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Abstract

The Laplace–Beltrami operator, a fundamental object associated with Riemannian
manifolds, encodes all intrinsic geometry of manifolds and has many desirable
properties. Recently, we proposed the point integral method (PIM), a novel numerical
method for discretizing the Laplace–Beltrami operator on point clouds (Li et al. in
Commun Comput Phys 22(1):228–258, 2017). In this paper, we analyze the
convergence of PIM for Poisson equation with Neumann boundary condition on
submanifolds that are isometrically embedded in Euclidean spaces.
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1 Background
The partial differential equations on manifolds arise in a wide variety of applications.
In many problems, including material science [10,20], fluid flow [22,25], biology and
biophysics [2,3,21,37], people need to study the physical process, for instance diffusion
and convection, in curved surfaces which introduce different kinds of PDEs in surfaces.
It has been several decades to develop numerical methods for solving PDEs in surfaces.
Many methods have been developed, such as surface finite element method [19], level set
method [9,48], grid-based particle method [31,32] and closest point method [35,43].
Recently, manifold model attracts more and more attentions in data analysis and image

processing [4,11,13,23,26,29,30,36,40–42,47]. In themanifoldmodel, data or images are
represented as a point cloud,which is defined as a collection of points that are embedded in
a high-dimensional Euclidean space. One fundamental assumption in themanifoldmodel
is that the point cloud samples a smooth manifold. Thus, the information of the manifold
is very useful to understand the data or images. PDEs on the manifold, particularly the
Laplace–Beltrami equation, encode several intrinsic information of the manifold, thus
helping reveal the underlying structures in the data or images. To get the information
encoded in PDEs, we need to solve them in the unstructured point cloud. Given that the
point cloud is embedded in a high-dimensional space, the traditional methods for PDEs
on 2D surfaces do not work.
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In the past few years, efforts have been devoted to develop alternative numerical meth-
ods to discretize differential operators on point cloud. Liang and Zhao [34] proposed to
discretize differential operators on point cloud via local least square approximations of
the manifold. Their method achieves high-order accuracy and flexibility because nomesh
is required. In principle, their method can be applied to manifolds with arbitrary dimen-
sions and co-dimensions with or without boundaries. However, if the dimension of the
manifold is high, then this method may be unstable because a high-order polynomial is
used to fit the data. Lai et al. [28] later proposed the local mesh method to approximate
differential operators on point cloud. The principle of the proposed method involves the
use of K nearest neighbors to construct local mesh around each points, which is easier
to construct than global mesh. Based on the local mesh, discretizing differential oper-
ators and computing integrals is then facilitated. When the dimension of the manifold
is high, even the construction of local mesh is difficult. Although lacking proof, moving
least square or local mesh-based methods achieve high-order accuracy. In principle, the
accuracy of the moving least square is arbitrarily high. The accuracy of the local mesh
method is second order because the local mesh approximation to the manifold has at
most second-order accuracy.
In [33], we proposed the point integral method (PIM), a novel numerical method, for

solving the Poisson equation on point cloud. The main idea of the point integral method
is to approximate the Poisson equation via the following integral equation:

−
∫
M

ΔMu(y)R̄t (x, y)dμy ≈ 1
t

∫
M

Rt (x, y)(u(x) − u(y))dμy

−2
∫

∂M
R̄t (x, y)

∂u
∂n

(y)dτy , (1)

where n is the out normal of ∂M, M is a smooth k-dimensional manifold embedded in
R
d , ∂M is the boundary ofM. Rt (x, y) and R̄t (x, y) are kernel functions given as follows

Rt (x, y) = CtR
( |x − y|2

4t

)
, R̄t (x, y) = CtR̄

( |x − y|2
4t

)
, (2)

where Ct = 1
(4π t)k/2 is the normalizing factor. R ∈ C2(R+) be a positive function that is

integrable over [0,+∞),

R̄(r) =
∫ +∞

r
R(s)ds.

ΔM = div(∇) is the Laplace–Beltrami operator (LBO) on M. Let Φ : Ω ⊂ R
k →

M ⊂ R
d be a local parametrization of M and θ ∈ Ω . For any differentiable function

f : M → R, define the gradient on the manifold

∇f (Φ(θ )) =
m∑

i,j=1
gij(θ )

∂Φ

∂θi
(θ )

∂f (Φ(θ ))
∂θj

(θ ), (3)

and for vector field F : M → TxM on M, where TxM is the tangent space of M at
x ∈ M, the divergence is defined as

div(F ) = 1√
detG

d∑
k=1

m∑
i,j=1

∂

∂θi

(√
detGgijFk (Φ(θ ))

∂Φk

∂θj

)
, (4)
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where (gij)i,j=1,...,k = G−1, detG is the determinant of matrix G and G(θ ) = (gij)i,j=1,...,k
is the first fundamental form which is defined by

gij(θ ) =
d∑

k=1

∂Φk
∂θi

(θ )
∂Φk
∂θj

(θ ), i, j = 1, . . . , m. (5)

and (F1(x), . . . , Fd(x))t is the representation of F in the embedding coordinates.
Using the integral approximation, we transfer the LBO to an integral operator. The

integral operator is easily discretized on point cloudswith proper quadrature rule, because
differential operators are nonexistent inside. This is the essential component of PIM.
Similar integral approximation is also used in nonlocal diffusion and peridynamic models
[1,15–17,49].
PIM is also related with graph Laplacian, a discrete object that is associated with a

graph and reveals many properties of graphs [12]. As observed in [5,24,27,44], the graph
Laplacian with the Gaussian weights well approximates the LBO when the vertices of
the graph are assumed to be a sample of the underlying manifold. When no boundary is
present, Belkin and Niyogi [6] showed that the spectra of the graph Laplacian with Gaus-
sian weights converge to that of ΔM. Dealing with the boundary remains an unresolved
issue. In fact, near the boundary, graph Laplacian is dominated by the first-order deriva-
tive and thus fails to be a true Laplacian [7,27]. Recently, Singer and Wu [45] showed the
spectral convergence of the graph Laplacian in the presence of the Neumann boundary.
the convergence analysis in both [6] and [45] is based on the connection between the
graph Laplacian and the heat operator. Therefore, Gaussian weights are essential.
Themain contribution of this paper is that, for Poisson equation withNeumann bound-

ary condition, we prove that the numerical solution computed by the PIM converges to
the exact solution inH1 norm as the density of the sample points tends to infinity. Unlike
themethods used in graph Laplacian, we do not relate the integral operator to heat kernel.
Instead, we use a strategy that is standard in numerical analysis to prove convergence.
It is well known that the convergence is an easy consequence of consistency and sta-

bility. We imply that PIM is stable by proving that PIM preserves the coercivity of the
original Laplace–Beltrami operator. Together with the truncation error estimate, we get
the convergence of PIM.
The rest of this paper is organized as follows. In Sect. 2, we describe the point integral

method for Poisson equation with Neumann boundary condition. The convergence result
is stated in Sect. 3. The structure of the proof is shown in Sect. 4. The main body of the
proof is presented in Sects. 5, 6 and 7. Finally, the conclusions and discussion of future
work are provided in Sec. 8.

2 Point integral method
In this paper, we consider Poisson equation on a smooth, compact k-dimensional sub-
manifoldM in R

d, d ≥ k with the Neumann boundary
{

−ΔMu(x) = f (x), x ∈ M,
∂u
∂n (x) = b(x), x ∈ ∂M.

(6)

The manifoldM is sampled with a set of sample points P and a subset S ⊂ P sampling
the boundary of M. The points are listed in a fixed order P = (p1, . . . ,pn) where pi ∈
R
d, 1 ≤ i ≤ n and without loss of generality, let S = (p1, . . . ,pm) ⊂ P withm < n.



Shi and Sun ResMath Sci (2017) 4:22 Page 4 of 39

In addition, assuming that we are given two vectors, V = (V1, . . . , Vn)t , where Vi is an
volume weight of pi inM, andA = (A1, . . . , Am)t , whereAi is an area weight of pi in ∂M,
thus, for any f ∈ C1(M) and g ∈ C1(M),

n∑
i=1

f (pi)Vi ≈
∫
M

f (x)dμx ,
m∑
i=1

g(pi)Ai ≈
∫

∂M
g(x)dτx .

Here dμx and dτx are the volume form ofM and ∂M, respectively.
Using the integral approximation (1), the Poisson equation is approximated with an

integral equation,

1
t

∫
M

Rt (x, y)(u(x) − u(y))dμy − 2
∫

∂M
R̄t (x, y)b(y)dτy =

∫
M

f (y)R̄t (x, y)dμy . (7)

No differential operators exist in the integral equation. Therefore, it is easy to discretize
on the point cloud with the weight vectors, V and A,

1
t

n∑
j=1

Rt (pi,pj)(ui − uj)Vj − 2
m∑
j=1

R̄t (pi,pj)b(pj)Aj =
n∑

j=1
R̄t (pi,pj)f (pj)Vj. (8)

The solution u = (u1, . . . , un)t to the above linear system provides an approximation of
the solution to problem (6).

3 Main results
The main contribution of this paper is the establishment of the convergence results for
the point integral method for solving problem (6). To simplify the notation and make
the proof concise, in the analysis, we consider the homogeneous Neumann boundary
conditions, i.e.,

{
−ΔMu(x) = f (x), x ∈ M,
∂u
∂n (x) = 0, x ∈ ∂M.

(9)

The analysis can be easily generalized to nonhomogeneous boundary conditions.
The corresponding numerical scheme is

1
t

n∑
j=1

Rt (pi,pj)(ui − uj)Vj =
n∑

j=1
R̄t (pi,pj)fjVj, (10)

where fj = f (pj).
Before proving the convergence of the point integral method, we need to clarify the

meaning of the convergence between the point cloud (P,V) and the manifoldM. In this
paper, we consider the convergence in the sense that h(P,V,M) → 0 where h(P,V,M)
is the integral accuracy index defined as following,

Definition 1 (Integral accuracy index) For the point cloud (P,V) that samples the mani-
foldM, the integral accuracy index h(P,V,M) is defined as

h(P,V,M) = sup
f ∈C1(M)

∣∣∫M f (y)dμy −∑n
i=1 f (pi)Vi

∣∣
|supp(f )|‖f ‖C1(M)

,

where ‖f ‖C1(M) = ‖f ‖∞ + ‖∇f ‖∞ and |supp(f )| is the volume of the support of f .
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Using the definition of integrable index, the point cloud (P,V) converges to themanifold
M if h(P,V,M) → 0. In the convergence analysis, we assume that h(P,V,M) is small
enough.

Remark 1 In some sense, h(P,V,M) is a measure of the point cloud density.

1. If the volume weight V comes from a mesh, one can obtain the integral accuracy
index h(P,V,M) = O(ρ) where ρ is the size of the elements in the mesh and the
angle between the normal space of an element and the normal space of M at the
vertices of the element is of order ρ1/2 [46].

2. If the point cloud is sampled from some distribution, from central limit theorem,
h(P,V,M) ∼ O(1/

√
n) where n is the number of point in P.

Remark 2 To consider the nonhomogeneous Neumann boundary condition or Dirichlet
boundary condition, we also have to also assume that h(S,A, ∂M) → 0, where S is the
point set that samples the boundary ∂M and A is the corresponding volume weight on
the boundary ∂M.

To obtain the convergence, we also need some assumptions on the regularity of the
submanifoldM and the integral kernel function R.

Assumption 1 1. Smoothness of the manifold: M, ∂M are both compact and C∞

smooth k-dimensional submanifolds isometrically embedded in a Euclidean space
R
d .

2. Assumptions on the kernel function R(r):

(a) Smoothness: d2
dr2R(r) is bounded, i.e., there exists a constant C such that∣∣∣ d2dr2R(r)

∣∣∣ ≤ C, ∀r ≥ 0;
(b) Nonnegativity: R(r) ≥ 0 for any r ≥ 0;
(c) Compact support: R(r) = 0 for ∀r > 1;
(d) Nondegeneracy: ∃δ0 > 0 so that R(r) ≥ δ0 for 0 ≤ r ≤ 1

2 .

Remark 3 The assumption on the kernel function is very mild. Almost all the smoothed
delta functions in the literatures satisfy these condition. One frequently used choice is
given by cos function:

R(r) =
{

1
2 (1 + cosπr) , 0 ≤ r ≤ 1,
0, r > 1.

The compact support assumption can be relaxed to exponentially decay, like Gaussian
kernel. In the nondegeneracy assumption, 1/2 may be replaced by a positive number θ0
with 0 < θ0 < 1. Similar assumptions on the kernel function is also used in analysis the
nonlocal diffusion problem [18].

Remark 4 For simplicity, R is assumed to be compactly supported. After somemild mod-
ifications of the proof, the same convergence results also hold for any kernel function
that decays exponentially, like the Gaussian kernel Gt (x, y) = Ct exp

(
−|x−y|2

4t

)
. In fact,

for any s ≥ 1 and any ε > 0, the Hs mass of the Gaussian kernel over the domain
Ω = {y ∈ M||x − y|2 ≥ t1+ε} decays faster than any polynomial in t as t goes to 0, i.e.,



Shi and Sun ResMath Sci (2017) 4:22 Page 6 of 39

limt→0
‖Gt (x,y)‖Hs (Ω)

tα = 0 for any α. In this way, we can bound any influence of the integral
outside a compact support.

