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Abstract

We study the optimal convergence rate for the universal estimation error. Let F be the
excess loss class associated with the hypothesis space and n be the size of the data set,
we prove that if the Fat-shattering dimension satisfies fatε (F ) = O(ε−p), then the
universal estimation error is of O(n−1/2) for p < 2 and O(n−1/p) for p > 2. Among other
things, this result gives a criterion for a hypothesis class to achieve the minimax optimal
rate of O(n−1/2). We also show that if the hypothesis space is the compact supported
convex Lipschitz continuous functions in R

d with d > 4, then the rate is approximately
O(n−2/d ).

1 Background
Given some data independently generated by the same underlying distribution and some
model class, we are interested in how close the model trained with the data is to the best
possible model for the underlying distribution. The gap is known as the generalization
error in the context of supervised learning. The model class is called hypothesis space.
We can decompose the generalization error into two parts. One is the difference between
the best possible model and the best model in the hypothesis space. This is known as the
approximation error. The secondpart is called the estimation error, which is the difference
between the best model from the hypothesis space and the model trained with the data.
In this paper, we will focus on the estimation error.
To begin with, we will use the following notations: We denote the data set by {Zi =

(Xi, Yi)}n1, which is generated independently from the same underlying distributionμ, here
Xi is the i-th input and Yi is the corresponding output. L is the loss function andH is the
hypothesis space which contains functions from X to Y . Let h∗ be the minimizer of the
risk associated withH and ĥ be the minimizer of the empirical risk:

h∗ := argmin
h∈H

Eμ[L(h)],

ĥ := argmin
h∈H

Eμn [L(h)].

Here for simplification, we use L(h) in place of L(h(X), Y ), μn = 1
n

∑n
i=1 δZi for the

empirical measure and Eμn [L(h)] = 1
n

∑n
i=1(L(h(Xi), Yi)) to denote the empirical risk.

The estimation error is defined to be Eμ[L(ĥ) − L(h∗)].
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To estimate the estimation error, instead of looking at the spaceH, we will look at the
excess loss class associated withH, denoted as F , see [4]

F := {Z = (X, Y ) → L(h) − L(h∗) : h ∈ H}.
Every function h ∈ H corresponds to an element in F . Let f̂ and f ∗ in F be the corre-
sponding elements of ĥ and h∗ inH, respectively. Obviously f ∗ ≡ 0. Now the estimation
error can be written as Eμ[f̂ ]. Since f ∗ is the minimizer of Eμ[f ] and Eμ[f ∗] = 0, we
know that Eμ[f̂ ] ≥ 0. Similarly, we know that f̂ is the minimizer of Eμn [f ] and because
Eμn [f ∗] = 0, we have Eμn [f̂ ] ≤ 0. Therefore, we have

0 ≤ Eμ[f̂ ] ≤ Eμ[f̂ ] − Eμn [f̂ ]. (1.1)

To bound the Eμ[f̂ ], it is enough to bound Eμ(f̂ ) − Eμn [f̂ ]. Intuitively, for any fixed
function f , if we blindly apply the Law of Large Number and the Central Limit Theorem,
we get

Eμ[f ] − Eμn [f ] → 0 almost surely,
√
n(Eμ[f ] − Eμn [f ]) → N (0,Eμ(f − Eμ[f ])2) in distribution.

However, we cannot use the Law of Large Number or the Central Limit Theorem for f̂
since f̂ is the empirical minimizer, the iid assumption does not hold.
The following example is informative. Suppose F contains all continuous functions

with range bounded below by 0. Then the the empirical minimizer f̂ can be any function
interpolating the data set with value 0. This implies that Eμn f̂ = 0. But there is no
guarantee that Eμ f̂ = 0 and hence no guarantee that Eμ[f̂ ] − Eμn [f̂ ] converges as n goes
to infinity.
The solution to this dilemma is to study the differences between the true and empirical

expectation of all functions in the whole excess loss class rather than focusing only on
f̂ . Thus we define the empirical process {(Eμn − Eμ)(f ) : f ∈ F} as the family of the
random variables indexed by f ∈ F . Instead of bounding Eμ[f̂ ] − Eμn [f̂ ], it is better to
bound the supremum of the empirical process. Define ||Q||F = sup{|Qf | : f ∈ F}. The
quantity ||Eμn −Eμ||F will be called the empirical process supremum and its expectation
Eμ||Eμn − Eμ||F will be called the μ-estimation error, and it naturally provides a good
bound for the estimation error.
Next we define a F-indexed empirical process Gn by

f 	→ Gnf = √
n(Eμn − Eμ)[f ] = 1√

n

n∑

i=1
(f (Zi) − Eμ(f )). (1.2)

