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Abstract

We propose a new algorithm for solving Helmholtz equations in exterior domains with
implicitly represented boundaries. The algorithm not only combines the advantages of
implicit surface representation and the boundary integral method, but also provides a
new way to compute a class of the so-called hypersingular integrals. The keys to the
proposed algorithm are the derivation of the volume integrals which are equivalent to
any given integrals on smooth closed hypersurfaces, and the ability to approximate the
natural limit of the singular integrals via seamless extrapolation. We present numerical
results for both two- and three-dimensional scattering problems at near resonant
frequencies as well as with non-convex scattering surfaces.

Keywords: Helmholtz equation, Hypersingular integrals, Level set methods,
Closest point projection, Boundary integrals

1 Background
Let Γ be a closed and compact C2 hypersurface that separatesRm,m = 2, 3, into a simply
connected and bounded open region Ω and its complement. We consider the solution of
the following Neumann boundary value problem for the Helmholtz equation:

⎧
⎪⎪⎨

⎪⎪⎩

�u(x) + k2u(x) = 0, x ∈ R
m\Ω̄ ,

∂u
∂n (x) = g(x), x ∈ ∂Ω ,

lim|x|→∞ |x|m−1
2 ( ∂

∂r − ik)u(x) = 0, r = |x|.
(1.1)

For wave scattering by a sound hard boundary ∂Ω , a total wave field utot(x) is a function
satisfying

⎧
⎨

⎩

�u(x) + k2u(x) = 0, x ∈ R
m\Ω̄ ,

∂u
∂n (x) = 0, x ∈ ∂Ω .

(1.2)

This total wave field is then written artificially as the sum utot = uinc +usc, where uinc is a
known function that is used to model the far-field condition of utot and usc is the solution
of (1.1) with the boundary data

g(x) = −∂uinc

∂n
(x), x ∈ ∂Ω .
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Our work targets at applications that require numerical solutions of (1.2) in exterior
domains that may go through a sequence of significant deformation. One of the potential
applications that meets this kind of assumptions is shape optimization involving inverse
scattering. In such scenarios,

• The implicit representation of the domain boundaries is a natural choice and is con-
venient for handling changes in the shapes;

• Boundary integral formulation is a natural choice as typical applications assume that
scattering take place in unbounded domains in which wave propagate at a constant
speed;

• The solution of the Helmholtz equation is needed only on a lower-dimensional set,
where receivers of the scattered wave field are positioned.

The novelty of the proposed algorithm involves (i) the assumption thatΓ := ∂Ω is defined
by the zero level set of a signed distance function or the closest point mapping to it and
(ii) a new way of computing surface integrals of the so-called hypersingular kernels.

1.1 Boundary integral formulations of the Helmholtz equation

Let Φ(x, y) be the fundamental solution of the Helmholtz equation:

Φ(x, y) =
⎧
⎨

⎩

i
4H

(1)
0 (k|x − y|), x, y ∈ R

2,
1

4π |x−y|e
ik|x−y|, x, y ∈ R

3,
(1.3)

where H (1)
0 is the first kind Hankel function of degree 0. The solution u of the boundary

value problem (1.1) can be represented by

u(x) =
∫

Γ

Φ(x, y)α(y) ds(y), x ∈ Ω̄c, (1.4)

where the potential density α : Γ �→ C satisfies the following integral equation

g(x) = ∂u
∂n

(x) =
∫

Γ

∂Φ

∂nx
(x, y)α(y) ds(y) − 1

2
α(x), x ∈ Γ . (1.5)

Here g : Γ �→ C is the given Neumann data as in (1.1). The sign in front of the “diagonal”
term, 1

2α in (1.5), depends on the sign of the fundamental solution and the notion of
surface normals.
While (1.1) is well-posed for a large class of Ω , however, the integral equation (1.5) is

not uniquely solvable if k is an eigenvalue of the interior problem that is used to derive
(1.4). In such a case, the integral operator has a nontrivial subspace; see e.g. [8].
In this paper, we focus on a boundary integral formulation that is derived from the

“combined field” representation [2,18]

u(x̃) =
∫

Γ

∂Φ

∂ny
(x̃, y)β(y) ds(y) − iξ

∫

Γ

Φ(x̃, y)β(y) ds(y), x̃ ∈ Ω̄c, (1.6)
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where ξ is some real number and the density β : Γ �→ C satisfies

g(x) = lim
η→0+

∂u
∂n

(x + ηnx)

= lim
η→0+

∂

∂nx

∫

Γ

∂Φ

∂ny
(x + ηnx, y)β(y) ds(y)

− iξ
( ∫

Γ

∂Φ

∂nx
(x, y)β(y) ds(y) − 1

2
β(x)

