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Abstract

We study the qualitative homogenization of second-order Hamilton–Jacobi equations
in space-time stationary ergodic random environments. Assuming that the Hamiltonian
is convex and superquadratic in the momentum variable (gradient), we establish a
homogenization result and characterize the effective Hamiltonian for arbitrary (possibly
degenerate) elliptic diffusion matrices. The result extends previous work that required
uniform ellipticity and space-time homogeneity for the diffusion.
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1 Background
We study the homogenized behavior of the solution uε = uε(x, t,ω) to the second-order
(viscous) Hamilton–Jacobi equation
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+ H
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)

= 0 in R
n × (0,+∞),

uε = u0 on R
n × {0},

(1)

where u0 ∈ BUC(Rn), the space of bounded uniformly continuous functions in R
n, and,

for each element ω of the underlying probability space (Ω ,F ,P), the diffusion matrix
A = (aij(x, t,ω)) is elliptic, possibly degenerate, and, for all x, t and ω, the Hamiltonian
H = H (p, x, t,ω) is convex and has superquadratic growth in p. Moreover, A(·, ·,ω) and
H (p, ·, ·,ω) are stationary ergodic random fields on (Ω ,F ,P). The precise assumptions
are detailed in Sect. 2.
The standard viscosity solution theory yields that, for each ω ∈ Ω , (1) is well posed.

The homogenization result is that there exists an effective HamiltonianH : Rn → R such
that, if u is the unique solution to the homogenized Hamilton–Jacobi equation

{
ut + H (Du) = 0 in R

n × (0,∞),

u = u0 on R
n × {0}, (2)
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then, for almost every ω ∈ Ω , the solution uε to (1) converges locally uniformly to u, that
is there exists an event Ω̃ ∈ F with full measure such that, for every ω ∈ Ω̃ , R > 0 and
T > 0,

lim
ε→0

sup
|x|≤R,t∈[0,T ]

∣
∣uε(x, t,ω) − u(x, t)

∣
∣ = 0. (3)

The “viscous” Hamilton–Jacobi equation (1) arises naturally in the study of large devia-
tions of diffusion process in spatiotemporal random media, in which case H is quadratic
in the gradient. It also finds applications in stochastic optimal control theory; we refer
to Fleming and Soner [15] for more details. The homogenization result above serves as a
model reduction in the setting when the environment is highly oscillatory but, neverthe-
less, satisfies certain self-averaging properties. In particular, when the diffusion matrix in
the underlying stochastic differential equation depends on time, the coefficient A in (1)
will be time dependent aswell. As far aswe know and as argued below, the homogenization
problem in this setting has been open.
The periodic homogenization of coercive Hamilton–Jacobi equations was first stud-

ied by Lions, Papanicolaou, and Varadhan [20] and, later, Evans [12,13] and Majda
and Souganidis [23]. Ishii proved in [16] homogenization in almost periodic settings.
The stochastic homogenization of first-order Hamilton–Jacobi equations was established
independently by Souganidis [27] and Rezakhanlou and Tarver [24]. Later Lions and
Souganidis [22] and Kosygina, Rezakhandou, and Varadhan [18] proved independently
stochastic homogenization for viscous Hamilton–Jacobi equations using different meth-
ods and complementary assumptions. In [21] Lions and Souganidis gave a simpler proof
for homogenization in probability using weak convergence techniques. This programwas
extended by Armstrong and Souganidis in [5,6] where the metric-problem approach was
introduced. Some of the results of [5,6] were revisited by Armstrong and Tran in [7].
All of the aforementioned works in random homogenization required the Hamiltonian
H to be convex. The homogenization of general non-convex Hamiltonians in random
environments remains to date an open problem. A first extension to level-set convex
Hamiltonians was shown by Armstrong and Souganidis in [6]. Later, Armstrong, Tran,
and Yu [3,4] proved stochastic homogenization for separated Hamiltonians of the form
H = h(p) − V (x,ω) with general non-convex h and random potential V (x,ω) in one
dimension. Their methods also established homogenization of some special non-convex
Hamiltonians in all dimensions. Armstrong and Cardaliaguet [2] studied the homoge-
nization of positively homogeneous non-convex Hamilton–Jacobi equations in strongly
mixing environments. More recently Feldman and Souganidis [14] established homoge-
nization of strictly star-shaped Hamiltonians in similar environments. Ziliotto [28] con-
structed an example of a non-convex separated Hamiltonian in two dimensions that does
not homogenize. Feldman and Souganidis [14] extended the construction to any separated
H that has a strict saddle point. In addition, [14] also yields non-convexHamiltonianswith
space-time random potentials for which the Hamilton–Jacobi equation does not homog-
enize.
The aforementioned PDE approaches for stochastic homogenization, that is the weak

convergence technique and the metric-problem approach, were developed for random
environments that are time independent. In this setting, one has uniform in ε and ω