All the analysis in this paper is conducted under the assumptions in Assumption 1 and
h(P,V,M), t are small enough. One upper bound of t, T0, is given by 15

√
2T0 = δ with

δ = ρσ/20, ρ = 0.1 and σ is the minimum of the reaches defined in Proposition 1. In the
theorems and the proof, we omit the statement of the assumptions without introducing
any confusion.
The solution of the point integral method is a vector u, while the solution of problem (9)

is a function defined on M. To make these two solutions comparable, for any solution
u = (u1, . . . , un)t to the problem (10), we construct a function onM

If(u)(x) =
∑n

j=1 Rt (x,pj)ujVj − t
∑n

j=1 R̄t (x,pj)fjVj∑n
j=1 Rt (x,pj)Vj

. (11)

It is easy to verify that If(u) interpolates u at the sample points P, i.e., If(u)(pj) = uj for any
pj ∈ P. The following theorem guarantees the convergence of the point integral method.

Theorem 1 Let u be the solution to Problem (9) with f ∈ C1(M) and the vector u be the
solution to the problem (10). Then, there exists constants C and T0 only depend on M,
such that for any t ≤ T0

‖u − If(u)‖H1(M) ≤ C
(
t1/2 + h(P,V,M)

t3/2

)
‖f ‖C1(M), (12)

where h(P,V,M) is the integral accuracy index.

4 Structure of the proof
To simplify the notation, we introduce an integral operator,

Ltu = 1
t

∫
M

Rt (x, y)(u(x) − u(y))dμy . (13)

Roughly speaking, the proof the convergence includes an estimate of the truncation error
Lt (u − If(u)) and the stability of the integral operator Lt . Here u(x) is the solution of the
problem (9) and u is the solution of the problem (10).
First, we have following theorem regarding the stability of the operator Lt .

Theorem 2 Let u(x) solve the integral equation

Ltu = r(x),

where r ∈ H1(M)with
∫
M r(x)dμx = 0. There exist constants C > 0, T0 > 0 independent

on t, such that

‖u‖H1(M) ≤ C
(‖r‖L2(M) + t‖∇r‖L2(M)

)

provided that t ≤ T0.
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To apply the stability result, we need L2 estimate of Lt (u − If(u)) and ∇Lt (u − If(u)).
These truncation errors are analyzed in following two theorems by splitting the truncation
error Lt (u − If(u))

Lt (u − If(u)) = Lt (u − ut )) + Lt (ut − If(u)),

where ut is the solution of the integral equation

1
t

∫
M

Rt (x, y)(u(x) − u(y))dμy =
∫
M

f (y)R̄t (x, y)dμy . (14)

For the second term, we have

Theorem 3 Let ut (x) be the solution of the problem (14) and u be the solution of the
problem (10). If f ∈ C1(M), then there exists constants C, T0 depending only onM, so that

‖Lt
(
Ifu − ut

) ‖L2(M) ≤ Ch(P,V,M)
t3/2

‖f ‖C1(M), (15)

‖∇Lt
(
Ifu − ut

) ‖L2(M) ≤ Ch(P,V,M)
t2

‖f ‖C1(M). (16)

as long as t ≤ T0 and h(P,V,M)√
t ≤ T0, h(P,V,M) is the integral difference index in Defini-

tion 1.

In the analysis, we found that the error term Lt (u− ut ) has boundary layer structure. In
the interior region, it is O(

√
t) and in a layer adjacent to the boundary with width O(

√
t),

the error is O(1).

Theorem 4 Let u(x) be the solution of the problem (9) and ut (x) be the solution of the
corresponding integral equation (14). Let

Ibd =
d∑
j=1

∫
∂M

nj(y)(x − y) · ∇(∇ ju(y))R̄t (x, y)p(y)dτy , (17)

and

Lt (u − ut ) = Iin + Ibd.

wheren(y) = (n1(y), . . . , nd(y)) is the out normal vector of ∂M at y,∇ j is the jth component
of gradient ∇ .
If u ∈ H3(M), then there exists constants C, T0 depending only onM and p(x), so that,

‖Iin‖L2(M) ≤ Ct1/2‖u‖H3(M), ‖∇Iin‖L2(M) ≤ C‖u‖H3(M), (18)

as long as t ≤ T0.

To utilize the boundary layer structure, we need a stability result specifically for the
boundary term.

Theorem 5 Let u(x) solve the integral equation

Ltu =
∫

∂M
b(y) · (x − y)R̄t (x, y)dτy − b̄,



Shi and Sun ResMath Sci (2017) 4:22 Page 8 of 39

where |M| = ∫
M dμx and

b̄ = 1
|M|

∫
M

(∫
∂M

b(y) · (x − y)R̄t (x, y)dτy

)
dx.

Then, there exist constant C > 0, T0 > 0 independent on t, such that

‖u‖H1(M) ≤ C
√
t ‖b‖H1(M).

as long as t ≤ T0.

Theorem 1 is an easy corollary from Theorems 2, 3, 4 and 5. Theorems 2 and 3 imply
that

‖ut − If(u)‖H1(M) = O
(
h(P,V,M)

t3/2

)

and Theorems 2, 4 and 5 imply

‖u − ut‖H1(M) = O
(
t1/2

)
,

which prove Theorem 1.
In the rest of the paper, we prove Theorems 2, 3, 4 and 5, respectively.

5 Error analysis of the integral approximation (Theorem 4)
In this section, we need to introduce a special parametrization of the manifold M. This
parametrization is based on following proposition. First, we define the reaches of a mani-
fold following the definition in [38]. Consider a compact Riemannian submanifoldM of
a Euclidean space Rd . We can define the set

G(M) = {x ∈ R
d : there exist distinct p, q ∈ M

such that d(x,M) = |x − p| = |x − q|}

where d(x,M) = inf y∈M |x − y|. The closure of G(M), denoted as Ḡ(M), is called the
medial axis of M. For any p ∈ M, the reach at p is defined as the distance of p to the
medial axis, i.e.,

τ (p,M) = inf
y∈Ḡ(M)

|p − y|.

Proposition 1 Assume bothM and ∂M are compact and C2 smooth. σ is the minimum
of the reaches ofM and ∂M, i.e.,

σ = min
{
inf
p∈M τ (p,M), inf

p∈∂M
τ (p, ∂M)

}
.

For any point x ∈ M, there is a neighborhood U ⊂ M of x, so that there is a parametriza-
tion Φ : Ω ⊂ R

k → U satisfying the following conditions. For any ρ ≤ 0.1,

(i) Ω is convex and contains at least half of the ball BΦ−1(x)(
ρ
5 σ ), i.e., vol(Ω ∩

BΦ−1(x)(
ρ
5 σ )) > 1

2 (
ρ
5 σ )kwk where wk is the volume of unit ball in R

k ;
(ii) Bx( ρ

10σ ) ∩ M ⊂ U.
(iii) The determinant the Jacobian of Φ is bounded: (1 − 2ρ)k ≤ |DΦ| ≤ (1 + 2ρ)k over

Ω .
(iv) For any points y, z ∈ U, 1 − 2ρ ≤ |y−z|

|Φ−1(y)−Φ−1(z)| ≤ 1 + 3ρ.
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This proposition basically says there exists a local parametrization of small distortion if
(M, ∂M) satisfies certain smoothness, and moreover, the parameter domain is convex
and big enough. The proof of this proposition can be found in “Appendix A.” Next, we
introduce a special parametrization of the manifoldM.
Let ρ = 0.1, σ be the minimum of the reaches ofM and ∂M and δ = ρσ/20. For any

x ∈ M, denote

Bδ
x = {

y ∈ M : |x − y| ≤ δ
}
, Mt

x = {
y ∈ M : |x − y|2 ≤ 4t

}
(19)

and we assume t is small enough such that 2
√
t ≤ δ.

Since the manifold M is compact, there exists a δ-net, Nδ = {qi ∈ M, i = 1, . . . , N },
such that

M ⊂
N⋃
i=1

Bδ
qi ,

and there exists a partition ofM, {Oi, i = 1, . . . , N }, such thatOi ∩ Oj = ∅, i �= j and

M =
N⋃
i=1

Oi, Oi ⊂ Bδ
qi , i = 1, . . . , N.

Using Proposition 1, there exist a parametrization Φi : Ωi ⊂ R
k → Ui ⊂ M, i =

1, . . . , N , such that

1. (Convexity) B2δ
qi ⊂ Ui and Ωi is convex;

2. (Smoothness) Φi ∈ C3(Ωi);
3. (Locally small deformation) For any points θ1, θ2 ∈ Ωi,

1
2

|θ1 − θ2| ≤ ∥∥Φi(θ1) − Φi(θ2)
∥∥ ≤ 2 |θ1 − θ2| .

Using the partition, {Oi, i = 1, . . . , N }, for any y ∈ M, there exists unique J (y) ∈
{1, . . . , N }, such that

y ∈ OJ (y) ⊂ Bδ
qJ (y) . (20)

Moreover, using the condition, 2
√
t ≤ δ, we have Mt

y ⊂ B2δ
qJ (y) ⊂ UJ (y). Then, Φ−1

J (y)(x)
and Φ−1

J (y)(y) are both well defined for any x ∈ Mt
y .

Now, we define an auxiliary function, η(x, y) for any y ∈ M, x ∈ Mt
y . Let

ξ (x, y) = Φ−1
J (y)(x) − Φ−1

J (y)(y) ∈ R
k , η(x, y) = ξ (x, y) · ∂ΦJ (y)(α(x, y)) ∈ R

d, (21)

where α(x, y) = Φ−1
J (y)(y) and ∂ is the gradient operator in the parameter space, i.e.,

∂Φj(θ ) =
(

∂Φj

∂θ1
(θ ),

∂Φj

∂θ2
(θ ), . . . ,

∂Φj

∂θk
(θ )
)
, θ ∈ Ωj ⊂ R

k .

Now, we state the proof of Theorem 4.
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Proof Let r(x) = −(Ltu − Ltut ) be the residual, then we have

r(x) = −1
t

∫
M

Rt (x, y)(u(x) − u(y))dμy

+2
∫

∂M
R̄t (x, y)g(y)dτy −

∫
M

R̄t (x, y)f (y)dμy

= −1
t

∫
M

Rt (x, y)(u(x) − u(y))dμy +
∫
M

R̄t (x, y)ΔMu(y)dμy

+1
t

∫
M

(x − y) · ∇u(y)Rt (x, y)ddμy

= −1
t

∫
M

Rt (x, y)(u(x) − u(y) − (x − y) · ∇u(y))dμy

+
∫
M

R̄t (x, y)ΔMu(y)dμy .

Here, we use that fact that∫
M

R̄t (x, y)f (y)dμy =
∫
M

R̄t (x, y)ΔMu(y)dμy ,

and ∫
∂M

R̄t (x, y)g(y)dτy =
∫

∂M
R̄t (x, y)

∂u
∂n

(y)dτy

=
∫
M

R̄t (x, y)ΔMu(y)dμy +
∫
M

∇yR̄t (x, y) · ∇u(y)dμy

=
∫
M

R̄t (x, y)ΔMu(y)dμy

+ 1
2t

∫
M

(x − y) · ∇u(y)Rt (x, y)dμy ,

where the last equality comes from:∫
M

∇u(y) · ∇yR̄t (x, y)dμy

= 1
2t

∫
M

(
∂i′Φ

lg i
′j′∂j′u(y)

) (
∂m′Φ lgm

′n′
∂n′Φ j(xj − yj)Rt (x, y)

)
dμy

= 1
2t

∫
M

(
∂n′Φ jg j

′n′
∂j′u(y)

) (
(xj − yj)Rt (x, y)

)
dμy

= 1
2t

∫
M

(xj − yj)∇ ju(y)Rt (x, y)dμy

= 1
2t

∫
M

(x − y) · ∇u(y)Rt (x, y)dμy . (22)

Here, Φ i, i = 1, . . . , d, is the ith component of the parameterization function Φ and
the parameterization function Φ = ΦJ (y), J (y) is the index function given in (20). In the
rest of the proof, without introducing any confusion, we always drop the subscript of the
parameterization function.
First, we split the residual r(x) to four terms

r(x) = r1(x) + r2(x) + r3(x) − r4(x),

where

r1(x) = 1
t

∫
M

(
u(x) − u(y) − (x − y) · ∇u(y) − 1

2
ηiηj(∇ i∇ ju(y))

)
Rt (x, y)dμy ,
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r2(x) = 1
2t

∫
M

ηiηj(∇ i∇ ju(y))Rt (x, y)dμy −
∫
M

ηi(∇ i∇ ju(y)∇ j R̄t (x, y)dμy ,

r3(x) =
∫
M

ηi(∇ i∇ ju(y)∇ j R̄t (x, y)dμy +
∫
M

div
(
ηi(∇ i∇u(y)

)
R̄t (x, y)dμy ,

r4(x) =
∫
M

div
(
ηi(∇ i∇u(y)

)
R̄t (x, y)dμy +

∫
M

ΔMu(y)R̄t (x, y)dμy .

where ∇ i, i = 1, . . . , d, is the ith component of the gradient ∇ , ηi, i = 1, . . . , d is the ith
component of η(x, y) defined in (21). To simplify the notation, we drop the variable (x, y)
in the function η(x, y).
Next, we will prove the theorem by estimating above four terms one by one. First, we

consider r1. Let

d(x, y) = u(x) − u(y) − (x − y) · ∇u(y) − 1
2
ηiηj(∇ i∇ ju(y)).

we have∫
M

|r1(x)|2dμx =
∫
M

∣∣∣∣
∫
M

Rt (x, y)d(x, y)dμy

∣∣∣∣
2
dμx

≤ (max
y

)2
∫
M

(∫
M

Rt (x, y)dμy

)(∫
M

Rt (x, y)|d(x, y)|2dμy

)
dμx

≤ C
∫
M

∫
M

Rt (x, y)|d(x, y)|2dμydμx

and
∫
M

∫
M

Rt (x, y)|d(x, y)|2dμydμx =
N∑
i=1

∫
M

∫
Oi

Rt (x, y)|d(x, y)|2dμydμx

=
N∑
i=1

∫
Oi

(∫
Mt

y

Rt (x, y)|d(x, y)|2dμx

)
dμy .