We now make the assumption that

sup
f ∈F

|f (Z) − Eμ(f )| < ∞ (1.3)

for all Z. Under this condition, the empirical process {Gn : f ∈ F} can be viewed as a map
in l∞(F ). Consequently, it makes sense to investigate conditions under which

Gn = √
n(Eμn − Eμ) → G in distribution, (1.4)

whereG is a tight process in l∞(F ). This is actually theF-version Central Limit Theorem.
Function spaces that satisfy this property are called Donsker class [10]. Moreover, a class
F is called a Glivenko–Cantelli class (GC) [10] if the F-version Law of Large Numbers

||Eμn − Eμ||F → 0 almost surely

holds.
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We now simplify the assumption (1.3). If we let g = f − Eμ[f ], we have

Eμ[g] − Eμn [g] = Eμ[f ] − Eμn [f ]. (1.5)

Thus we can assume Eμf = 0 for any f ∈ F . Then (1.3) can be simplified to be

sup
f ∈F

|f (Z))| < ∞. (1.6)

Without loss of generality, we further assume that

sup
f ∈F

|f (Z))| ≤ 1.

Equivalently, we are interested in the following class of distributions

P = {
μ : |f (Z)| ≤ 1 for any f ∈ F and any Z generated from μ

}
.

Since μ is actually unknown (otherwise we have achieved our goal for learning), we study
the worst case of μ-estimation error, so we define the

sup
μ∈P

Eμ||Eμn − Eμ||F
to be the universal estimation error.

2 Preliminaries
There are many classical approaches to describe the complexity of a class of functions.
For instance, growing number and VC dimension can be used to describe the binary
classification hypothesis space. Inmore general settings, one can also use the Rademacher
complexity. However, it seems that this quantity is not very intuitive. When using these
terms, one cannot tell how fast the empirical loss minimizer comes close to the loss
minimizer as the data size increases. In this paper, we will use the entropy and the Fat-
shattering dimension to describe the complexity.

2.1 Rademacher average

The first step to study theμ-estimation error is to study the Rademacher average: for fixed
empirical measure μn, we define the Rademacher average [3,14] by

R(F/μn) = Er sup
f ∈F

∣
∣
∣
∣
∣

1
n

n∑

i=1
rif (Zi)

∣
∣
∣
∣
∣

(2.1)

where ri, . . . , rn are iid Rademacher random variables satisfying P(r = −1) = P(r = 1) =
1/2 and Er is the expectation with respect to the Rademacher variables. Also, we define
the Rademacher process associated with the empirical measure μn as

Xrad(f ) = 1
n

n∑

i=1
rif (Zi). (2.2)

It is known that the Rademacher averages control the μ estimation error:

Theorem 2.1 [10] If F is a class of functions map into [−M,M], then for every integer n,
we have

Eμ sup
f ∈F

∣
∣
∣
∣
∣

1
n

n∑

i=1
(f (Zi) − Eμf )

∣
∣
∣
∣
∣
≤ 2Eμ×r sup

f ∈F

∣
∣
∣
∣
∣

1
n

n∑

i=1
rif (Zi)

∣
∣
∣
∣
∣

≤ MEμ sup
f ∈F

∣
∣
∣
∣
∣

1
n

n∑

i=1
(f (Zi) − Eμf )

∣
∣
∣
∣
∣
+ Er

∣
∣
∣
∣
∣

1
n

n∑

i=1
ri

∣
∣
∣
∣
∣
. (2.3)
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From this, we see that the term Eμ||Eμn − Eμ||F is comparable to the expectation of
the Rademacher average up to a term of O(n−1/2).

2.2 Covering number and fat-shatter dimension

To get more explicit bounds, we need two more concepts. In what follows, the logarithm
always takes 2 as base and Lp(μn) norm of f is defined as

(
1/n

∑n
i=1 |f (Zi)|p

)1/p.

Definition 2.2 For an arbitrary semi-metric space (T, d), the covering number N(ε, T, d)
is the minimal number of the closed d-balls of radius ε required to cover T . See [8,10].
The associated entropy logN(ε, T, d) is the logarithm of the covering number.

We also define another concept which is always easy to calculate: the Fat-shattering
dimension.