Lipschitz estimates for uε(·,ω), which, however, are not available if A andH depend on t.
Nevertheless, Kosygina and Varadhan [19] established homogenization results for viscous
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Hamilton–Jacobi equations with constant diffusion coefficients, more precisely A being
the identity matrix, using the stochastic control formula and invariant measures. For first-
order equations with superlinear Hamiltonians, homogenization results were proved by
Schwab [26]. Recently, the authors [17] established homogenization for linearly growing
Hamiltonians that are periodic in space and stationary ergodic in time.
In this paper, we extend and combine the methodologies of [22] and [5–7] and obtain

stochastic homogenization for general viscous Hamilton–Jacobi equations in dynamic
random environments. The results of [22] was based on the analysis of a special solution
to (1) that we loosely call the fundamental solution. This is a subadditive, stationary
function which, in view of the subadditive ergodic theorem, has a homogenized limit, that
identifies the convex conjugate of the effectiveHamiltonianH . At the ε > 0 level, however,
the fundamental solution gives rise only to supersolutions vε to (2). One of the key steps
in [22] was to show that the difference between uε and vε tends to 0 as ε → 0. This made
very strong use of the uniform Lipschitz estimates on uε which were also proved there and
are not available for time-dependent problems. The methodology of [5,6] was based on
the analysis of the solution to the metric problem which loosely speaking is the “minimal
cost” to connect two points. The metric solution is a subadditive stationary function and
has a homogenized limit, which, at each level, is the support function of the level set of the
effectiveH . The homogenization result was then proved in [5,6] by developing a reversed
perturbed test function argument. In the dynamic random setting, however, the “metric”
between two points in space must depend on a starting time and hence is not suitable for
such environments.
Here we use the fundamental solution approach of [22] to find the effectiveHamiltonian

and the reverse perturbed test function method of [5,6] to establish the homogenization.
The main contribution of the paper is to “go away” from the need to have uniform in
ε Lipschitz bounds. Indeed, the uniform convergence of the fundamental solution to its
homogenized limit uses only a uniform (in ε) modulus of continuity in its first pair of
variables, which is available for superquadratic Hamilton–Jacobi equations [9,10]. Simi-
larly, the reverse perturbed test function argument is adapted to work without the need
of Lipschitz bounds.
We summarize next the main results of this paper. For each fixed ω ∈ Ω , let

L (x, t, y, s,ω) denote the fundamental solution of (1); see (7) below. The first result is that
L (x, t, y, s,ω) has long-time average, that is there exists a convex function L : Rn → R,
known as the effective Lagrangian, such that, for a.s. ω ∈ Ω and locally uniformly in (x, t)
for t > 0,

lim
ρ→∞

1
ρ
L (ρx, ρt, 0, 0,ω) = t L

(x
t

)
. (4)

We note that although the pointwise convergence for fixed (x, t) is a direct consequence
of subadditive ergodic theorem, the locally uniform convergence requires some uni-
form (in ω and ρ) continuity of the scaled function ρ−1L (ρ ·, ρ ·, 0, 0,ω). This is where
the superquadratic growth of H is used. Indeed, under this assumption, Cannarsa and
Cardaliaguet [9] and Cardaliaguet and Silvestre [10] obtained space-time C0,α-estimates
for bounded solutions, which depend on the growth condition of H but neither on the
ellipticity of diffusion matrix A nor on the smoothness of H or A. Here we obtain the
desired continuity by applying these regularity results to the scaled fundamental solu-
tions.
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The effective Hamiltonian is then defined by

H (p) = sup
v∈Rn

(
p · v − L(v)

)
, (5)

and the homogenized equation is precisely (2). Then we show that H is also the limit of
the solutions to the approximate cell problem, a fact which yields the homogenization for
the general equation.
The rest of thepaper is organized as follows. In the remainingpart of the introduction,we

review most of the standard notation used in the paper. In the next section, we introduce
the precise assumptions and state the main results. In Sect. 3 we prove (4). In Sect. 4,
we show that the effective H defined in (5) agrees with the uniform limit of the solution
to the approximate cell problem. The homogenization result for the Cauchy problem (1)
follows from this fact. In Sect. 5 we show that, as a consequence of the homogenization
result proved in this paper, the effective Hamiltonian is given by formulae similar to the
ones established in [19,22].

