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Abstract

We present a spectrally accurate method for the rapid evaluation of free-space Stokes
potentials, i.e., sums involving a large number of free space Green’s functions. We
consider sums involving stokeslets, stresslets and rotlets that appear in boundary
integral methods and potential methods for solving Stokes equations. The method
combines the framework of the Spectral Ewald method for periodic problems (Lindbo
and Tornberg in J Comput Phys 229(23):8994–9010, 2010. doi:10.1016/j.jcp.2010.08.
026), with a very recent approach to solving the free-space harmonic and biharmonic
equations using fast Fourier transforms (FFTs) on a uniform grid (Vico et al. in J Comput
Phys 323:191–203, 2016. doi:10.1016/j.jcp.2016.07.028). Convolution with a truncated
Gaussian function is used to place point sources on a grid. With precomputation of a
scalar grid quantity that does not depend on these sources, the amount of
oversampling of the grids with Gaussians can be kept at a factor of two, the minimum
for aperiodic convolutions by FFTs. The resulting algorithm has a computational
complexity of O(N logN) for problems with N sources and targets. Comparison is made
with a fast multipole method to show that the performance of the new method is
competitive.

1 Background
In this paper, we consider the evaluation of free-space potentials of Stokes flow, i.e., vector
fields defined by sums involving a large number of free space Green’s functions such as
the so-called stokeslet, stresslet or rotlet. The stokeslet is the free space Green’s function
for velocity and is given by

S(r) = 1
r
I + 1

r3
rr, or Sjl(r) = δjl

r
+ rjrl

r3
, j, l = 1, 2, 3,

with r = |r| andwhere δjl is theKronecker delta. The stresslet and rotletwill be introduced
in the following. The discrete sums are on the form

u(xm) =
N∑

n=1
n�=m

S(xm − xn)f (xn), m = 1, . . . , N. (1)

and appear in boundary integral methods and potential methods for solving Stokes equa-
tions.
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These sums have the same structure as the classical Coulombic or gravitational N -
body problems that involve the harmonic kernel, and the direct evaluation of such a sum
for m = 1, . . . , N requires O(N 2) work. The Fast Multipole Method (FMM) can reduce
that cost to O(N ) work, where the constant multiplying N will depend on the required
accuracy. FMM was first introduced by Greengard and Rokhlin for the harmonic kernel
in 2D and later in 3D [5,15] and has since been extended to other kernels, including the
fundamental solutions of Stokes flow considered here [12,16,27,29,32]. Related is also the
development of a so-called pre-corrected FFT method based on fast Fourier transforms.
This method has been applied to the rapid evaluation of stokeslet sums for panel-based
discretizations of surfaces [31].
For periodic problems, FFT-based fast methods built on the foundation of so-called

Ewald summation have been successful. Also here, development started for the harmonic
potential, specifically for evaluation of the electrostatic potential and force in connection
tomolecular dynamic simulations, see, e.g., the survey byDeserno andHolm [7].One early
method was the Particle Mesh Ewald (PME) method by Darden et al. [6], later refined to
the Smooth Particle Mesh Ewald (SPME)method by Essman et al. [8]. The SPMEmethod
was extended to the fast evaluation of the stokeslet sum by Saintillan et al. [26]. To recover
the exponentially fast convergence of the Ewald sums that is lost when such a traditional
PME approach is used, the present authors have developed a spectrally accurate PME-
type method, the Spectral Ewald (SE) method both for the sum of stokeslets [21], and
stresslets [3]. It has also been implemented for the sum of rotlets [1], and the source code
is available online [24]. The Spectral Ewald method was recently used to accelerate the
Stokesian Dynamics simulations in [30].
The present work deals with the efficient and fast summation of free space Green’s

functions for Stokes flow (stokeslets, stresslets and rotlets), as exemplified by the sum of
stokeslets in (1). The problem has no periodicity, but the approach will still be based on
Ewald summation and fast Fourier transforms (FFTs), using ideas from [28] to extend the
Fourier treatment to the free-space case. Before we explain this further, we will introduce
the idea behind Ewald summation.

1.1 Triply periodic Ewald summation

Consider the Stokes equations in R
3, singularly forced at arbitrary locations xn, n =

1, . . . , N , with strengths 8πμf (xn) ∈ R
3 (with the 8πμ scaling for convenience). Introduce

the three-dimensional delta function δ(x − x0), and write

− ∇p + μ∇2u + g(x) = 0, g(x) = 8πμ

N∑

n=1
f (xn) δ(x − xn),

∇ · u = 0,

where u is the velocity, p is the pressure and μ is the viscosity. The free-space problem is
given by adding the boundary condition that the fluid is at rest at infinity,

lim|x|→∞u = 0.

The solution to this problem, evaluated at the source locations, is given by (1).
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The classical Ewald summation formulas were derived for the triply periodic prob-
lem for the electrostatic potential by Ewald [9] and for the stokeslet by Hasimoto [17].
Here, assume that all the point forces are located within a box D = [−L1/2, L1/2] ×
[−L2/2, L2/2] × [−L3/2, L3/2] and that we impose periodic boundary conditions. The
solution to this problem is a sum not only over all the point forces, but also over all their
periodic replicas,

u3P(xm) =
∑

p∈P3

N∗∑

n=1
S(xm − xn + p)f (xn), m = 1, . . . , N.

Here, the sum over p formalizes the periodic replication of the point forces with

P3 =
{
(j1L1, j2L2, j3L3} : j ∈ Z

3
}
.

The N∗ indicates that the term (n = m, p = 0) is excluded from the sum. The slow
decay of the stokeslet, however, makes this infinite sum divergent. To make sense of this
summation, one usually assumes that the point forces are balanced by a mean pressure
gradient, such that the velocity integrates to zero over the periodic box. Under these
assumptions, Hasimoto [17] derived the following Ewald summation formula

u3P(xm) =
∑

p∈P3

N∗∑

n=1
SR(xm − xn + p, ξ )f (xn)

+ 1
V
∑

|k|�=0
ŜF (k, ξ )

N∑

n=1
f (xn)e−ik·(xm−xn)

+ lim|r|→0

(
SR(r, ξ ) − S(r)

)
f (xm), (2)

where the n = m, p = 0 term is excluded from the real space sum, V = L1L2L3, and

SR(r, ξ ) = 2
(

ξe−ξ2r2

√
πr2

+ erfc (ξr)
2r3

)(
r2I + rr

)
− 4ξ√

π
e−ξ2r2I,

ŜF (k, ξ ) = 8π
(
1 + k2

4ξ2

)
1
k4
(
Ik2 − kk

)
e−k2/4ξ2 , (3)

with r = |r|, k = |k|,

k ∈ K =
{
2π (j1/L1, j2/L2, j3/L3) : j ∈ Z

3
}
,

and

lim|r|→0

(
SR(r, ξ ) − S(r)

)
= − 4ξ√

π
I. (4)

The last term in (2) is commonly referred to as the self-interaction term.When evaluating
the potential at xm, we should exclude the contribution from the point force at that same
location. For the real space part, we can directly skip the term in the summation when
p = 0 and n = m. We, however, need to subtract the contribution from this point that has
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been included in the Fourier sum. We can use that SF = S − SR, and subtract the limit as
|r| → 0 (2). Both S and SR are singular, but the limit of the difference is finite (4).
Both sums now decay exponentially, one in real space and one in Fourier space. The

parameter ξ > 0 is a decomposition parameter that controls the decay of the terms in the
two sums. The sum in real space can naturally be truncated to exclude interactions that
are now negligible. The sum in k-space, however, is still a sum of complexity O(N 2), now
with a very large constant introduced by the sum over k.
Methods in the PME family make use of FFTs to evaluate the k-space sum, accelerating

the evaluation such that ξ can be chosen larger to push more work into the k-space sum,
allowing for tighter truncation of the real space sum, and in total an O(N logN ) method.
This procedure introduces approximations since a grid must be used and, as with the
FMM, the constant multiplying N logN will depend on the accuracy requirements.

1.2 The free-space problem and this contribution

Considering the free space problem, we can introduce the same kind of decomposition
as in (2). The real space sum stays the same, with the minor change that the sum over p
is removed, and the self interaction term does not change. However, the discrete sum in
Fourier space is replaced by the inverse Fourier transform,

uF (x, ξ ) = 1
(2π )3

∫

R3
ŜF (k, ξ ) ·

N∑

n=1
f (xn)eik·(x−xn) dk. (5)

Here, note the 1/k2 singularity in ŜF (k, ξ ) as defined in (3). The integral is well defined,
and integration can be performed, e.g., in spherical coordinates. A numerical quadrature
method in spherical coordinates would, however, require non-uniform FFTs for non-
rectangular grids in k-space. Instead, we will use a very recent idea introduced by Vico
et al. [28] to solve free space problems by FFTs on uniform grids.
The method by Vico et al. [28] is based on the idea to use a modified Green’s function.