Definition 2.3 For every ε > 0, a set A = {Z1, . . . , Zn} is said to be ε- shattered by F if
there exists some real function s : A → R such that for every I ∈ {1, . . . , n} there exists
some fI ∈ F such that fI (Zi) ≥ s(Zi) + ε if i ∈ I , and fI (Zi) ≤ s(Zi) − ε if i /∈ I .

fatε(F ) := sup
{|A|∣∣A ∈ �, A is ε-shattered by F}

is called the Fat-shattering dimension, fI is called the shattering function of the set I , and
the set {s(Zi)|Zi ∈ A} is called a witness to the ε-shatter.

Note that both the Fat-shattering dimension and the covering number are non-
decreasing as ε decreases and since ||f ||L1(μn) ≤ ||f ||L2(μn) ≤ ||f ||L∞(μn), we know that

N(ε,F , L1(μn)) ≤ N(ε,F , L2(μn)) ≤ N(ε,F , L∞(μn)). (2.4)
The Fat-shattering dimension is actually linear with respect to the entropy up to a

logarithm factor of the Fat-shattering dimension[14], on page 253 and page 252:

Lemma 2.4 If |f | ≤ 1 for any f ∈ F , then

sup
μn

logN(ε,F , L1(μn)) ≥ fat16ε(F )/8. (2.5)

Lemma 2.5 for every empirical measureμn and p ≥ 1, there is some constant cp such that

logN(ε,F , Lp(μn)) ≤ cpfat ε
8
(F ) log2

(
2fat ε

8
(F )

ε

)

. (2.6)

2.3 Maximal inequality

In order to study the maxima of a class of random variables, we begin with the simple case
when the class is finite. In this case, we have

||max1≤i≤mXi||p ≤ (Emax1≤i≤m|Xi|p)1/p ≤ m1/pmax1≤i≤m||Xi||p. (2.7)
As m increase, this type bound increases very fast, so we cannot get satisfied result. To

overcome this, we introduce the following Orlicz 2-norm and the correspondingmaximal
inequality:

Definition 2.6 Let ψ2(x) = ex2 − 1, and Orlicz norm for random variables || · ||ψ2 is
defined by (see [10] for more details)

||X ||ψ2 := inf
{

c > 0 : Eψ2

( |X |
c

)

≤ 1
}

. (2.8)
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Note that ||X ||ψ2 ≥ ||X ||L1 since ψ2(x) ≥ x. The Orlicz norm is more sensitive to the
behavior of in the tail of X , which makes it possible to have a better bound if we bound
the maxima of many variables with a light tails. The following lemma gives a better bound
[11], in chapter 8:

Lemma 2.7 Let X1, X2, . . . , Xm be random variables,

|| sup
1≤i≤m

Xi||ψ2 ≤ 4
√
log(m + 1) sup

1≤i≤m
||Xi||ψ2 . (2.9)

Random variables from Rademacher process actually have a nice property that their
tails decrease very fast. The following result was proved by Kosorok in [11], in chapter 8:

Lemma 2.8 Define

X(a) =
n∑

i=1
riai, a ∈ R

n,

where ri, . . . , rn are i.i.d. Rademacher random variables satisfying P(r = −1) = P(r =
1) = 1/2. Let a = (a1, . . . , an) ∈ R

n, Then we have

P
(∣

∣
∣
∣
∣

n∑

i=1
riai

∣
∣
∣
∣
∣
> x

)

≤ 2e−
1
2 x

2/||a||2 (2.10)

for the Euclidean norm || · ||. Hence ||∑ ra||ψ2 ≤ √
6||a||.

Our main technique comes from Mendelson [14], who studied the Gaussian average
rather than Rademacher average, which is defined by

l(F/μn) = 1√
n
Eg sup

f ∈F

∣
∣

n∑

i=1
gif (Zi)

∣
∣,

where gi are independent standardGaussian randomvariables andEg means taking expec-
tation of theseGaussian randomvariables. Note that the factor 1/

√
nwas used in his result

instead of 1/n. Mendelson proved that if p < 2, the Gaussian averages are uniformly
bounded; if p > 2, they may grow at the rate of n

1
2− 1

p , and this bound is tight for Gaussian
averages. In [13,17], it was that the Gaussian and the Rademacher averages are closely
related and have the following connection:

Theorem 2.9 There are absolute constants c and C such that for every n and F

c(1 + log n)
1
2Eg sup

f ∈F

∣
∣

n∑

i=1
gif (Zi)

∣
∣ ≤ Ersup

f ∈F

∣
∣

n∑

i=1
rif (Zi)

∣
∣ ≤ CEg sup

f ∈F

∣
∣

n∑

i=1
gif (Zi)

∣
∣. (2.11)

Using the above theorem and the result in [14], the upper bound was given for expec-
tation of the Rademacher average. But we cannot say whether the bound is tight. In the
following section,Wewill give a direct proof of the upper bound for the expectation of the
Rademacher average and we will make the argument that the bound is tight in section 4.