)
, (1.7)

for all x ∈ Γ . The “combined field” formulation (1.6)–(1.7) is preferred because it does not
have the problem of non-uniqueness as discussed above. While in theory the parameter
ξ can be any real number, one might wish to use a value which is better in practice for
computation. This is discussed in Sect. (2.4.1).
Notice that for η �= 0, x + ηnx /∈ Γ , the derivative of the right-hand side of (1.6) in the

normal direction exists and the commutation of differentiation and integration is justified.
For convenience, let xη := x + ηnx. Thus for any η �= 0, the integral

∫

Γ

∂2Φ

∂nxη∂ny
(xη , y)β(y) ds(y) (1.8)

can be naturally interpreted in the Riemann sense. However, for η = 0, i.e., xη = x ∈ Γ ,
(1.8) requires some special interpretation because the second derivative of Φ is no longer
integrable. For example, in three dimensions, ∂2Φ

∂nx∂ny ∼ O(|x − y|−3). In this case, (1.8) is

often referred to as a hypersingular integral. Figure 1 shows the graph of ∂2�
∂nxη ∂ny (xη , y) for

y lying on a unit circle and for two different values of η. It also shows that the singularity
in ∂2�

∂nxη ∂ny (xη , y), as xη approaches y ∈ Γ , is not concentrated enough to be removed
easily. However, for any xη /∈ Γ , the integral (1.8) is well defined due to cancelation of
the positive and negative parts of the integrand. In two dimensions, the hypersingular
integral can be interpreted in the Hadamard’s sense. But this strategy is inconvenient
for numerical computation and does not generalize well to three dimensions. A more
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Fig. 1 The blue and dashed curves are the graphs of a hypersingular kernel ∂2�
∂nxη ∂ny

(xη , y) as a function of y ,

restricted on the unit circle. �(x, y) = log |x − y|. The η = 1 in the blue curve and η = 3 in the dashed curve
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common approach is to rewrite the first term in (1.7) into an integral that involves partial
derivatives of φ, first derived in [15]:

∫

Γ

(nx × ∇xΦ(x, y)) · (
ny × ∇yβ(y)

)
ds(y) + k2

∫

Γ

nx · nyΦ(x, y)β(y)ds(y). (1.9)

There has been a lot of work in developing efficient numerical algorithms for solving the
combined field integral equations based on (1.9), and they all rely on explicit parameteri-
zation of Γ . See, for example, [3] for an extensive review of the related work as well as an
efficient method based on regularization of (1.9). The method that we propose in the next
section makes use of the regularity of ∂u/∂n and approximate directly its limit defined in
(1.7).

2 The implicit boundary integral methods
In this section, we first describe the implicit boundary integral formulation of [11] as it
lays out the foundation of the proposed algorithm. The main contribution of this paper is
presented in Sects. 2.3 and 2.4. We first introduce some essential definitions below.

Definition 1 Let dΩ : Rm �→ R be the signed distance function to Γ = ∂Ω such that
dΩ (x) > 0 for x ∈ Ω̄c and dΩ (x) < 0 for x ∈ Ω . Define the normal vector nx := ∇dΩ (x)
and the normal derivative of a function f at x to be ∂f /∂n = ∂f /∂nx := limh→0+ ∇f (x +
hnx) · nx.

Definition 2 Let Γ = ∂Ω be a smooth compact and closed hypersurface in R
d . The

closest point mapping PΓ : Rd �→ Γ is defined by

PΓ (x) := argminy∈Γ |x − y|.
Given a pair of points x and y, we define further the mapping of x to its closest point on
ΓdΩ (y), the level set of dΩ where y lies:

Py
Γ (x) := argmin{z:dΩ (z)=dΩ (y)}|x − z|.

We remark here that when the (unsigned) distance from x to Γ is larger than the
principle curvatures of Γ , PΓ (x) and Py

Γ (x) may be formally ill-defined because multiple
points on Γ could be equally distant to x. In this case, we shall randomly assign one of the
equidistant points as the definition of PΓ (x) and Py

Γ (x).
If the distance function dΩ is differentiable at x,

PΓ (x) = x − dΩ (x)∇dΩ (x), (2.1)

Py
Γ (x) = x − (dΩ (y) − dΩ (x))∇dΩ (x). (2.2)

The computation of the signed distance functions and the closest point mappings are
by now considered standard routines in the level set methods [17] and can be done to
high-order accuracy in many different ways, e.g., [1,5,21,24], where by extending the
interface coordinates as constants along interface normals, PΓ can be computed easily to
fourth-order in the grid spacing. Once an accurate distance function is computed on the
grid, its gradient can be computed by standard finite differencing or by more accurate
but wider WENO stencils [7]. For wider stencils, it is necessary to consider one-sided
non-oscillatory approximations of the derivatives in order to minimize errors due to
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differencing over kinks of the distance function. The closest point mapping is used in [22]
as an Eulerian method to track interfaces and in [14,20] for solving PDEs on surfaces. In
the case that Γ is given as a collection of parameterized patches, one may use the fast
algorithm proposed in [23] to compute the closest point mappings.