Using Newton–Leibniz formula, we get

d(x, y) = u(x) − u(y) − (x − y) · ∇u(y) − 1
2
ηiηj(∇ i∇ ju(y))

= ξ iξ i
′
∫ 1

0

∫ 1

0

∫ 1

0
s1

d
ds3

(
∂iΦ

j(α + s3s1ξ )∂i′Φ j′ (α + s3s2s1ξ )

×∇ j′∇ ju(Φ(α + s3s2s1ξ ))
)
ds3ds2ds1

= ξ iξ i
′
ξ i

′′
∫ 1

0

∫ 1

0

∫ 1

0
s21s2∂iΦ

j(α + s3s1ξ )∂i′′∂i′Φ j′

×(α + s3s2s1ξ )∇ j′∇ ju(Φ(α + s3s2s1ξ ))ds3ds2ds1

+ξ iξ i
′
ξ i

′′
∫ 1

0

∫ 1

0

∫ 1

0
s21∂i′′∂iΦ

j

×(α + s3s1ξ )∂i′Φ j′ (α + s3s2s1ξ )∇ j′∇ ju(Φ(α + s3s2s1ξ ))ds3ds2ds1

+ξ iξ i
′
ξ i

′′
∫ 1

0

∫ 1

0

∫ 1

0
s21s2∂iΦ

j

×(α + s3s2s1ξ )∂i′Φ j′ (α + s3s2s1ξ )∂i′′Φ j′′ (α + s3s2s1ξ )

×∇ j′′∇ j′∇ ju(Φ(α + s3s2s1ξ ))ds3ds2ds1

Here, α = α(x, y) = Φ−1
J (y)(y), ξ = ξ (x, y) = Φ−1

J (y)(x) − Φ−1
J (y)(y). In above derivation, we

need the convexity property of the parameterization function tomake sure all the integrals
are well defined.
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Using above equality and the smoothness of the parameterization functions, it is easy
to show that∫

Oi

(∫
Mt

y

Rt (x, y)|d(x, y)|2dμx

)
dμy

≤ Ct3
∫ 1

0

∫ 1

0

∫ 1

0

∫
Oi

∫
Mt

y

Rt (x, y)
∣∣D2,3u(ΦJ (y)(α + s3s2s1ξ ))

∣∣2 dμxdμyds3ds2ds1

≤ Ct3 max
0≤s≤1

∫
Oi

∫
Mt

y

Rt (x, y)
∣∣D2,3u(Φi(α + sξ ))

∣∣2 dμxdμy ,

where we use the fact that J (y) = i, y ∈ Oi and

∣∣D2,3u(x)
∣∣2 =

d∑
j,j′ ,j′′=1

|∇ j′′∇ j′∇ ju(x)|2 +
d∑

j,j′=1
|∇ j′∇ ju(x)|2.

Let zi = Φi(α + sξ ), 0 ≤ s ≤ 1, then for any y ∈ Oi ⊂ Bδ
qi and x ∈ Mt

y ,

|zi − y| ≤ 2s|ξ | ≤ 4s|x − y| ≤ 8s
√
t, |zi − qi| ≤ |zi − y| + |y − qi| ≤ δ + 8s

√
t.

We can assume that t is small enough such that 8
√
t ≤ δ, then we have

zi ∈ B2δ
qi .

After changing of variable, we obtain∫
Oi

∫
Mt

y

Rt (x, y)
∣∣D2,3u(Φi(α + sξ ))

∣∣2 dμxdμy

≤ C
δ0

∫
Oi

∫
B2δqi

1
sk
R
( |zi − y|2

128s2t

) ∣∣D2,3u(zi)
∣∣2 dμzidμy

= C
δ0

∫
Oi

1
sk
R
( |zi − y|2

128s2t

)
dμy

∫
B2δqi

∣∣D2,3u(zi)
∣∣2 dμzi

≤ C
∫
B2δqi

∣∣D2,3u(x)
∣∣2 dμx .

This estimate would give us that

‖r1(x)‖L2(M) ≤ Ct1/2‖u‖H3(M) (23)

Now, we turn to estimate the gradient of r1.∫
M

|∇xr1(x)|2dμx ≤ C
∫
M

∣∣∣∣
∫
M

∇xRt (x, y)d(x, y)dμy

∣∣∣∣
2
dμx

+C
∫
M

∣∣∣∣
∫
M

Rt (x, y)∇xd(x, y)dμy

∣∣∣∣
2
dμx ,

where ∇x is the gradient inM with respect to x.
Using the same techniques in the calculation of ‖r1(x)‖L2(M), we get that the first term

of right-hand side can bounded as follows∫
M

∣∣∣∣
∫
M

∇xRt (x, y)d(x, y)dμy

∣∣∣∣
2
dμx ≤ C‖u‖2H3(M).

The estimation of second term is a little involved. First, we have
∫
M

∣∣∣∣
∫
M

Rt (x, y)∇xd(x, y)dμy

∣∣∣∣
2
dμx ≤ C

∫
M

(∫
M

Rt (x, y)|∇xd(x, y)|2dμy

)
dμx

= C
N∑
i=1

∫
Oi

(∫
Mt

y

Rt (x, y)|∇xd(x, y)|2dμx

)
dμy .



Shi and Sun ResMath Sci (2017) 4:22 Page 13 of 39

Also using Newton–Leibniz formula, we have

d(x, y) = ξ iξ i
′
∫ 1

0

∫ 1

0
s1
(
∂iΦ

j(α + s1ξ )∂i′Φ j′ (α + s2s1ξ )

×∇ j′∇ ju(Φ(α + s2s1ξ ))
)
ds2ds1

−ξ iξ i
′
∫ 1

0

∫ 1

0
s1
(
∂iΦ

j(α)∂i′Φ j′ (α)∇ j′∇ ju(Φ(α))
)
ds2ds1

Then, the gradient of d(x, y) has following representation,

∇xd(x, y) = ξ iξ i
′∇x

(∫ 1

0

∫ 1

0
s1
(
∂iΦ

j(α + s1ξ )∂i′Φ j′ (α + s2s1ξ )

× ∇ j′∇ ju(Φ(α + s2s1ξ ))
)
ds2ds1

)

+∇x
(
ξ iξ i

′) ∫ 1

0

∫ 1

0

∫ 1

0
s1

d
ds3

(
∂iΦ

j(α + s3s1ξ )∂i′Φ j′ (α + s3s2s1ξ )

× ∇ j′∇ ju(Φ(α + s3s2s1ξ ))
)
ds3ds2ds1

= d1(x, y) + d2(x, y).

For d1, we have∫
Oi

(∫
Mt

y

Rt (x, y)|d1(x, y)|2dμx

)
dμy

≤ Ct2 max
0≤s≤1

∫
Oi

(∫
Mt

y

Rt (x, y)|D2,3u(Φi(α + sξ ))|2dμx

)
dμy ,

which means that∫
Oi

(∫
Mt

y

Rt (x, y)|d1(x, y)|2dμx

)
dμy ≤ C

∫
B2δqi

|D2,3u(x)|2dμx (24)

For d2, we have

d2(x, y) = ∇x
(
ξ iξ i

′) ∫
[0,1]3

s1
d
ds3

(
∂iΦ

j(α + s3s1ξ )∂i′Φ j′ (α + s3s2s1ξ )

× ∇ j′∇ ju(Φ(α + s3s2s1ξ ))
)
ds3ds2ds1

= ∇x
(
ξ iξ i

′)
ξ i

′′
∫
[0,1]3

s21s2∂iΦ
j(α + s3s1ξ )∂i′′∂i′Φ j′ (α + s3s2s1ξ )

×∇ j′∇ ju(Φ(α + s3s2s1ξ ))ds3ds2ds1

+∇x
(
ξ iξ i

′)
ξ i

′′
∫
[0,1]3

s21∂i′′∂iΦ
j(α + s3s1ξ )∂i′Φ j′ (α + s3s2s1ξ )

×∇ j′∇ ju(Φ(α + s3s2s1ξ ))ds3ds2ds1

+∇x
(
ξ iξ i

′)
ξ i

′′
∫
[0,1]3

s21s2∂iΦ
j(α + s2s1ξ )∂i′

×Φ j′ (α + s3s2s1ξ )∂i′′Φ j′′ (α + s3s2s1ξ )

×∇ j′′∇ j′∇ ju(Φ(α + s3s2s1ξ ))ds3ds2ds1
This formula tells us that∫

Oi

(∫
Mt

y

Rt (x, y)|d2(x, y)|2dμx

)
dμy

≤ Ct2 max
0≤s≤1

∫
Oi

(∫
Mt

y

Rt (x, y)|D2,3u(Φ(α + sξ ))|2dμx

)
dμy .
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Using the same arguments as that in the calculation of ‖r1‖L2(M), we have
∫
Oi

(∫
Mt

y

Rt (x, y)|d2(x, y)|2dμx

)
dμy ≤ C

∫
B2δqi

|D3u(x)|2dμx (25)

Combining (24) and (25), we have

‖∇r1(x)‖L2(M) ≤ C‖u‖H3(M) (26)

For r2, first, notice that

∇ j R̄t (x, y) = 1
2t

∂m′Φ j(α)gm
′n′

∂n′Φ i(α)(xi − yi)Rt (x, y),

ηj

2t
Rt (x, y) = 1

2t
∂m′Φ j(α)gm

′n′
∂n′Φ i(α)ξ i

′
∂i′Φ

iRt (x, y).

Then, we have

∇ j R̄t (x, y) − ηj

2t
Rt (x, y)

= 1
2t

∂m′Φ igm
′n′

∂n′Φ j
(
xj − yj − ξ i

′
∂i′Φ

j
)
Rt (x, y)

= 1
2t

ξ i
′
ξ j

′
∂m′Φ igm

′n′
∂n′Φ j

(∫ 1

0

∫ 1

0
s∂j′∂i′Φ j(α + τ sξ )dτds

)
Rt (x, y)

Thus, we get
∣∣∣∣∇ j R̄t (x, y) − ηj

2t
Rt (x, y)

∣∣∣∣ ≤ C|ξ |2
t

Rt (x, y)
∣∣∣∣∇x

(
∇ j R̄t (x, y) − ηj

2t
Rt (x, y)

)∣∣∣∣ ≤ C|ξ |
t

Rt (x, y) + C|ξ |3
t2

|R′
t (x, y)|.

Then, we have following bound for r2,

∫
M

|r2(x)|2dμx

≤ Ct
∫
M

(∫
M

Rt (x, y)|D2u(y)|dμy

)2
dμx

≤ Ct
∫
M

(∫
M

Rt (x, y)dμy

)∫
M

Rt (x, y)|D2u(y)|2dμydμx

≤ Ctmax
y

(∫
M

Rt (x, y)dμx

)∫
M

|D2u(y)|2dμy

≤ Ct‖u‖2H2(M). (27)

Similarly, we have

∫
M

|∇r2(x)|2dμx

≤ Ct
∫
M

(∫
M

∇xRt (x, y)dμy

)∫
M

∇xRt (x, y)|D2u(y)|2dμydμx

≤ C
√
tmax

y

(∫
M

∇xRt (x, y)dμx

)∫
M

|D2u(y)|2dμy

≤ C‖u‖2H2(M). (28)
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r3 is relatively easy to estimate by using the well known Gauss formula.

r3(x) =
∫

∂M
njηi(∇ i∇ ju(y))R̄t (x, y)dτy = Ĩbd , (29)

where Ĩbd = ∫
∂M njηi(∇ i∇ ju(y))R̄t (x, y)dτy .