3 Upper bound
To bound the empirical Rademacher average, we use the following theorem, this follows
from the standard “chaining” method, see [11], chapter 8.
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Theorem 3.1 Let μn be the empirical measure and |f | ≤ 1 for all f ∈ F and f0 ≡ 0 ∈ F ,
let (εk )∞k=0 be a decreasing monotone sequence to 0 with ε0 = 1. Then, there exists an
absolute constant C such that for any integer N ,

R(F/μn) ≤ Cn− 1
2

N∑

k=1
εk−1 log

1
2 N(εk ,F , L2(μn)) + εN . (3.1)

Proof Note that if for any εi, N(εi,F , L2(μn)) is infinity, the inequality trivially holds .
Hence we can, without loss of generality, assume the covering numbers appear in the
inequality are all finite.
Construct a sequence of finite covering sets F0,F1, . . . ,FN such that Fi ⊂ F and Fi

is minimal εi-cover for the semi-metric space (F , L2(μn)). For each f ∈ F we could find
fN ∈ FN , such that ||f − fN ||L2(μn) ≤ εN . Now we fix the empirical measure μn and
study the associated Rademacher process Xrad(f ) = 1

n
∑n

i=1 rif (Zi). Applying the triangle
inequality to the Rademacher average, we get

R(F/μn) = Ersup
f ∈F

|Xrad(f )| ≤ Ersup
f ∈F

|Xrad(f − fN )| + Er sup
fN∈FN

|Xrad(fN )|. (3.2)

The first term on the right-hand side can be bounded as follows

Ersup
f ∈F

1
n

∣
∣

n∑

i=1
ri(f − fN )(Zi)

∣
∣ ≤ sup

f ∈F

√
√
√
√1

n

n∑

i=1
(f − fN )2(Zi)

= sup
f ∈F

||f − fN ||L2(μn) ≤ εN . (3.3)

The magnitude of the second term Er supfN∈FN |Xrad(fN )| is determined by the size of
FN . Now we use the following chaining method: For any fk ∈ Fk , there is a fk−1 ∈ Fk−1
such that fk is in the εk−1 ball centered at fk−1 in the semi-metric space (F , L2(μn)). We
say that fk−1 is chaining with fk , denote as fk−1 → fk . Using the triangle inequality, we
have

sup
fN∈FN

|Xrad(fN )| ≤
N∑

k=1
sup

fk−1→fk
|Xrad(fk ) − Xrad(fk−1)| + |Xrad(f0)| (3.4)

Since for any f ∈ F , ||f − f0||L2(μn) ≤ 1, andF0 = {f0 ≡ 0}, the term |Xrad(f0)| vanishes.
Taking theψ2 norm on both sides and using the triangle inequality again for theψ2 norm,
we obtain

∣
∣
∣
∣ sup
fN∈FN

|Xrad(fN )|
∣
∣
∣
∣
ψ2

≤
N∑

k=1

∣
∣
∣
∣ sup
fk−1→fk

|Xrad(fk − fk−1)|
∣
∣
∣
∣
ψ2
. (3.5)

Since N(εk ,F , L2(μn)) ≥ N(εk−1,F , L2(μn)), the number of choices of the chaining pair
(fk−1 → fk ) is bounded by N

2(εk ,F , L2(μn)). Applying Lemma 2.7, for the maximal
inequality on each term on the right-hand side of (3.5), we have
∣
∣
∣
∣ sup
fk−1→fk

|Xrad(fk − fk−1)|
∣
∣
∣
∣
ψ2

≤4log
1
2 (N2(εk ,F , L2(μn))+1)( sup

fk−1→fk
||Xrad(fk−fk−1)||ψ2 ).

