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Abstract

A polynomial with integer coefficients yields a family of dynamical systems indexed by
primes as follows: For any prime p, reduce its coefficients mod p and consider its action
on the field Fp. We say a subset of Z[x] is dynamically distinguishable mod p if the
associated mod p dynamical systems are pairwise non-isomorphic. For any k, M ∈ Z>1,
we prove that there are infinitely many sets of integersM of sizeM such that{
xk + m | m ∈ M

}
is dynamically distinguishable mod p for most p (in the sense of

natural density). Our proof uses the Galois theory of dynatomic polynomials largely
developed by Morton, who proved that the Galois groups of these polynomials are
often isomorphic to a particular family of wreath products. In the course of proving our
result, we generalize Morton’s work and compute statistics of these wreath products.
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1 Introduction
A (discrete) dynamical system is a pair (S, f ) consisting of a set S and a function f : S → S.
The functional graph of (S, f ), which we will denote by �(S, f ), is the directed graph whose
set of vertices is S and whose edges are given by the relation s → t if and only if f (s) = t.
Recently there has been interest in the following problem:Given a set S and a familyF of

self-maps of S, describe or enumerate the setM(S,F ) := {�(S, f ) | f ∈ F}/ �, where for
twodirected graphs� and�, wewrite� � � if they are isomorphic as directed graphs. For
example, for anyn ∈ Z>0 andprimepowerq, Bach andBridy [2] bound the size ofM(S,F ),
where S = (Fq

)n andF is the set of affine-linear transformations from S to itself. Konyagin
et al. [14] give non-trivial upper and lower bounds on M

(
Fq,
{
f ∈ Fq[x] | deg(f ) = d

})
.

Similarly, Ostafe and Sha [22] give bounds onM
(
Fq,F

)
for certain familiesF of rational

functions and “sparse” polynomials. A special case of Theorem 2.8 of [14] proves that
∣∣M
(
Fq,
{
x2 + α | α ∈ Fq

})∣∣ > q
1
4+o(1)

as q increases amongst odd prime powers. Moreover, the authors suggest that it is “most
likely” that for any rational prime p with p /∈ {2, 17},

∣∣M
(
Fp,
{
x2 + α | α ∈ Fp

})∣∣ = p.

However, they also state that “proving [this suggestion] may be difficult. . . as there is no
intrinsic reason for this to be true.”
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In this paper, we study the suggestion of Konyagin et al. [14] “in reverse”; that is, we
fix (integer polynomial) maps and then vary the set upon which they act by reducing
these polynomials modulo rational primes. Before stating our results, we introduce a bit
of notation. Denote the set of rational primes by P . For f ∈ Z[x] and p ∈ P , write

•
[
f
]
p for the polynomial in Fp[x] obtained by reducing the coefficients of f mod p and

• �f,p for �
(
Fp, [f ]p

)
.

We say that a set F ⊆ Z[x] is dynamically distinguishable mod p if �f,p �� �g,p for all
f, g ∈ F with f �= g . Let μ be the natural density on P ; that is, for any subset P ⊆ P ,

μ (P) := lim
X→∞

|{p ∈ P | p ≤ X and p ∈ P}|
|{p ∈ P | p ≤ X}| (if this limit exists).

In Sect. 4, we prove the following theorem.

Theorem 1.1 Let k ≥ 2 be an integer. For any ε > 0 and any M ∈ Z>0, there exist
infinitely many sets of integersM of size M such that

μ
({

p ∈ P |
{
xk + m | m ∈ M

}
is dynamically distinguishable mod p

})
> 1 − ε.

Establishing the truth of the suggestion of Konyagin et al. [14] mentioned above would
immediately produce the k = 2 case of Theorem 1.1 as a weaker corollary.
For any f, g ∈ Z[x] and p ∈ P , the dynamical systems

(
[f ]p,Fp

)
and

(
[g]p,Fp

)
are

isomorphic in the category of dynamical systems on the set Fp if and only if f and g
are dynamically indistinguishable mod p. In more generality, for any set S and set maps
f, g : S → S, note that �(S, f ) � �(S, g) if and only if there exists a bijective set map
ϕ : S → S such that ϕ ◦ f = g ◦ ϕ. In many settings, researchers study subcategories
of the category of dynamical systems on the set S by insisting that the maps f, g , and ϕ

belong to the set of morphisms in an appropriate category containing S as an object. For
example, suppose K is a field, S = P

1(K ), and f, g : S → S are rational functions. Then
in the subcategory of dynamical systems of P

1(K ), with the self-maps of P
1(K ) restricted

to rational maps, the dynamical systems (P1(K ), f ) and (P1(K ), g) are isomorphic if and
only if there exists a Möbius transformation ϕ such that ϕ ◦ f = g ◦ ϕ. Fixing an integer
d ∈ Z>1, setting F to be rational functions of degree d, and studying M

(
P
1(K ),F

)
lead

to an interesting moduli space problem, one studied by Silverman [26] using geometric
invariant theory. See [3,8,17] for further work on this problem and extensions of it.
To prove Theorem 1.1, we will distinguish dynamical systems by their periodic points.

If (S, f ) is a dynamical system, let f n = (
n times
︷ ︸︸ ︷
f ◦ · · · ◦ f ) for any n ∈ Z>0. If s ∈ S has the

property that there is some n ∈ Z>0 with f n(s) = s, we say that s is periodic or a periodic
point of (S, f ). The smallest such n is the period of s. As is standard, we will also refer to
points of period one as fixed points. Points of period n are precisely those that lie in cycles
of length n in the graph �(S, f ). Periodic points are a classical object of study in discrete
dynamical systems over C, going back at least to work of Fatou [9,10] and Julia [13] in
the early twentieth century. Recently there has been much work on statistics of periodic
points in families of dynamical systems over finite fields, partially motivated by an attempt
started by Bach [1] to make rigorous the heuristic assumptions in Pollard’s “rho method”
for integer factorization [23]. For example, in [11], Flynn and Garton prove that for the
family of polynomials in Fq[x] of a fixed degree d, the average number of cycles in their
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associated functional graphs is at least 1
2 log q − 4, as long as d ≥ √q. More recently,

Bellah et al. [4] develop a heuristic that implies that this average is 1
2 log q+O(1) for any d.