Notations

We work in the n-dimensional Euclidean space R
n. The subset of points with rational

coordinates is denoted by Q
n. The open ball in R

n centered at x with radius r > 0 is
denoted by Br(x), and this notation is further simplified to Br if the center is the origin.
The volume of a measurable set A ⊆ R

n is denoted by Vol(A). The n + 1 dimensional
space-time is denoted byRn×R or simply byRn+1. The space-time cylinder of horizontal
radius R > 0 and vertical interval (r, ρ) centered at a space-time point (x, t) is denoted by
QR,r,ρ(x, t), that is QR,r,ρ(x, t) = {(y, s) : y ∈ BR(x), s ∈ (t + r, t + ρ)}; to further simplify
notations, we omit the reference point (x, t) when it is (0, 0). Moreover, QR is a short-
hand notation for the cylinder QR,−R,R. For two vectors u, v ∈ R

n, 〈u, v〉 denotes the inner
product between u and v, andM

n×m denotes the set of n bymmatrices with real entries,
and M

n is a short-hand notation of Mn×n. The identity matrix is denoted by Id. Finally,
B(Ξ ) denotes the Borel σ -algebra of the metric space Ξ .

2 Assumptions, the fundamental solution, and themain results
2.1 The general setting and assumptions

We consider a probability space (Ω ,F ,P) endowed with an ergodic group of measure
preserving transformations {τ(x,t) : (x, t) ∈ R

n+1}, that is, a family of maps τ(x,t) : Ω → Ω

satisfying, for all (x, t), (x′, t ′) ∈ R
n+1 and all E ∈ F ,

(P1) τ(x+x′ ,t+t ′) = τ(x,t) ◦ τ(x′ ,t ′) and P[τ(x,t)E] = P[E],

and

(P2) τ(y,s)(E) = E for all (y, s) ∈ R
n+1 implies P[E] ∈ {0, 1}.

The diffusion matrix A = (aij(x, t,ω)) ∈ M
n is given by

A = σσT

where σ = σ (x, t,ω) is anMn×m valued random process.
As far as H : Rn ×R

n ×R× Ω → R and σ : Rn ×R× Ω → M
n×m are concerned, we

assume henceforth that

(A1) H and σ areB(Rn × R
n × R) × F andB(Rn × R) × F measurable, respectively,
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(A2) for any fixed p ∈ R
d, σ and H are stationary in x and t, that is, for every (x, t) ∈

R
n+1, (y, s) ∈ R

n+1 and ω ∈ Ω ,

σ (x + y, t + s,ω) = σ (x, t, τ(y,s)ω) and H (p, x + y, t + s,ω) = H (p, x, t, τ(y,s)ω),

(A3) for each p ∈ R
n and ω ∈ Ω , σ (·, ·,ω) and H (p, ·, ·,ω) are Lipschitz continuous in x

and t,
(A4) there exists γ > 2 and C ≥ 1 such that, for all (x, t) ∈ R

n+1,ω ∈ Ω and p ∈ R
n,

1
C

|p|γ − C ≤ H (p, x, t,ω) ≤ C(|p|γ + 1), (6)

and, finally,

(A5) the mapping p �→ H (p, x, t,ω) is convex for all (x, t,ω) ∈ R
n+1 × Ω .

Since throughout the paper we use all the above assumptions, we summarize them as

(A) assumptions (P1), (P2), (A1). (A2), (A3), (A4), and (A5) hold.

2.2 The fundamental solution

For each ω ∈ Ω and (y, s) ∈ R
n × R, we define the fundamental solution L :=

L (·, ·, y, s,ω) : Rn × (s,∞) → R to be the unique viscosity solution to

{
Lt − tr (A(·, ·,ω)D2L ) + H (DL , ·, ·,ω) = 0 in R

n × (s,∞),

L (·, s, y, s,ω) = δ(·, y) in R
n,

(7)

where δ(x, y) = 0 if x = y and δ(x, y) = ∞ inRn\{y}.As in Crandall, Lions, and Souganidis
[11], this initial condition is understood in the sense that L (·, t, y, s,ω) converges, as t
decreases to s, locally uniformly onRn to the function δ(·, y). The existence and uniqueness
ofL follows from an almost straightforwardmodification of the results of [11]. In view of
the stochastic control representation of Hamilton–Jacobi equations, L (x, t, y, s,ω) is the
“minimal cost” for a controlled diffusion process in the random environment determined
by (σ , H ) to reach the vertex (y, s) from (x, t).