(3.6)

As long as the covering number is bigger than 1, the factor

4log1/2(N2(εk ,F , L2(μn)) + 1)
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is bounded by 9log1/2(N(εk ,F , L2(μn))). Moreover, by Lemma 2.8, we have

sup
fk−1→fk

||Xrad(fk − fk−1)||ψ2 ≤ sup
fk−1→fk

√
6n−1/2||fk − fk−1||L2(μn)

By construction, it is bounded by
√
6n−1/2εk−1. So we have

Er sup
fN∈FN

|Xrad(fN )| ≤ ∣
∣
∣
∣ sup
fN∈FN

|Xrad(fN )|
∣
∣
∣
∣
ψ2

≤ Cn−1/2
N∑

k=1
εk−1log

1
2N(εk ,F , L2(μn)). (3.7)

�

In [14], Mendelson found a similar upper bound for the Gaussian average, the details of
this chaining technique also can be found in [15].
We now present the bound for Radmacher average using Fat-shattering dimension:

Theorem 3.2 Assume that for some γ > 1, fatε(F ) ≤ γ ε−p holds for any ε > 0, then
there exists a constant Cp, which depends only on p, such that for any empirical measure
μn

R(F/μn) ≤

⎧
⎪⎪⎨

⎪⎪⎩

Cpγ
1
2 log γ n−1/2 if 0 < p < 2,

C2γ
1
2 log γn−1/2 log2 n if p = 2,

Cpγ
1
2 log γn−1/p if p > 2.

(3.8)

Proof Let μn be an empirical measure. When p < 2, we know the sum on the right-hand
side of inequality (3.1) can be bounded using Lemma 2.5 as follows:

n−1/2
N∑

k=1
εk−1 log

1
2 N(εk ,F , L2(μn)) ≤ n−1/2

∫ ∞

0
log

1
2N(ε,F , L2(μn))dε

≤ Cpγ
1
2 logγ n−1/2. (3.9)

Assume that p ≥ 2. Let εk = 2−k andN = p−1log n. UsingTheorem3.1 and Lemma 2.5,
we have

R(F/μn) ≤ Cpn−1/2logγ
N∑

k=1
ε1−

p
2 log

( 2
εk

) + 2εN

≤ Cpn−1/2γ
1
2 logγ

N∑

k=1
k2k(

p
2−1) + 2n− 1

p . (3.10)

If p = 2, the geometric sum is bounded by:

Cpn−1/2(γ
1
2 logγ )N 2 ≤ Cp(γ

1
2 logγ )n−1/2log2n.

If p > 2, it is bounded by

Cp(γ
1
2 logγ )n−1/p.

�

We also present the entropy version upper bound, the proof follows from the same
argument.
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Theorem 3.3 Assume that for some γ > 1, logN(ε,F , L2(μn)) ≤ γ ε−p holds for all ε > 0.
Then there exists a constant Cp, which depends only on p, such that for any empirical
measure μn

R(F/μn) ≤

⎧
⎪⎪⎨

⎪⎪⎩

Cpγ
1
2 n−1/2 if 0 < p < 2,

C2γ
1
2 n−1/2 log n if p = 2,

Cpγ
1
2 n−1/p if p > 2.

(3.11)

By taking the expectation of R(F/μn) in Theorem 3.2 and Theorem 3.3, then apply the
Theorem 2.1, we can also get the upper bounds for correspondingμ-estimation error and
universal estimation error.

4 Lower bound
In this section, we prove that for someproper underlying distributionμ, the Fat-shattering
dimension provides a lower bound for the Rademacher average (hence for the universal
estimation error), and this bound is tight. A similar lower bounds for the Gaussian average
can be found in [14].

Theorem 4.1 If fatε(F ) ≥ γ ε−p for some γ , then there exists a measure μ ∈ P and
constant c such that

EμR(F/μn) ≥ cn− 1
p .

Proof By the definition of Fat-shattering dimension, for every integer n, let ε = (γ /n)1/p,
there exists a set {Z1, Z2, . . . , Zn} which is ε shattered by F and all Zi are distinct. Let μ

be the measure uniformly distributed on {Z1, Z2, . . . , Zn}. By the definition of shattering,
we know all Zi are distinct.
Let Z∗

1 , . . . , Z∗
n be the data generated uniformly and independently fromμ and letμn be

the corresponding empirical measure. Assume that Zi appears ni times in the support of
μn. Then we have:

R(F/μn) = 1
n
Er sup

f ∈F

∣
∣
∣
∣
∣

n∑

i=1

ni∑

k=1
ri,k f (Zi)

∣
∣
∣
∣
∣

(4.1)

≥ 1
2n

Er sup
f,f ′∈F

n∑

i=1

ni∑

k=1
ri,k (f (Zi) − f ′(Zi)) (4.2)

where the {ri,k}’s are independently Rademacher random variables.
As we know for those i where ni > 0, the probability of P(