With a right-hand side of compact support, and a given domain inside which the solution
is to be found, a truncated Green’s function can be defined that coincides with the original
one for a large enough domain (and is zero elsewhere), such that the analytical solution
defined through a convolution of the Green’s function with the right-hand side remains
unchanged. The gain is that the Fourier transform of this truncated Green’s function will
have a finite limit at k = 0. A length scale related to the truncation will, however, be
introduced, introducing oscillations in Fourier space which will require some upsampling
to resolve.
The authors of [28] present this approach for radial Green’s functions, e.g., the harmonic

andbiharmonic kernels. In the presentwork,we are considering kernels that are not radial.
We will, however, use this idea in a substep of our method, defining the Fourier transform
of the biharmonic (for stokeslet and stresslet) or harmonic (for rotlet) kernels, and define
our non-radial kernels from these. The need of upsampling that the truncation brings can
be taken care of in a precomputation step, and hence for a scalar quantity only. What
remains is an aperiodic discrete convolution that requires an upsampling of a factor of
two.
The key ingredients in our method for the rapid summation of kernels of Stokes flow

(stokeslet, stresslet and rotlet) in free space will hence be the following. We make use
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of the framework of Ewald summation, to split the sums in two parts—one that decays
rapidly in real space, and one in Fourier space. The Fourier space treatment is based on the
Spectral Ewald method for triply and doubly periodic problems that has been developed
previously [3,21–23]. This means that point forces will be interpolated to a uniform grid
using truncated Gaussian functions that are scaled to allow for best possible accuracy
given the size of the support. The implementation of the gridding is made efficient by the
means of Fast Gaussian Gridding (FGG) [14,22].
In the periodic problem, an FFT of each component of the grid function is computed,

a scaling is done in Fourier space, and after inverse FFTs, truncated Gaussians are again
used to evaluate the result at any evaluation point. The new development in this paper
is to extend this treatment to the free space case, when periodic sums are replaced by
discretized Fourier integrals. As mentioned above, a precomputation will be made to
compute a modified free-space harmonic or biharmonic kernel that will be used to define
the scaling in Fourier space.
The details are yet to be explained, but as we hope to convey in the following, the

method that we develop here for potentials of Stokes flow can easily be extended to other
kernels. For any kernel that can be expressed as a differentiation of the harmonic and/or
biharmonic kernel, the Ewald summation formulas can easily be derived and only minor
changes in the implementation of the method will be needed.
Anymethod based on Ewald summation and acceleration by FFTs will be most efficient

in the triply periodic case. As soon as there is one or more directions that are not periodic,
there will be a need of some oversampling of FFTs, which will increase the computational
cost. For the FMM, the opposite is true. The free space problem is the fastest to compute,
and any periodicity will invoke an additional cost, which will become substantial or even
overwhelming if the base periodic box has a large aspect ratio. Hence, implementing the
FFT-based Spectral Ewald method for a free-space problem and comparing it to an FMM
method will be the worst possible case for the SE method. Still, as we will show in the
results section, using an open source implementation of the FMM [13], our newmethod is
competitive and often performs better than that implementation of the FMM for uniform
point distributions (one can, however, expect this adaptive FMM to perform better for
highly non-uniform distributions).
There is an additional value in having a method that can be used for different period-

icities, thereby keeping the structure intact and easing the integration with the rest of
the simulation code, concerning, e.g., modifications of quadrature methods in a boundary
integral method to handle near interactions. A three-dimensional adaptive FMM is also
much more intricate to implement than the SE method. Open source software for the
Stokes FMM does exist for the free space problem (as the one used here), but we are not
aware of any software for the periodic problem.

1.3 Outline of paper

The outline of the paper is as follows. In Sect. 2, we start by introducing the stokeslet,
stresslet and rotlet, andwrite themon the operator form thatwewill later use. In Sect. 3,we
introduce the ideas behind Ewald decomposition and establish a framework for straight-
forward derivation of decompositions of different kernels. The new approach to solving
free-space problems by FFTs introduced by Vico et al. [28] is presented in the following
section, together with a detailed discussion on oversampling needs and precomputation.
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The newmethod for evaluating the Fourier space component is described in Sect. 5, while
the evaluation of the real space sum is briefly commented on in Sect. 6. New truncation
error estimates are derived in Sect. 7, and in Sect. 8we summarize the fullmethod.Numer-
ical results are presented in Sect. 9, where the performance of themethod is discussed and
comparison to an open source implementation of the FMM [13] is made.

2 Green’s functions of free-space Stokes flow
Wewill consider three different Green’s functions of free-space Stokes flow, the stokeslet
S, the stresslet T and the rotlet Ω . They are defined as

Sjl(r) = δjl

r
+ rjrl

r3
, (6)

Tjlm(r) = −6
rjrlrm
r5

, (7)

Ωjl(r) = εjlm
rm
r3

, (8)

where r = |r|. They can equivalently be formulated as operators acting on the fundamental
solutions of the biharmonic and—in the case of the rotlet—harmonic equations,

B(r) = r,

H (r) = 1/r.

We then write [10,25]

Sjl(r) =
(
δjl∇2 − ∇j∇l

)
r, (9)

Tjlm(r) =
[(

δjl∇m + δlm∇j + δmj∇l
)

∇2 − 2∇j∇l∇m

]
r, (10)

Ωjl(r) =
(
−εjlm∇m∇2

)
r =

(
−2εjlm∇m

) 1
r
. (11)

Here εjlm is the Levi-Civita symbol, and repeated indices are summated according to the
Einstein summation convention.
For a single forcing term 8πμf at a source location x0, the velocity field of the solution

is given by

u(x) = S(x − x0)f , or uj(x) = Sjl(x − x0)fl , j = 1, 2, 3.

Similarly, the stress field and vorticity associated with this solution can be written,

σjl(x) = Tjlm(x − x0)fm, ωj(x) = 	jl(x − x0)fl .

In integral equations, the stresslet often appears instead multiplying sources with two
indices, also producing a velocity,

uj(x) = Tjlm(x − x0)flm,

and this is the case that we will consider here. The typical form is then

flm = nlqm, (12)

where n is a vector normal to a surface and q is a double-layer density.
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We want to rapidly evaluate discrete-sum potentials of the type given in (1), either at
the source locations as indicated in that sum, or at any other arbitrary points, and we want
to do so for the three different Green’s functions. To allow for a generic notation in the
following despite the differences, we introduce the unconventional notation

u(x) =
N∑

n=1
G(x − xn) · f (xn), (13)

where G can denote either the stokeslet S, the stresslet T and the rotlet Ω , and the
dot-notation u = G(r) · f will be understood to mean

uj(x) = Sjl(r)fl , uj(x) = Tjlm(r)flm, uj(x) = Ωjl(r)fl , j = 1, 2, 3,

in the three different cases.

3 Ewald summation
3.1 Decomposing the Green’s function

In Ewald summation, we take a non-smooth and long-range Green’s function G, such as
(6–8), and decompose it into two parts,

G(r) = GR(r) + GF (r).

This is done such thatGR, called the real space component, decays exponentially in r = |r|.
At the same time, GF , called Fourier space component, decays exponentially in Fourier
space. The original example of this, derived by Ewald [9], decomposes the Laplace Green’s
function as

1
r

= erfc(ξr)
r

+ erf (ξr)
r

, (14)

where ξ is a parameter that controls the decay rates in the real and Fourier spaces. Here,
the real space component decays like e−ξ2r2 , while the Fourier space component decays
like k−2e−k2/4ξ2 . The rapid decay rates allow truncation of the components; the real space
component is reduced to local interactions between near neighbors, while the Fourier
space component is truncated at some maximum wave number k∞.
There are two different ways of deriving an Ewald decomposition, which we shall refer

to as screening and splitting. In screening, one introduces a screening function γ (r, ξ ),∫
R3 γ (r, ξ ) dr = 1, that decays smoothly away from zero. The Green’s function is then
decomposed using its convolution with γ ,

G(r) = G(r) − (G ∗ γ )(r, ξ ) + (G ∗ γ )(r, ξ ),

such that

GR(r, ξ ) = G(r) − (G ∗ γ )(r, ξ ),

GF (r, ξ ) = (G ∗ γ )(r, ξ ),
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and (by the convolution theorem)

ĜF (k, ξ ) = Ĝ(k)γ̂ (k, ξ ), (15)

where f̂ denotes the Fourier transform of f ,

f̂ (k) = F [f ](k) =
∫

R3
f (x)e−ik·x dx.

The original Ewald decomposition (14) can be derived in this fashion, using the screening
function

γE(r, ξ ) = ξ3π−3/2e−ξ2r2 ⇀↽ γ̂E(k, ξ ) = e−k2/4ξ2 ,

where r = |r|, k = |k|. For the stokeslet (6), an Ewald decomposition was derived
by Hasimoto [17], which was later shown [18] to be equivalent to using the screening
function

γH (r, ξ ) = ξ3π−3/2e−ξ2r2
(
5
2

− ξ2r2
)

⇀↽ γ̂H (k, ξ ) = e−k2/4ξ2
(
1 + 1

4
k2

ξ2

)
.

In splitting, one startswith the operator formof theGreen’s function (9,10,11),G(r) = K r,
where K is an operator acting on r. Knowing K, one then splits the Green’s function using
a splitting function Φ ,

G(r) = K[r − Φ(r, ξ )] + KΦ(r, ξ ),

such that

GR(r, ξ ) = K[r − Φ(r, ξ )],

ĜF (k, ξ ) = K̂(k)Φ̂(k, ξ ), (16)

where K̂(k) denotes the prefactor that is produced when K is applied to eik·x (e.g., if
K = Δ then K̂ = −|k|2 = −k2). The splitting method was invented by Beenakker [4],
who used

ΦB(r, ξ ) = r erf (ξr) ⇀↽ Φ̂B(k, ξ ) = −8π
k4

(
1 + 1

4
k2

ξ2
+ 1

8
k4

ξ4

)
e−k2/4ξ2 .