Now, we turn to bound the last term r4. Notice that

∇ j
(
∇ ju(y)

)
= (∂k ′Φ j)gk

′l′∂l′
(
(∂m′Φ j)gm

′n′
(∂n′u)

)

= (∂k ′Φ j)gk
′l′
(
∂l′ (∂m′Φ j)

)
gm

′n′
(∂n′u)

+ (∂k ′Φ j)gk
′l′ (∂m′Φ j)∂l′

(
gm

′n′
(∂n′u)

)

= 1√
detG

(∂m′
√
detG)gm

′n′
(∂n′u) + ∂m′

(
gm

′n′
(∂n′u)

)

= 1√
detG

∂m′
(√

detGgm
′n′
(∂n′u)

)
= ΔMu(y), (30)

where detG is the determinant of G and G = (gij)i,j=1,...,k . Here, we use the fact that

(∂k ′Φ j)gk
′l′
(
∂l′ (∂m′Φ j)

)
= (∂k ′Φ j)gk

′l′
(
∂m′ (∂l′Φ j)

)

= (∂m′ (∂k ′Φ j))gk
′l′ (∂l′Φ j)

= 1
2
gk

′l′∂m′ (gk ′l′ )

= 1√
detG

(∂m′
√
detG).

Moreover, we have

gi
′j′ (∂j′Φ j)(∂i′ξ l)(∂lΦ i)(∇ i∇ ju(y))

= −gi
′j′ (∂j′Φ j)(∂i′Φ i)(∇ i∇ ju(y))

= −gi
′j′ (∂j′Φ j)(∂i′Φ i)(∂m′Φ i)gm

′n′
∂n′
(
∇ ju(y)

)

= −gi
′j′ (∂j′Φ j)∂i′

(
∇ ju(y)

)

= −∇ j
(
∇ ju(y)

)
, (31)

where the first equalities are due to that ∂i′ξ l = −δli′ . Then we have

div
(
ηi(∇ i∇ ju(y))

)
+ ΔMu(y)

= 1√
detG

∂i′
(√

detG gi
′j′ (∂j′Φ j)ξ l(∂lΦ i)(∇ i∇ ju(y))

)

− gi
′j′ (∂j′Φ j)(∂i′ξ l)(∂lΦ i)(∇ i∇ ju(y))

= ξ l√
detG

∂i′
(√

detG gi
′j′ (∂j′Φ j)(∂lΦ i)(∇ i∇ ju(y))

)
.

Here, we use the equalities (30), (31), ηi = ξ l∂i′Φ l and the definition of div,

divX = 1√
detG

∂i′ (
√
detG gi

′j′∂j′Φ
kXk ), (32)
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where X is a smooth tangent vector field onM and (X1, . . . , Xd)t is its representation in
embedding coordinates.
Hence,

r4(x) =
∫
M

ξ l√
detG

∂i′
(√

detG gi
′j′ (∂j′Φ j)(∂lΦ i)(∇ i∇ ju(y))

)
R̄t (x, y)dμy .

Then, it is easy to get that

‖r4(x)‖L2(M) ≤ Ct1/2‖u‖H3(M), (33)

‖∇r4(x)‖L2(M) ≤ C‖u‖H3(M). (34)

By combining (23), (26), (27), (28), (29), (33), (34), we know that

‖r − Ĩbd‖L2(M) ≤ Ct1/2‖u‖H3(M), (35)

‖∇(r − Ĩbd)‖L2(M) ≤ C‖u‖H3(M). (36)

Using the definition of Ibd and Ĩbd , we obtain

Ibd − Ĩbd =
∫

∂M
nj(y)(x − y − η(x, y)) · (∇∇ ju(y))R̄t (x, y)dτy .

Using the definition of η(x, y), it is easy to check that

|x − y − η(x, y)| = O(|x − y|2), |∇x(x − y − η(x, y))| = O(|x − y|),

which implies that

‖Ibd − Ĩbd‖L2(M) ≤ Ct3/4‖u‖H2(M), (37)

‖∇(Ibd − Ĩbd)‖L2(M) ≤ Ct1/4‖u‖H3(M). (38)

The theorem is proved by putting (35), (36), (37), (38) together.

6 Error analysis of the discretization (Theorem 3)
In this section, we estimate the discretization error introduced by approximating the
integrals in (14) that is to prove Theorem 3. To simplify the notation, we introduce an
intermediate operator defined as follows,

Lt,hu(x) = 1
t

n∑
j=1

Rt (x,pj)(u(x) − u(pj))Vj. (39)

If ut,h = If (u) with u satisfying equation (10), one can verify that the following equation
is satisfied,

Lt,hut,h(x) =
n∑

j=1
R̄t (x,pj)f (pj)Vj. (40)

We introduce a discrete operatorL : Rn → R
nwheren = |P|. For anyu = (u1, . . . , un)t ,

denote

(Lu)i = 1
t

n∑
j=1

Rt (pi,pj)(ui − uj)Vj. (41)

For this operator, we have the following important theorem.
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Theorem 6 Under the assumptions in Assumption 1, there exist constants C > 0, C0 > 0,
T0 independent on t so that for any u = (u1, . . . , un)t ∈ R

d with
∑n

i=1 uiVi = 0, t ≤ T0
and sufficient small h(P,V,M)√

t

〈u,Lu〉V ≥ C
(
1 − C0h(P,V,M)√

t

)
〈u,u〉V , (42)

where 〈u, v〉V = ∑n
i=1 uiviVi for any u = (u1, . . . , un), v = (v1, . . . , vn).

The proof of the above theorem is deferred to “Appendix D.”
It has an easy corollary which gives a priori estimate of u = (u1, . . . , un)t solving the

discrete problem (10).

Lemma 1 Suppose u = (u1, . . . , un)t with
∑

i uiVi = 0 solves the problem (10) and
f = (f (p1), . . . , f (pn))t for f ∈ C(M),
there exists a constant C > 0 such that( n∑

i=1
u2i Vi

)1/2

≤ C‖f ‖∞, (43)

provided t and h(P,V,M)√
t are small enough.

Proof From Theorem 6, we have

n∑
i=1

u2i Vi ≤
n∑

i=1

⎛
⎝ n∑

j=1
R̄t (pi,pj)fjVj

⎞
⎠uiVi

≤
( n∑

i=1
u2i Vi

)1/2
⎛
⎜⎝

n∑
i=1

⎛
⎝‖f ‖∞

∑
pj∈P

R̄t (pi,pj)Vj

⎞
⎠

2

Vi

⎞
⎟⎠

1/2

≤ C
( n∑

i=1
u2i Vi

)1/2

‖f ‖∞.

This proves the lemma.

We are now ready to prove Theorem 3.

Proof of Theorem 3 Denote

ut,h(x) = 1
wt,h(x)

⎛
⎝ n∑

j=1
Rt (x,pj)ujVj − t

n∑
j=1

R̄t (x,pj)fjVj

⎞
⎠ , (44)

where u = (u1, . . . , un)t with
∑n

i=1 uiVi = 0 solves the problem (10), fj = f (pj) and
wt,h(x) = ∑n

j=1 Rt (x,pj)Vj . For convenience, we set

at,h(x) = 1
wt,h(x)

n∑
j=1

Rt (x,pj)ujVj,

ct,h(x) = − t
wt,h(x)

n∑
j=1

R̄t (x,pj)f (pj)Vj,

and thus ut,h = at,h + ct,h.
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In the proof, to simplify the notation, we denote h = h(P,V,M) and n = |P|.
First we upper bound ‖Lt (ut,h) − Lt,h(ut,h)‖L2(M). For ct,h, we have

∣∣(Ltct,h − Lt,hct,h
)
(x)
∣∣

= 1
t

∣∣∣∣∣∣
∫
M

Rt (x, y)(ct,h(x) − ct,h(y))dμy −
n∑

j=1
Rt (x,pj)(ct,h(x) − ct,h(pj))Vj

∣∣∣∣∣∣

≤ 1
t
∣∣ct,h(x)∣∣

∣∣∣∣∣∣
∫
M

Rt (x, y)dμy −
n∑

j=1
Rt (x,pj)Vj

∣∣∣∣∣∣

+1
t

∣∣∣∣∣∣
∫
M

Rt (x, y)ct,h(y)dμy −
n∑

j=1
Rt (x,pj)ct,h(pj)Vj

∣∣∣∣∣∣
≤ Ch

t3/2
∣∣ct,h(x)∣∣+ Ch

t3/2
‖ct,h‖C1(M)

≤ Ch
t3/2

t‖f ‖∞ + Ch
t3/2

(t‖f ‖∞ + t1/2‖f ‖∞) ≤ Ch
t

‖f ‖∞.

For at,h, we have

∫
M

(
at,h(x)

)2
∣∣∣∣∣∣
∫
M

Rt (x, y)dμy −
n∑

j=1
Rt (x,pj)Vj

∣∣∣∣∣∣
2

dμx

≤ Ch2

t

∫
M

(
at,h(x)

)2 dμx ≤ Ch2

t

∫
M

⎛
⎝ 1
wt,h(x)

n∑
j=1

Rt (x,pj)ujVj

⎞
⎠

2

dμx

≤ Ch2

t

∫
M

⎛
⎝ n∑

j=1
Rt (x,pj)u2j Vj

⎞
⎠
⎛
⎝ n∑

j=1
Rt (x,pj)Vj

⎞
⎠ dμx

≤ Ch2

t

⎛
⎝ n∑

j=1
u2j Vj

∫
M

Rt (x,pj)dμx

⎞
⎠ ≤ Ch2

t

n∑
j=1

u2j Vj. (45)

Let

A = Ct

∫
M

1
wt,h(y)

R
( |x − y|2

4t

)
R
( |pi − y|2

4t

)
dμy

−Ct

n∑
j=1

1
wt,h(pj)

R
( |x − pj|2

4t

)
R
( |pi − pj|2

4t

)
Vj.

We have |A| < Ch
t1/2 for some constant C independent of t. In addition, notice that only

when |x − pi|2 ≤ 16t is A �= 0, which implies

|A| ≤ 1
δ0

|A|R
( |x − pi|2

32t

)
.
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Then, we have

∫
M

∣∣∣∣∣∣
∫
M

Rt (x, y)at,h(y)dμy −
n∑

j=1
Rt (x,pj)at,h(pj)Vj

∣∣∣∣∣∣
2

dμx

=
∫
M

( n∑
i=1

CtuiViA
)2

dμx ≤ Ch2

t

∫
M

( n∑
i=1

Ct |ui|ViR
( |x − pi|2

32t

))2

dμx

≤ Ch2

t

∫
M

( n∑
i=1

CtR
( |x − pi|2

32t

)
u2i Vi

)⎛
⎝∑

pi∈P
CtR

( |x − pi|2
32t

)
Vi

⎞
⎠ dμx

≤ Ch2

t

n∑
i=1

(∫
M

CtR
( |x − pi|2

32t

)
dμx

(
u2i Vi

)) ≤ Ch2

t

( n∑
i=1

u2i Vi

)
. (46)

Combining Eqs. (45), (46) and Lemma 1,

‖Ltat,h − Lt,hat,h‖L2(M)

=
(∫

M

∣∣(Lt (at,h) − Lt,h(at,h)
)
(x)
∣∣2 dμx

)1/2

≤ 1
t

⎛
⎜⎝
∫
M

(
at,h(x)

)2
∣∣∣∣∣∣
∫
M

Rt (x, y)dμy −
n∑

j=1
Rt (x,pj)Vj

∣∣∣∣∣∣
2

dμx

⎞
⎟⎠

1/2

+1
t

⎛
⎜⎝
∫
M

∣∣∣∣∣∣
∫
M

Rt (x, y)at,h(y)dμy −
n∑

j=1
Rt (x,pj)at,h(pj)Vj

∣∣∣∣∣∣
2

dμx

⎞
⎟⎠

1/2

≤ Ch
t3/2

( n∑
i=1

u2i Vi

)1/2

≤ Ch
t3/2

‖f ‖∞.

Assembling the parts together, we have the following upper bound.

‖Ltut,h − Lt,hut,h‖L2(M)

≤ ‖Ltat,h − Lt,hat,h‖L2(M) + ‖Ltct,h − Lt,hct,h‖L2(M)

≤ Ch
t3/2

‖f ‖∞ + Ch
t

‖f ‖∞ ≤ Ch
t3/2

‖f ‖∞ (47)

At the same time, since ut respectively ut,h solves equation (14) respectively equation (40),
we have

‖Lt (ut ) − Lt,h(ut,h)‖L2(M)

=
(∫

M

((
Ltut − Lt,hut,h

)
(x)
)2 dμx

)1/2

=
⎛
⎜⎝
∫
M

⎛
⎝
∫
M

R̄t (x, y)f (y) −
n∑

j=1
R̄t (x,pj)f (pj)Vj

⎞
⎠

2

dμx

⎞
⎟⎠

1/2

≤ Ch
t1/2

‖f ‖C1(M). (48)

The complete L2 estimate follows from Eqs. (47) and (48).
The estimate of the gradient, ‖∇(Lt (ut ) − Lt,h(ut,h))‖L2(M), can be obtained similarly.