∑ni
k=1 ri,k = 0) ≤ 1

2 . For a
realization of ri,k , set A = {i : ∑ni

k=1 ri,k > 0}. Let fA to be the Fat-shattering function of
the set A, and fAc be the shattering function of its complement Ac. Also, denote by n∗ the
number of i’s for which ni > 0. Then we have,

sup
f,f ′∈F

n∑

i=1

ni∑

k=1
ri,k (f (Zi) − f ′(Zi)) ≥

n∑

i=1

ni∑

k=1
(ri,k (fA(Zi) − fAc (Zi))). (4.3)

As long as
∑ni

k ri,k �= 0, for each i,
∑ni

k=1(ri,k (fA(Zi) − fAc (Zi))) ≥ 2ε. So we know

R(F/μn) ≥ 1
2n

Er

n∑

i=1

ni∑

k=1
(ri,k (fA(Zi) − f ′

Ac (Zi))) ≥ 1
2n

εn∗. (4.4)
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The last inequality holds because for each i with ni > 0, the probability of
∑ni

k=1 ri,k = 0
is no more than 1/2.
Now take the expectation for inequality (4.4), we have

EμR(F/μn) ≥ Eμ

(
1
2n

εn∗
)

, (4.5)

n∗ here is the number of Zi ’s that appear in Z∗
1 . . . , Z∗

n . We know

Eμ(n∗) = n
(

1 −
(
n − 1
n

)n)

>

(

1 − 1
e

)

n. (4.6)

For ε = (γ /n)1/p, we obtain the following lower bound

EμR(F/μn) ≥
(
1
2

− 1
2e

)

γ 1/pn− 1
p . (4.7)

Addition with Theorem 2.1, For p ≥ 2, we know there also exists a constant c1 such that

Eμ sup
f ∈F

∣
∣
∣
∣
∣

1
n

n∑

i=1
f (Zi) − Eμf

∣
∣
∣
∣
∣
> c1n− 1

p .

�
In the previous section and this section, we have proved that for p > 2, the expectation

of the Rademacher average is bounded above and below by O(n−1/p). Since O(n−1/2) is
negligible comparingO(n−1/p), from Theorem 2.1, we know that the universal estimation
error is bounded by n−1/p and this bound is tight.
For p < 2, the upper bound gives us convergence rate as O(n−1/2) and in this case F is

the Donsker class [10]. As long as the limit of the empirical process is non-trivial, the rate
O(n−1/2) is optimal.

5 Excess loss class or hypothesis class
It seems a little bit obscure to study the excess loss class F rather thanH itself. However,
when it comes to the most common loss functions L, the complexity of excess loss class
F can be controlled by the complexity of the hypothesis spaceH. For example, assuming
that the loss function L is K -Lipschitz in its first argument, i.e. for all ŷ1, ŷ2, y, we have

|L(ŷ1, y) − L(ŷ2, y)| ≤ K |ŷ1 − ŷ2|. (5.1)

Since we also have f ∗ ≡ 0 ∈ F , it is not hard to prove that the Rademacher average of the
excess loss class can be bounded in terms of the average of the hypothesis space:

R(F/μn) ≤ KR(H/μn). (5.2)

Thus we know that the Rademacher average of H can bound the Rademacher average
of F . We also have the following lemma to characterize how to bound the entropy of F
by the entropy ofH when using q-loss function. The proof can be found in [14].

Lemma 5.1 IfH has uniform bound of 1, then for every 1 ≤ q ≤ ∞ there is a constant Cq
such that for every ε > 0, g bounded by 1, and probability μ, we have

logN(ε, |H − g |q, L2(μ)) ≤ logN(Cqε,H, L2(μ)). (5.3)

In the following case, we can further claim that the complexity of the excess loss class
controls hypothesis space.
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Lemma 5.2 AssumeH has a uniform bound of 1. LetH∗ = {(h/4 + 3/4) : h ∈ H} and if

H∗ ⊂ H,

then there exists constant c such that

logN(cε,H, L2(μ)) ≤ logN(ε, (H − g)2, L2(μ)). (5.4)

Proof It is easily seen from the definition that the covering number is translation invariant:

N(ε,H, L2(μn)) = N(ε,H − g, L2(μn)). (5.5)

Also by the property that H∗ ⊂ H, one can prove that by enlarging the radius of the
covering balls, the covering number ofH can be bounded byH∗:

N(4ε,H, L2(μn)) ≤ N(ε,H∗, L2(μn)). (5.6)

Moreover, sinceH∗ is bounded below by 1/2 , we have |h21 −h22| ≥ |h1 −h2|, therefore the
covering number of H∗ can be bounded by the covering number of (H∗)2. And because
H∗ ⊂ H, the coveringnumber of (H)2 can bound the coveringnumber of (H∗)2, andhence
the covering number ofH∗ andH. Together with the translation invariant property, the
result follows. �
We will see in later applications that the conditionH∗ ⊂ H can actually be achieved in

many scenarios.