Burnette and Schmutz [6] prove, for this same family of polynomials, that if d = o
(√q

)

as d, q → ∞, then the average “ultimate period” of the associated functional graphs is at
least d

2 (1 + o(1)).
Our proof of Theorem 1.1 relies on the trivial observation that for any n ∈ Z>0, if

one directed graph has a cycle of length n and another does not, then the graphs are not
isomorphic. As an illustration of our approach, consider the following example.

Example 1.2 Let f = x2 + 1 and g = x2 + 2. If p ∈ P , then �f,p has a point of period one
if and only if there exists α ∈ Fp such that

0 = [f ]p(α) − α = α2 + 1 − α.

Now, such an α exists if and only if the prime ideal (p) ⊆ Z splits (or ramifies) in the
splitting field of f (x)− x = x2 − x+ 1 (over Q). Similarly, �g,p has a fixed point if and only
if (p) splits (or ramifies) in the splitting field of g(x) − x. Let Kf and Kg be the splitting
fields of f (x)− x and g(x)− x, respectively. The Frobenius Density Theorem implies that
the natural density of primes that split in Kf and Kg is the proportion of their Galois
groups that fix a root of the polynomials whose roots we adjoin (that is, a root of f (x) − x
and g(x) − x, respectively). Since Gal

(
Kf /Q

) � Gal
(
Kg/Q

) � Z/2Z, the natural density
of primes that split in these fields is 1

2 . Moreover, since Kf and Kg are linearly disjoint,
we know that Gal

(
Kf Kg/Q

) � Z/2Z × Z/2Z; thus, when we apply the theorem to the
polynomial (f (x) − x) (g(x) − x), we see that the splitting behavior of prime ideals in these
two fields is independent.
That is,

μ(p ∈ P | {f, g} is dynamically distinguishable mod p)

= μ
(
p ∈ P | �f,p �� �g,p

)

≥ μ
(
p ∈ P | �f,p has a fixed point and �g,p does not

)

+ μ
(
p ∈ P | �f,p does not have a fixed point and �g,p does

)

= 1
2

(
1 − 1

2

)
+
(
1 − 1

2

)
1
2

= 1
2
.

The goal of this paper is to generalize this argument to points of period greater than
one. However, to produce polynomials in Z[x] and apply the Frobenius density theorem,
as in Example 1.2, we must prove several theorems to overcome various obstacles. Before
describing them, we introduce the notational conventions we will use throughout the rest
of the paper. If F is a field and f ∈ F [x], we will write Gal(f /F ) to denote the Galois group
of the splitting field of f over F . Additionally, ifF is a finite subset of F [x], say with splitting
fields

{
Kf
}
f ∈F , then we will write

∏
f ∈F Kf for the splitting field of

∏
f ∈F f . (Of course,

if we choose an algebraic closure of F , then
∏

f ∈F Kf is isomorphic to the compositum
of the images of the embeddings of the Kf s in that algebraic closure.) Similarly, for any
family of groups G, we will write

∏
G∈G G for their direct product. (If G = {G1, . . . , Gn} for

a positive integer n, we will writeG1×· · ·×Gn for this group, and if there is some groupG
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such thatGi = G for all i ∈ {1, . . . , n}, we will writeGn.) The following fact, which we will
use often, relates these conventions: If F is a field and F is finite subset of F [x], say with
splitting fields

{
Kf
}
f ∈F , then the members of

{
Kf
}
f ∈F are pairwise F-linearly disjoint if

and only if

Gal

⎛

⎝

⎛

⎝
∏

f ∈F
Kf

⎞

⎠
/

F

⎞

⎠ �
∏

f ∈F
Gal (f /F ).

Now, if G is a group and Sr is the symmetric group on r letters, we write G � Sr to
mean the wreath product G �{1,...,r} Sr . That is, G � Sr = Gr

� Sr , where Sr acts on Gr by
permuting coordinates. In particular, we note that |G � Sr | = r!|G|r . See [12, Chap. 3A]
for background on the wreath product. (In Sect. 3, we introduce and analyze the aspects
of the wreath product that we require for this paper.)
With these notations in hand, we can nowdescribe the path to generalizing Example 1.2.

• If K is a field and f ∈ K [x], then α ∈ K is a fixed point in (K, f ) if and only if α is a
root of f (x) − x. To generalize the argument of Example 1.2, we review the famous
“dynatomic polynomials of f ” in Sect. 2, which we will denote by�f,n for any n ∈ Z>0.
These polynomials have the property that for any n ∈ Z>0, every point of period
n in (K, f ) is a root of �f,n (in particular, �f,1 = f (x) − x). When K is the rational
function field Q(c), Morton [19, Theorem D] proved that if f (x) = xk + c for some
k ∈ Z>1, then for any n, n′ ∈ Z>0 with n �= n′, the splitting fields of �f,n and �f,n′

are linearly disjoint. In Theorem 2.3, we generalize Morton’s theorem to prove that
for any k,M,N ∈ Z>1, there exist infinitely many sets of integers M of size M such
that for any f, g ∈ {xk + (c + m) | m ∈ M

} ⊆ Q(c)[x] and n, n′ with n, n′ ≤ N , the
splitting fields of �f,n and �g,n′ are linearly disjoint. We point out that this includes
the case where n = n′, which is quite important for our applications.

• In Example 1.2, we set f (x) = x2 + 1 and applied the Frobenius density theorem
to Gal

(
�f,1/Q

) � Z/2Z. In general, the Galois groups of dynatomic polynomials
are quite often wreath products of the form Z/nZ � Sr for n, r ∈ Z>0. To apply the
Frobenius density theorem, we must study the action of these wreath products on
the roots of dynatomic polynomials. In Theorem 3.5, we prove that for any n, r ∈
Z>0, the proportion of the group Z/nZ � Sr (considered with its natural action on
Z/nZ × {1, . . . , r}) that acts with a fixed point is approximately 1 − e− 1

n .
• In Example 1.2, with f (x) = x2+1, we used the fact that for any p ∈ P , the polynomial
[
f (x) − x

]
p has a root if and only if

(
Fp, [f ]p

)
has a fixed point. Unfortunately, the

picture is not quite so clear for points of period greater than one. For example, if we
let g(x) = x2 + 3, then

[
�g,2
]
5 has exactly one root (with multiplicity two), which

happens to have period one in (F5, [g]5). In Corollary 4.3, we provide a sufficient
condition on f ∈ Z[x] and n ∈ Z>0 that ensures that

[
�f,n
]
p has a root in Fp if and

only if
(
Fp, [f ]p

)
has a point of period n for all but finitely many primes p.

