·
∫ T

0
dτ f (α, Y 1

α (τ ))
)

= λH
(

α,
θ

λ

)

.

It follows that

∂t
(
λ−1Ŝ(α)t (λϕ)

)
= λ−1Ĥ(α,∇ (̂S(α)t (λϕ))) = H(α, λ−1∇ (̂S(α)t (λϕ)))

and hence λ−1Ŝ(α)�t (λϕ) = S(α)�t ϕ. Combining this with (6.8) completes the claim for n = 1.
The proof of the inductive step for arbitrary n ≥ 1 follows identically to Sect. 4.3.

7 Numerical evidence
In this section,we investigate the performance of the standardHMMandPHMMmethods
for systems with well-understood fluctuations and metastability properties. These simple
experiments confirm that HMM amplifies fluctuations, which can drastically change the
system’smetastable behavior, and that the PHMMsucceeds in avoiding these problems. In
Sect. 7.1, we investigate simple CLT fluctuations for a simple quadratic potential systems;
in Sect. 7.2, we look at large deviation fluctuations for a quartic double-well potential.
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Finally in Sect. 7.3, we look at fluctuations for a non-diffusive double-well potential, which
has large deviation properties that cannot be captured by a so-called ‘small noise’ diffusion.
In all of the experiments below, we use the numerical approximation (3.3), (3.4) with

macro-step�t andmicro-step δt as specified for each experiment. The number of micro-
steps is accordingly M = ��t/(λδt)�. At the start of each micro-integration, the fast
variables are initialized using their final value at the previous micro-step. As stated in the
introduction, with the specific choice of �t and δt for which M = 1, this initialization
corresponds to performing an Euler–Maruyama approximation of the inflated system of
the type (1.7). This choice is used for the experiment in Sect. 7.3.
We also note that the Euler–Maruyama schemewas chosen due to the relative simplicity

of the underlying fast–slow system. In general, to ensure that numerical CLT and LDP
results are faithful to the original fast–slow system, it may be advisable to use more
sophisticated integrators for the fast variables, such as Störmer–Verlet-type methods [5].

7.1 Small fluctuations

We examine the small CLT-type fluctuations by looking at the following fast–slow system

dX
dt

= Y − X,

dY = θ

ε
(μX − Y )dt + σ√

ε
dW.

(7.1)

It is simple to check that the averaged system is given by
dX̄
dt

= (μ − 1)X̄ .

Hence, for μ < 1 the averaged system is a gradient flow in a quadratic potential centered
at the origin.
We will first illustrate that the HMM-type method described in Sect. 3 inflates the

O(
√

ε) fluctuations about the average by a factor of
√

λ. In Fig. 1, we plot histograms of
the slow variableX for different speedup factorsλ. It is clear that the spread of the invariant
distribution is increasing with λ. The profile remains Gaussian, but the variance is greatly
inflated. In Fig. 2, we plot the variance of the stationary time series for X as a function of
λ. The blue line is computed using HMM, and the red line is computed using PHMM. As
predicted by the theory in Sect. 4.2, in the case of HMM the variance is increasing linearly
with λ and in the case of PHMM the variance is approximately constant. Note that in this
example, the CLT captures the large deviations as well. This is because, to leading order
in ε, the fluctuations above the limiting behavior can be captured at all times t > 0 by the
SDE

dX = (μ − 1)Xdt + σ
√

ε

θ
dW

PHMM is consistent with this SDE, whereas HMM is not (it is consistent with an SDE
where the noise is inflated by

√
λ. The variance of the solution of the SDE above at time

T is

σ 2ε2θ2(μ − 1)(1 − e−2(μ−1)T ) → σ 2ε2θ2(μ − 1) as T → ∞,

which is already very close to its asymptotic value σ 2ε/(2θ2(μ − 1)) for the parameter
value reported in Fig. 2. As can also be seen in this figure, the variance of HMM is λ times
the one above.
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Fig. 1 Histogram of X variables in (7.1) for the true model (blue), HMM (λ = 5) (red) and HMM (λ = 10)
(yellow). Parameters used are ε = 10−2, �t = 10−4, δt = 10−4, θ = 1, μ = 0.5, σ = 1, T = 10, histogram
computed using ensemble of 103 realizations
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Fig. 2 For the slow variables in (7.1), comparing the stationary variance of HMM and PHMM as a function of
λ. Parameters used are ε = 10−2, �t = 10−4, δt = 10−4, θ = 1, μ = 0.5, σ = 1, T = 10, ensemble average
of 103 realizations

7.2 Large fluctuations

To investigate the effect of parallelization onO(1) deviations not captured by the CLT, we
will look at a fast–slow system which exhibits metastability. Hence, it is natural to take

dX
dt

= Y − X3,

dY = θ

ε
(μX − Y )dt + σ√

ε
dW.