2.1 Exact integral formulations using signed distance functions

Let β be a smooth function defined on Γ . We are interested in computing the integral
over Γ

I[β] :=
∫

Γ

β(y)ds(y), (2.3)

where Γ is defined by either the closest point mapping PΓ or the signed distance function
dΩ . Below, we follow the construction first introduced in [11] to derive a volume integral
Iε[β] that is identical to I[β].
We consider the closest point mapping PΓ from the η-level set of the distance function,

Γη := {
x : dΓ (x) = η

}
toΓ , anduse it as a change of variables to rewrite I[v].For anyη ∈ R

whose absolute value is smaller than theprinciple curvatures ofΓ ,PΓ is a diffeormorphism
between Γη and Γ , and therefore,

∫

Γ

β(y)ds(y) =
∫

Γη

β(PΓ (y)) JΓ (y)ds(y), (2.4)

where the Jacobian JΓ (y) comes from the change of variable defined by the restriction of
PΓ on Γη. In [11,12] , it is shown that

JΓ (y) =
m−1∏

j=1
σj

(
P′

Γ (y)
) = 1 + dΩ (y)H (y) + d2Ω (y)G(y),

where H (y), G(y) are the mean and Gaussian curvatures of ΓdΩ (y) (for m = 2, H (y) is the
curvature of the level set and G(y) ≡ 0), and σj(P′

Γ (y)) is the jth singular value of the
Jacobian matrix P′

Γ (y).
Averaging the integrals in (2.4) with an averaging kernel, δε , compactly supported in

(−ε, ε) and having unit mass, we obtain

I[β] =
∫

Γ

β(y)ds =
∫ ε

−ε

δε(η)
∫

Γη

β(PΓ (y))JΓ (y)ds dη.

Finally, an application of the coarea formula [6] to the integral on the right-hand side, we
obtain

I[β] =
∫

|dΩ |<ε

β(PΓ (y)) JΓ (y)δε(dΩ (y)) dy. (2.5)

We remark that it is not necessary to use an averaging kernel that is supported in (−ε, ε).
In Sect. 2.3, we shall mainly consider kernels that are supported in (0, ε) or (θε, ε) for some
θ ∈ [0, 1).
The Jacobian JΓ required by this formulation can be easily evaluated by computing

the curvatures H and G directly using standard centered finite differencing applied to
the distance function, as in [11], or it could be very easily computed by singular value
decomposition applied to a difference approximation of P′

Γ , as in [12]. The exact integral
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formulation we use in this work was first proposed in [11] and extended in [12]. It is also
generalized in [4] to simulate the Mullins–Sekerka dynamics of complicated interface
geometry in unbounded domains.

2.2 Implicit boundary integral methods (IBIMs)

We now describe the implicit boundary integral formulation for integral equation of the
form

∫

Γ

β(y)K (x, y)ds(y) + λβ(x) = f (x), for x ∈ Γ . (2.6)

The implicit boundary integral formulation involves extensions of the potential density
β , the boundary data f and restriction of the kernel K .

Definition 3 (Extensionand restriction of functions via the closest pointmapping toΓ ) Let
u : Γ �→ C , the constant extension of u along the normals of Γ is defined as ū : Rm �→ C,

ū(x) := u (PΓ (x)) .

Assuming that Γ is a C2 hypersurface. In a sufficiently small neighborhood of Γ , the
weighted extension of u is defined as

ūΓ (x) := u(PΓ (x))JΓ (x).

Let K : Rm × R
m �→ C, the restriction of K to Γ is defined by

KΓ (x, y) := K (PΓ (x), PΓ (y)).

Hence, for ε sufficiently small, we derive the integral equation
∫

|dΩ |≤ε

β̄(y)KΓ (x, y)δε(dΓ (y))JΓ (y)dy + λβ̄(x) = f̄ (x), x ∈ R
m. (2.7)

Formula (2.7) provides new possibilities in discretizing the boundary integral equation
(2.6) without the need of parameterization; it can be discretized by different grid geome-
tries using different quadrature rules.
For convenience, we shall use the following notation for the tubular neighborhood

of Γ .

Definition 4 T(ε1 ,ε2) = {x ∈ R
d : ε1 < dΩ (x) < ε2}.

By construction, (2.7) has a unique solution if (2.6) does. Furthermore, the solution of (2.7)
is automatically the constant extension of the solution of (2.6). The implication is that in
forming the integral equation, either at the continuum level or at a discretized level, we
do not need to artificially enforce the extension of u. This property is summarized below.

Proposition 5 Let β̃ ∈ C1(T(ε1 ,ε2);C) be a solution of (2.7). Then

∂β̃

∂n
(x) = 0, ∀x ∈ T(ε1,ε2).