The details can be found in “Appendix E.”
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7 Stability analysis (Theorems 2 and 5)
To prove Theorem 2 and 5, we need following two theorems regarding the coercivity of
the operator Lt .

Theorem 7 For any function u ∈ L2(M), there exists a constant C > 0 independent on t
and u, such that

〈u, Ltu〉M ≥ C
∫
M

|∇v|2dμx , (49)

where
〈
f, g
〉
M = ∫

M f (x)g(x)dμx for any f, g ∈ L2(M), and

v(x) = Ct
wt (x)

∫
M

R
( |x − y|2

4t

)
u(y)dμy , (50)

and wt (x) = Ct
∫
M R

( |x−y|2
4t

)
dμy .

Theorem 8 Assume bothM and ∂M are C∞. There exists a constant C > 0 independent
on t so that for any function u ∈ L2(M)with

∫
M u(x)dμx = 0 and for any sufficient small t

〈u, Ltu〉M ≥ C‖u‖2L2(M). (51)

Theorem 2 is a direct corollary of following two lemmas.

Lemma 2 For any function u ∈ L2(M), there exists a constant C > 0 independent on t
and u, such that

Ct
t

∫
M

∫
M

R
( |x − y|2

32t

)
(u(x) − u(y))2dμxdμy ≥ C

∫
M

|∇v|2dμx ,

where v is the same as defined in (50).

Lemma 3 If t is small enough, then for any function u ∈ L2(M), there exists a constant
C > 0 independent on t and u, such that

∫
M

∫
M

R
( |x − y|2

32t

)
(u(x) − u(y))2dμxdμy

≤ C
∫
M

∫
M

R
( |x − y|2

4t

)
(u(x) − u(y))2dμxdμy .

The proofs of the above two lemmas are put in “Appendix B” and “C.” Once we have
Lemmas 2 and 3, Theorem 7 becomes obvious by noticing that:

〈u, Ltu〉M =
∫
M

∫
M

R
( |x − y|2

4t

)
u(x)(u(x) − u(y))dμydμx

= −
∫
M

∫
M

R
( |x − y|2

4t

)
u(y)(u(x) − u(y))dμydμx

= 1
2

∫
M

∫
M

R
( |x − y|2

4t

)
(u(x) − u(y))2dμydμx .

Now, we turn to prove Theorem 51.
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Proof of Theorem 51 By Theorem 7 and the Poincaré inequality, there exists a constant
C > 0, such that

∫
M

(v(x) − v̄)2dμx ≤ CCt
t

∫
M

∫
M

R
( |x − y|2

4t

)
(u(x) − u(y))2dμxdμy ,

where v̄ = 1
|M|

∫
M v(x)dμx and

v(x) = Ct
wt (x)

∫
M

R
( |x − y|2

4t

)
u(y)dμy .

At the same time, we have

|M||v̄| =
∣∣∣∣
∫
M

v(x)dμx

∣∣∣∣
=
∣∣∣∣
∫
M

∫
M

Ct
wt (x)

R
( |x − y|2

4t

)
(u(y) − u(x))dμydμx

∣∣∣∣

≤
(∫

M

∫
M

Ct
wt (x)

R
( |x − y|2

4t

)
dμydμx

)1/2

(∫
M

∫
M

Ct
wt (x)

R
( |x − y|2

4t

)
(u(y) − u(x))2dμydμx

)1/2

≤ C|M|1/2
(
Ct

∫
M

∫
M

R
( |x − y|2

4t

)
(u(y) − u(x))2dμydμx

)1/2
,

where the second equality comes from
∫
M u(x)dμx = 0. This enables us to upper bound

the L2 norm of v as follows. For t sufficiently small,
∫
M

(v(x))2dμx ≤ 2
∫
M
(v(x) − v̄)2dx + 2

∫
M
v̄2dμx

≤ CCt
t

∫
M

∫
M

R
( |x − y|2

4t

)
(u(x) − u(y))2dμxdμy .

Let δ = wmin
2wmax+wmin

where wmin = minx wt (x) and wmax = maxx wt (x). If u is smooth and
close to its smoothed version v, in particular,∫

M
|v(x)|2dμx ≥ δ2

∫
M

|u(x)|2dμx , (52)

then the theorem is proved.
Now, consider the case where (52) does not hold. Note that we now have

‖u − v‖L2(M) ≥ ‖u‖L2(M) − ‖v‖L2(M) > (1 − δ)‖u‖L2(M)

>
1 − δ

δ
‖v‖L2(M) = 2wmax

wmin
‖v‖L2(M).

Then, we have

Ct
t

∫
M

∫
M

R
( |x − y|2

4t

)
(u(x) − u(y))2dμxdμy

= 2Ct
t

∫
M

u(x)
∫
M

R
( |x − y|2

4t

)
(u(x) − u(y))dμydμx

= 2
t

(∫
M

u2(x)w(x)dμx −
∫
M

u(x)v(x)w(x)dμx

)
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= 2
t

(∫
M

(u(x) − v(x))2w(x)dμx +
∫
M

(u(x) − v(x))v(x)w(x)dμx

)

≥ 2
t

∫
M

(u(x) − v(x))2w(x)dμx

−2
t

(∫
M

v2(x)w(x)dμx

)1/2 (∫
M

(u(x) − v(x))2w(x)dμx

)1/2

≥ 2wmin
t

∫
M

(u(x) − v(x))2dμx

−2wmax
t

(∫
M

v2(x)dμx

)1/2 (∫
M

(u(x) − v(x))2dμx

)1/2

≥ wmin
t

∫
M

(u(x) − v(x))2dμx ≥ wmin
t

(1 − δ)2
∫
M

u2(x)dμx .

This completes the proof for the theorem.

7.1 Proof of Theorem 2

With Theorem 7 and 51, the proof of Theorem 2 is straightforward.

Proof of Theorem 2 Using Theorem 51, we have

‖u‖2L2(M) ≤ C 〈u, Ltu〉 = C
∫
M

u(x)(r(x) − r̄)dμx

≤ C‖u‖L2(M)‖r‖L2(M). (53)

To show the last inequality, we use the fact that

|r̄| = 1
|M|

∣∣∣∣
∫
M

r(x)dμx

∣∣∣∣ ≤ C‖r‖L2(M).

This inequality (53) implies that

‖u‖L2(M) ≤ C‖r‖L2(M).

Now, we turn to estimate ‖∇u‖L2(M). Notice that we have the following expression for u,
since u satisfies the integral equation (14).

u(x) = v(x) + t
wt (x)

(r(x) − r̄),

where

v(x) = 1
wt (x)

∫
M

Rt (x, y)u(y)dμy , wt (x) =
∫
M

Rt (x, y)dμy .

By Theorem 7, we have

‖∇u‖2L2(M) ≤ 2‖∇v‖2L2(M) + 2t2
∥∥∥∥∇

(
r(x) − r̄
wt (x)

)∥∥∥∥
2

L2(M)

≤ C 〈u, Ltu〉 + Ct‖r‖2L2(M) + Ct2‖∇r‖2L2(M)

≤ C‖u‖L2(M)‖r‖L2(M) + Ct‖r‖2L2(M) + Ct2‖∇r‖2L2(M)

≤ C‖r‖2L2(M) + Ct2‖∇r‖2L2(M)

≤ C
(‖r‖L2(M) + t‖∇r‖L2(M)

)2 .
This completes the proof.
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7.2 Proof of Theorem 5

The proof of Theorem 5 is more involved.

Proof First, we denote

r(x) =
∫

∂M
b(y) · (x − y)R̄t (x, y)dτy ,

r̄ = 1
|M|

∫
M

(∫
∂M

b(y) · (x − y)R̄t (x, y)dτy

)
dx,

where |M| = ∫
M dμy .

The key point of the proof is to show that∣∣∣∣
∫
M

u(x) (r(x) − r̄) dμx

∣∣∣∣ ≤ C
√
t ‖b‖H1(M)‖u‖H1(M). (54)

First, notice that

|r̄| ≤ C
√
t ‖b‖L2(∂M) ≤ C

√
t ‖b‖H1(M).

Then, it is sufficient to show that
∣∣∣∣
∫
M

u(x)
(∫

∂M
b(y) · (x − y)R̄t (x, y)dτy

)
dμx

∣∣∣∣ ≤ C
√
t ‖b‖H1(M)‖u‖H1(M). (55)

Direct calculation gives that

|2t∇ ¯̄Rt (x, y) − (x − y)R̄t (x, y)| ≤ C|x − y|2R̄t (x, y),

where ¯̄Rt (x, y) = Ct
¯̄R
( ‖x−y‖2

4t

)
and ¯̄R(r) = ∫∞

r R̄(s)ds. This implies that

∣∣∣∣
∫
M

u(x)
∫

∂M
b(y)

(
(x − y)R̄t (x, y) + 2t∇ ¯̄Rt (x, y)

)
dτydμx

∣∣∣∣
≤ C

∫
M

|u(x)|
∫

∂M
|b(y)||x − y|2R̄t (x, y)dτydμx

≤ Ct‖b‖L2(∂M)

(∫
∂M

(∫
M

R̄t (x, y)dμx

)(∫
M

|u(x)|2R̄t (x, y)dμx

)
dτy

)1/2

≤ Ct‖b‖H1(M)

(∫
M

|u(x)|2
(∫

∂M
R̄t (x, y)dτy

)
dμx

)1/2

≤ Ct3/4‖b‖H1(M)‖u‖L2(M). (56)

On the other hand, using the Gauss integral formula, we have∫
M

u(x)
∫

∂M
b(y) · ∇ ¯̄Rt (x, y)dτydμx

=
∫

∂M

∫
M

u(x)Tx(b(y)) · ∇ ¯̄Rt (x, y)dμxdτy

=
∫

∂M

∫
∂M

n(x) · Tx(b(y))u(x) ¯̄Rt (x, y)dτxdτy

−
∫

∂M

∫
M

divx[u(x)Tx(b(y))] ¯̄Rt (x, y)dμxdτy . (57)

Here, Tx is the projection operator to the tangent space on x. To get the first equality, we
use the fact that ∇ ¯̄Rt (x, y) belongs to the tangent space on x, such that b(y) · ∇ ¯̄Rt (x, y) =
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Tx(b(y)) · ∇ ¯̄Rt (x, y) and n(x) · Tx(b(y)) = n(x) · b(y) where n(x) is the out normal of ∂M
at x ∈ ∂M.
For the first term, we have
∣∣∣∣
∫

∂M

∫
∂M

n(x) · Tx(b(y))u(x) ¯̄Rt (x, y)dτxdτy

∣∣∣∣
=
∣∣∣∣
∫

∂M

∫
∂M

n(x) · b(y)u(x) ¯̄Rt (x, y)dτxdτy

∣∣∣∣

≤ C‖b‖L2(∂M)

(∫
∂M

(∫
∂M

|u(x)| ¯̄Rt (x, y)dτx

)2
dτy

)1/2

≤ C‖b‖H1(M)

(∫
∂M

(∫
∂M

¯̄Rt (x, y)dτx

)(∫
∂M

|u(x)|2 ¯̄Rt (x, y)dτx

)
dτy

)1/2

≤ Ct−1/2 ‖b‖H1(M)‖u‖L2(∂M) ≤ Ct−1/2 ‖b‖H1(M)‖u‖H1(M). (58)

Wecan also bound the second termon the right-hand side of (57). Byusing the assumption
thatM ∈ C∞, we have

|divx[u(x)Tx(b(y))]|
≤ |∇u(x)||Tx(b(y))||| + |u(x)||divx[Tx(b(y))]||| + |∇||u(x)Tx(b(y))|
≤ C(|∇u(x)| + |u(x)|)|b(y)|

where the constant C depends on the curvature of the manifoldM.
Then, we have∣∣∣∣

∫
∂M

∫
M

divx[u(x)Tx(b(y))] ¯̄Rt (x, y)dμxdτy

∣∣∣∣
≤ C

∫
∂M

b(y)
∫
M

(|∇u(x)| + |u(x)|) ¯̄Rt (x, y)dμxdτy

≤ C‖b‖L2(∂M)

(∫
M

(|∇u(x)|2 + |u(x)|2)
(∫

∂M
¯̄Rt (x, y)dτy

)
dμx

)1/2

≤ Ct−1/4 ‖b‖H1(M)‖u‖H1(M). (59)

Then, the inequality (55) is obtained from (56), (57), (58) and (59).Now, usingTheorem51,
we have

‖u‖2L2(M) ≤ C
∫
M

u(x)Ltu(x)dμx ≤ C
√
t ‖b‖H1(M)‖u‖H1(M). (60)

Note r(x) = ∫
∂M(x − y) · b(y)R̄t (x, y)dτy . Direct calculation gives us that

‖r(x)‖L2(M) ≤ Ct1/4‖b‖H1(M), and

‖∇r(x)‖L2(M) ≤ Ct−1/4‖b‖H1(M).