(7.2)

It is simple to check that the averaged system is
dX̄
dt

= μX̄ − X̄3.

Hence, for any μ > 0 the averaged system is a gradient flow in a symmetric double-
well potential, with stable equilibria at ±√

μ and a saddle point at the origin. The large
fluctuations of the fast–slow system can be investigated by looking at the first passage
time for transitions from a neighborhood of one stable equilibrium to the other.
In Fig. 3, we compare the mean first passage time for HMM and PHMM as a function

of λ. Even for λ = 2, the distinction between the two methods is vast, with the mean
first passage time for HMM rapidly dropping off and for PHMM staying approximately
constant.
In Fig. 4, we compare, respectively, the stationary distributions of the true fast–slow

system, HMM (λ = 5) and PHMM (λ = 5). In the case of HMM, the energy barrier
separating the two metastable states is now overpopulated, which explains the rapid fall
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Fig. 3 Mean first passage time for the slow variables (7.2) as a function of the speedup factor λ, for HMM (red
dotted) and PHMM (blue dotted). We use the parameters ε = 5 × 10−3, �t = 10−1, δt = 5 × 10−4, θ = 1,
μ = 1, σ = 5, T = 107

Fig. 4 Histogram of X variables for the symmetric double-well example (7.2) for the true model, HMM
(λ = 5) and PHMM (λ = 5), respectively. Note that the true model and the PHMM (λ = 5) are almost
identical, while the HMM (λ = 5) clearly has much greater variance. The parameters used are ε = 5 × 10−3,
�t = 0.1, δt = 5 × 10−4, θ = 1, μ = 1, σ = 5, T = 107

in mean first passage time. In the case of PHMM, the histogram is indistinguishable from
the true stationary distribution.
In Fig. 5, we plot the cumulative distributions function (CDF) for the first passage time,

comparing that of the true fast–slow system, with HMM (λ = 5) and PHMM (λ = 5).We
see that theHMMfirst passage times are supported on amuch faster timescale than that of
the true fast–slow system. In contrast, the CDF of PHMM is practically indistinguishable
from that of the true fast–slow system. Hence, PHMM is not just replicating the mean
first passage time, but also the entire distribution of first passage times.

7.3 Asymmetric, non-diffusive fluctuations

We now compare HMM and PHMM for a multiscale model that also displays metastabil-
ity, but in which the large fluctuations cannot be characterized by a ‘small noise’ Ito dif-
fusion. In particular, the Hamiltonian describing the LDP of the system is non-quadratic,
as opposed the previous systems. The system has been used [6] to illustrate the ineffec-
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Fig. 5 Cumulative distribution functions for first passage times of the true model (red) for (7.2), HMM with
λ = 5 (green) and PHMMwith λ = 5 (blue) for the symmetric double-well example (7.2). Note that the red and
blue curves are almost identical. The parameters used are ε = 5 × 10−3, �t = 0.1, δt = 5 × 10−4, θ = 1,
μ = 1, σ = 5, T = 106

tiveness of diffusion-type approximations for fast–slow systems. The fast–slow system is
given by

dX
dt

= Y 2 − νX,

dY = −1
ε
γ (X)Ydt + σ√

ε
dW,

(7.3)

where γ (x) = x4/10 − x2 + 3. The averaged equation for this system reads

dX̄
dt

= σ 2

2γ (X̄)
− νX̄ .

For ν = 1 and σ = √
3, this averaged equation possesses two stable fixed points at

x ≈ 0.555 and x ≈= 2.459 and one unstable fixed point at x ≈ 2.459. The rates of
transition between these stable fixed points are captured by the LDP. By an elementary
calculation [6], the Hamiltonian of this LDP is found to be non-quadratic and given by

H(x, θ ) = −νxθ + 1
2

(

γ (x) −
√

γ 2(x) − 2σ 2θ

)

.

The quasi-potential associated with this Hamiltonian satisfies 0 = H(x,V ′), i.e.,

V ′(x) = νxγ (x) − 1
2σ

2

ν2x2
,

and is displayed in Fig. 6.While there is a significant barrier corresponding to left-to-right
transitions, there is almost no barrier corresponding to right-to-left transitions.
InFig. 7,weplotCDFsof thefirst passage times:Due to the asymmetry,weplot separately