On uniform Cartesian grids, KΓ in (2.7) should be replaced by a suitable regularization
of the singularity in K when |x − y| → 0. Here, we follow the approach of [11] which
replaces the values of KΓ (x, y) by a function K̄ (PΓ (x), r0), where r0 corresponds to a small
regularization parameter.
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2.2.1 Regularization of the double-layer potentials

Let K (x, y) = ∂Φ
∂nx (x, y) with Φ defined in (1.3). We then have

K (x, y) = (
Φ ′(|x − y|)|x − y|) (x − y)

|x − y|2 · nx = O(|x − y|2−m), x → y;

the singularity inΦ is the same order as the fundamental solution for the Laplace equation;
i.e., Φ(|x − y|) = O(log |x − y|) in two dimensions (m = 2), and O(|x − y|−1) in three
dimensions (m = 3).
Form = 2, one can show easily that

lim
x→y

K (x, y) = −κΓ (y)
4π

,

where κΓ (y) is the unsigned curvature of Γ at y and it comes from the limit of the inner
product (x−y)

|x−y|2 · ny.
Form = 3,K (x, y) does not have a point-wise limit as |x−y| → 0.However, the integral

of K (x, y) on U (x, r0) := {y ∈ Γ : |x − y| ≤ r0} for any r0 > 0 is well defined and has a
limit as r0 → 0.More precisely, let

K̄ (x, r0) := 1
|U (x, r0)|

∫

U (x,r0)
K (x, y)ds(y),

where |U (x, r0)| is the area of U (x, r0). Thus, for any smooth potential density α,
∫

U (x,r0)
ᾱ(y)K (x, y)ds(y) = ᾱ(x)K̄ (x, r0)|U (x, r0)| + O(r20 ), x ∈ Γ .

Now suppose that the tubular neighborhood {|dΩ | < ε} is discretized by some grid and
we only have the values of PΓ on some grid nodes. K̄ (x, r0) has to be further approximated
using such limited information. Approximating Γ by an osculating paraboloid, one can
derive an approximation of K̄ (x, r0) for each x ∈ Γ :

K̃ (x, r0) =
(

1
4πr0

− 5
256π

(4H (x) − G(x)) +
(

25
768

G(x) + k2

24π

)

r0
)

H (x) + O(r20 ),

where H (x) and G(x) are the mean and Gaussian curvatures of Γ evaluated at x.
In summary, we define

K̃ (x, r0) :=
⎧
⎨

⎩

− κ
4π , m = 2,

−
(

1
4πr0 − 5

256π (4H (x) − G(x)) +
(

25
768G(x) + k2

24π

)
r0

)
H (x), m = 3,

(2.8)

and the regularization of KΓ

K reg(x, y, r0) := 1{|x−y|≥r0}(x, y)K (x, y) + 1{|x−y|<r0}(x, y)K̃ (x, r0). (2.9)

2.2.2 The Implicit Boundary Integral Method (IBIM)

We formulate an IBIM for Helmholtz–Neumann problem (1.1) based on (1.5):
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Let K (x, y) = ∂Φ
∂nx (x, y). Choose w ∈ C1

c ([−1, 1]) such that
∫
w(x)dx = 1, and let wε(r) :=

1
ε
w( r

ε
). Choose r0 to be a small positive number.

1. Solve the potential density ᾱ for the combination potential in T(−ε,ε):

ḡ(x) =
∫

T(−ε,ε)

ᾱ(y)K reg(PΓ (x), PΓ (y), r0)JΓ (y)wε(dΩ (y))dy − 1
2
ᾱ(x). (2.10)

2. Use the density ᾱ to evaluate u(x) for x ∈ Ω̄c:

u(x) =
∫

T(−ε,ε)

ᾱ(y)Φ(x, PΓ (y))JΓ (y)wε(dΩ (y)) dy. (2.11)

Discretization on uniform Cartesian grids and accuracy. On the uniform Cartesian
grid hZd , (2.10) can be discretized into: xj, xk ∈ hZd, |dΩ (xj)| < ε:

∑

|dΩ (xk )|<ε

ᾱ(xk )K reg(PΓ (xj), PΓ (xk ), r0)J (xk )wε(dΓ (xk ))hm − 1
2
ᾱ(xj) = ḡ(xj). (2.12)

And (2.11) is reduced to

u(x) =
∑

|dΩ (xk )|<ε

ᾱ(xk )Φ(x, PΓ (xk ))J (xk )wε(dΓ (xk ))hm, x ∈ Ω̄c. (2.13)

In practice, we found that the averaging kernel

wcos
ε (r) = 1

2ε

(
1 + cos

(πr
ε

))
1(−1,1)

( r
ε

)
(2.14)

performsquitewellwith r0 a very small constant independent ofh form = 2, and r0 = C0h,
C0 ≥ 1 form = 3.
The approximation error of the discrete system (2.12)–(2.13) can be grouped into an

analytical error, Eker, and the numerical quadrature error, Equad:

error = Equad(h, ε;w) + Eker(ε, r0). (2.15)

Eker(ε, r0) bounds the errors made in analytical formulation of an IBIM. Assuming that
(2.10) and (2.12) are invertible, Eker(ε, r0) ∼ O(r20 ). Equad (h, ε;w) is the numerical error
of the quadrature rule used in (2.13) to approximate (2.11). On uniform Cartesian grid,
since w ∈ K