The integral equation Ltu = r − r̄ gives that

u(x) = v(x) + t
wt (x)

(r(x) − r̄),

where

v(x) = 1
wt (x)

∫
M

Rt (x, y)u(y)dμy , wt (x) =
∫
M

Rt (x, y)dμy .
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By Theorem 7, we have

‖∇u‖2L2(M)

≤ 2‖∇v‖2L2(M) + 2t2
∥∥∥∥∇

(
r(x) − r̄
wt (x)

)∥∥∥∥
2

L2(M)

≤ C
∫
M

u(x)Ltu(x)dμx + Ct‖r‖2L2(M) + Ct2‖∇r‖2L2(M)

≤ C
√
t ‖b‖H1(M)‖u‖H1(M) + Ct‖r‖2L2(M) + Ct2‖∇r‖2L2(M)

≤ C‖b‖H1(M)

(√
t‖u‖H1(M) + Ct3/2

)
. (61)

Using (60) and (61), we have

‖u‖2H1(M) ≤ C‖b‖H1(M)

(√
t‖u‖H1(M) + Ct3/2

)
,

which proves the theorem.

8 Discussion and future work
We have proven the convergence of the point integral method for Poisson equations on
submanifolds that are isometrically embedded in Euclidean spaces. Our analysis shows
that the convergence rate of PIM is h1/4 in H1 norm. However, our experimental results
in [33] show that the empirical convergence rate is approximately linear. In some parts in
our analysis, we believe that the error bounds could be improved.
Nevertheless, thequadrature ruleweused in thepoint integralmethod is of lowaccuracy.

If we have more information, such as the local mesh or local hypersurface, we could use
high-order quadrature rule to improve the accuracy of the point integral method.
Based on the convergence result in this paper, we can show that the spectra of the

graph Laplacian with proper normalization converge to the spectra of ΔM with the Neu-
mann boundary condition. Moreover, we can obtain an estimate of the rate of spectral
convergence. The point integral method also applies to Poisson equation with Dirichlet
boundary. Moreover, we can also show the convergence of the point integral method for
the Dirichlet boundary. These results will be reported in the subsequent papers.
Another interesting problem is generalizing PIM to solve other type of PDEs. PIM

can handle elliptic equations with anisotropic or discontinuous coefficients. The gener-
alization to the diffusion equation seems to be natural. If the equation is dominated by
convection term, it may need more careful study.

Proof of Proposition 1

To prove the proposition, we first cite a few results from Riemannian geometry on iso-
metric embeddings. For a submanifold M embedded in R

d , let dM : M × M → R be
the geodesic distance on M, and TxM and NxM be the tangent space and the normal
space ofM at point x ∈ M, respectively.

Lemma 4 (e.g., [14]) Assume M is a submanifold isometrically embedded in R
d with

reach σ > 0. For any two x, y onM with |x − y| ≤ σ/2,

|x − y| ≤ dM(x, y) ≤ |x − y|
(
1 + 2|x − y|2

σ 2

)
.
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Lemma 5 (e.g., [8])AssumeM is a submanifold isometrically embedded inRd with reach
σ > 0. For any two x, y onM with |x − y| ≤ σ/2,

cos � TxM, TyM ≤ 1 − 2|x − y|2
σ 2 .

Lemma 6 (e.g., [39]) Assume M is a submanifold isometrically embedded in R
d with

reach σ > 0. Let N be any local normal vector field around a point x ∈ M. Then, for any
tangent vector Y ∈ TxM

〈Y,DYN 〉
〈Y, Y 〉 ≤ 1

σ
,

where D and 〈·, ·〉 are the standard connection and the standard inner product in R
d.

In what follows, assume the hypotheses onM and ∂M in Proposition 1 hold.We prove
the following two lemmas which bound the distortion of certain parametrization, which
are used to build the parametrization stated in Proposition 1.
For a point x ∈ M,, let Uρ = Bx(ρσ ) ∩ M with ρ ≤ 0.2. We define the following

projection map Ψ : Uρ → TxM = R
k as the restriction to Uρ of the projection of Rd

onto TxM. It is easy to verify that Ψ is one-to-one. Then, Φ = Ψ −1 : Ψ (Uρ) → Uρ

is a parametrization of Uρ (see Fig. 1). We have the following lemma which bounds the
distortion of this parametrization.

Lemma 7 For any point y ∈ Ψ (Uρ) and any Y ∈ Ty(TxM) for any ρ ≤ 0.2,

|Y | ≤ |DYΦ(y)| ≤ 1
1 − 2ρ2 |Y |.

Proof We have Φ(y) = y − lT (y)NT (y) where NT (y) ⊥ TxM for any y and lT (y) =
|y − Φ(y)|. So DYNT (y) ⊥ TxM for any y and any Y ∈ Ty(TxM). Since DYΦ =
Y −NT (DY lT )− lT (DYNT ), the projection ofDYΦ to TxM is Y . At the same time,DYΦ

is on TΦ(y)M. Since |x − Φ(y)| ≤ ρσ , from Lemma 5, cos � TxM, TΦ(y)M ≤ 1 − 2ρ2.
This proves the lemma.

To ensure the convexity of the parameter domainΩ in Proposition 1, we need a different
parametrization for the points near the boundary. For a point x ∈ ∂M, letUρ = Bx(ρσ )∩
M with ρ ≤ 0.1. We construct a map Ψ̃ : Uρ → Tx∂M × R = R

k as follows. For any
point z ∈ Uρ , let z̄ be the closest point on ∂M to z. Such z̄ is unique. Let n be the outward
normal of ∂M at z̄. The projection P of Rd onto Tz̄M maps z to a point on the line �

passing through z̄ with the direction n. In fact, P projects Nz̄∂M onto the line �. If let
Vρ1 = Nz̄∂M ∩ Bz̄(ρ1σ ) ∩ M with ρ1 ≤ 0.2, P maps Vρ1 to the line � in the one-to-one
manner. Let yk = −(P(z) − z̄) · n. Think of ∂M as a submanifold. It is isometrically

Fig. 1 Parametrization for a neighborhood of a point onM
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embedded in R
d as is M. As |z̄ − x| ≤ 2|x − z| ≤ 2ρσ , we apply Lemma 7 by replacing

M with ∂M and obtain the map Ψ that maps z̄ onto Tx∂M. Define Ψ̃ (z) = (Ψ (z̄), yk ).
Since both P|Vρ1

and Ψ are one-to-one, so is Ψ̃ . Then Φ̃ = Ψ̃ −1 : Ψ̃ (Uρ) → Uρ is
a parametrization of Uρ . See Fig. 2. We have the following lemma which bounds the
distortion of this parametrization Φ̃ .

Lemma 8 For any point (y, yk ) ∈ Ψ̃ (Uρ) with ρ ≤ 0.1 and any tangent vector Y at (y, yk ),

(1 − 2ρ)|Y | ≤ |DY Φ̃(y, yk )| ≤ (1 + 2ρ)|Y |.

Proof Let ȳ = Φ(y) − ykn. We have Φ̃(y, yk ) = Φ(y) − ykn(Φ(y)) − lT (ȳ)NT (ȳ) where
NT (ȳ) ⊥ TΦ(y)M. See Fig. 2. We have

DY Φ̃(y, yk ) = DYΦ − ykDYn − nDY yk − NTDY lT − lTDYNt .

Using the similar strategy of proving Lemma 7, we consider the projection of DY Φ̃(y, yk )
to the space TΦ (y)M to which it is almost parallel. Denote P this projection map. We
bound P(DY Φ̃(y, yk )). Let Y = (Y 1, . . . , Y k ), Y1 = (Y 1, . . . , Y k−1, 0) and Y2 = (0, . . . ,
0, Y k ). We have DY Φ̃(y, yk ) = DY1Φ̃(y, yk ) + DY2Φ̃(y, yk ). First consider each term
involved in DY1Φ̃(y, yk ).

(i) DY1Φ(y) is a vector in TΦ(y)∂M, thus P(DY1Φ(y)) = DY1Φ(y). In addition, from
Lemma 7, |Y1| ≤ ∣∣DY1Φ(y)

∣∣ ≤ 1
1−2ρ2 |Y1|.

(ii) DY1n(y, yk ) = DDY1Φn(Φ(y)). First note that n · DDY1Φn = 0. Second, from
Lemma 6, we have that the projection of DDY1Φn to the space TΦ(y)∂M is upper
bounded by 1

σ

∣∣DY1Φ
∣∣. Since |yk | < ρσ , |P(ykDY1n)| ≤ ρ

1−2ρ2 |Y1|.
(iii) ConsiderDY1NT (y, yk ).We haveNT ⊥ TΦ(y)M. Let e1, . . . , ek be the orthonormal

basis of TΦ(y)M so that DeiNT · ej = 0 for i �= j. Locally extend e1, . . . , ek to be an
orthonormal basis of TM in a neighborhood of Φ(y). We have for any ei∣∣∣DY1NT (y, yk ) · ei

∣∣∣ =
∣∣∣DDY1ΦNT (ȳ) · ei

∣∣∣
=
∣∣∣D(DY1Φ·ei)eiNT (ȳ) · ei

∣∣∣
=
∣∣∣D(DY1Φ·ei)eiNT (ȳ) · ei

∣∣∣
≤ 1

σ
|DY1Φ · ei|,

Fig. 2 Parametrization for a neighborhood of a point on ∂M
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where the last inequality is due to Lemma 6. Moreover, one can verify that lT (ȳ) ≤
ρ2σ
2 , which leads to
∣∣P(lTDY1Nt )

∣∣ ≤ ρ2

2
|DY1Φ| ≤ ρ2

2(1 − 2ρ2)
|Y1|.

(iv) It is obvious that nDY1yk = P(NTDY1 lT ) = 0.

Next, consider each term involved in DY2Φ̃(y, yk ).

(i) nDY2yk = Y kn, which lies on TΦ(y)M. Moreover, n ⊥ DY1Φ(y).
(ii) As NT (y, yk ) remains perpendicular to TΦ(y)M if we only vary yk , we have

P(DY2Nt (y, yk )) = 0.

(iii) For the remaining terms, we have DY2Φ(y) = ykDY2n = P(NTDY2 lT ) = 0.

On the other hand, we hand DY Φ̃(y, yk ) lie in the tangent space TΦ̃(y,yk )M, and
cos � TΦ̃(y,yk )M, TΦ(y)M ≤ 1 − 2ρ2.

Putting everything together, we have

|Y | − ρ2 + 2ρ
2(1 − 2ρ2)

|Y1| ≤ DY Φ̃(y, yk ) ≤ 1
(1 − 2ρ2)2

|Y | + ρ2 + 2ρ
2(1 − 2ρ2)2

|Y1|.
This proves the lemma.
Now, we are ready to prove Proposition 1

Proof of Proposition 1 First consider the case where d(x, ∂M) >
ρ
2 σ . Set U ′ = Bx(ρ

2 σ ) ∩
M, and parametrize U ′ using map Φ : Ψ (U ′) → U ′. Since for any y ∈ ∂U ′, |x −
y| = ρ

2 σ , from Lemma 7, we have that BΦ−1(x)(
ρ

2(1+ρ)σ ) is contained in Ψ (U ′). Set Ω =
BΦ−1(x)(

ρσ
2(1+ρ) ) and U = Φ(Ω). This shows the parametrization Φ : Ω → U satisfies the

condition (i). By Lemma 7 and Lemma 4, it is easy to verify thatΦ satisfies the other three
conditions.
Next, consider the case where d(x, ∂M) ≤ ρ

2 σ . Let x̄ be the closest point on ∂M to x.
Set U ′ = Bx̄(ρσ ) ∩ M and parametrize U ′ using map Φ̃ : Ψ̃ (U ′) → U ′. By Lemma 8,
Ψ̃ (U ′) contains half of the ball BΦ̃−1(x̄)(

ρσ
1+2ρ ). Let Ω be that half ball and U = Φ̃(Ω).

It is easy to verify that the parametrization Φ̃ : Ω → U satisfies the condition (iii) and
(iv). To see (i), note that |x − x̄| ≤ ρ

2 σ . From Lemma 8 and Lemma 4,
∣∣Ψ̃ (x) − Ψ̃ (x̄)

∣∣ ≤
(1+2ρ)(1+2ρ2)|x−x̄|.We have thatΩ contains at least half of the ball centered atΦ−1(x)
with radius ( ρ

1+2ρ − ρ(1+2ρ)(1+2ρ2)
2 )σ ≥ ρ

5 σ . This shows that Φ̃ satisfies the condition (i).
Similarly, the condition (ii) follows from (i) as Φ̃ has bounded distortion (Lemma 8) and
geodesic distance is bounded by Euclidean distance (Lemma 4).

Proof of Lemma 2

Proof We start with the evaluation of the xi component of ∇v.

∇ iv(x) = C2
t

2tw2
t (x)

∫
M

∫
M

∇ ixj(xj − yj)R′
( |x − y|2

4t

)
R
( |x − y′|2

4t

)
u(y)dμ′

ydμy

− C2
t

2tw2
t (x)

∫
M

∫
M

∇ ixj(xj − y′j)R′
( |x − y′|2

4t

)
R
( |x − y|2

4t

)
u(y)dμ′

ydμy

= C2
t

4tw2
t (x)

∫
M

∫
M

Ki(x, y, y′; t)(u(y) − u(y′))dμ′
ydμy ,



Shi and Sun ResMath Sci (2017) 4:22 Page 29 of 39

where we set

Ki(x, y, y′; t) = ∇ ixj(xj − yj)R′
( |x − y|2

4t

)
R
( |x − y′|2

4t

)

−∇ ixj(xj − y′j)R′
( |x − y′|2

4t

)
R
( |x − y|2

4t

)
.