the transitions from the left-to-right and right-to-left. For left-to-right transitions, the
HMM procedure drastically speeds up transitions because it enhances fluctuations: As is
the case with the previous experiment, the HMM transitions are supported on a timescale
several orders of magnitude faster than those of the true fast slow system. The PHMM
method does not experience this problem and the distribution of first passage times
agrees quite well with the truemodel. For right-to-left transitions, PHMMshows similarly
good agreement with the true fast–slow system, but in contrast HMM is not too far off
either. This can be accounted for by the ‘flatness’ of the right potential well, meaning that
increasing the amplitude of fluctuations will only decrease the escape time by a linear
multiplicative factor. We note that the noise appearing in the CDF plots is due to the
scarcity of transitions occurring in the model (7.3).
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Fig. 6 Quasi-potential V (x) (red curve) and the one obtained from a quadratic approximation of the
Hamiltonian (orange curve). Also shown in blue is the coefficient at the right-hand side of the reduced
equation
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Fig. 7 Cumulative distribution functions for first passage times of the true model for (7.3) (red), HMM with
λ = 5 (green) and PHMM with λ = 5 (blue). Left-to-right transitions on the left, right-to-left transition on the
right. The parameters used are ε = 0.05, �t = 0.1, ν = 1, σ = √

3, T = 1 × 107. The micro-step is taken as
δt = �t/λ to ensure thatM = ��t/(λδt)� = 1

8 Discussion
We have investigated HMM methods for fast–slow systems, in particular their ability
(or lack thereof) to capture fluctuations, both small (CLT) and large (LDP). We found,
both theoretically (Sect. 4) and numerically (Sect. 7), that the amplitude of fluctuations
is enhanced by an HMM-type method. In particular with an HMM speedup factor λ, in
the CLT the variance of Gaussian fluctuations about the average is increased by a factor λ

as well. In the LDP, the quasi-potential is decreased by a factor λ, leading to the first
passage times being supported on a timescale λ orders of magnitude smaller than in the
true fast slow system. This inability to correctly capture fluctuations about the average
suggests that HMM can be a poor approximation of fast–slow systems, particularly when
metastable behavior is important. As noted in Sect. 4.3, although the fluctuations of HMM
are enhanced, the large deviation transition pathways remain faithful to the true model.
Thus, we stress that, typically, HMM is a reliable method of finding transition pathways
in metastable systems, but not for simulating their dynamics.
We have introduced a simple modification of HMM, called parallel HMM (PHMM),

which avoids these fluctuation issues. In particular, the PHMMmethod yields fluctuations
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that are consistent with the true fast slow system for any speedup factor λ (provided that
we still have ελ � 1), as was shown both theoretically (Sect. 6) and numerically (Sect. 7).
The HMMmethod relies on computing one short burst of the fast variables, and inferring
the statistical behavior of the fast variables by extrapolating this short burst over a large
time window. PHMM on the other hand computes an ensemble of λ short bursts and
infers the statistics of the fast variables using the ensemble. Since the ensemble members
are independent, they can be computed in parallel. Hence, if one has λ CPUs available,
then the real computational time required in PHMM is identical to that in HMM.
Interestingly, one can draw connections between the parallel method introduced here

and the tau-leaping method used in stochastic chemical kinetics [16]. The tau-leaping
method is an approximation used to speedup simulation of stochastic fast–slow systems
of the type

Xε(t) = Xε(0) +
m∑

k=1
εNk

(

ε−1
∫ t

0
ak (Xε(s))ds

)

νk , (8.1)

whereNk are independent unit rate Poisson processes, νk are vectors inRd and ak : Rd →
R. The system (8.1) can be solved exactly by the stochastic simulation algorithm (SSA),
but when ε is small this can be extremely expensive, due to the Poisson clocks being reset
each time a jump occurs. The tau-leaping procedure avoids this issue by chopping the
simulation window into subintervals of size τ and on each subinterval fixing the Poisson
clocks to their value at the left endpoint. The speedup is a result of the fact that one can
simulate the Poisson jumps in parallel, since their clocks are fixed over the τ interval. As
a consequence of this analogy, one can check (using calculations similar to those found
above) that the tau-leaping method also captures the fluctuations correctly, both at the
level of the CLT and that of the LDP. The former observation was made in [3]; to the best
of our knowledge, the second one is new.
As a final note, we stress that there are non-dissipative fast–slow systems for which the

LDP does not adequately describe the metastability of the system. For this reason, the
PHMM method cannot be expected to model the metastability correctly, even though it
does capture the LDP correctly. These are systems for which the CLT and LDP hold on
O(1) timescale, but they either cannot be extended to longer timescale (in the case of the
CLT) or leads to trivial prediction on these timescales (in the case of the LDP). To clarify
this point, take, for example, the fast–slow Langevin system

q̇1 = p1 ṗ1 = q1 − q31 + (q2 − q1),

q̇2 = ε−1p2 ṗ2 = ε−1(q1 − q2) − ε−1γ p2 +
√
2ε−1β−1γ η,

(8.2)

where γ > 0 and β > 0 are parameters. For any value of ε, γ , this system is invariant with
respect to the Gibbs measure with Hamiltonian

H (q1, q2, p1, p2) = 1
2
p21 + 1

2
p22 + 1

4
q41 − 1

2
q21 + 1

2
(q1 − q2)2.