We have now defined ĜF (k, ξ ) in two different ways in (15) and (16) and can equate
the two. We have that G(r) = Kr, where r = B(r) is the fundamental solution of the
biharmonic equation, i.e.,

∇4B(r) = −8πδ(x).

From this, we get

Ĝ(k) = B̂(k)K̂ (k) = −8π
k4

K̂ (k). (17)
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Hence, the screening and splitting methods can be shown [2] to be related to each other
as

Φ̂ = −8π
k4

γ̂ ⇀↽ γ = − 1
8π

∇4Φ .

Using this, one can derive the screening and splitting functions related to the Ewald,
Hasimoto and Beenakker decompositions, shown in Table 1.
The relations listed in the table are very useful in derivation of Ewald summation for-

mulas. Finding the real space part GR(r, ξ ) is easiest using the splitting approach, since
this only involves differentiation. The k-space term is, however, simpler to derive with the
screening approach. Combining (15) and (17), it directly follows

ĜF (k, ξ ) = K̂ (k)̂B(k)γ̂ (k, ξ ). (18)

Considering the information in the table, we can see that the Ewald decomposition
yields the fastest decay in Fourier space. However, this screening function can only be
used if the Green’s function can be written as an operator acting on 1/r, like the rotlet
(11). In this case, we can think about the splitting approach as if splitting 1/r such that Φ

is erf (ξr)/r as in (14).
If we attempt to use the Ewald screening function for the stokeslet or stresslet, this will

not produce a useful decomposition since this screening function does not “screen” the
point forces. The field produced by a point force convolved with the screening function
does not converge rapidly (with distance from the source location) to the field produced
by that point force. If we were to do the calculation, this manifests itself in slowly decaying
terms in the real space sum.
Both the Hasimoto and Beenacker screening functions work for the stokeslet and

stresslet. The Hasimoto decomposition will yield somewhat faster decaying terms in both
real and Fourier space and will henceforth be the one that we will use.

3.2 Ewald free-space formulas

In the triply periodic setting, the Ewald summation formula as derived by Hasimoto was
given in (2). As given in (5), for the free-space problem the discrete sum in Fourier space
is replaced by the inverse Fourier transform. With our generic notation, we can evaluate
the discrete-sum potential (13) as

u(x) =
N∑

n=1
GR(x − xn, ξ ) · f (xn) + 1

(2π )3

∫

R3
ĜF (k, ξ ) ·

N∑

n=1
f (xn)eik·(x−xn) dk.

(19)

Table 1 Summary of the screening and splitting functions related to the Ewald, Hasimoto
and Beenakker decompositions

γ γ̂ Φ

Ewald αe−ξ2r2 e−k2/4ξ2 r erf(ξ r) + r erf(ξ r)
2ξ2r2

+ e−ξ2 r2√
πξ

Hasimoto αe−ξ2r2
(
5
2 − ξ2r2

)
e−k2/4ξ2

(
1 + 1

4
k2

ξ2

)
r erf(ξ r) + e−ξ2 r2√

πξ

Beenakker αe−ξ2r2
(
10 − 11ξ2r2 + 2ξ4r4

)
e−k2/4ξ2

(
1 + 1

4
k2

ξ2
+ 1

8
k4

ξ4

)
r erf(ξ r)

The constant α = ξ3π−3/2 , and ξ is the decomposition parameter
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Wenow apply the splitting approach to derive the real space formulas, using theHasimoto
splitting for the stokeslet and stresslet, and the Ewald splitting for the rotlet,

SRjl (r, ξ ) =
(
δjl∇2 − ∇j∇l

) [
r − ΦH (r, ξ )

]
,

TR
jlm(r) =

[(
δjl∇m + δlm∇j + δmj∇l

)
∇2 − 2∇j∇l∇m

] [
r − ΦH (r, ξ )

]
,

ΩR
jl (r) = −εjlm∇m∇2

[
r − ΦE(r, ξ )

]
= −2εjlm∇m

erfc(ξr)
r

,

where the splitting functionsΦH andΦE are found in the first and second lines of Table 1.
This gives us

SRjl (r, ξ ) = 2
(

ξe−ξ2r2

√
π

+ erfc (ξr)
2r

)
(δjl + r̂j r̂l) − 4ξ√

π
e−ξ2r2δjl ,

TR
jlm(r) = −2

r

[
3 erfc(ξr)

r
+ 2ξ√

π

(
3 + 2ξ2r2

)
e−ξ2r2

]
r̂j r̂l r̂m

+ 4ξ3√
π
e−ξ2r2 (δjl r̂m + δlmr̂j + δmjr̂l),

ΩR
jl (r) = 2εjlmr̂m

(
erfc(ξr)

r2
+ 2ξ√

π

1
r
e−ξ2r2

)
,

where r̂ = r/|r|. Only the stokeslet has a nonzero limit as given in (4), which must be
included to remove the self-interaction when evaluating at a source point location.
Let us now turn to the Fourier space terms, using the screening approach with the

Hasimoto (stokeslet, stresslet) and Ewald (rotlet) screening functions. From (18), for each
Green’s function using the specific form of the differential operator in (9,10,11) to define
K̂(k), with γ̂E(k, ξ ) and γ̂H (k, ξ ) as given in the first and second line of Table 1, we obtain

ŜF (k, ξ ) = AS(k, ξ )e−k2/4ξ2 ,

T̂ F (k, ξ ) = AT (k, ξ )e−k2/4ξ2 ,

Ω̂F (k, ξ ) = AΩ (k, ξ )e−k2/4ξ2 ,

where

AS
jl(k, ξ ) = −

(
k2δjl − kjkl

) (
1 + k2/(4ξ2)

)
B̂(|k|), (20)

AT
jlm(k, ξ ) = −i

[
(kmδjl + kjδlm + klδmj)k2 − 2kjklkm

] (
1 + k2/(4ξ2)

)
B̂(|k|), (21)

AΩ
jl (k, ξ ) = iεjlmkmk2B̂(|k|) = 2iεjlmkmĤ (|k|). (22)

Here, Ĥ (k) and B̂(k) are the Fourier transforms of H (r) = 1/r and B(r) = r,

Ĥ (k) = 4π
k2

, B̂(k) = −8π
k4

. (23)

For a smooth compactly supported function ĜF (k, ξ ), the Fourier integral in (19) can
be approximated to spectral accuracy with a trapezoidal rule in each coordinate direction,
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allowing for the use of FFTs for the evaluation. Inserting the definitions in (23) into (20–
22), we can, however, note that the Fourier component has a singularity at k = 0 for all
three Green’s functions.
We will introduce modified Green’s functions for the harmonic and biharmonic equa-

tions, whichwill still yield the exact same result as the original ones in the solution domain,
and where the Fourier transforms of these functions have no singularity for k = 0. The
necessary ideas will be introduced in the next section, following the recent work by Vico
et al. [28].

4 Free-space solution of the harmonic and biharmonic equations
Consider the Poisson equation

−Δϕ(x) = 4π f (x)

with free-space boundary conditions (ϕ → 0 as |x| → ∞). The solution is given by

ϕ(x) =
∫

R3
H (|x − y|)f (y) dy = 1

(2π )3

∫

R3
Ĥ (|k|)f̂ (k)eik·x dk, (24)

where H (r) = 1/r is the harmonic Green’s function and Ĥ (k) = 4π/k2 its Fourier
transform. Note that they are both radial.
Assume now that f is compactly supported within a domain D̃; a box with sides L̃,

D̃ = {x | xi ∈ [0, L̃i] },

and that we seek the solution ϕ(x) for x ∈ D̃. The largest point-to-point distance in the
domain is |L̃|. LetR ≥ |L̃|. Without changing the solution, we can then replace H with a
truncated version,

HR(r) = H (r) rect
(

r
2R
)
,

where

rect(x) =
⎧
⎨

⎩
1 for |x| ≤ 1/2,

0 for |x| > 1/2.

The Fourier transform of this truncated Green’s function is [28]

ĤR(k) = 8π
(
sin(Rk/2)

k

)2
. (25)

This function has a well-defined limit at k = 0,

ĤR(0) = lim
k→0

ĤR(k) = 2πR2.

Similarly, to solve the biharmonic equation on the same size domain, we can define
BR(r) = B(r) rect

(
r
2R
)
, which has the Fourier transform [28]

B̂R(k) = 4π
(2 − R2k2) cos(Rk) + 2Rk sin(Rk) − 2

k4
, (26)
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with the limit value

B̂R(0) = lim
k→0

B̂R(k) = πR4 .

4.1 Solving the harmonic and biharmonic equations using FFTs

We will now describe how to solve the harmonic and biharmonic equations using FFTs.
In doing so, we will for simplicity of notation assume that the domain is a cube, i.e.,
L̃1 = L̃2 = L̃3 = L̃. The steps are as follows:

1. Introduce a grid of size M̃3 with grid size h = L̃/M̃ and evaluate f (x) on that grid.
2. Define an oversampling factor sf , and zero-pad (described in the subsequent section)

to do a 3D FFT of size (sf M̃)3, defining f̂ (k) for

k = 2π
L̃

1
sf
(k1, k2, k3), ki ∈

{
− sf M̃

2
, . . . ,

sf M̃
2

− 1
}
.

3. SetR = √
3L̃ and evaluate ĤR(k) (25), with k = |k| for the set of k-vectors defined

above.
4. Multiply f̂ (k) and ĤR(k) for each k. Do a 3D IFFT and truncate the result to keep

the M̃3 values defining the approximation of the solution ϕ(x) on the grid.