• Finally, in Sect. 4, we apply the Hilbert irreducibility theorem to the polynomials
produced in Theorem 2.3 to prove Theorem 1.1.

2 Galois groups of dynatomic polynomials
As we intend to distinguish dynamical systems by analyzing their periodic points, we will
make use of the theory of dynatomic polynomials (and their Galois groups). See [18,19,21]
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(and the correction in [20]), and [27, Chap. 4.1] for background in this area. We sketch
an introduction, focusing on the aspects of the theory we will use in our results.
Let K be a field, f ∈ K [x], and n ∈ Z>0. The points of period n of the dynamical system

(K, f ) are certainly roots of the polynomial f n(x)− x. However, if d ∈ Z>0 and d | n, then
this polynomial vanishes on points of period d as well (e.g., if α ∈ K is a fixed point of
(K, f ), i.e., f (α) = α, then f n(α) = α for all n ∈ Z>0). In an attempt to sieve out the points
of lower period, one defines the nth dynatomic polynomial of f for any n ∈ Z>0:

�f,n(x) :=
∏

d|n

(
f d(x) − x

)μ(n/d)
,

where μ : Z≥0 → {−1, 0, 1} is the usual Möbius function. The fact that
∏

d|n
�f,n(x) = f n(x) − x

follows quickly by applying the Möbius inversion formula. As usual, we omit “K ” from
the notation “�f,n”; we will always specify the set of coefficients of f , so that the field K
will be clear from context. As indicated by its name, the nth dynatomic polynomial is
analogous to the nth cyclotomic polynomial, which vanishes precisely on primitive nth
roots of unity. (As mentioned in the discussion following Example 1.2, it turns out that
�f,n may occasionally vanish on points of period d for d < n: see [27, Example 4.2]. In
Corollary 4.3, we address this inconvenience.) We should mention that it is not a priori
obvious that �f,n is a polynomial. See [21, Theorem 2.5] for a proof that �f,n ∈ K [x]. (In
particular, if f ∈ Z[x] and f is monic, then �f,n ∈ Z[x] by Gauss’s Lemma.)
The degrees of certain dynatomic polynomials will be important quantities in many

computations that follow, so we introduce the following notation.

Definition 2.1 For any n ∈ Z>0 and k ∈ Z>1, let

rk (n) = 1
n

·
∑

d|n
kdμ

(n
d

)
.

Note that nrk (n) is the degree (in x) of the nth dynatomic polynomial of xk + c ∈ Q(c)[x].
As mentioned in Example 1.2, our proof of Theorem 1.1 relies in part on the knowledge

of the structure of the Galois groups of �f,n, where n ∈ Z>0 and f (x) = xk +m ∈ Z[x] for
k ∈ Z>1 andm ∈ Z. Moreover, we must find arbitrarily large finite sets of polynomials of
this form that have the property that the splitting fields of their dynatomic polynomials are
linearly disjoint. For a specificpolynomial f ∈ Z[x] of this formandany largen, it is difficult
to compute the Galois group of �f,n, since the degree of �f,n is so large, but—thanks to
work of Morton [19, Theorem D]—the Galois groups of �f,n for f (x) = xk + c ∈ Q(c)[x]
are known. The remainder of this section addresses the question of linear disjointness in
the function field setting.
We will need the following elementary lemma of field theory.

Lemma 2.2 LetK beafieldand letσ ∈ Aut(K ). Let f ∈ K [x]bean irreducible polynomial,
and let f σ be the polynomial in K [x] obtained by applying σ to each of the coefficients of f .
Let L, Lσ be the splitting fields of f, f σ , respectively. Then L and Lσ are isomorphic as fields.
In particular,
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(1) Gal(f /K ) � Gal(f σ /K ), and
(2) if K is the fraction field of a Dedekind domain and p is a prime of K , then

p ramifies in L if and only if σ (p) ramifies in Lσ .

Proof Let K be an algebraic closure of K containing both L and Lσ . Then we can extend
σ ∈ Aut(K ) to some automorphism σ̂ ∈ Aut(K ) [16, Theorem V.2.2.8]. It is easy to see
that σ̂ furnishes a one-to-one correspondence between the roots of f and the roots of f σ ;
thus σ̂ |L : L → Lσ is an isomorphism. Statement (1) follows immediately, and the map
from Gal(L/K ) to Gal(Lσ /K ) is given by

τ �→ σ̂−1 ◦ τ ◦ σ̂ .

For (2), if the prime p of K ramifies in L, there is a prime q of L with e(q/p) > 1, and

e(σ̂ (q)/σ (p)) = e(σ̂ (q)/σ̂ (p)) = e(q/p) > 1,

so σ (p) ramifies in Lσ . Replacing σ̂ by its inverse shows that the converse holds as well. ��
For the rest of this section, we will work with polynomials f (x) ∈ Q(c)[x]. For any

n ∈ Z>0, let

• 
f,n denote the splitting field of �f,n, and
• Kf,n denote the splitting field of f n(x) − x.

These splitting fieldswill be definedoverQ(c) orQ(c), depending on context. There should
be no ambiguity about which definition is intended. Note that in either case, Kf,n is the
compositum of the fields 
f,d for all positive integers d dividing n.
The next theorem generalizes the first part of Theorem D in [19].

Theorem 2.3 Let k ≥ 2 be an integer and f = f (x) = xk + c ∈ Q(c)[x]. Suppose that
M,N ∈ Z>0. Then there exist infinitely manyM-tuples of integers (m1, . . .mM) ∈ Z

M such
that

Gal
(( M∏

i=1
Kf +mi,N

)/
Q(c)

)

�
M∏

i=1
Gal
(
Kf +mi,N

/
Q(c)

)
.