Think of ∇ ixj as the i, j entry of the matrix [∇ ixj] and we have

∇ ixj∇ lxi = (∂i′xi)gi
′j′ (∂j′xj)(∂s′xl)gs

′t ′ (∂t ′xi)

= gi′t ′gi
′j′ (∂j′xj)gs

′t ′ (∂s′xl)

= δj′t ′ (∂j′xj)gs
′t ′ (∂s′xl)

= (∂j′xj)gs
′j′ (∂s′xl)

= ∇ lxj .

This shows that the matrix [∇ ixj] is idempotent. At the same time, [∇ ixj] is symmetric,
which implies that the eigenvalues of ∇x are either 1 or 0. Then, we have the following
upper bounds. There exists a constant C depending only on the maximum of R and R′ so
that

d∑
i=1

Ki(x, y, y′; t)2

≤ 2
(
R′
( |x − y|2

4t

)
R
( |x − y′|2

4t

))2
‖[∇ ixj](x − y)‖2

+2
(
R′
( |x − y′|2

4t

)
R
( |x − y|2

4t

))2
‖[∇ ixj](x − y′)‖2

≤ CR′
( |x − y|2

4t

)
R
( |x − y′|2

4t

)
‖x − y‖2

+CR′
( |x − y′|2

4t

)
R
( |x − y|2

4t

)
‖x − y′‖2.

There exists a constant C independent of t so that

C2
t

∫
M

∫
M

∑d
i=1 Ki(x, y, y′; t)2

t
dμydμ′

y

≤ C
∫
M

CtR′
( |x − y|2

4t

) ‖x − y‖2
t

dμy

∫
M

CtR
( |x − y′|2

4t

)
dμ′

y

+C
∫
M

CtR′
( |x − y′|2

4t

) ‖x − y′‖2
t

dμ′
y

∫
M

CtR
( |x − y|2

4t

)
dμy

≤ C.

Since R has a compact support, only when |y − y′|2 < 16t and |x − y+y′
2 |2 < 4t is

Ki(x, y, y′; t) �= 0. Thus from the assumption on R, we have

Ki(x, y, y′; t)2 ≤ 1
δ20

Ki(x, y, y′; t)2R
( |y − y′|2

32t

)
R
(

|x − y+y′
2 |2

8t

)
.
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We can upper bound the norm of ∇v as follows:

|∇v(x)|2 = C4
t

16t2w4
t (x)

d∑
i=1

(∫
M

∫
M

Ki(x, y, y′; t)(u(y) − u(y′))dy′dy
)2

≤ C4
t

16t2w4
t (x)

k∑
i=1

∫
M

∫
M

K 2
i (x, y, y

′; t)

×
(
R
( |y − y′|2

32t

)
R
(

|x − y+y′
2 |2

8t

))−1

dμ′
ydμy

×
∫
M

∫
M

R
(

|x − y+y′
2 |2

8t

)
R
( |y − y′|2

32t

)
(u(y) − u(y′))2dμ′

ydμy

= C4
t

16tδ20w
4
t (x)

∫
M

∫
M

∑d
i=1 Ki(x, y, y′; t)2

t
dμ′

ydμy

×
∫
M

∫
M

R
(

|x − y+y′
2 |2

8t

)
R
( |y − y′|2

32t

)
(u(y) − u(y′))2dμ′

ydμy

≤ CC2
t

t

∫
M

∫
M

R
(

|x − y+y′
2 |2

8t

)
R
( |y − y′|2

32t

)
(u(y) − u(y′))2dμ′

ydμy .

Finally, we have∫
M

|∇v(x)|2dμx

≤ CC2
t

t

∫
M

(∫
M

∫
M

R
(

|x − y+y′
2 |2

8t

)
R
( |y − y′|2

32t

)
(u(y) − u(y′))2dμ′

ydμy

)
dμx

= CC2
t

t

∫
M

∫
M

(∫
M

R
(

|x − y+y′
2 |2

8t

)
dμx

)
R
( |y − y′|2

32t

)
(u(y) − u(y′))2dμ′

ydμy

≤ CCt
t

∫
M

∫
M

R
( |y − y′|2

32t

)
(u(y) − u(y′))2dμ′

ydμy .

This proves the lemma.

Proof of Lemma 3

Based on the partition and the parametrization of the manifoldM introduced in Sect. 5,
we have∫

M

∫
M

R
( |x − y|2

32t

)
(u(x) − u(y))2dμxdμy

=
N∑
i=1

∫
M

∫
Oi

R
( |x − y|2

32t

)
(u(x) − u(y))2dμxdμy

=
N∑
i=1

∫
B2δqi

∫
Oi

R
( |x − y|2

32t

)
(u(x) − u(y))2dμxdμy . (62)

For any x ∈ Oi and y ∈ B2δ
qi , let

zj = Φi

((
j
16

)
Φ−1

i (x) +
(
1 − j

16

)
Φ−1

i (y)
)
, j = 0, . . . , 16. (63)
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Apparently, z0 = x, z16 = y. Since Ωi is convex, we have Φ−1
i (zj) ∈ Ωi, i = 0, . . . , 16.

Then utilizing locally small deformation property of the parametrization, we obtain
‖zj − zj+1‖ ≤ 2‖Φ−1(zj) − Φ−1(zj+1)‖

≤ 1
8
‖Φ−1(x) − Φ−1(y)‖

≤ 1
4
‖x − y‖.

Now, we are ready to estimate the integrals in (62).∫
B2δqi

∫
Oi

R
( |x − y|2

32t

)
(u(x) − u(y))2dμxdμy

≤ 16
15∑
j=0

∫
B2δqi

∫
Oi

R
( |x − y|2

32t

)
(u(zj) − u(zj+1))2dμxdμy

= 16
15∑
j=0

∫
Oi

[∫
Mt

x

R
( |x − y|2

32t

)
(u(zj) − u(zj+1))2dμy

]
dμx .

For any y ∈ Mt
x ,

‖zj − zj+1‖2 ≤ 1
16

‖x − y‖2 ≤ 2t, j = 0, . . . , 15, (64)
which implies that

R
(

|zj − zj+1|2
4t

)
≥ δ0, j = 0, . . . , 15. (65)

Now, we have∫
Oi

[∫
Mt

x

R
( |x − y|2

32t

)
(u(zj) − u(zj+1))2dμy

]
dμx

=
∫
Oi

⎡
⎣
∫
Mt

x

R
( |x − y|2

32t

)(
R
(

|zj − zj+1|2
4t

))−1

× R
(

|zj − zj+1|2
4t

)
(u(zj) − u(zj+1))2dμy

]
dμx

≤ 1
δ0

∫
Oi

[∫
Mt

x

R
(

|zj − zj+1|2
4t

)
(u(zj) − u(zj+1))2dμy

]
dμx

= 1
δ0

∫
Φ−1
i (Oi)

[∫
Φ−1
i (Mt

x)
R
(

|zj − zj+1|2
4t

)
(u(zj) − u(zj+1))2

∣∣∇Φ(θy)
∣∣ dθy

]

× ∣∣∇Φ(θx)
∣∣ dθx

≤ 4
δ0

∫
Φ−1
i (Oi)

[∫
Φ−1
i (Mt

x)
R
(

|zj − zj+1|2
4t

)
(u(zj) − u(zj+1))2dθy

]
dθx

where θx = Φ−1
i (x), θy = Φ−1

i (y).
Let

θzj = Φ−1
i (zj) = j

16
θx +

(
1 − j

16

)
θy , j = 0, . . . , 16. (66)

It is easy to show that Φi(θzj ) = zj ∈ B2δ
qi , j = 0, . . . , 16 by using the facts that for any

y ∈ Mt
x

‖zj − x‖ ≤
j∑

l=1
‖zl − zl−1‖ ≤ j

4
‖x − y‖ ≤ 15

√
2t, j = 1, . . . , 15, (67)
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and x ∈ Bδ
qi and 15

√
2t ≤ δ. Then we have

θzj ∈ Φ−1
i

(
B2δ
qi

)
, j = 0, . . . , 16. (68)

By changing variable, we obtain
∫

Φ−1
i (Oi)

[∫
Φ−1
i (Mt

x)
R
(

|zj − zj+1|2
4t

)
(u(zj) − u(zj+1))2dθy

]
dθx

≤ 8k
∫

Φ−1
i (B2δqi )

∫
Φ−1
i

(
B2δqi
) R
(

|zj − zj+1|2
4t

)
(u(zj) − u(zj+1))2dθzjdθzj+1

≤ 4 · 8k
∫

Φ−1
i (B2δqi )

∫
Φ−1
i

(
B2δqi
) R
(

|zj − zj+1|2
4t

)
(u(zj) − u(zj+1))2

×
∣∣∣∇Φ(θzj )

∣∣∣
∣∣∣∇Φ(θzj+1 )

∣∣∣ dθzjdθzj+1

= 4 · 8k
∫
B2δqi

∫
B2δqi

R
(

|zj − zj+1|2
4t

)
(u(zj) − u(zj+1))2dμzjdμzj+1

≤ C
∫
M

∫
B2δqi

R
( |x − y|2

4t

)
(u(x) − u(y))2dμxdμy

Finally, we can prove the lemma as follows.
∫
M

∫
M

R
( |x − y|2

32t

)
(u(x) − u(y))2dμxdμy

≤ C
N∑
i=1

∫
M

∫
B2δqi

R
( |x − y|2

4t

)
(u(x) − u(y))2dμxdμy

≤ CN
∫
M

∫
M

R
( |x − y|2

4t

)
(u(x) − u(y))2dμxdμy .

Proof of Theorem 6

First, we introduce a smooth function ut that approximates u at the samples P.

ut (x) = Ct
wt,h(x)

n∑
i=1

R
( |x − pi|2

4t

)
uiVi, (69)

wherewt,h(x) = Ct
∑n

i=1 R
( |x−pi|2

4t

)
Vi. We have the following lemma about the function

wt,h.

Lemma 9 Assume the submanifoldM and ∂M are C2 smooth and t, h(P,V,M)
t1/2 are suffi-

ciently small. There exists a constant C1, C2 and C, so that

C1 ≤ wt,h(x) ≤ C2, and |∇wt,h(x)| ≤ C
t1/2

Proof Using the definition of h(P,V,M),
∣∣∣∣wt,h(x) − Ct

∫
M

R
( |x − y|2

4t

)
dμy

∣∣∣∣ ≤ Ch(P,V,M)
t1/2

,
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which shows the bounds on wt,h(x). Next, we show the bound on the gradient.

|∇wt,h(x)|2 ≤
d∑
i=1

(
∂wt,h
∂xi

)2
=

d∑
i=1

⎛
⎝ n∑

j=1
CtR′

( |x − pj|2
4t

)
xi − pij
2t

Vj

⎞
⎠

2

≤
⎛
⎝ n∑

j=1
CtR′

( |x − pj|2
4t

) |x − pj|2
4t2

Vj

⎞
⎠
⎛
⎝ n∑

j=1
CtR′

( |x − pj|2
4t

)
Vj

⎞
⎠

≤ C
t
.

Now, we are ready to give the proof of Theorem 6.

Proof In the definition of ut and wt,h in (69), replace t with t ′ = t/18. We have∫
M

∫
M

Rt ′ (x, y) (ut (x) − ut (y))2 dμxdμy

=
∫
M

∫
M

Rt ′ (x, y)
(

1
wt ′ ,h(x)

n∑
i=1

Rt ′ (x,pi)uiVi

− 1
wt ′ ,h(y)

n∑
j=1

Rt ′ (pj , y)ujVj

⎞
⎠

2

dμxdμy

=
∫
M

∫
M

Rt ′ (x, y)

⎛
⎝ 1
wt ′ ,h(x)wt ′ ,h(y)

n∑
i,j=1

Rt ′ (x,pi)Rt ′ (pj , y)ViVj(ui − uj)

⎞
⎠

2

dμxdμy

≤
∫
M

∫
M

Rt ′ (x, y)
1

wt ′ ,h(x)wt ′ ,h(y)

n∑
i,j=1

Rt ′ (x,pi)Rt ′ (pj , y)ViVj(ui − uj)2dμxdμy

=
n∑

i,j=1

(∫
M

∫
M

1
wt ′ ,h(x)wt ′ ,h(y)

Rt ′ (x,pi)Rt ′ (pj , y)Rt ′ (x, y)dμxdμy

)
ViVj(ui − uj)2.