To solve the biharmonic equation instead, replace ĤR(k) by B̂R(k) as given in (26).
With this, we have for all xj in the grid computed the approximation

ϕ(xj) ≈ (Δk)3

(2π )3

sf M̃
2 −1∑

k1 ,k2 ,k3=−sf M̃
2

ĤR(|k|)f̂ (k)eik·xj ,

where Δk = 2π
L̃

1
sf .

Note that we at no occasion explicitly multiply with a prefactor, assuming there is a
built-in scaling of 1/(sf M̃)3 in the 3D inverse FFT. There should be a multiplication with
h3 in step 2, and with (Δk/2π )3 above, but that cancels such that only the built-in scaling
remains.
Since the convolution is aperiodic, we need to oversample by at least a factor of two.

In Vico et al. [28], they advise that we need an additional factor of two to resolve the
oscillatory behavior of the Fourier transform of the truncated kernel, which would yield
sf = 4. It does, however, turn out that the need of oversampling is less than this, as we will
discuss in the next section. If we oversample sufficiently, the error will decay spectrally
with M̃ given that the right-hand side f is smooth.

4.2 Zero-padding/oversampling

Consider the first integral in (24). With f compactly supported on a cube with size L̃3, H
must be defined on a cube with size (2L̃)3 to be able to compute the convolution.HR, with
R = |L̃| = √

3L̃ coincides with H inside the sphere of radiusR, the smallest sphere with
the cube inscribed. When we use the FFT, we “periodize” the computations. We hence
need to zero-pad the data so that this periodization interval is large enough to make sure
that HR is not polluted within the cube of size (2L̃)3.
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Assume that we zero-pad the data up to a domain size of 2L̃ + δ. If the sphere of radius
R is to fit within this domain, we would have δ = 2(R − L̃). However, as is illustrated
in Fig. 1, since it is enough that HR is not polluted within the cube, it is sufficient with
δ = R − L̃. In terms of an oversampling factor sf , this corresponds to

sf L̃ ≥ 2L̃ + δ = L̃ + R,

and the necessary condition becomes

sf ≥ L̃ + R
L̃

,

such that with R = √
3L̃, we get sf ≥ 1 + √

3 ≈ 2.8. Note that an argument based
instead on a large enough sampling ratio in the Fourier domain to resolve the oscillatory
truncated Green’s function would yield the smallest oversampling rate to be that with
δ = 2(R − L̃), where the Green’s function is without pollution in the full sphere, and
hence sf ≥ 2

√
3 ≈ 3.5.

For non-cubic domains, we will have a larger oversampling requirement,

sf ≥ 1 + R
mini L̃i

, (27)

which is sf ≥ 1 + |L̃|/(mini L̃i) with the smallest possible R. This additional cost can,
however, be limited to a precomputation step, through the scheme suggested in [28] as
discussed in the next section.

4.3 Precomputation

We will now further discuss step 4 in the algorithm introduced in Sect. 4.1. For ease of
notation, we do so in one dimension. Each dimension will be treated the same way, so
the extension is simple to make. Let Mg = sf M̃ be the number of grid points, such that
h = L̃/M̃ = (sf L̃)/Mg , and let k = (2π/(sf L̃))k̄ , where k̄ is an integer. By the means of an
IFFT, we can compute

ϕj = 1
Mg

Mg/2−1∑

k̄=−Mg/2

Ĝ(k)f̂k̄ e
i 2πMg k̄j , j = 0, . . . ,Mg − 1, (28)

R

2˜L

δ

Fig. 1 Illustration of the minimum zero-padding δ required to accurately represent theR-truncated Green’s
function inside the domain of dimensions 2L̃, when using a periodic Fourier transform. The condition
δ ≥ R − L̃must be satisfied to avoid pollution from neighboring Green’s functions inside the domain of
interest
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where Ĝ(k) could be either ĤR(k) or B̂R(k), and the Fourier coefficients f̂k̄ have been
computed by an FFT,

f̂k̄ =
Mg−1∑

l=0
f (lh)e−i 2πMg k̄l . (29)

Inserting (29) into (28), and rearranging the order of the sums, we get

ϕj =
Mg−1∑

l=0

⎡

⎢⎣
1
Mg

Mg/2−1∑

k̄=−Mg/2

Ĝ(k)ei
2π
Mg k̄(j−l)

⎤

⎥⎦ f (lh) =
Mg−1∑

l=0
Gj−l f (lh),

where Gj−l , j = 0, . . . ,Mg − 1, will define the effective Green’s function on the grid,
centered at grid point l. Note here that f has compact support and f (lh) = 0 for l > M̃−1,
and even though ϕj is computed on the large grid, we will truncate and keep only the M̃
first values. Hence, for each l, only M̃ values of Gj−l are actually needed to produce our
result, and since G(j+1)−(l+1) = Gj−l a total of 2M̃ grid values of the Green’s function
are used in the calculation. Hence, one can without knowing f precompute an effective
Green’s function on a grid using the oversampling rate sf ≥ 1 + R/L̃ derived in the
previous section, and truncate it to the 2M̃ values centered around r = 0. Let us denote
by G̃ the mollified Green’s function that is the result of this procedure. Since we carry
out the aperiodic convolution using FFTs, what we actually need to precompute is ̂̃G, the
Fourier transform of the mollified Green’s function. In 3D, the steps for precomputing
this are as follows:

1. Evaluate Ĝ on a grid of size (sf M̃)3 and do a 3D IFFT to get G̃.
2. Truncate G̃ to the (2M̃)3 points around the center.
3. Do a 3D FFT to get ̂̃G.

An example of the mollified harmonic Green’s function computed in this way is in Fig. 2
shown for G = HR.
Once f is given,we cannowcomputeϕ using an aperiodic convolution,which in practice

is evaluated through an FFT with an oversampling factor of 2. This requires the following
steps:

−10 −5 0 5 10
0

2
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10

k

Ĥ(k)

ĤR(k)
ˆ̃HR(k)

−1 −0.5 0 0.5 1
0

5

10

15

20

r

H(r)

H̃R(r)

(a) (b)

Fig. 2 Example of the mollified harmonic Green’s function generated by inverse transform of ĤR using a
finite-size IFFT. a Fourier space representations of the original (23), truncated (25) and mollified harmonic
Green’s functions. The latter is computed using an FFT. b The harmonic Green’s function and its mollified
counterpart
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1. Zero-pad f to size (2M̃)3 and do a 3D FFT to get f̂ .
2. Do a 3D IFFT of ̂̃Gf̂ and truncate to the (M̃)3 values that correspond to the original

domain.

This is beneficial when we want to solve the equation using several right-hand sides
f , since we only have to evaluate FFTs using the larger oversampling rate (27) in the
precomputation step, while subsequent FFTs only require an oversampling rate of 2.

5 Evaluating the Fourier space component
Let us now go back to the Fourier space component in the Ewald decomposition (19). We
will use the notation

ĜF,R(k, ξ ) = AG,R(k, ξ )e−k2/4ξ2 , (30)

where G = S, T , and Ω , and where the superindex R indicates that Ĥ (k) and B̂(k) are
replaced by ĤR(k) and B̂R(k) in the definitions (20), (21) and (22). This means that the
modified Green’s functions ŜF,R, T̂ F,R and Ω̂F,R will have no singularity at k = 0.
The task is now to compute

uF (x, ξ ) = 1
(2π )3

∫

R3
eik·xe−k2/4ξ2AG,R(k, ξ ) ·

N∑

n=1
f (xn)e−ik·xn dk (31)

for a given set of target points. The integrand of the inverse transform is now smooth
and can after truncation be easily evaluated using the trapezoidal rule, but evaluation
is still costly—O(N 2) if evaluating at N target points. We will now outline the spectral
Ewald method, which uses the fast Fourier transform to reduce the cost of this evaluation,
yielding a method with a total cost (including the real space sum) of O(N logN ). Before
we discuss the actual discretization and implementation details, we start by describing the
mathematical foundation of the method.

5.1 Foundations

First, we introduce a scalar parameter η > 0 and define

ĝ(k, ξ , η) =
N∑

n=1
f (xn)e−ik·xne−ηk2/8ξ2 , (32)

which is the Fourier transform of the smooth function

g(x, ξ , η) =
N∑

n=1
f (xn)

(
2ξ2

πη

)3/2

e−2ξ2|x−xn|2/η . (33)

Hence, instead of using (32) to directly evaluate ĝ(k, ξ , η), we can evaluate g(x, ξ , η) and
use an actual computation of the Fourier transform,

ĝ(k, ξ , η) =
∫

R3
g(x, ξ , η)e−ik·x dx.
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We furthermore define

ŵ(k, ξ , η) = e−(1−η)k2/4ξ2AG,R(k, ξ ) · ĝ(k, ξ , η), (34)

such that (31) can be written

uF (x, ξ ) = 1
(2π )3

∫

R3
ŵ(k, ξ , η)e−ηk2/8ξ2eik·x dk.

Using the convolution theorem, we can write this as

uF (x, ξ ) =
∫

R3
w(y, ξ , η)

(
2ξ2

πη

)3/2

e−2ξ2|x−y|2/η dy, (35)

where

w(x, ξ , η) = 1
(2π )3

∫

R3
ŵ(k, ξ , η)eik·x dk.

5.2 Discretization

Assume that we are to evaluate (31) for x = xm, m = 1, . . . , N , and for simplicity of
notation that all points are contained in a cube with equal sides L,

xn ∈ D = [0, L]3, n = 1, . . . , N.