2.3 Main theorems

The first result is about the long-time behavior of the fundamental solution which yields
the effective Lagrangian L. The proof is given at the end of Sect. 3.

Theorem 1 Assume (A). There exist Ω̃ ∈ F with P(Ω̃) = 1 and a convex function
L : Rn → R such that, for all ω ∈ Ω̃ , r > 0 and R > r,

lim
ρ→∞ sup

(y,s)∈QR

sup
(x,t)∈QR,r,R((y,s))

∣
∣
∣
∣
1
ρ
L (ρx, ρt, ρy, ρs,ω) − (t − s)L

(
x − y
t − s

)∣
∣
∣
∣ = 0. (8)

Let u be the solution to (2), with the effective HamiltonianH is defined (5) and is, hence,
the Legendre transform of the effective Lagrangian L.
The homogenization result is stated next.

Theorem 2 Assume (A) and let Ω̃ be as in Theorem 1. For each ω ∈ Ω̃ , the solution uε of
(1) converges, as ε → 0 and locally uniformly in R

n × [0,∞), to u.
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It is well known that Theorem 2 follows from variations of the perturbed test function
method [12] if, for each p ∈ R

n, the solutionwε of the approximate auxiliary (cell) problem

εwε(x, t) + wε
t (x, t) − tr (A(x, t,ω)D2wε(x, t)) + H (p + Dwε , x, t) = 0 in R

n × R

(9)

satisfies εwε converge uniformly to −H (p) in cylinders of radius ∼1/ε as ε → 0. In the
classical periodic setting the convergence is uniform. The need to consider large sets
varying with ε was first identified in [27]. Because this is standard, we omit the proof and
refer, for example, to [5, section 7.3] for the complete argument.
For all ε > 0 and ω ∈ Ω , the approximate cell problem (9) is well posed. Recall that

QR ⊆ R
n+1, R > 0, is the cylinder centered at (0, 0) with radius R. The precise statement

about the convergence of εwε to −H (p) is stated in the next Theorem.

Theorem 3 Assume (A) and let Ω̃ be as in Theorem 1. Then, for all ω ∈ Ω̃ , p ∈ R
n and

R > 0,

lim
ε→0

sup
QR/ε

∣
∣εwε(·, ·,ω, p) + H (p)

∣
∣ = 0. (10)

The proof of Theorem 3, which is given in Sect. 4, is based on reversed test function
argument of [5,8]. The differences here are the lack of Lipschitz bounds and the need to
apply the method to the scaled versions of the fundamental solution instead of the metric
solution.

3 The long-time behavior of the fundamental solution
We investigate the long-time average of the fundamental solution L , as ρ → ∞. The
averaged function is given by the subadditive ergodic theorem, which is a natural tool for
the study ofL in view of the following Lemma.

Lemma 1 Assume (A). Then, for all ω ∈ Ω and x, y, z ∈ R
d,

(i) if t, s, ρ ∈ R and t ≥ s, then

L (x + z, t + ρ, y + z, s + ρ,ω) = L (x, t, y, s, τ(z,ρ)ω), (11)

and
(ii) if t, s, r ∈ R satisfy s ≤ r ≤ t, then

L (x, t, y, s,ω) ≤ L (x, t, z, r,ω) + L (z, r, y, s,ω). (12)

The stationarity of L is an immediate consequence of the uniqueness of (7) and the
stationarity of the environment. The subadditivity of L follows from the comparison
principle for (7) and the singular initial conditions of the fundamental solutions. Since the
proof of Lemma 1 is standard, we omitted it.
Next we recall a result of [22, Proposition 6.9] that concerns bounds on the unscaled

functionL . Although [22] considered time homogeneous environments, the proof of the
following result does not depend on that fact.
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Lemma 2 Assume (A) and let γ ′ := γ /(γ − 1). There exists a constant C > 0 such that,
for all ω ∈ Ω , x, y ∈ R

n and t, s ∈ R with t > s,

− C(t − s) ≤ L (x, t, y, s,ω) ≤ C
(

|x − y|γ ′

(t − s)γ ′−1 + (t − s)1−
γ ′
2 + (t − s)