Proof Following theproof ofTheorem10 in [19], for anyn ∈ Z>0, there exists apolynomial
δn(x) ∈ Z[x] such that thefinite primes inQ(c) that ramify in
f,n have the form c−b, where
b ∈ Q satisfies δn(b) = 0. The roots of δn(x) are the roots of the hyperbolic components
of the degree-k Multibrot set, which is the famous Mandelbrot set when k = 2. It is a
consequence of the structure of the Multibrot set that δn(x) and δd(x) have no roots in
common if d �= n. (Closures of hyperbolic components of different periods may only
intersect at a root of the component of higher period, see [5,24].) For anym ∈ Z, consider
the unique σ ∈ Aut(Q(c)/Q) defined by σ (c) = c+m. Then f +m = f σ in the notation of
Lemma 2.2, so the primes that ramify in 
f +m,n have the form c − (b − m), where b ∈ Q

satisfies δn(b) = 0.
With the above facts in mind, let R be the (finite) set
{
b ∈ Q | there exists d ∈ Z>0 such that d | N and δd(b) = 0

}
,

then choose (m1, . . . , mM) ∈ Z
M such that the sets {R − mi} are pairwise disjoint. As R is

a finite set, there are infinitely many such choices. For any i ∈ {1, . . . ,M}, let
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F =
{

f +mi,d

∣∣∣ d ∈ Z>0 with d | N
}

and G =
{

f +mj,d

∣∣∣ j∈{1,...,M} with j �=i
d∈Z>0 with d|N

}
.

Recall that for anym ∈ Q and n ∈ Z>0, we have Kf +m,n =∏d|n 
f +m,d . Thus

∏

F∈F
F = Kf +mi,N and

∏

F∈G
F =

M∏

j=1
j �=i

Kf +mj,N .

By our choice of the mis, these two fields have no finite ramified primes in common, so
they are linearly disjoint overQ(c). Therefore the fieldsKf +m1 ,N , . . . , Kf +mM,N are linearly
disjoint over Q(c). The result now follows by elementary Galois theory. ��
The corollary below follows immediately from Theorem 2.3 and by work of Morton. It

will be crucial in the proof of Theorem 1.1.

Corollary 2.4 Keep the samehypotheses asTheorem2.3, and for anym = (m1, . . . , mM) ∈
Z
M, let

F (m) = {
f +mi,d | i ∈ {1, . . . ,M} and d ∈ Z>0 such that d | N} .
Then there exist infinitely manym ∈ Z

M such that

• any field in F (m) is linearly disjoint from the compositum of the others,
• if
f +mi,d ∈ F (m), thenGal

(

f +mi,d/Q(c)

) � Gal
(

f +mi,d/Q(c)

)
� (Z/dZ � Srk (d)

)
,

and
• Gal

((∏M
i=1 Kf +mi,N

)/
Q(c)

)
�∏N

i=1
∏

d|N
(
Z/dZ � Srk (d)

)
.

(Recall that drk (d) is the degree of the dth dynatomic polynomial of f (x), see Definition 2.1.)

Proof Theorem 9 in [19] shows that f (x) = xk + c ∈ Q(c)[x] satisfies the assumptions of
TheoremB in the same paper, which proves that for any n ∈ Z>0, bothGal(�f,n/Q(c)) and
Gal(�f,n/Q(c)) are isomorphic to Z/dZ � Srk (d). Applying Lemma 2.2, with σ : c �→ c+m,
we see that the same is true of the Galois group of �f +m,n for anym ∈ Q.
Let m = (m1, . . . , mM) be any of the (infinitely many) M-tuples that satisfy the con-

clusion of Theorem 2.3. From the proof of Theorem 2.3, we know that if i, j are distinct
integers in {1, . . . ,M} and d is a positive integer divisor of N , then 
f +mi,d and 
f +mj,d
are linearly disjoint over Q(c). Thus

Gal
(( M∏

i=1
Kf +mi,N

)/

Q(c)
)

�
M∏

i=1
Gal
(
Kf +mi,N

/
Q(c)

)

�
M∏

i=1

∏

d|N
Gal
(

f +mi,d

/
Q(c)

)

�
M∏

i=1

∏

d|N

(
Z/dZ � Srk (d)

)
.

Let G = Gal
((∏M

i=1 Kf +mi,N
)/

Q(c)
)
. By Theorem B from [19] again, we know G is

isomorphic to a subgroup of
∏M

i=1
∏

d|N
(
Z/dZ � Srk (d)

)
. Conversely, since Q(c) contains

Q(c), we see that
∏M

i=1
∏

d|N
(
Z/dZ � Srk (d)

)
is isomorphic to a subgroup ofG, so the proof

is complete. ��
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3 Fixed-point proportions in wreath products
In this section, we analyze some statistics of a certain family of wreath products. As
these groups appear as Galois groups of dynatomic polynomials, these statistics are a vital
component of our proof of Theorem 1.1. We begin with some definitions.
Suppose that n, r ∈ Z>0. Recall the definition of Z/nZ � Sr from the end of Sect. 1. Let

B(n, r) denote Z/nZ × {1, . . . , r}. The group Z/nZ � Sr acts on the set B(n, r); concretely,
for any σ = ((a1, . . . , ar) ,π ) ∈ Z/nZ � Sr , this action is

σ : B(n, r) → B(n, r)
(
b, i
)

�→
(
b + ai,π (i)

)
.

For any σ ∈ Z/nZ � Sr , define
Fix σ =

{(
b, i
)

∈ B(n, r)
∣∣ σ
(
b, i
)

=
(
b, i
)}

;

then we set

Pr,n = |{σ ∈ Z/nZ � Sr | Fix σ �= ∅}|
|Z/nZ � Sr | .

In many cases, this action matches the action of the Galois groups of dynatomic poly-
nomials on the roots of those polynomials, so we make the following definition.

Definition 3.1 For any k ∈ Z>1 and n ∈ Z>0, let

Pk (n) = Prk (n),n,

where rk (n) =∑d|n kdμ
( n
d
)
as in Definition 2.1.