(p)
q,θ is compactly supported, for sufficiently small ε, (2.13) is equivalent to

applying Trapezoidal rule dimension by dimension. Hence, the accuracy of the discrete
sum (2.13) depends on the smoothness of ᾱ(y)φ(x, PΓ (y))JΓ (y)wε(dΩ (y)); if it is Cq, then
Equad(h, ε;w) ∼ O( hq

εq ).
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2.3 Extrapolative integrals

In this section, we propose a way to approximate (1.7) using the framework described in
the previous section.
Let Γ be a closed and compact C2 hypersurface, and K (x, y) is continuous for x �= y

such that for any β ∈ C1(Γ ,C),

I[β](x) :=
∫

Γ

β(y)K (x, y)ds(y)

is Cp in R
d\Γ with p ≥ 1. We would like to estimate the limit

I[β](x∗) := lim
η→0

I[β](x∗ + ηnx∗ ).

Similar to (2.4), we have for any x∗ ∈ Γ and sufficiently small η,

I[β](x∗ + ηnx∗ ) =
∫

Γη

β(PΓ (y))K
(
x∗ + ηnx∗ , PΓ (y)

)
JΓ (y)ds(y). (2.16)

The next step is again to average I[β](x∗ + ηnx∗ ) using a suitable kernel.

Definition 6 Let θ ∈ [0, 1), p and q be two positive integers. Let K(p)
q,θ be the set of

functions in Cq(R,R), supported in (θ , 1), that has unit mass and p number of vanishing
moments; that is

f ∈ K
(p)
q,θ =⇒ f ∈ Cp(R,R) and

∫

R

f (r)r�dr =
⎧
⎨

⎩

1, � = 0,

0, 1 ≤ � ≤ p.

Let w ∈ K
(p)
q,θ , then

∫

η∈(θε,ε)

1
ε
w(

η

ε
) I[β](x∗ + ηnx∗ )dη =

∫

(θ ,1)
w(r)I[β](x∗ + εrnx∗ )dr

=
∫

(θ ,1)
w(r)

(
I[β](x∗) + εrI ′[β](x∗) + · · ·) dr

= I[β](x∗) + CK,β εp+1,

where CK,β is a constant depending on K and β .Hence, the role of the averaging kernel w
is to extrapolate I[β](x∗ + ηnx∗ ) in ηnx∗ for estimation of I[β](x∗).
Now, consider y ∈ Tε and η = dΩ (y) in (2.16), and then applying the coarea formula,

we obtain
∫

η∈(θε,ε)

1
ε
w

(η

ε

)
I[β](x∗ + ηnx∗ )dη =

∫

Rd
β(PΓ (y))K (x∗ + dΩ (y)nx∗ , PΓ (y))JΓ (y)

1
ε
w

(
dΓ (y)

ε

)

dy.

For any x ∈ R
d that is sufficiently close to Γ , the normal vector nx = ∇dΩ (x) is the same

as that of its closest point on Γ ; i.e., nx = nx∗ with x∗ = PΓ (x). In particular,

x∗ = PΓ (x) and η = dΩ (y) =⇒ x∗ + ηn∗
x = Py

Γ (x).

In contrast to an IBIM, we impose a floating restriction of K that depends on the distance
between y and Γ . We denote

KEIBIM
Γ (x, y) := K

(
Py

Γ (x), PΓ (y)
)
. (2.17)
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Therefore,
∣
∣
∣
∣I[β](x) −

∫

Rd
β(PΓ (y))KEIBIM

Γ (x, y)JΓ (y)
1
ε
w

(
dΓ (y)

ε

)

dy
∣
∣
∣
∣ ≤ CK,βεp+1.

The error of a discretized EIBIM system consists of a sum of different sources

error = Equad(h, ε;w) + Eker(ε, r0;w),

where

Eker(ε, r0;w) ∼ O(εp+1) + O(r20 ),

and Equad depends on the smoothness of the integrand as discussed in the case of IBIM.
Such an extrapolative approach is proposed and analyzed in [13] for numerical integration
on implicit surfaces that have corners and kinks.

2.3.1 A few extrapolative weight functions

In this section, we present some examples of extrapolative averaging kernels. In the next
section, we shall present numerical results computed by kernels of the form:

w(p)
∞,θ (r) := exp

(
1

2(r − θ )(r − 1)

)

ap(r)1[θ ,1](r) ∈ K
(p)
∞,θ ,

where ap(r) is a polynomial of degree p. For example,
In w(1)

∞,θ (r):

• for θ = 0.1, a1(r) ≈ −759.2781934172483 r + 446.2604260472818;
• for θ = 0, a1(r) ≈ −261.5195892865372 r + 145.7876577089403.

In w(2)
∞,θ (r):

• for θ = 0.1, a2(r) ≈ 14317.969703708994 r2 − 16509.044867497203 r
+ 4480.224717878304;

• for θ = 0, a2(r) ≈ 3196.1015220946833 r2 − 3457.6211113812255 r
+ 852.9832518883903.