6 Application
6.1 VC classes for classification

We consider the binary classification problem. Assume F has finite VC dimension V .
Then there exists a constant C such that the estimation error is bounded by C

√
V /n,

which is optimal in the minimax sense, see [7] for more details.
From the definition of VC dimension, we know that fatε(F ) = V for ε < 1. In this case,

we can set γ to be V and p to be 1. Under this setting, from Theorem 3.2, the associated
Rademacher average is bounded above by C1logV

√
V /n. It is clearly optimal in terms of

the data size and only a logarithm factor of V worse than the best bound.

Remark 6.1 Faster rates can be achieved under some margin assumptions for the distri-
bution of μ, see [12].

6.2 Regularized linear class

Assume that the input X ∈ R
d , ||X ||q ≤ a and linear weight vector satisfies the regular-

ization condition ||W ||p ≤ b, where 1/p+1/q = 1 and 1 ≤ p ≤ 2. Consider the following
linear function hypothesis spaceHp containing all the functions in the form ofW · X . In
[19], Zhang derived the following bound:

logN(ε,Hp, L2(μn)) ≤
⌈
a2b2

ε2

⌉

log(2d + 1). (6.1)

He then obtained a bound for the estimation error for classification error. Now we can
use his result (6.1) for more general setting, for example, real value problems.
Fix the regularization condition ||W ||p ≤ b and letH1 is the hypothesis space for lasso

regression andH2 for ridge regression as following:
H1 = {

W · X : ||W ||1 ≤ b and ||X ||∞ ≤ 1/b
}
and

H2 = {
W · X : ||W ||2 ≤ b and ||X ||2 ≤ 1/b

}
.
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From the Holder inequality, we have |W · X | ≤ 1 forW · X ∈ H1,H2. The bound of the
entropy together with Theorem 3.3 gives the upper bound of the Rademacher average:

R(Hp/μn) ≤ C2

√
log(2d + 1)

n
log n. (6.2)

where C2 is the constant from Theorem 3.3. This bound provides a convergence rate
bound for regression estimation error.

6.3 Non-decreasing class and bounded variation class

Let H1 and H2 be the set of all functions on [0, T ] taking values in [−1, 1] with the
requirements that h1 is non-decreasing for any h1 ∈ H1 and the total variation of h2 is
bounded by V for any h2 ∈ H2. If V ≥ 2, we have H1 ⊂ H2. The Rademacher average
ofH2 provides an upper bound for Rademacher average ofH1. In [5], Bartlett proved the
following theorem:

Theorem 6.2 For all ε ≤ V /12

logN(ε,H2, L1(μ)) ≤ 13V
ε

. (6.3)

From Lemma 2.4, we know that the Fat-shattering dimension has the bound:

fatε(H2) ≤ 128V
ε

. (6.4)

From Theorem 3.2, we know the convergence rate of Rademacher average of H2 can
achieve O(n−1/2) and so doesH1.

6.4 Multiple layer neural nets

Wewill present some evidence to why deep learning works.Wemake the assumption that
the input magnitude of each neuron is bounded and consider the following architecture
for the neural net:

� =
{
x ∈ R

d : ||X ||∞ ≤ B
}
.

LetH0 be the class of functions on � defined by

H0 =
{
X = (X1, X2 . . . , Xd) → Xi : 1 ≤ i ≤ d

}
.

Letσ be the standard logistic sigmoid function,which is 1-Lipschitz. Define the hypothesis
space recursively by:

Hl =
{

σ
( N∑

i=1
wihi

)
: N ∈ N, hi ∈ Hl−1,

N∑

i=1
|wi| ≤ C

}

Define the C-convex hull ofH as

convC (H) =
{∑

cihi : hi ∈ H,
∑

|ci| ≤ C
}
.