Remark 3.2 When we apply the results of this section in the proof of Theorem 1.1, the
groups Z/nZ � Srk (n) will be isomorphic to the groups Gal(�f,n/Q) in a setting where
f ∈ Z[x] and the roots of �f,n are exactly the nrk (n) points of period n in

(
Q, f
)
. In this

setting, we can identify B (n, rk (n)) with the union of the rk (n) cycles of length n in (Q, f )
in such a way that the permutation action of Gal

(
�f,n/Q

)
on the roots of �f,n is precisely

the action of Z/nZ � Srk (n) on B(n, r) described above (see Sect. 4 of [21] for details).
In particular, in the proof of Theorem 1.1, we will exploit the fact that

Pk (n) =
∣∣σ ∈ Gal(�f,n/Q) | σfixes a root of �f,n

∣∣
∣∣Gal(�f,n/Q)

∣∣

for the polynomials f ∈ Z[x] and integers n ∈ Z>0 under consideration.

Now, the Galois groups in the conclusion of Corollary 2.4 are isomorphic to direct sums
of the wreath products defined above. With this in mind, we need a bit more notation
before proceeding—notation whose purpose will become clear in the proof of Theo-
rem 1.1.
If G,H are groups acting on sets B, C , say with actions �G,�H , respectively, define the

product action of G × H on B × C to be the action

(G × H ) × (B × C) → B × C

((g, h), (b, c)) �→ (g, h) �G×H (b, c) := (g �G b, h �H c) .
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Suppose k ∈ Z>1 and letA = (bi)i∈Z>0 be any increasing arithmetic progressionof positive
integers. For any i ∈ Z>0, define

WA,i = Z/biZ � Srk (bi) × Z/biZ � Srk (bi) and BA,i = B (bi, rk (bi)) × B (bi, rk (bi)) ,

so thatWA,i acts on BA,i with the product action defined above. Next, for any n ∈ Z>0, let

WA (n) = WA,1 × · · · × WA,n and BA (n) = B1 × · · · × Bn;

once again,WA (n) acts on BA (n) with the product action induced from the action of the
WA,is on the BA,is. In the proof of Theorem 1.1, we require knowledge of the proportion
of these groups that act with a fixed point. To begin specifying the quantity we need, we
first set, for any i ∈ {1, . . . , n},

CA,i (n) = {((σ1, τ1), . . . , (σn, τn)) ∈ WA (n) | exactly one of Fix σi, Fix τi is empty
}
.

Let sA,0 = 0. Define

sA,n =
∣∣⋃n

i=1 CA,i (n)
∣∣

|WA (n)| .

The main technical result of this section is Corollary 3.3, which exhibits a recurrence
relation on the terms of sequences of the form sA,n and computes the limit of this sequence;
the recurrence relation uses the quantities Pk (b), for b ∈ A—these quantities were defined
in Definition 3.1. We defer the proof until the end of the section, after establishing some
estimates on fixed-point proportions in wreath products.

Corollary 3.3 If k ∈ Z>1 and A = (bi)i∈Z>0 is any increasing arithmetic progression of
positive integers, then for any n ∈ Z>0,

sA,n = sA,n−1 + (1 − sA,n−1) 2Pk (bn) (1 − Pk (bn)) .

Moreover, limn→∞ sA,n = 1.

We turn to computing Pr,k for general r ∈ Z>0 and k ∈ Z>1. To do so, we recall
the rencontres numbers from combinatorics. For any r ∈ Z>0 and i ∈ {0, . . . , r}, we will
denote the (r, i)th rencontres number by Dr,i; that is, Dr,i is the number of permutations
of {1, . . . , r} with exactly i fixed points. In particular, the number of derangements of
{1, . . . , r} is Dr,0. For convenience, we set D0,0 = 1. We now record some basic identities
involving rencontres numbers, which we will use in the proof of Theorem 3.5.

Lemma 3.4 For all i, r ∈ Z≥0,

(1) Dr,i = (ri
)
Dr−i,0 and

(2)
∑r

i=1
(r
i
)
Dr−i,0 = r! − Dr,0.

Proof For (1), note that a permutation of {1, . . . , r} with precisely i fixed points is com-
pletely determined by choosing its i fixed points and specifying its action on the r − i
remaining non-fixed points. For (2), observe that

∑r
i=0 Dr,i = |Sr | = r!, as each permuta-

tion in Sr contributes to exactly one term in the sum, then apply (1). ��

Wenow prove an important estimate on Pr,n for all wreath products defined above (that
is, a larger class of wreath products than those which arise as Galois groups of dynatomic
polynomials).
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Theorem 3.5 Suppose that n, r ∈ Z>0. Then
∣∣∣Pr,n −

(
1 − e−

1
n
)∣∣∣ <

1 + 2r

r!
.

Proof We begin by noting that if σ ∈ Z/nZ �Sr , then |Fix σ | is a multiple of n. This follows
from the fact that if σ fixes any

(
b, i
)

∈ B(n, r), then it must fix each (c, i) for all c ∈ Z/nZ.
Now, if j ∈ {1, . . . , r}, σ = ((ai) ,π ), and |Fix σ | = nj, then π , acting on {1, . . . , r}, has at
least j fixed points. Moreover, there is a subset R of the fixed points of π such that

• |R| = j and
• if i′ ∈ {1, . . . , r} is a fixed point of π , then i′ ∈ R if and only if ai′ = 0.

In other words, if π ∈ Sr , Fix π = T , and (ai) ∈ (Z/nZ)r , then |Fix ((ai) ,π )| = nj if and
only if there exists R ⊆ T with |R| = j and for all i′ ∈ T , ai′ = 0 if and only if i′ ∈ R. Using
this fact, and enumerating permutations π by their number of fixed points, note that

∣∣{σ ∈ Z/nZ � Sr | |Fix σ | = nj
}∣∣ =

r∑

i=1

(
i
j

)
Dr,i(n − 1)i−jnr−i.

Using Lemma 3.4, we see that

|{σ ∈ Z/nZ � Sr | Fix σ �= ∅}| =
r∑

j=1

r∑

i=1

(
i
j

)
Dr,i(n − 1)i−jnr−i

=
r∑

j=1

r∑

i=1

(
i
j

)(
r
i

)
Dr−i,0(n − 1)i−jnr−i

=
r∑

i=1

(
r
i

)
Dr−i,0nr−i

r∑

j=1

(
i
j

)
(n − 1)i−j

=
r∑

i=1

(
r
i

)
Dr−i,0nr−i

(
ni − (n − 1)i

)

=
r∑

i=1

(
r
i

)
Dr−i,0nr −

r∑

i=1

(
r
i

)
Dr−i,0nr−i(n − 1)i

= r!nr − Dr,0nr −
r∑

i=1

(
r
i

)
Dr−i,0nr−i(n − 1)i

= r!nr −
r∑

i=0

(
r
i

)
Di,0ni(n − 1)r−i.