As ε → 0, it is easy to check that the slow variables (q1, q2) converge to the averaged
system

˙̄q1 = p̄1, ˙̄p1 = −G′(q̄1), (8.3)

where the averaged vector field is the gradient of the free energy

G(q1) = 1
4
q41 − 1

2
q21 + 1

2
q21 = −β−1 log

∫
exp(−βU (q1, q2))dq2,
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with U (q1, q2) = 1
4q

4
1 − 1

2q
2
1 + 1

2 (q1 − q2)2. Likewise, if we introduce

η1 = q1 − q̄1√
ε

, ζ1 = p1 − p̄1√
ε

,

the CLT indicates that the evolution of these variables is captured by

η̇1 = ζ1, dζ1 =
√
2β−1γ dB (8.4)

and we can also derive an LDP for (8.2) with action

S[0,T ](q1) = β

4γ

∫ T

0
|q̈1 − q1 + q31 |2dt. (8.5)

However, neither (8.4) nor (8.5) captures the longtime behavior of the solution to (8.2).
The problem stems from the fact that the averaged equation in (8.3) is Hamiltonian,
hence non-dissipative. As a result, fluctuations accumulate as time goes on. Eventually,
the CLT stops being valid, and the LDP becomes trivial—in particular, it is easy to see that
the quasi-potential associated with the action in (8.5) is flat. For examples of this type,
other techniques will have to be employed to describe their longtime behavior including,
possibly, their metastability (which, in the case of (8.2) is controlled by how small β−1 is,
rather than ε). These questions will be investigated elsewhere.

Appendix 1: Non-constant speedup factor

In this section, we briefly discuss the fluctuations of HMM and PHMM under the gener-
alized setting with λ being allowed to depend on ε. Firstly, under the assumptions made
in Sect. 4.1, but with λ = λ(ε), it is clear that the averaging results for HMM and PHMM
still hold provided that ελ(ε) → 0 as ε → 0. It is intuitively clear that the enhancement of
fluctuations will be far more pronounced if λ(ε) → ∞ as ε → 0. To investigate the fluc-
tuations, we consider the example studied in Sect. 7.2, in particular, the semi-discretized
approximation

xε
n+1 = xε

n +
∫ �t

0
Y ε(s)ds − (xε

n)3�t,

dY ε = θ

ε
(μxε

n − Y ε)dt + σ√
ε
dW.

(8.6)

For HMM, the slow variables are approximated by

xε
n+1 = xε

n + λ

∫ �t/λ

0
Y ε(s)ds − (xε

n)3�t.

For PHMM, the slow variables are approximated by

xε
n+1 = xε

n +
λ∑

j=1

∫ �t/λ

0
Y ε,j(s)ds − (xε

n)3�t.

where the Y ε,j are independent copies of Y ε . For this example, we can explicitly compute
the contribution from the fast scales in the equation for the slow variables. In particular,
by explicitly solving forY ε we see that the contribution to the slow variables in the original
system is

∫ �t

0
Y ε(s)ds = μxε

n�t + ε

θ
(1 − e−

θ�t
ε )(Y0 − 1) + σ

√
ε

θ

∫ �t

0
(1 − e−

θ (�t−r)
ε )dWr,
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whereas for HMM we have (after rescaling the stochastic integral)

λ

∫ �t/λ

0
Y ε(s)ds = μxε

n�t + ελ

θ
(1 − e−

θ�t
ελ )(Y0 − 1)

+ σ
√

ελ

θ

∫ �t

0
(1 − e−

θ (�t−r)
ελ )dWr.

And finally, for PHMM we have (after replacing the sum of independent stochastic inte-
grals with a single rescaled stochastic integral)

λ∑

j=1

∫ �t/λ

0
Y ε,j(s)ds = μxε

n�t + ελ

θ
(1 − e−

θ�t
ελ )(Y0 − 1)

+ σ
√

ε

θ

∫ �t

0
(1 − e−

θ (�t−r)
ελ )dWr.

From these three calculations, it can be seen that, at the level of the CLT, PHMM will
have the same fluctuations as the original system as ε → 0, for any λ = λ(ε) with ελ → 0
as ε → 0. For HMM on the other hand, the variance of the fluctuations will be enhanced
by a factor of λ, just as we found for the λ constant regime. This simple example indicates
that PHMM may be useful for capturing fluctuations even with λ = λ(ε), but further
investigation is needed before such claims can be made definitive. A similar question
concerning rare events in particle systems has been asked in [11].
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