Additionally, we also used the following averaging kernel in K
(1)
1,θ , 0 ≤ θ < 1:

w(1)
sc,θ (r) = π

(1 − θ )2
b0(t, θ )b1(t, θ )1[θ ,1](r),

b0(t, θ ) = sin
(

π (t − 1)
2(τ − 1)

)

cos3
(

π (t − 1)
2(τ − 1)

)

,

b1(t, θ ) = 7 + θ + (15 + 9θ ) cos
(

π (t − θ )
1 − θ

)

.

We further point out that w(1)
sc,θ is actually twice continuously differentiable for r ≤ θ ,

allowing for potentially more control of the targeted integrands’ singularity at r = 0. See
Fig. 2 for the graphs of two of the kernels discussed.

2.4 Extrapolative boundary integral methods (EIBIMs)

With the approach proposed in Sect. 2.3, applied to (1.7), we formulate an EIBIM for
Helmholtz–Neumann problem (1.1):
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Fig. 2 The graphs of two kernels

Choose w ∈ K
(p)
q,θ , and let wε(r) := 1

ε
w( r

ε
).

1. Solve the potential density β̄ for the combination potential in T(θε,ε)

ḡ(x) =
∫

Tε

β̄(y)
∂2Φ

∂nx∂ny
(Py

Γ (x), PΓ (y))wε(dΩ (y))JΓ (y)dy

− iξ
( ∫

T(θε,ε)

β̄(y)K reg(PΓ (x), PΓ (y))wε(dΩ (y))JΓ (y)dy + 1
2
β̄(x)

)
,

(2.18)

where K reg is a regularization of ∂Φ
∂nx defined in (2.9).

2. Use the density β̄ to evaluate u(x) for x ∈ Ω̄c:

u(x) =
∫

T(θε,ε)

β̄(y)
(

∂φ

∂ny
(x, PΓ (y)) − iξφ(x, PΓ (y))

)

wε(dΩ (y))JΓ (y) dy. (2.19)

Equations (2.18) and (2.19) can be discretized easily on uniform Cartesian grids as in
(2.12) and in (2.13).

2.4.1 The choice of ξ

The choice of ξ affects the condition number for the inversion matrix. It is shown in [10]
that the optimal parameter for two-dimensional problems is

ξ ≈
⎧
⎨

⎩

(
π2 + 4(ln k

2 + γ )2
)− 1

2 , k ≤ 8,

0.5k, k > 8,
(2.20)

where γ ≈ 0.5772 . . . is the Euler’s constant. For Helmholtz equation in R
3, the optimal

choice is
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ξ ≈
⎧
⎨

⎩

ξ0 ∈ [ 12 , 1], k ≤ 8,

0.5k, k > 8.
(2.21)

We use the above choices of ξ in the numerical experiments. However, the optimal
choice of ξ for EIBIMs may not be the same as the parametrized cases analyzed in [10].
This is a topic that we leave for a future paper.

3 Numerical examples
In this section,wepresent numerical simulations that reveal the properties of the proposed
methods. We present results in two and three dimensions, using simple shapes on which
we can compare the numerical solutions with the analytical solutions, and using two
standard non-convex shapes. In the examples presented in Sects. 3.3 and 3.4, the results
are obtained using the distance functions computed on the grids via the standard second-
order level set reinitialization algorithm [16].

3.1 Tests with a unit circle

We first test an implementation of the EIBIM for Ω being a unit disk in two dimensions.
In polar coordinates, we set

utot(r, θ ) := uinc(r, θ ) + usc(r, θ ), uinc = aJν(kr)eiνθ , usc = bH (1)
ν (kr)eiνθ ,

where H (1)
ν denotes the first kind Hankel’s function of degree ν. Then, the sound hard

condition at r = 1 corresponds to

∂utot

∂n
(r = 1, θ ) = 0 =⇒ b = − aJ ′ν(k)

H (1)′
ν (k)

.

In our simulations, we set ν = 1, a = 10 and k = 2.4048255577, and usc is the solution of
(1.1) with

g(x) = −akJ ′ν(kr).

The chosen value of k is very close to a resonant wave number [19]. We present the
numerical errors at x1 = (20, 20). In the simulation, the regularizationparameter r0 in (2.9)
is set uniformly to 10−10 and the kernels used are w(1)

∞,0.1 and w(2)
∞,0.1. If the regularization

and the quadrature errors are negligible, then we expect to see errors that scale as ε2 and
ε3.
In Fig. 3, we shownumerical convergence studies of two different scalings: ε = C̃0�x0.95

and ε = C̃1�x0.75. The purpose is to show that

1. When the system is well resolved by the grid, the errors are dominated by Eker.
From w(1)

∞,0.1, Eker ∼ O(�x1.9) and O(�x1.5), respectively, for ε = C̃0�x0.95 and
ε = C̃1�x0.75. From w(2)

∞,0.1, Eker ∼ O(�x2.85) and O(�x2.25) for ε = C̃0�x0.95 and
ε = C̃1�x0.75. This regime is verified by the upper subfigure in Fig. 3.