Thus,

Pr,n = 1
r!nr

(

r!nr −
r∑

i=0

(
r
i

)
Di,0ni(n − 1)r−i

)

= 1 −
r∑

i=0

Di,0
i!(r − i)!

(
n − 1
n

)r−i
.

Using the Taylor expansion of ex evaluated at x = 1 − 1
n , we see that

∣∣∣Pr,n −
(
1 − e−

1
n
)∣∣∣ =

∣∣∣∣∣
1
e

∞∑

i=0

1
i!

(
n − 1
n

)i
−

r∑

i=0

Di,0
i!(r − i)!

(
n − 1
n

)r−i
∣∣∣∣∣
.
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Finally, we use the well-known fact that i!
e − 1 < Di,0 < i!

e + 1 to conclude

∣∣∣Pr,n −
(
1 − e−

1
n
)∣∣∣ <

1
e

∞∑

i=0

1
i!

(
n − 1
n

)i
− 1

e

r∑

i=0

i!
i!(r − i)!

(
n − 1
n

)r−i

+
r∑

i=0

1
i!(r − i)!

(
n − 1
n

)n−i

≤ 1
(r + 1)!

(
n − 1
n

)r+1
+ 1

r!

(
1 + n − 1

n

)r

<
1 + 2r

r!
.

��

We record a simple bound we will use in our study of fixed-point proportions. The
goal is to prove that Pk (n)(1 − Pk (n)) is close enough to 1

n to satisfy the hypotheses of
Lemma 3.7, so the exact error bound does not matter much.

Theorem 3.6 Suppose that k ∈ Z>0. If n ∈ Z>0, then
∣∣∣∣Pk (n) (1 − Pk (n)) − 1

n

∣∣∣∣ <
121
n2

.

Proof Using Theorem 3.5, we see that

∣∣∣Pk (n) (1 − Pk (n)) − e−
1
n
(
1 − e−

1
n
)∣∣∣

=
∣∣∣∣Pk (n) −

(
1 − e−

1
n
)

+
(
1 − e−

1
n
)2 − Pn(k)2

∣∣∣∣

≤
∣∣∣Pk (n) −

(
1 − e−

1
n
)∣∣∣ ·
(
1 +
∣∣∣
(
1 − e−

1
n
)

+ Pk (n)
∣∣∣
)

<
1 + 2rk (n)

rk (n)!
· 3.

Writing the Taylor series of ex (1 − ex) shows
∣∣∣∣e

− 1
n
(
1 − e−

1
n
)

− 1
n

∣∣∣∣ <
3
2n2

,

so by the triangle inequality,
∣∣∣∣Pk (n) (1 − Pk (n)) − 1

n

∣∣∣∣ < 3 · 1 + 2rk (n)

rk (n)!
+ 3

2n2
.

Since 0 < Pk (n) (1 − Pk (n)) < 1
4 , we know that

∣∣Pk (n) (1 − Pk (n)) − 1
n
∣∣ < 1 for all n; in

particular, the statement is true for all n ≤ 11. Thus, we may assume that n ≥ 12. This
implies immediately that rk (n) > kn−1

n > 7 and kn−1 > n3. Next, we note that

3 · 1 + 2x

(x − 1)!
< 1 for all x ≥ 7.

Putting these estimates together, we obtain

3 · 1 + 2rk (n)

(rk (n))!
<

1
rk (n)

<
n

kn−1 <
1
n2

when n ≥ 12.
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So for all such n, we conclude that
∣∣∣∣Pk (n) (1 − Pk (n)) − 1

n

∣∣∣∣ <
1
n2

+ 3
2n2

= 5
2n2

.

��
Before proving the corollary we will use in the proof of Theorem 1.1, we prove a short

lemma about a certain class of recurrence relations.

Lemma 3.7 Suppose (an)n∈Z>0 is a sequence of real numbers that satisfies
∞∑

n=1
an = ∞, lim

n→∞ an = 0, and an ∈ [0, 1] for all n ∈ Z>0.

Suppose t0 ∈ [0, 1], and define

tn = tn−1 + an (1 − tn−1) for all n ∈ Z>0.

Then limn→∞ tn = 1.

Proof A short induction argument shows that (tn) is non-decreasing and bounded above
by 1. So (tn) converges; suppose for a contradiction that it converges to L ∈ [0, 1). Note
that

tn − tn−1 = an (1 − tn−1) ≥ an(1 − L).

Summing both sides of this inequality over all n ∈ Z≥0 yields the contradiction

lim
n→∞ (tn − t0) = ∞.

��
Putting together the results in this section, we can now prove Corollary 3.3.

Proof of Corollary 3.3 Recall thatWA(n) = WA,1 × · · · × WA,n, that

CA,i (n) = {((σ1, τ1), . . . , (σn, τn)) ∈ WA (n) | exactly one of Fix σi, Fix τi is empty
}
,

and that sA,n is defined by sA,0 = 0 and

sA,n =
∣∣⋃n

i=1 CA,i (n)
∣∣

|WA (n)|
forn > 0.Observe that

∣∣WA(n)
∣∣ = ∣∣WA(n − 1)

∣∣ ∣∣WA,n
∣∣ and

∣∣CA,i(n)
∣∣ = ∣∣CA,i(n − 1)

∣∣ ∣∣WA,n
∣∣

for 1 ≤ i ≤ n − 1. Thus, the sequence sA,n satisfies the recurrence relation

sA,n = sA,n−1

∣∣WA,n
∣∣

∣∣WA,n
∣∣

+ (1 − sA,n−1)
∣∣{(σ , τ ) ∈ WA,n | exactly one of Fix σ , Fix τ is empty

}∣∣
∣∣WA,n

∣∣

= sA,n−1 + (1 − sA,n−1) 2Pk (bn) (1 − Pk (bn)) .