The choice of η will be discussed shortly, in Sect. 5.3. At this point, assume that the Gaus-
sians e−2ξ2|·|2/η in (33) and (35) decay rapidly and will be truncated outside a diameter d.
Then,g becomes compactly supported, such that we can compute ĝ using an FFT, and the
integral in (35) becomes a local operation around each target point xm. To accommodate
the support of the truncated Gaussians, we must extend the domain by some length δL.
We will discuss the choice of this length in the discussion on η. For now, we consider the
extended domain with sides L̃ = L + δL,

D̃ = [−δL/2, L + δL/2]3.

This domain is discretized using a uniform gridwith M̃3 points and grid spacing h = L̃/M̃.
To initialize our calculations, we precompute ĤR(k) in case of the rotlet, and B̂R(k) in

case of the stokeslet or stresslet, as described in Sect. 4.3. They need to be precomputed
on a domain of size 2L̃, withR = √

3L̃.
The first step of our computations is to evaluate g on the grid as in (33). After that we

zero-pad the FFT by a factor of 2, to have an oversampled representation of ĝ, before we
scale it to define ŵ as in (34). We will then multiply by the precomputed fundamental
solution (ĤR(k) or B̂R(k)) and the additional scaling factors as given in (20), (21) and (22),
and apply an inverse FFT to perform a discrete convolution.
The computation of uF (xm, ξ ), m = 1, . . . , N , can hence be broken down into the fol-

lowing steps:

1. Spreading Compute g on the grid using (33) and truncated Gaussians.
2. FFT Compute ĝ using the three-dimensional FFT, zero-padded to the double size.
3. Scaling Compute ŵ using (34) and precomputed ĤR(k) or B̂R(k).
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4. IFFT Apply the inverse three-dimensional FFT to ŵ. Truncate the result to havew
defined on the original grid.

5. Quadrature For each xm, m = 1, . . . , N , evaluate uF using (35) and the trapezoidal
rule, with the Gaussian truncated outside the sphere of diameter d centered at xm.

This is the spectral Ewald method. A major cost of the method is the large number
of exponential function evaluations in steps 1 and 5. This can be accelerated through
the method of fast Gaussian gridding (FGG) [14,22]. It is then natural to truncate the
Gaussians outside a cube of P3 grid points, in which case

d = hP.

The computational cost of the FGG in steps 1 and 5 is then O(NP3), while the cost of
the FFTs in steps 2 and 4 is O(M̃3 log M̃). The cost of the scaling in step 3 is O(M̃3), and
negligible in this context.

5.3 Errors in the spectral Ewald method

The use of the spectral Ewald method for computing the Fourier space component intro-
duces approximation errors in the solution, which are separate from the Fourier integral
truncation error (further discussed in Sect. 7.1). The approximation errors stem from the
use of a discrete quadrature rule in the quadrature step and from the truncation and dis-
cretization of the Gaussians e−2ξ2|·|2/η in the spreading and quadrature steps. The Ewald
parameter ξ should be regarded as free, since it is used for work and error balancing
between the real and Fourier space sums (more on this in Sect. 8.2). This leaves two vari-
ables for controlling the approximation errors: the scalar parameter η and the Gaussian
truncation width d = hP. Following [22], we write η as

η =
(

ξd
m

)2
,

wherem is a shape parameter controlling how fast the Gaussian decays within the support
d. It can be shown [22] that the approximation errors decay exponentially in P with the
choice m(P) = C

√
πP and that the constant C should be taken slightly below unity for

optimal results (we use the value C = 0.976 suggested in [22]). With these choices, the
approximation errors of themethod are controlled through a single parameter P, and they
furthermore decay exponentially in that parameter.
It is evident from the algorithm that δL must be chosen such that the support of the

truncated Gaussians in (33) and (35) is included, i.e., δL ≥ d. However, it turns out that
this is not always enough. In the spectral Ewald method, we have taken the Gaussian
e−ξ2r2 of the screening function (Table 1) and separated it into a series of convolutions of
Gaussians, through the factorization

e−k2/4ξ2 = e−ηk2/8ξ2 · e−(1−η)k2/4ξ2 · e−ηk2/8ξ2 .

The first and last factors correspond to the Gaussian e−2ξ2r2/η in the gridding and quadra-
ture steps and are already properly resolved and truncated by our choices of η and d. For
η ≥ 1, the entire Gaussian e−ξ2r2 is contained in these two factors, and the middle factor
can be viewed as a deconvolution of the type used in the non-uniform FFT [20]. However,
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for η < 1 the middle factor represents the Gaussian e−ξ2r2/(1−η), and (34) corresponds
to a convolution with that Gaussian, carried out in Fourier space. For the convolution to
be properly represented, we must make sure that the domain L̃ includes the support of
e−ξ2r2/(1−η) to the desired truncation level. The original Gaussians are truncated at the
level e−2ξ2(d/2)2/η = e−m2/2. For the remainder Gaussians to be truncated at the same
level, we need that

e−ξ2(δL/2)2/(1−η) ≤ e−m2/2,

i.e.,

δL ≥
√
2(1 − η)m2/ξ2.

To guarantee that both Gaussians have proper support, we thus need

δL ≥
⎧
⎨

⎩
d if η ≥ 1,

max
(
d,
√
2(1 − η)m2/ξ2

)
if η < 1.

(36)

With this extra support for η < 1, the approximation errors are decoupled from the
Fourier space truncation errors, which are further discussed in Sect. 7.1. An example of
this decoupling is shown in Fig. 3, where it can be seen that the larger choice of δL is
actually only needed if the grid size M̃ is picked larger than necessary for a given error
tolerance.

6 Evaluating the real space component
The real space part of the free-space Ewald sum (19) has the general form

uR(x) =
N∑

n=1
GR(x − xn) · f (xn).

Since GR(r) decays rapidly (roughly as e−ξ2r2 ), the sum can be truncated outside some
truncation radius rc. Assume that we wish to evaluate the potential at points xm, m =
1, . . . , N . The expression that we need to evaluate is then

0 5 10 15 2010−14

10−7

100

k∞/ξ

P = 8
P = 16
P = 24

(a)

0 5 10 15 2010−14

10−7

100

k∞/ξ

P = 8
P = 16
P = 24

(b)

Fig. 3 Error in the stokeslet Fourier space component for various values of the discrete Gaussian support P.
The system is a unit cube with 1000 sources, M̃ ∈ [2, 40], ξ = 2π and k∞ = πM̃/L = πM̃. To the left ,the
domain is extended to include the support of the remainder Gaussians, while to the right the domain is only
extended to cover the support of the gridding and quadrature Gaussians. Evidently, the extra support is only
needed if M̃ is picked larger than necessary for a given error tolerance. a δL set through (36). b δL = d
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uR(xm) =
N∑

n=1|xm−xn|≤rc

GR(xm − xn) · f (xn), m = 1, . . . , N.

Naively implemented, this has an O(N 2) computational cost. It is, however, straightfor-
ward to find the interaction list of each target point xm by first creating a cell list [11].
This reduces the real space cost toO(N ), under the assumption that the average number
of interactions of each target point stays constant when N changes.

7 Truncation errors
Truncation errors are introduced when we cut off the real space interactions outside
a radius rc, and when we truncate the Fourier space integral outside a maximum wave
number k∞. The magnitudes of these errors can be accurately estimated through the
analysismethodology introducedbyKolafa andPerram [19] for periodic electrostatic force
computations. Denoting by ũ(x) the truncated solution, one can then derive statistical
error estimates for the root mean square (RMS) truncation error, defined as

δu =
√√√√ 1

N

N∑

n=1

∣∣u(xn) − ũ(xn)
∣∣2.

The analyses for both the real and Fourier space components rely on the following prop-
erty:

Lemma 1 (Kolafa andPerram [19, appx.A])Let (xn, qn)bea configuration of point sources,
and let

E(x) =
N∑

n=1
qn
(
f (x − xn) − f̃ (x − xn)

)
,

be an error measure due to a set of pointwise errors. Assuming that the points are randomly
distributed, and that E has a Gaussian distribution, the root mean square (RMS) error

δE =
√√√√ 1

N

N∑

n=1

(
E(xn)

)2

can be approximated as

δE2 ≈ 1
|V |

∑

i
q2i
∫

V

(
f (r) − f̃ (r)

)2
dr,

where V is the volume enclosing all point-to-point vectors rij = xi − xj .

7.1 Fourier space truncation error

The Fourier space error comes from truncating the integral of the Fourier transform
outside a maximum wave number k∞,

uF (x) − ũF (x) = 1
(2π )3

∫

k>k∞
ĜF (k, ξ ) ·

N∑

n=1
f (xn)eik·(x−xn) dk,
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where all points xn are contained in a cube of size L. In our case, the integral is approxi-
mated using an FFT over anM3 grid covering an L3 domain, such that

k∞ = 2π
L̃

M̃
2
.

The RMS of the truncation error is given by

δuF =
√√√√ 1

N

N∑

n=1

∣∣∣uF (xn) − ũF (xn)
∣∣∣
2
,

and can be estimated using the method of Kolafa &Perram. Such estimates already exist
for the periodic stokeslet [21] and rotlet [1] potentials, as well as for the Beenakker decom-
position of the stresslet [3]. However, it turns out that periodic estimates fail for free-space
potentials that are based on the truncated biharmonic potential BR. This is because the
dominating term of B̂R for large k is a factorR2k2/2 larger than B̂. For potentials based on
the truncated harmonic potentialHR, one can use the periodic estimates, as the difference
in magnitude between ĤR and Ĥ is negligible. We can thus use the existing estimates for
the rotlet available in [1], while we need to derive new ones for the stokeslet and stresslet.
The final set of estimates is shown in Table 2.