Denote

A =
∫
M

∫
M

1
wt ′ ,h(x)wt ′ ,h(y)

Rt ′ (x,pi)Rt ′ (pj , y)Rt ′ (x, y)dμxdμy

and then notice only when |pi − pj|2 ≤ 36t ′ is A �= 0. For |pi − pj|2 ≤ 36t ′, we have

A ≤
∫
M

∫
M

Rt ′ (x,pi)Rt ′ (pj , y)Rt ′ (x, y)

×R
( |pi − pj|2

72t ′

)−1

R
( |pi − pj|2

72t ′

)
dμxdμy

≤ CCt
δ0

∫
M

∫
M

Rt ′ (x,pi)Rt ′ (pj , y)R
( |pi − pj|2

72t ′

)
dμxdμy

≤ CCt

∫
M

∫
M

Rt ′ (x,pi)Rt ′ (pj , y)R
( |pi − pj|2

72t ′

)
dμxdμy

≤ CCtR
( |pi − pj|2

4t

)
.

Combining the above two inequalities and using Lemma 51, we obtain

C
Ct
t

n∑
i,j=1

R
( |pi − pj|2

4t

)
(ui − uj)2ViVj ≥

∫
M

(ut (x) − ūt )2dμx (70)
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We now lower bound the RHS of the above equation.

|M||ūt | =
∣∣∣∣
∫
M

ut (x)dμx

∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

(
ujVj

∫
M

C ′
t

wt ′ ,h(x)
R
( |x − pj|2

4t ′

)
dμx

)∣∣∣∣∣∣ .

Let q(x) = C ′
t

wt′ ,h(x)
R
(

|x−pj |2
4t ′

)
. There exists a constant C so that |q(x)| ≤ CC ′

t and

|∇q(x)| ≤ C ′
t

wt ′ ,h(x)

∣∣∣∣∣∇R
( |x − pj|2

4t ′

)∣∣∣∣∣+
C ′
t
∣∣∇wt ′ ,h(x)

∣∣
w2
t,h(x)

R
( |x − pj|2

4t ′

)
≤ CC ′

t
t1/2

.

Then, using the definition of the integral accuracy index, there exists a constant C∣∣∣∣∣
∫
M

C ′
t

wt ′ ,h(x)
R
( |x − pj|2

4t ′

)
dμx −

n∑
i=1

C ′
t

wt ′ ,h(pi)
R
( |pi − pj|2

4t ′

)
Vi

∣∣∣∣∣ ≤ Ch
t1/2

.

Thus, we have

|M||ūt |

≤
∣∣∣∣∣∣

n∑
i,j=1

C ′
t

wt ′ ,h(pi)
R
( |pi − pj|2

4t ′

)
ujViVj

∣∣∣∣∣∣+
Ch
t1/2

⎛
⎝ n∑

j=1
|ujVj|

⎞
⎠

≤
∣∣∣∣∣

n∑
i=1

ut (pi)Vi

∣∣∣∣∣+
Ch
t1/2

( n∑
i=1

|uiVi|
)

= 1
|M|

∣∣∣∣∣∣
n∑

i,j=1

C ′
t

wt ′ ,h(pi)
R
( |pi − pj|2

4t ′

)
(uj − ui)ViVj

∣∣∣∣∣∣+
Ch
t1/2

( n∑
i=1

u2i Vi

)1/2

≤ CC1/2
t√|M|

⎛
⎝ n∑

i,j=1
R
( |x − pj|2

4t ′

)
(ui − uj)2ViVj

⎞
⎠

1/2

+ Ch
t1/2

( n∑
i=1

u2i Vi

)1/2

, (71)

where the first equality is due to
∑n

i=1 uiVi = 0. Denote

A =
∫
M

Ct

w2
t ′ ,h(x)

R
( |x − pi|2

4t ′

)
R
( |x − pl |2

4t ′

)
dμx

−
n∑

j=1

Ct

w2
t ′ ,h(pj)

R
( |pj − pi|2

4t ′

)
R
( |pj − pl |2

4t ′

)
Vj

and then |A| ≤ Ch
t1/2 . At the same time, notice that only when |pi − pl |2 < 16t ′ is A �= 0.

Thus, we have

|A| ≤ 1
δ0

|A|R
( |pi − pl |2

32t ′

)
,

and ∣∣∣∣∣∣
∫
M

u2t (x)dμx −
n∑

j=1
u2t (pj)Vj

∣∣∣∣∣∣
≤

n∑
i,l=1

|CtuiulViVl ||A|

≤ Ch
t1/2

n∑
i,l=1

∣∣∣∣CtR
( |pi − pl |2

32t ′

)
uiulViVl

∣∣∣∣

≤ Ch
t1/2

n∑
i,l=1

CtR
( |pi − pl |2

32t ′

)
u2i ViVl ≤ Ch

t1/2
n∑

i=1
u2i Vi. (72)
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Now combining Eqs. (70), (71) and (72), we have for small t
n∑

i=1
u2t (pi)Vi =

∫
M

u2t (x)dμx + Ch
t1/2

n∑
i=1

u2i Vi

≤ 2
∫
M

(ut (x) − ūt )2dμx + 2ū2t |M| + Ch
t1/2

n∑
i=1

u2i Vi

≤ CCt
t

n∑
i,j=1

R
( |pi − pj|2

4t

)
(ui − uj)2ViVj + Ch

t

n∑
i=1

u2i Vi.

Here, we use the fact that t = 18t ′ hence

R
( |pi − pj|2

4t ′

)
≤ 1

δ0
R
( |pi − pj|2

4t

)
.

Let δ = wmin
2wmax+wmin

with wmin = minx wt,h(x) and wmax = maxx wt,h(x). If
n∑

i=1
u2(pi)Vi ≥ δ2

n∑
i=1

u2i Vi,

we have completed the proof. Otherwise, we have
n∑

i=1
(ui − ut (pi))2Vi =

n∑
i=1

u2i Vi +
n∑

i=1
ut (pi)2Vi − 2

n∑
i=1

uiut (pi)Vi

≥ (1 − δ)2
n∑

i=1
u2i Vi.

This enables us to prove the theorem as follows.

Ct

n∑
i,j=1

R
( |pi − pj|2

4t ′

)
(ui − uj)2ViVj = 2Ct

n∑
i,j=1

R
( |pi − pj|2

4t ′

)
ui(ui − uj)ViVj

= 2
n∑

i=1
(ui − ut (pi))2wt,h(pi)Vi + 2

n∑
i=1

ut (pi)(ui − u(pi))wt,h(pi)Vi

≥ 2
n∑

i=1
(ui − ut (pi))2wt,h(pi)Vi

−2
( n∑

i=1
u2t (pi)wt,h(pi)Vi

)1/2 ( n∑
i=1

(ui − ut (pi))2wt,h(pi)Vi

)1/2

≥ 2wmin

n∑
i=1

(ui − ut (pi))2Vi − 2wmax

( n∑
i=1

u2t (pi)Vi

)1/2( n∑
i=1

(ui − ut (pi))2Vi

)1/2

≥ 2(wmin(1 − δ)2 − wmaxδ(1 − δ))
n∑

i=1
u2i Vi ≥ wmin(1 − δ)2

n∑
i=1

u2i Vi.

Estimation of ‖∇Lt (ut − ut,h)‖L2(M)

In this section, we upper bound ∇Lt (ut − ut,h)‖L2(M). Remember that ut satisfies the
integral equation (14) and

ut,h(x) = 1
wt,h(x)

⎛
⎝ n∑

j=1
Rt (x,pj)ujVj − t

n∑
j=1

R̄t (x,pj)fjVj

⎞
⎠ ,
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where u = (u1, . . . , un)t with
∑n

i=1 uiVi = 0 solves the problem (10), fj = f (pj) and
wt,h(x) = ∑n

j=1 Rt (x,pj)Vj .
∇Lt (ut − ut,h)‖L2(M) is splitted to two terms,

∇Lt (ut − ut,h) = ∇(Ltut − Lt,hut,h) + ∇(Lt,hut,h − Ltut,h).

The second term is easy to bound.

‖∇ (Lt (ut ) − Lt,h(ut,h)
) ‖L2(M)

=
⎛
⎜⎝
∫
M

⎛
⎝
∫
M

∇xR̄t (x, y)f (y) −
n∑

j=1
∇xR̄t (x,pj)f (pj)Vj

⎞
⎠

2

dμx

⎞
⎟⎠

1/2

≤ Ch
t

‖f ‖C1(M). (73)

The first term is further splitted by defining

at,h(x) = 1
wt,h(x)

n∑
j=1

Rt (x,pj)ujVj,

ct,h(x) = − t
wt,h(x)

n∑
j=1

R̄t (x,pj)f (pj)Vj.

To simplify the notation, we denote h = h(P,V,M) and n = |P|. Consider ‖∇(Ltat,h −
Lt,hat,h)‖L2 .

∫
M

∣∣∇at,h(x)
∣∣2
∣∣∣∣∣∣
∫
M

Rt (x, y)dμy −
n∑

j=1
Rt (x,pj)Vj

∣∣∣∣∣∣
2

dμx

≤ Ch2

t

∫
M

∣∣∇at,h(x)
∣∣2 dμx

≤ Ch2

t

⎛
⎜⎝
∫
M

∣∣∣∣∣∣
1

wt,h(x)

n∑
j=1

∇Rt (x,pj)ujVj

∣∣∣∣∣∣
2

dμx

+
∫
M

∣∣∣∣∣∣
∇wt,h(x)
w2
t,h(x)

n∑
j=1

Rt (x,pj)ujVj

∣∣∣∣∣∣
2

dμx

⎞
⎟⎠

≤ Ch2

t2

∫
M

∣∣∣∣∣∣
n∑

j=1
R2t (x,pj)ujVj

∣∣∣∣∣∣
2

dμx

≤ Ch2

t2

⎛
⎝ n∑

j=1
u2j Vj

∫
M

R2t (x,pj)dμx

⎞
⎠ ≤ Ch2

t2
n∑

j=1
u2j Vj. (74)

where R2t (x,pj) = CtR
(

|x−pj |2
8t

)
. Here, we use the assumption that R(s) > δ0 for all

0 ≤ s ≤ 1/2.
∫
M

∣∣at,h(x)∣∣2
∣∣∣∣∣∣
∫
M

∇Rt (x, y)dμy −
n∑

j=1
∇Rt (x,pj)Vj

∣∣∣∣∣∣
2

dμx

≤ Ch2

t2

∫
M

∣∣at,h(x)∣∣2 dμx ≤ Ch2

t2
n∑

j=1
u2j Vj. (75)



Shi and Sun ResMath Sci (2017) 4:22 Page 37 of 39

Let

B = Ct

∫
M

1
wt,h(y)

∇R
( |x − y|2

4t

)
R
( |pi − y|2

4t

)
dμy

−Ct

n∑
j=1

1
wt,h(pj)

∇R
( |x − pj|2

4t

)
R
( |pi − pj|2

4t

)
Vj.

We have |B| < Ch
t1/2 for some constant C independent of t. In addition, notice that only

when |x − xi|2 ≤ 16t is B �= 0, which implies

|B| ≤ 1
δ0

|B|R
( |x − pi|2

32t

)
.

Then, we have
∫
M

∣∣∣∣∣∣
∫
M

∇Rt (x, y)at,h(y)dμy −
n∑

j=1
∇Rt (x,pj)at,h(pj)Vj

∣∣∣∣∣∣
2

dμx

=
∫
M

( n∑
i=1

CtuiViB
)2

dμx

≤ Ch2

t2

∫
M

( n∑
i=1

Ct |ui|ViR
( |x − pi|2

32t

))2

dμx

≤ Ch2

t2

( n∑
i=1

u2i Vi

)
. (76)

Combining Eqs. (74), (75) and (76), we have

‖∇(Ltat,h − Lt,hat,h)‖L2(M)

=
(∫

M

∣∣(Lt (at,h) − Lt,h(at,h)
)
(x)
∣∣2 dμx

)1/2

≤ 1
t

⎛
⎜⎝
∫
M

(∇at,h(x)
)2
∣∣∣∣∣∣
∫
M

Rt (x, y)dμy −
n∑

j=1
Rt (x,pj)Vj

∣∣∣∣∣∣
2

dμx

⎞
⎟⎠

1/2

×1
t

⎛
⎜⎝
∫
M

(
at,h(x)

)2
∣∣∣∣∣∣
∫
M

∇xRt (x, y)dμy −
n∑

j=1
∇xRt (x,pj)Vj

∣∣∣∣∣∣
2

dμx

⎞
⎟⎠

1/2

+1
t

⎛
⎜⎝
∫
M

∣∣∣∣∣∣
∫
M

∇xRt (x, y)at,h(y)dμy −
n∑

j=1
∇xRt (x,pj)at,h(pj)Vj

∣∣∣∣∣∣
2

dμx

⎞
⎟⎠

1/2

≤ Ch
t2

( n∑
i=1

u2i Vi

)1/2

≤ Ch
t2

‖f ‖∞

Using a similar argument, we obtain

‖∇(Ltct,h − Lt,hct,h)‖L2(M) ≤ Ch
t3/2

‖f ‖∞,

and thus

‖∇(Ltut,h − Lt,hut,h)‖L2(M) ≤ Ch
t2

‖f ‖∞. (77)

Then, the estimation is completed by putting (73) and (77) together.
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