Since 0 < Pk (bn) < 1 for all n, we note that 0 < 2Pk (bn) (1 − Pk (bn)) < 1 for all n as well.
Setting an = 2Pk (bn) (1 − Pk (bn)), Theorem 3.6 implies that (an) satisfies the hypotheses
of Lemma 3.7, which we apply to conclude the proof. ��
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4 Applying the Hilbert Irreducibility and the Frobenius Density Theorems
In this section, for any polynomial f (c, x) ∈ Q[c][x] and any a ∈ Q, we will write fa for the
specialization of f at c = a; that is, fa = fa(x) = f (a, x) ∈ Q[x]. Below is a version of the
Hilbert irreducibility theorem, one which we will apply in the proof of Theorem 1.1.

Hilbert irreducibility theorem. Let f (c, x) ∈ Z[c][x], let K be the splitting field of f (c, x)
overQ(c), and for any a ∈ Z, let Ka be the splitting field of fa overQ. Suppose that f (c, x) has
no repeated roots (in Q(c)). Then there exists a “thin set” A ⊂ Z such that for all a ∈ Z \A,

fa has no repeated roots and Gal (Ka/Q) � Gal (K/Q(c)).

Remark 4.1 The Hilbert irreducibility theorem is normally stated for irreducible polyno-
mials (as in [25]). To obtain the version stated above, let g(c, x) be theminimal polynomial
of a primitive element of K/Q(c), which is irreducible over Q(c). Then specialize g(c, x)
instead of f (c, x). Moreover, if f (c, x) has no repeated roots in Q(c), then there are only
finitely many a ∈ Q for which fa(x) has a repeated root in Q (these are precisely the a for
which the discriminant Disc f (c, x) vanishes under the specialization at c = a). For more
on the connection between the Hilbert irreducibility theorem and Galois theory, see, for
example, [7], [15, Chap. VIII], and [30, Chap. 1].
As for the size of the “thin set” A, we know there is some constant C such that for all

X ∈ Z>0,

|{a ∈ A | a ≤ X}| ≤ C
√
X

(See [25, Sect. 9.7], for more details). In particular, there are infinitely many integers for
which the conclusion of the theorem is true.

Next, we recall a case of the Frobenius density theorem (See [28] for more details).

Frobenius Density Theorem. Suppose that f (x) ∈ Z[x] is a monic polynomial with no
repeated roots. Let G = Gal (f /Q) and P ⊆ P be the set of primes p such that [f ]p has a
root in Fp. Then

μ(P) = 1
|G| · ∣∣{σ ∈ G | σ fixes a root of f

}∣∣ .

Remark 4.2 If f, g ∈ Z[x] satisfy the hypotheses of the Frobenius Density Theorem, the
sets

Pf = {p ∈ P | [f ]p has a root in Fp} and Pg = {p ∈ P | [g]p has a root in Fp}
are probabilistically independent (in the sense that μ

(
Pf ∩ Pg

) = μ
(
Pf
) · μ

(
Pg
)
) if and

only if the splitting fields of f and g are linearly disjoint over Q. This follows immediately
from the fact that the Galois group of a compositum of fields is the direct product of the
Galois groups if and only if the fields are linearly disjoint.

In light of the Frobenius density theorem, onemight hope that given f ∈ Z[x] and p ∈ P ,
the roots of

[
�f,n
]
p are precisely the points of

(
Fp, [f ]p

)
of period n, but—as mentioned

in Sect. 1—this hope would be in vain. Indeed, even before reducing mod p, if α ∈ Q is
a point of period n in

(
Q, f
)
, then �f,n(α) = 0, but the converse is not always true—that

is, there are examples of (K, f ), n, α, and d, where d < n, α is a point of period d, but
�f,n(α) = 0, see [27, Example 4.2]. In general, if α ∈ Q and �f,n(α) = 0, then α is of
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period d for some d ≤ n, and d < n is possible only if the polynomial derivative of f d

evaluated at α is a root of unity; this quantity is known as themultiplier of α. The way in
which the period depends on the multiplier is the content of the following theorem [27,
Theorem 4.5].

Roots and multipliers theorem. Suppose that K is a field, f ∈ K [x], n ∈ Z>0, and α ∈ K
satisfies �f,n(α) = 0. Let λ = (f m)′(α) where m is the (least) period of α. Then either

(1) n = m,
(2) n = mj, when λ is a primitive jth root of unity, or
(3) n = mjpe, with e ∈ Z>0, when λ is a primitive jth root of unity and charK = p > 0.

Conversely, if α ∈ K has period n in (K (α), f ), then �f,n(α) = 0.
Luckily, given f ∈ Z[x] and n ∈ Z>0, the following corollary provides a sufficient

condition that ensures that for all but finitely many primes p ∈ P , the dynamical system
(
Fp, [f ]p

)
has apoint of periodn if andonly if

[
�f,n
]
p has a root. In theproof ofTheorem1.1,

we will use the work in Sect. 2 to ensure that the polynomials obtained by applying the
Hilbert irreducibility theorem satisfy this sufficient condition.

Corollary 4.3 Let f ∈ Z[x] and n ∈ Z>0, and suppose that f n(x) − x has no repeated
roots. Then for all but finitely many p ∈ P ,

[
�f,n
]
p has a root in Fp if and only if

(
Fp, [f ]p

)
has a point of period n.

Proof As pointed out in Sect. 2 of [29], for example, if f n(x) − x has no repeated roots,
then for all α ∈ Q,

�f,n(α) = 0 if and only if α is a point of period n in (Q(α), f ) .

As usual, for any α ∈ Q and p ∈ P , we say p divides α if there exists a number field K
containing α and a prime ideal p ⊆ OK such that p | (p) and ordp(α) > 0.
Let p ∈ P , and suppose that

[
�f,n
]
p has a root. LetK be the splitting field of�f,n, choose

any prime p lying over p, and denote by · the reduction OK → OK /p. Since OK /p is an
extension of Fp and

[
�f,n
]
p has a root, there exists a ∈ Z ⊆ OK such that

[
�f,n
]
p (a) = 0.

Since �f,n splits in K , we know that
[
�f,n
]
p splits inOK /p and the roots of �f,n map onto

the roots of
[
�f,n
]
p under ·; choose any α ∈ K such that �f,n(α) = 0 and α = a.