2. Higher-order kernels, i.e., kernels havinghigher vanishingmoments, do requiremore
grid points as the constant in the quadrature error terms are larger. Thus in practice,
lower-order kernels may out perform the higher-order kernels. This case is shown
in the lower subfigure in Fig. 3, where we see that w(2)

∞,0.1 yields worse errors, with a
rate that is lower than the theoretical rate of Eker, while the lower-order kernel w(1)

∞,1
yields comparatively smaller errors that decay at the theoretical rate of Eker.
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Fig. 3 Unite circle. (Top) ε = C0(�x/�x0)0.95, C0 = 15. When the averaging kernels are well resolved,
numerical errors are dominated by the moment errors Eker , which areO(�x1.9) andO(�x1.5), respectively, for
ε = C̃0�x0.95 and ε = C̃1�x0.75 for w(1)

∞,0.1, andO(�x2.85) andO(�x2.25) for ε = C̃0�x0.95 and ε = C̃1�x0.75

for w(2)
∞,0.1. (Bottom) ε = C0(�x/�x0)0.75. C0 = 4. Averaging kernels with more vanishing moments are not

necessarily more effective. In this case, the errors computed by w(2)
∞,0.1 are dominated by Equad, while with the

same number of points discretizing ε , the errors computed by w(1)
1,0.1 are dominated by Eker

Table 1 Condition numbers of the IBIM linear systems (2.12) and of the EIBIM (2.18)

�x k = 1 k = 2.4048255577
Cond(MIBIM ) Cond(MEIBIM ) Cond(MIBIM ) Cond(MEIBIM )

4
128 2.72E+00 1.16E+02 6.50E+02 1.46E+02
4
256 2.70E+00 1.01E+02 9.74E+02 1.22E+02
4
512 2.69E+00 1.00E+02 1.88E+03 1.21E+02

The wave number k = 1 is not an eigenvalue; k = 2.4048 . . . is the first eigenvalue of the unit disk. In this study, the width ε

is set to be a constant independently of the mesh width �x

In Table 1, we compare the condition numbers of the linear systems obtained from
discretizing IBIM and EIBIM.We first remark that the condition number for IBIM system
appears to increase very fast for k being very close to a resonant wave number, whereas
the condition numbers of EIBIM linear systems at this wave number decay slightly as the
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grid resolution increases. We see that when the wave number is not a resonant mode, the
EIBIMmatrices tend to have larger but stable condition numbers. This is probably due to
the extrapolative nature of the formulation, as we have observed that averaging kernels
with more vanishing moments tend to result in matrices with larger condition numbers.
See Table 2.

3.2 Tests with a unit sphere

We present the errors in the numerical computation for Ω being a unit sphere centered
at the origin. With the radially symmetric solution

u(r) = exp(ikr)
kr

, r = |x|,
we set the Neumann boundary condition

g(x) ≡ −exp(ikr)
kr2

+ i
exp(ikr)

r
, r = 1.

We compare the solution to the exterior Neumann–Helmholtz problem using IBIM
on the single-layer potential and EIBIM on the combination of single- and double-layer
potentials using a non-eigenvalue (k = 1) and an eigenvalue wave number k = π . For
simulation with EIBIM, we use the kernel w(1)

sc,θ with θ = √
�x/10; for IBIM, we use the

cosine kernel as defined in (2.14). In the simulations, the regularization parameter r0 is set
to 2�x. The widths of the tubular neighborhood, ε, are chosen to be proportional to

√
�x;

furthermore, they are adjusted so that for each grid, the total number of unknowns for
IBIM is roughly the same as that for EIBIM. We illustrate the errors in Fig. 4. While both
kernels are continuously differentiable and have one vanishing moment, we observe from
the data that for k = 1, the EIBIM errors seem to be dominated by the quadrature errors;
more specifically, Equad seems to be dominated by the errors near dΩ (x) ≈ 0 where w(1)

sc,θ
is actually twice continuously differentiable. The IBIM errors show a rate in between that
of Eker ∼ O(�x) and of Equad ∼ O(�x2). For k = π , IBIM simulations do not converge,
while the errors in EIBIM seem to be closer to the theoretical rate of its kernel error Eker.