7.1.1 Stokeslet

Beginningwith the stokeslet potential, we consider the truncation error contribution from
a single source located at the origin,

uFj (x) − ũFj (x) = ejl(x)fl ,

where

ejl(r) = 1
(2π )3

∫

k>k∞

(
1 + k2

4ξ2

)
B̂R(k)e−(k/2ξ )2eik·rk2

(
δjl − k̂j k̂l

)
dk,

and

B̂R(k) = 4π
(2 − R2k2) cos(Rk) + 2Rk sin(Rk) − 2

k4
.

We now keep only the highest order term in k , which dominates the error for large k∞,

ejl ≈ − 4πR2

4ξ2(2π )3

∫

k>k∞
k2 cos(Rk)e−(k/2ξ )2eik·r (δjl − k̂j k̂l

)
dk.

Table2 Fourier space truncation error estimates for the stokeslet, stresslet and rotlet [1]

Stokeslet, SF Stresslet, TF Rotlet,ΩF

δuF
√
Q
Rk3∞
ξ2πL

e−k2∞/4ξ2
√
7Q
6

Rk4∞
ξ2πL

e−k2∞/4ξ2

√
8ξ2Q

3πL3k∞
e−k2∞/4ξ2

The quantityQ is defined as in (37) for the stokeslet and rotlet, and as in (38) for the stresslet
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The error should be independent of the coordinate system orientation, and since we are
deriving a statistical error measure, we approximate the directional component by its root
mean square (computed using spherical coordinates),

(
δjl − k̂j k̂l

)
≈
√√√√√

1
9

3∑

j,l=1

(
δjl − k̂j k̂l

)2 =
√
2
3

.

We now integrate in spherical coordinates, choosing a system such that k̂3 is parallel to ẑ.
Integration in θ ∈ [0,π ] then gives us

ejl ≈ −
√
2
3

R2

2ξ2πr

∫

k>k∞
k3 cos(Rk) sin(rk)e−(k/2ξ )2 dk.

To get a good approximation of ejl , we need to approximate the remaining integral. First,
we have from the exponential decay that the dominating contribution will come from the
beginning of the interval, where k ≈ k∞. This allows us to approximate

I =
∫

k>k∞
k3 cos(Rk) sin(rk)e−(k/2ξ )2 dk ≈ k3∞

∫

k>k∞
cos(Rk) sin(rk)e−(k/2ξ )2 dk.

Next, we have that R � r, so R is the dominating frequency in the integrand, such that
we can write cos(Rk) sin(rk) ≈ cos(Rk) sin(rk∞), and

I ≈ k3∞ sin(k∞r)
∫

k>k∞
eiRk−(k/2ξ )2 dk,

where we implicitly assume that the real part of the complex exponential is our quantity
of interest. A final approximation (again assuming k ≈ k∞) makes this integrable, and we
get

|I | ≈
∣∣∣∣∣
k3∞ sin(k∞r)
iR − k∞/2ξ2

∫

k>k∞
(iR − k/2ξ2)eiRk−(k/2ξ )2 dk

∣∣∣∣∣

=
∣∣∣∣∣
k3∞ sin(k∞r)
iR − K/2ξ2

eiRk∞−(k∞/2ξ )2
∣∣∣∣∣ ≤

k3∞| sin(k∞r)|
|iR − k∞/2ξ2|e

−(k∞/2ξ )2 .

We have (for a cube) that R ≥ √
3M̃h, while k∞ = πM̃/L̃ = π/h. Typical parameter

values are around k∞/ξ = O(10) and M̃ = O(50), so k∞/2ξ2 = O(50h/π ) 
 R and
|iR − k∞/2ξ2| ≈ R. We can therefore write

|I | ≈ k3∞| sin(k∞r)|
R e−(k∞/2ξ )2 ,

and

|ejl | ≈
√
2
6

Rk3∞| sin(k∞r)|
ξ2πr

e−(k∞/2ξ )2 .
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We can now use Lemma 1 to estimate the statistical error by integrating over a sphere of
radius L/2 (which then contains all point sources),

(
δuF
)2 ≈

N∑

n=1

3∑

j=1
f 2l (xn)

1
|V |

∫

V
e2jl(r) dr

≈ Q
6

πL3
3
(√

2
6

Rk3∞
ξ2π

e−(k∞/2ξ )2
)2 ∫ L/2

0
sin2(k∞r)4π dr,

where

Q =
N∑

n=1
|f (xn)|2. (37)

Assuming that sin2(k∞r) has many oscillations in the interval [0, L/2], we replace it by its
average value 1/2, such that

∫ L/2
0 sin2(k∞r)4π dr ≈ πL. Finally, we can write the stokeslet

truncation error estimate as

δuF ≈ √QRk3∞
ξ2πL

e−(k∞/2ξ )2 .

7.1.2 Stresslet

For the stresslet, the derivation for the error estimate is completely analogous to the one
for the stokeslet. The difference is that the leading order term is k3 instead of k2 and that
the RMS of the directional component is

√√√√√
1
27

3∑

j,l,m=1

((
δjl k̂m + δlmk̂j + δmjk̂l

)
− 2k̂j k̂l k̂m

)2
= 7

27
.

This allows us to directly write the stresslet truncation error estimate as

δuF ≈
√
7Q
6

Rk4∞
ξ2πL

e−(k∞/2ξ )2 ,

where

Q =
N∑

n=1

3∑

l,m=1
q2l (xn)n2m(xn), (38)

and q and n are as in (12).
The Fourier space truncation error estimates for the stokeslet, stresslet and rotlet are

summarized in Table 2. The close match between the estimates and the actual measured
error is shown in Fig. 4.

7.2 Real space truncation error

The real space truncation error is due to neglecting interactions in the real space sum for
which r > rc,
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uR(x) − ũR(x) =
∑

|x−xn|>rc

GR(x − xn) · f (xn).

The RMS of this error is given by

δuR =
√√√√ 1

N

N∑

n=1

∣∣∣uR(xn) − ũR(xn)
∣∣∣
2
.

Following the analysis by Kolafa and Perram, we can use Lemma 1 to estimate δuR as

(
δuR
)2 ≈ 1

L3
N∑

n=1

(
f (xn)

)2 ·
∫

r>rc

(
GR(r)

)2
dr.

Estimates based on this approximation are already available in the literature for the
stokeslet [23] and rotlet [1] decompositions used in this paper and are shown in the
summary in Table 3. We will here derive a similar estimate for the Hasimoto decom-
position of the stresslet, essentially by repeating the derivation of [3] for the Beenakker
decomposition.
The real space component of the stresslet has the form

TR
jlm(ξ , r) = A1(ξ , r)r̂j r̂l r̂m + A1(ξ , r)

(
δjl r̂m + δlmr̂j + δmjr̂l

)
,

and the RMS error is approximated as

(
δuR
)2 ≈ 1

L3
N∑

n=1

3∑

j=1
q2l (xn)q2m(xn)

∫

r>rc

(
TR
jlm(r)

)2
dr. (39)

Arguing that the error should be independent of the coordinate system orientation, we
replace (TR

jlm)
2 by its average value over the tensor components, computed using spherical

coordinates

3∑

j=1

(
TR
jlm(r)

)2 ≈ 3
(
TR)2 = 3

27

3∑

j,l,m=1

(
TR
jlm

)2 = 1
9

(
A2
1 + 6A1A2 + 15A2

2

)
. (40)

This quantity has only radial dependence and is integrable,

∫

r>rc
3
(
TR)24πr2 dr = − 32

3
√

πξe−ξ2r2c erfc (ξrc) + 21
√
2πξerfc

(√
2ξrc

)

+ 16πerfc (ξrc) 2

rc
+ 4

9
ξ2rce−2ξ2r2c

(
28ξ2r2c − 3

)

≈112
9

ξ4r3c e
−2ξ2r2c ,

(41)

where we have kept only the dominating term (for large ξrc) in the last step. Combining
(39), (40) and (41) gives us the estimate for the stresslet shown in Table 3. In Fig. 5, the
estimates of Table 3 are shown togehter with actual measured errors.
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Table 3 Real space truncation error estimates for the stokeslet [23], stresslet and rotlet [1]

Stokeslet, SR Stresslet, TR Rotlet,ΩR

δuR

√
4Qrc
L3

e−ξ2r2c

√
112Qξ4r3c

9L3
e−ξ2r2c

√
8Q
3L3rc

e−ξ2r2c

The quantityQ is defined in the same way as for the Fourier component

8 Summary of method
We now summarize the free-space fast Ewald method for Stokes potentials. Our goal is
to compute a discrete-sum potential of the type (13),

u(x) =
N∑

n=1
G(x − xn) · f (xn),

for a set of N target points x, with G being the stokeslet (6), stresslet (7) or rotlet (8). We
assume that all target and source points are contained in the cubic domainD = [0, L]3.
Using an Ewald decomposition (Sect. 3.2) and an Ewald parameter ξ > 0, we split the

potential into a short-range part uR acting locally, and a long-range part uF computed in
Fourier space,

u(x) = uR(x, ξ ) + uF (x, ξ ) + uself(x, ξ ),

where uself refers to the self-interaction term (4), which has to be taken into account only
for the stokeslet potential.
The real space component is truncated outside an interaction radius rc,

uR(x) ≈
N∑

n=1|x−xn|≤rc

GR(x − xn) · f (xn).