By the definition of Rademacher average, one can show

CR(H/μn) = R(convC (H)/μn). (6.5)

One can also check by compositingH with a L-Lipschitz function σ , we have

R((σ ◦ H)/μn) ≤ LR(H/μn). (6.6)

Since thenumber of functions in the spaceH0 isd, which is finite, the ε-coveringnumber
can be bounded by d for any ε. Then by applying Theorem 3.3 and setting γ = log d and
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p = 1 , we can bound R(H0/μn) by C1
√
logd/n for a positive constant C1. Do induction

on the number of layers, in each layer, we use (6.5) and (6.6) alternatively and get

R(Hl/μn) ≤ C1Cl
√
logd
n

. (6.7)

Note that Hl satisfies the requirement in Lemma 5.2. Hence for L2 loss function, the
Rademacher average of F has a similar upper bound which differs by a constant factor
and so does the universal estimation error.
Our result can be compared with the result in [2] of Bartlett:

logN(ε,Hl , L2(μn)) ≤ a
(
b
ε

)2l
. (6.8)

Here a, b are factors independent of ε. From this bound, we can only get the universal
estimation error bound in the formofO(n−1/2l), whichmeans that the learning rate decays
very fast when more layers are used.
Deep neural nets often use hundreds of layers. One might think that this may lead to

large estimation error and overfitting.However, our result shows that as long aswe control
the magnitude of the weights, overfitting is not a problem.

6.5 Boosting

Using simple function class such as decision stumps as hypothesis space usually leads to
low estimation error but high approximation error. In order to reduce the approximation
error, we can enrich the hypothesis space. Boosting [9] has proven to be an attractive
strategy in their regard both in theory and in practice. In each step t, based on the error,
the current function ht−1 made, boosting greedily choose a function gt from the base
function space B, multiplied by the learning rate γt and added to the current function
ht−1 to reduce the error ht−1 made. We denote by T the total number of steps. Let us
consider the following hypothesis space:

H =
{ T∑

t=1
γt gt

∣
∣

T∑

t=1
|γt | ≤ C, gt ∈ B

}

,

which contains all possible functions produced by boosting with constraint on its learning
rate.
In [16], Schapire et al. have shown that for AdaBoosting, the margin error on training

data decreases exponentially fast inT . They also provided a bound on generalization error
by assuming that the VC dimension is finite.
In the following we will derive a bound for boosting in more general setting. Note that

the hypothesis space H we considered can also be regarded as a C-convex hull of B,
defined in the last section:

R(H/μn) = R(convC (B)/μn) = CR(B/μn). (6.9)

As we argued previously, the Rademacher average can bound the estimation error.
This result essentially tells us that the estimation error of boosting can be bounded by
CEμR(B/μn). Since the base function space B is fixed in boosting, the bound is actually
determined by C , the L1 norm of the learning rate.
C here controls the complexity of H. When one uses too many steps and the corre-

sponding learning rate does not decay fast enough, C becomes too large and overfitting
becomes a problem.
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6.6 Convex functions

This example illustrates the fact that if H is rich enough, the rate of O(n−1/2) cannot be
achieved. Consider the hypothesis spaceH containing all the real-valued convex functions
defined on [a, b]d ⊂ R

d , which are uniformly bounded by B and uniformly L-Lipschitz.
In Bronshtein’s paper [6], it was proved that for ε sufficiently small, the logarithm of

the covering number N(ε,H, L∞(μ)) can be bounded from above and below by a positive
constant times ε−d/2, here μ is the ordinary Lesbegue measure.
We use both Fat-shattering dimension and entropy in this case. By Lemma 2.4, we have

logN(ε,H, L∞(μ)) ≥ sup
μn

logN(ε,H, L2(μn)) ≥ fat16ε(H)/8. (6.10)

From Theorem 3.3, we conclude that R(H/μn) is bounded above by Cn−2/d for some
constant C .
To bound the associated Rademacher average from below, we use the inequality from

lemma 2.5:

fatε(F )log2
(2fat ε

8
(F )

ε

)

≥ sup
μn

logN(ε,H, L∞(μn))

= logN(ε,H, L∞(μ)) ≥ cε−d/2. (6.11)

By solving this inequality for fatε(F ), we conclude that there exists a function δ(ε) which
decreases to 0 as ε goes to 0 such that

fatε(F ) ≥ cε−d/2−δ(ε). (6.12)

Now apply Theorem 4.1, we can conclude that there exists γ (n) which goes to 0 as n
goes to 0 such that the Rademacher average is bounded below by O(n−(2/d−γ (n))).
Note thatH also satisfies the requirement in Lemma 5.2, if we use L2 norm for the loss

function, we know that the universal estimation error has a rate between O(n−(2/d−γ (n)))
and O(n−2/d). This shows that the general convex function space in high dimension can
be very complex for learning problems.
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