3.3 Tests using a non-convex “kite” shape

We test our solution for the domain containing the kite shape described by

y(s) = (cos(s) + 0.65 cos(2s) − 0.65, 1.5 sin(s)), 0 ≤ s ≤ 2π , (3.1)

and compare our solutionwith the solutions given in [9] using accurate regularizationwith
explicit parametrization. The shape is illustrated in Fig. 5. The incident wave is ui = eikν·x,
where ν = (1, 0). In [9], it was shown that the scattered wave in the far-field satisfies

us(x) = eik|x|
√
x

(

u∞(x̂) + O
(

1
|x|

))

, |x| → ∞,

Table 2 Condition numbers of matrices formed by using different kernels

N = 987, ε/�x = 5.0 N = 3986, ε/�x = 11.0 N = 8972, ε/�x = 16.0

Cond(w(1)
sc,0.1) 142.9 141.2 140.9

Cond(w(2)
∞,0.1) 1666.5 1419.2 1413.01
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Fig. 4 Comparisons of the relative errors computed by EIBIM and IBIM for solving Helmholtz–Neumann
problem in three dimensions. Left k = 1. Right k = π

-2 -1 0 1
-2

-1

0

1

2

Fig. 5 (Left) The “Kite” shape. (Right) The bean shape. The interface is the zero set of

φ(x, y, z) = 9
(
1.6x + ( y

1.6

)2
)2 + ( y

1.5

)2 + ( z
1.5

)2 − 10

where x̂ = x/|x|,

u∞(x̂) = e− iπ
4√

8πk

∫

Γ

(
kx̂ · ny + ξ

)
e−ikx̂·yβ(y) ds(y),

and β is the resolved density using combined double- and single- layer potential with
combination parameter ξ . We report the errors in the computed solutions for k = 5 in
Table 3. The computation was performed with the kernel w(1)

sc,θ defined in Sect. 2.3.1, with
ε = √

�x, and θ = √
�x/2.

3.4 Scattering in three dimensions by a “Bean” shape

We test the proposed algorithm on a non-convex “bean shape” scattering surface in three
dimensions as shown in Fig. 5. The incident wave is taken to be uinc = eikν·x, where
ν = (−1, 0, 0). In Table 4, we compare the solutions computed by IBIM, using the kernel
wcos

ε , and EIBIM, using the averaging kernel w(1)
sc,θ , with θ = √

�x/10 and ε = √
�x.

4 Summary
We proposed two new types of numerical methods (abbreviated above as IBIMs and
EIBIMs) for solving Helmholtz equation in unbounded domains Rm\Ω̄ with Neumann
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Table 3 Far-field solution errors on 2D kite shape described in (3.1)

�x Reu∞(1, 0) ErrRe Imu∞(1, 0) ErrIm Rateof
√

Err2Re + Err2Im
4
128 −0.326625 0.045953 −0.220888 0.077292 –
4
256 −0.319861 0.039189 −0.239901 0.058279 0.36
4
512 −0.300958 0.020286 −0.271519 0.026661 1.07
4

1024 −0.29066 0.009988 −0.282961 0.015219 0.88
4

2048 −0.286097 0.005425 −0.290469 0.007711 0.95

�x Reu∞(−1, 0) ErrRe Imu∞(−1, 0) ErrIm Rateof
√

Err2Re + Err2Im
4
128 −1.928536 0.018957 −1.038644 0.237263 –
4
256 −1.98456 0.037067 −1.145499 0.130408 0.23
4
512 −1.960317 0.012824 −1.220294 0.055613 0.95
4

1024 −1.958113 0.01062 −1.245836 0.030071 1.02
4

2048 −1.955342 0.007849 −1.259986 0.015921 0.88

Wave number k = 5. The upper half of the table shows errors in the scattered field on the right side of the kite, which is
locally convex there, while the lower half of the table shows the errors on the left, locally concave, side. The larger errors in
the lower half of the table are probably caused by stronger scattering due to the convexity of the scattering surface. The
second row of each subtable shows the values of the reference solution

Table 4 Differences in the solutions computed by EIBIM and IBIM using different mesh
sizes

�x Re(uEIBIM) Successive differences Re(uIBIM) |ReEIBIM − ReIBIM|
4
60 0.972148 − 0.974335 0.002187
4
90 0.946706 0.025442 0.918696 0.028010
4
120 0.930812 0.015894 0.920763 0.010049

�x Im(uEIBIM) Successive differences Im(uIBIM) |ImEIBIM − ImIBIM|
4
60 0.262999 − 0.349435 0.0864360
4
90 0.303281 0.040282 0.334712 0.031431
4
120 0.318407 0.015126 0.327899 0.009492

The scattering surface is the bean shape shown in Fig. 5. k = 1, ε0 = √
�x. Evaluated at (2, 2, 2)

boundary conditions on Ω̄ .What distinguish the proposed algorithms from other related
ones are: (1) the use of implicit representation of Ω and ∂Ω with out the need of explicit
parametrization; (2) in the case in which hypersingular kernels are involved, EIBIMs rely
on built-in extrapolation instead of solving the equivalent equations that involve partial
derivatives of the unknown densities. The proposed algorithms can be easily implemented
onCartesian grids; however, a drawback is the larger linear systems resulting from theneed
to resolve the averaging kernel. In this regard, the algorithms are not intended to compete
with the conventional high-order accurate methods for fixed and well- parameterized
geometries. Our algorithms are more suitable for applications in which one needs to solve
theHelmholtz equation as ∂Ω goes through significant change in its shape and topology—
applications for which implicit representation of the geometries is a natural choice.
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