This is a local operation in the neighborhood of each target point x and can be efficiently
evaluated using, e.g., a cell list (Sect. 6).
The Fourier space component is evaluated through a Fourier integral, truncated at a

maximum wave number k∞,

uF (x, ξ ) ≈ 1
(2π )3

∫

|k|≤k∞
eik·xĜF,R(k, ξ ) ·

N∑

n=1
f (xn)e−ik·xn dk.

The superscript R denotes that we have removed the singularity in the integrand (at
k = 0) by truncating the original Green’s function outside a maximum interaction radius
R [Eqs. (20–22), (30), Sect. 4]. The integral is evaluated using the spectral Ewald method
(Sect. 5.2), which uses FFTs on an M̃3 grid to efficiently compute the long-range interac-
tions. The method requires the domain D to be extended by a length δL (36) for accurate
function support and then zero-padded by a factor 2 for the convolution to be aperi-
odic when using FFTs. In fact, an oversampling factor sf ≥ 1 + √

3 ≈ 2.8 is required to
accurately resolve the truncated Green’s function (Sect. 4.2), but the cost of that can be
reduced to a precomputation step involving the fundamental solution to the harmonic or
biharmonic equation (Sect. 4.3).
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8.1 Computational complexity

We wish to express how the computational cost of the method scales with an increased
number of sources and targetsN , which we assume to be evenly distributed in the domain
D. The system can be scaled up in two different ways: by increasing the point density in
a fixed domain or by increasing the domain size L with a fixed point density. Either way,
the scaling arguments have as their starting point that the real space sum beO(N ). This is
achieved by keeping a constant number of near neighbors (within rc) for each target under
scaling. Additionally, we want the level of the truncation errors to be constant, which is
achieved by keeping ξrc and M̃ξ−1L−1 constant.
If N increases with D fixed, then rc ∝ N−1/3 is required for an O(N ) real space sum.

If the accuracy is to remain constant, then ξ ∝ r−1
c ∝ N 1/3 and the grid size is scaled as

M̃ ∝ ξ ∝ N 1/3. This puts the Fourier space cost atO(M̃3 log M̃) ∝ O(N logN ).
If the domain size L increases with a fixed point density, thenN ∝ L3 and the real space

sum is O(N ) if we keep rc and ξ constant. Then M̃ ∝ L ∝ N 1/3, such that the Fourier
space cost isO(M̃3 log M̃) ∝ O(N logN ).

8.2 Parameter selection

For a given system (N charges in a domain of size L), the required parameters for our free-
space Ewald method are the Ewald parameter ξ , the real space truncation radius rc, the
number of grid points M covering the original domain, and the Gaussian support width
P. Based on these parameters, one can then set δL using (36), which then gives L̃ = L+ δL.
This in turn gives M̃, by satisfying h = L/M = L̃/M̃. We will here draft a strategy for
optimizing ξ , rc,M and P in a large-scale numerical computation.
For a given value of ξ and absolute error tolerance ε, close-to optimal values forM and

rc can be computed using the estimates in Tables 2 and 3. The support width P affects
the error in the Fourier space component, and we have in practice observed that for the
relative error, P = 16 gives at least 8 digits of accuracy, while P = 24 gives at least 12
digits (see Fig. 3). Our experience is also that P = 32 is enough to guarantee that the
approximation errors are at roundoff. A look at Fig. 4, however, suggests that full machine
precision cannot be achieved even with P = 32 and high Fourier space resolution, at least
not for the stokeslet and the stresslet. In fact, it turns out that between one and two digits
of accuracy are lost for kernels whose Ewald split is based on B (it happens also for the

0 5 10 1510−15
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10−1

k∞/ξ

0 5 10 1510−15

10−8
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0 5 10 1510−15
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10−1

k∞/ξ

(a) (b) (c)

Fig. 4 RMS of relative Fourier space truncation errors for the stokeslet, stresslet and rotlet. Dots are measured
value, and solid lines are computed using the estimates of Table 2. The system is N = 104 randomly
distributed point sources in a cube with sides L = 3, with k∞ = πM̃/L̃, ξ = 3.49,M = 1, . . . , 50, and P = 32.
a Stokeslet, b stresslet, c rotlet



Klinteberg et al. Res Math Sci (2017) 4:1 Page 26 of 32

0 2 4 610−16

10−11

10−6

10−1

ξrc

0 2 4 610−16

10−11

10−6

10−1

ξrc

0 2 4 610−16

10−11

10−6

10−1

ξrc

(a) (b) (c)

Fig. 5 RMS of relative real space truncation errors for the stokeslet, stresslet and rotlet. Dots are measured
value, and solid lines are computed using the estimates of Table 3. The system is N = 2000 randomly
distributed point sources in a cube with sides L = 3, with ξ = 4.67, and rc ∈ [0, L/2]. a Stokeslet, b stresslet,
c rotlet

rotlet if it is based on B rather than H ), and we believe it to be due to cancelation errors
in the evaluation of BR.
Which value of ξ to choose is highly implementation dependent, as the variable is used

to shift the workload between the real and Fourier space components. A straightforward
strategy for finding an optimal value is to start with a small but representative subset of
the original system and compute a reference solution for that subset. Picking a starting
value for ξ , one then sets P = 32, and adjustsM and rc until the error tolerance is strictly
met. Then P can be decreased in steps of two1 until the tolerance is reached again. Using
this starting point for (ξ , rc,M, P), one then does a parameter sweep in ξ for finding the
configuration with the smallest runtime, while keeping ξrc andM/ξ constant during the
sweep. Once an optimal setup is found, the original (large) system can be computed using
the same set of parameters, exceptM which is scaled such that L/M remains constant for
both systems.

9 Results
We consider systems of N random point sources drawn from a uniform distribution in
a box of size L3. We evaluate the sum (13) with stokeslets (6), stresslets (7) and rotlets (8)
using our free space Spectral Ewald (FSE)method, at the sameN target locations. All com-
ponents of the force/source strengths are random numbers from a uniform distribution
on [−1, 1]. All computationally intensive routines are written in C and are called from
Matlab using MEX interfaces. The results are obtained on a desktop workstation with
an Intel Core i7-3770 Processor (3.40 GHz) and 8 GB of memory, running all four cores
unless stated so. To measure the actual errors, we compare to the result from evaluating
the sum by direct summation.

9.1 Computational cost

First, we measure the computational cost of our implementation of the method. In the
left plot of Fig. 6, the computing time for evaluation of the sums is plotted versusN , for all
three kernels and for both the Spectral Ewald (FSE) method and direct summation. The
parameters in the Spectral Ewald method have been set to keep the relative RMS error

1P a multiple of two is favorable for code optimization using vector instructions.



Klinteberg et al. Res Math Sci (2017) 4:1 Page 27 of 32

0 1 2 3 4

·104

0

1

2

3

4

N

ti
m
e
[s
]

stokeslet direct
stokeslet FSE
stresslet direct
stresslet FSE
rotlet direct
rotlet FSE

10−1510−1210−910−610−3100
0

0.5

1

1.5

2

2.5

RMS error (rel.)

ti
m
e
[s
]

stokeslet FSE
stresslet FSE
rotlet FSE

Fig. 6 Left Comparison of direct and fast evaluation of the sum in (13) for the stokeslet, stresslet and rotlet
including the precomputation step. The system grows at constant density (N/L3 is constant), with ξ = 7 and
rc constant for all values of N. The relative RMS error is less than 0.5 × 10−8. Right Runtime of computing (13)
using FSE for all kernels as a function of the relative RMS error. N = 20,000, L = 2 and ξ = 7

below 0.5 × 10−8. The optimal value of ξ cannot be determined theoretically, since it is
implementation and hardware dependent. When we vary N in Fig. 6, we change the size
of the box, to keep a constant number density N/L3 = 2500. If an optimal value of ξ is
determined for one system (see discussion in Sect. 8.2), the same value can be kept as the
system is scaled up or down in this manner. The parameters rc, P and the grid resolution
L/M are kept constant as N and hence L is increased, yielding an increase in the grid
size. We have used ξ = 7 for all three kernels, rc = 0.63, 0.63 and 0.58 for the stokeslet,
stresslet and rotlet, respectively, and P = 16 for all kernels. For L = 2, M is set to 48, 50
and 38 for the three kernels and is then scaled with L.
The precomputation step does not depend on the location of the sources and can be

performed once the size of the domain is set. The precomputation cost can therefore
usually be amortized over many calls to the method, as a simulation code is run for many
time steps and possibly iterations within time steps. Despite this, we have chosen to plot
the runtimes including the precomputation cost, and later discuss it in more detail.
From these data (Fig. 6 left), we can find the approximate breakeven points, i.e., the

values of N for which any larger system will benefit from using the fast method. We find
it to be approximatelyN = 27,000 for the stokeslet, 35,000 for the stresslet and 23,000 for
the rotlet with precomputation, which is reduced to 22,000, 29,000 and 18,000 without
the precomputation step (not shown). If the precomputation step is to be done only
once, the decomposition parameter ξ should, however, be chosen differently for optimal
performance, which would bring down the break even point further. Note that this is
a strict error tolerance. For lower accuracy requirements, the crossover occurs at lower
values of N . These are higher values than have previously been reported in the literature,
e.g., in [27], where N = 5000 was reported as the breakeven for the stokeslet. There
are two factors affecting these numbers, one is that these results are run on multiple
cores for which the direct sum parallelizes better than the FFTs involved in the fast
method. The other factor is that the direct sums relatively speaking have become faster to
evaluate also on a single core, where compilers can speed up the code significantly using
vector instructions, while the more complicated algorithms cannot benefit from this as
extensively.
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9.2 Comparison with the FMM