Now, by the roots andmultipliers theorem,weknowthata is a periodicpoint of
(
Fp, [f ]p

)

of period at most n; let us suppose its period is strictly less than n (so in particular, n > 1).
This implies that there exists j ∈ {1, . . . , n − 1} such that

f j(α) − α = ([f ]p
)j (a) − a = 0;

that is, p divides f j(α) − α. We know that α has period n in (K, f ), so the points
α, f (α), f 2(α), . . . , f n−1(α) are pairwise distinct; thus, there are only finitely many prime
ideals ofOK dividing their differences, as desired.
Now suppose that [f ]p has a point of period n in

(
Fp, [f ]p

)
. It is easy to see that [f n]p =

(
[f ]p
)n, so

[
�f,n
]
p = �[f ]p,n. By the roots and multipliers theorem, with K = Fp, we know

that
[
�f,n
]
p has a root in Fp. ��

Finally, we can apply Corollaries 2.4, 3.3, and the results mentioned above to prove
Theorem 1.1.
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Proof of Theorem 1.1 Let T = {J ⊆ {1, . . . ,M} ∣∣ |J | = 2
}
, set t = |T | = (M2

)
, and choose

any bijection β : T → {1, . . . , t}. For any J ∈ T , let AJ denote the arithmetic progression
(β(J ),β(J ) + t,β(J ) + 2t, . . .). Define sAJ ,0 = 0 and

sAJ ,i = sAJ ,i−1 + 2
(
1 − sAJ ,i−1

)
Pk (β(J ) + t(i − 1)) (1 − Pk (β(J ) + t(i − 1)))

for all i ∈ Z>0.

By Corollary 3.3, for each choice of J we know sAJ ,i → 1 as i → ∞. Thus, there exists
N0 ∈ Z>0 such that sAJ ,N0 > 1− ε

t for all J ∈ T . LetN = (tN0)! and set f = xk+c ∈ Q(c)[x],
so that for any a ∈ Z, fa = xk + a ∈ Z[x]. Next, let

F (a) = {
fa,d | d ∈ Z>0 and d | N} ,
where 
fa,d is the splitting field of �fa,d over Q. By Theorem D of [19], we know that
f N (x) − x has no repeated roots in Q(c), so by Lemma 2.2, for any m ∈ Z, we see that
(f + m)N (x) − x has no repeated roots either. Thus, by Corollary 2.4 and the Hilbert
irreducibility theorem, there exist infinitely manyM-tuples (m1, . . . , mM) ∈ Z

M such that

• any field in
⋃M

j=1F
(
mj
)
is linearly disjoint from the compositum of the others,

• if 
fmj ,d ∈⋃M
j=1F

(
mj
)
, then Gal

(

fmj ,d/Q

)
� (Z/dZ � Srk (d)

)
, and

• for any j ∈ {1, . . . ,M}, we know
(
fmj

)N
(x) − x has no repeated roots.

We will prove that for any such (m1, . . . , mM),

μ
({

p ∈ P
∣∣∣
{
xk + m1, . . . , xk + mM

}
is dynamically distinguishable mod p

})

> 1 − ε.

To begin, fix such anM-tuple (m1, . . . , mM). We introduce a bit of simplifying notation.
For any J = {j, j′} ∈ T , we will compare those �xk+mj,i,�xk+mj′ ,i for i in the truncated
arithmetic progression (β(J ) + t(i − 1) | i ∈ {1, . . . , N0}). Tomake this analysis more con-
venient, for any J ∈ T and j ∈ J , write

�J,j,i = �xk+mj,β(J )+t(i−1).

Using this notation, we can define for any J ∈ T :

�J =
∏

j∈J

N0∏

i=1
�J,j,i and GJ = Gal

(
�J/Q

)
.

Now set

� =
∏

J∈T
�J and G = Gal (�/Q).

Note that

� divides
M∏

j=1

((
fmj

)N
(x) − x

)
in Q[x]

by the definition of the dynatomic polynomials, so

� has distinct roots in Q and G �
∏

J∈T
GJ

by our choice of (m1, . . . , mM) ∈ Z
M .
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Next, we introduce the sets of primes whose natural densities we will compute; namely,
for any J ∈ T and i ∈ {1, . . . , N0}, define

P�
J,i = {p ∈ P | exactly one of {�xk+mj,p | j ∈ J } has a (β(J ) + t(i − 1))-cycle},

P�
J,i = {p ∈ P | exactly one of {[�J,j,i]p | j ∈ J } has a root in Fp}.

As we will compare these sets to proportions of Galois groups, we define for any J ∈ T ,

CJ = {σ ∈ GJ | for some i ∈ {1, . . . , N0} , σ fixes a root of exactly one of
{
�J,j,i | j ∈ J

}}
.

Now, set P�
J =⋃N0

i=1 P
�
J,i and apply the Frobenius density theorem to �J to see that

μ
(
P�
J
) =

∣∣CJ
∣∣

∣∣GJ
∣∣ .

Next, recall thatCorollary 4.3 implies that for any J ∈ T and i ∈ {1, . . . , N0}, the symmetric
difference of P�

J,i and P�
J,i is finite. Thus,

μ
({

p ∈ P |
{
xk + m1, . . . , xk + mM

}
is dynamically distinguishable mod p

})

= μ

⎛

⎝
⋂

J∈T

{
p ∈ P |

{
xk + mj | j ∈ J

}
is dynamically distinguishable mod p

}
⎞

⎠

≥ μ

⎛

⎝
⋂

J∈T

(N0⋃

i=1
P�
J,i

)⎞

⎠

= μ

⎛

⎝
⋂

J∈T

(N0⋃

i=1
P�
J,i

)⎞

⎠

= μ

⎛

⎝
⋂

J∈T
P�
J

⎞

⎠

=
∏

J∈T

∣∣CJ
∣∣

∣∣GJ
∣∣ ,

where the last step follows from Remark 4.2.
We will conclude the proof by showing that if J ∈ T , then |CJ |

|GJ | > 1 − ε
t , whence

∏

J∈T

∣∣CJ
∣∣

∣∣GJ
∣∣ >

(
1 − ε

t

)t
> 1 − ε.

By Remark 3.2, Corollary 3.3, and our choice of (m1, . . . , mM), we know that
∣∣CJ
∣∣

∣∣GJ
∣∣ = sAJ ,N0 ,

so we are done by our original choice of N0. ��
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