To make sure that our method is competitive, we have compared to a fast multipole
implementation available as free software [13], running both codes on a single core and
comparing timings for the stokeslet. Note that these timings differ from those in Fig. 6,
which are computed using multiple cores. We set the accuracy level to six digits in the
FMM. For N = 20,000, this yields a relative RMS error of about 5.6 × 10−9, and we set
the parameters for the FSE method to obtain a similar error level (for this case we get
4.3 × 10−9). For N = 20,000, the FSE code (including precomputation) and the FMM
code both use about 3 s. The direct evaluation takes 3.6 s with our code and 6.7 s with
the code provided with the FMM package. It should, however, be noted that the FMM as
well as the direct code from that package returns not only the three vector components
produced by the stokeslet, but also the associated (scalar) pressure, which increases the
cost somewhat. The breakeven point for both FSE and FMM is about N = 17,000 when
comparing to our direct code. If we instead compare to the direct code in the FMM
package, the break even point for the FMM decreases to N = 10,000. Most fair would
be to compare the FMM to a direct sum written as the faster one, but including also the
pressure component, which should place the break even point between the two numbers
above. For the FSE code, assuming that the precomputation will be done only once, and
choosing ξ instead to optimize the runtimewithout precomputation, the break even point
drops from N = 17,000 to 11,000.
Let us consider also a larger systemwithN = 400,000,withN/L3 = 2500 (i.e.,L ≈ 5.43).

For the stokeslet summation by FSE, we pick the parameters ξ = 8, rc = 0.5651,M = 144
and P = 16 to obtain a relative RMS error of 5 × 10−8. This means that the FFTs are
computed for grids with M̃ = 2(M + P). The time for evaluation is about 64 s (including
the precomputation), and the speed-up compared to our direct evaluation of the sum is
a factor of about 23. Excluding the precomputation cost, the computing time is reduced
by 15 s, and this factor increases to 29. For the FMM, the evaluation time is about 180 s,
yielding a speed-up of a factor of about 8 compared to our direct sum or a factor of 15 as
compared to the one provided with the FMM code [13]. Checking the relative RMS error
from both the FSE and FMM computations, they are similar, around 0.5 × 10−8 for FSE
and 10−8 for the FMM.Hence, for this example on a single core, the FSEmethod including
the precomputation is almost three times as fast as the FMM method, but the difference
would be reduced somewhat if the time for computing the extra pressure component was
excluded.
In the adaptive FMM code, a box is split into 8 children boxes if the number of sources

is larger than a set value. If any of the children boxes still have too many source points, it
is split again. With a uniform distribution of points, most leaf boxes are on the same level
of refinement, which in this case will be four divisions. The curve for computational cost
versus N will not be smooth, since this is a discrete process (either you keep the box as
one or you split into eight), which changes the cost balance between different parts of the
algorithm. This is why the larger computational cost for the FMM method in this case
could not be predicted considering the timing for N = 20,000, where the timing of the
FMM and FSE methods were similar.
We did not set out to make a thorough comparison of the two methods. All results are

for uniform distributions of source points. Typically, the FSE performs better compared
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to the FMM for higher accuracies. Moving toward an increasingly non-uniform point
distribution, the adaptivity of the FMM will at some point pay off. With this, we have,
however, showed that the FSE method is competitive with the FMM.

9.3 Cost versus accuracy

To show how the computational cost depends on the accuracy requirements, we now
consider a fixed system with N = 20,000 sources in a box with L = 2 and vary the
error tolerance. In the right plot of Fig. 6, we plot the runtime for summing the stokeslet,
stresslet and rotlet kernels as a function of the relative RMS error in the result. Computing
the k-space contribution for the stokeslet and rotlet involves gridding of three vector
components, three FFTs, a scaling in Fourier space, three inverse FFTs and the quadrature
step for the three components of the solution, see the algorithm in Sect. 5.2. The stresslet
instead requires the gridding of 9 components and hence 9 FFTs. After the scaling step,
there are three resulting vector components, as for the other kernels. All three kernels
require the same amount of precomputing. Hence, it is not surprising to see that the
stresslet is the most expensive kernel to compute.We expect a higher cost of the stokeslet
as compared to the rotlet due to the slower decay of the Fourier space part, as given in
Table 2. This means that larger FFT grids are needed to obtain the same accuracy. See,
e.g., the discussion in connection to the left plot in Fig. 6 where the choice of M for the
box L = 2 is 48 for the stokeslet and 38 for the rotlet.

9.4 Cost breakdown

For the same systemas in Fig. 6 (left), wenow study the computational cost for the different
parts of the calculations for the stokeslet. In the left plot of Fig. 7, we show the total
evaluation runtime for the stokeslet sum together with the three parts that makes up this
total cost: the real space and Fourier space evaluations plus the precomputation in Fourier
space.We use the choice of δL = d in (36), such that L̃ = L+d.With this, M̃ = M+P, and
the FFTs in the Fourier space evaluations will be of size (2M̃)3. For the precomputation,
the size of the FFTgrids in each dimensionwill be taken as the smallest even number that is
greater than (1+√

3)M̃. The plot shows that the computational cost is very similar for the
real space evaluation and the total Fourier space work (precomputation plus evaluation).
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Fig. 7 Breakdown of runtimes (left) and Fourier space runtime (right) for evaluating the stokeslet as a
function of number of particles. The full runtime was also shown in the left plot of Fig. 6
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While implementation dependent, we often see that optimizing ξ for performance puts
the costs at comparable magnitudes. As discussed above, the precomputation does not
depend on the sources and can be done only once as long as the domain size does not
change. Excluding the precomputation cost from the timing of the stokeslet, the runtime
is reduced somewhere between a quarter and one third. Readjustment of ξ to instead
balance computational costs excluding the precomputation would yield a further reduced
runtime.
In the right plot of Fig. 7, we further break down the cost of evaluating the Fourier space

sum into three parts: Grid (the to and from grid operations with Gaussians), FFT (the
total of 6 FFTs) and Scale, the multiplication in step 3 of the algorithm in Sect. 5.2. Note
here that the oscillations in the FFT curve are due to the fact that the FFT is more efficient
for some grid sizes. The scaling step is clearly the cheapest of the three parts. The cost of
the gridding step is O(P3N ), where P3 are the number of grid points in the support of a
Gaussian, and the cost of each FFT of size (2M̃)3 is O(M̃3 log M̃). Due to the connection
to the real space sum, the choice of M̃ will be such that this cost scales as O(N logN ), as
discussed in Sect. 8.1.

10 Conclusions
We have presented a new fast summation method for free space Green’s functions of
Stokes flow. The method is based on an Ewald decomposition to split the sum in two
parts, one in real space and one in Fourier space. The real space sum can simply be trun-
cated outside of some radius of interaction that depends on the choice of decomposition
parameter and the required accuracy. The focus of this paper is on the Fourier space
sum, the treatment of which is set in the framework of the Spectral Ewald method, previ-
ously developed for periodic problems [3,21]. The adaptation to the free space problem
involves a very recent approach to solving the free-space harmonic and biharmonic equa-
tions using FFTs on a uniform grid [28]. The Ewald Fourier space kernels for the stokeslet,
stresslet and rotlet are defined from the precomputed Fourier representation of mollified
harmonic (rotlet) and biharmonic (stokeslet and stresslet) kernels, and the method can
easily be extended to any kernel that can be expressed as a differentiation of the harmonic
and/or biharmonic kernel. New truncation error estimates have been derived for the free
space kernels.
The extension of the FFT-based Spectral Ewaldmethod to the free space problem incurs

an additional computational cost compared to the periodic problem. This is essentially
due to the computation of larger FFTs, as computational grids are zero-padded to the
double size before the FFTs are computed. There is also an additional cost of two over-
sampled FFTs for precomputing the Fourier representation of the mollified harmonic or
biharmonic kernel. This precomputation does not depend on the sources, and the cost
can often be amortized over many sum evaluations.
Truncation error estimates have been derived for the kernels for which they did not

already exist, such that precise estimates of the errors introduced by truncating the real
and Fourier space sums are available for all three kernels, the stokeslet, stresslet and rotlet.
Errors decay exponentially in the physical distance andwavemodenumber used for cutoff.
Approximation errors in the evaluation of the Fourier sum decays exponentially with the
support of the Gaussians. An intricate detail needed to preserve the decoupling between
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truncation and approximation errors that is not relevant for the periodic Spectral Ewald
method is discussed in Sect. 5.3.
Numerical results are presented for the evaluation of the stokeslet, stresslet and rotlet

sums. They show the expected O(N logN ) computational cost of the method. We have
compared to an open source implementation of the FMM method [13] and have shown
that our method is competitive, as it performs better for the uniform source distributions
and high accuracies considered here.
With this, we have developed a new FFT-based method for the fast evaluation of free

space Green’s functions for Stokes flow (stokeslets, stresslets and rotlets) in a free space
setting. This free space Spectral Ewald method allows the use of the same framework as
the periodic one, which makes it easy to swap methods depending on the problem under
consideration. The source code for the triply periodic SE method is available online [24],
and we plan to shortly release also the code for this free space implementation.
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