)

. (13)

To study the long-time average ofL , we define, for ε > 0, the rescaled function

L ε(x, t, y, s,ω) := εL

(
x
ε
,
t
ε
,
y
ε
,
s
ε
,ω

)

. (14)

It is immediate that, for each fixed (y, s) ∈ R
n+1,L ε(·, ·, y, s,ω) solves

⎧
⎪⎨

⎪⎩

L ε
t − εtr

(
A

( ·
ε
,
·
ε
,ω

)
D2L ε

)
+ H

(
DL ε ,

·
ε
,
·
ε
,ω

)
= 0 in R

n × (s,∞),

L ε(·, s, y, s,ω) = εδ
( ·

ε
,
y
ε

)
= δ(·, y) on R

n × {s}.
(15)

It now follows from Lemma 2, after the rescaling, that, for all t > s,

−C(t − s) ≤ L ε(x, t, y, s,ω) ≤ C
(

|x − y|γ ′

(t − s)γ ′−1 + ε
γ ′
2 (t − s)1−

γ ′
2 + (t − s)

)

.

Note that γ ′ ∈ (1, 2). As a result, for all 0 < ε < 1, R ≥ 1, r ∈ (0, 1), x, y ∈ BR, and t, s ∈ R

with t − s ∈ (r, R), we have

|L ε(x, t, y, s,ω)| ≤ CR
(
R
r

)γ ′−1
+ CR, (16)

and, hence, L ε is uniformly bounded on the set {(x, y, t, s) : x, y ∈ BR, r ≤ t − s ≤ R}.
This and the superquadratic growth of H allow us to apply the Hölder regularity results
in [9,10] to get the following uniform in ε estimates forL ε .

Proposition 1 Assume (A). Then there exists α ∈ (0, 1), and, for all R ≥ 1, r ∈ (0, 1),
and (y, s) ∈ R

n+1, the function L ε(·, ·, y, s,ω) is uniformly with respect to ε,ω, and (y, s)
α-Hölder continuous on the set QR,r,R(y, s).

Weomit the proof of Proposition 1, which, in view of (16), is an immediate consequence
of Theorem 6.7 of [9] (see also Theorem 1.3 of [10]).

3.1 Long-time average ofL

The stationarity ofL in (11) and the scaling in the definition ofL ε suggest that the limit,
as ε → 0, ofL ε(x, t, y, s,ω) must only depend on (x−y)/(t− s). To get the limit, it suffices
to set (y, s) = (0, 0), t = 1 > s, and study the limit of the function ρ−1L (ρx, ρ, 0, 0,ω) as
ρ → ∞. This is possible using the subadditive ergodic theorem, which yields a random
variable L(x,ω).

Theorem 4 Assume (A). For any x ∈ R
n, there exists a random variable L(x,ω) and

Ωx ∈ F of full measure such that, for all ω ∈ Ωx,

lim
ρ→∞

1
ρ
L (ρx, ρ, 0, 0,ω) = L(x,ω). (17)

Moreover, L(x, ·) is almost surely the constant EL(x, ·).

That L(x, ·) is deterministic is important for the final homogenization result. This
is usually proved by showing that L(x, ·) is invariant with respect to the translations
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{τ(y,s)}(y,s)∈Rn+1 . In the time homogeneous setting [22] or for first-order equations [26],
the translation invariance of L(x, ·) is a consequence of uniform in ε continuity of
L ε(x, t, y, s,ω) in all of its variables. For the problem at hand Proposition 1 gives that
L ε is uniformly continuous with respect to its first pair of variables. The uniform con-
tinuity with respect to the second pair of variables, that is the vertex, is more subtle and
unknown up to now.
We prove next that L(x, ·) is translation invariant without using uniform continuity of

L ε with respect to (y, s). The argument is based on two observations. Firstly, L(x, ·) is
invariant when the vertex varies along the line lx := {(tx, t) : t ∈ R}. Secondly, the
subadditive property (13) and the uniform bounds (16) yield one-sided bounds for L .
Indeed, to boundL (·, ·, y, s,ω) from above, we compare it withL (·, ·, z, r) at a vertex (z, r)
such that r > s, and bounded |r − s| and |z − y|. Similarly, for a lower bound, we compare
with a vertex that has r < s.
The proof of Theorem 4 is divided in three steps. In the first step we identify L(x,ω) by

applying the subadditive ergodic theorem to ρ−1L (ρx, ρ, kx, k,ω) with vertex (kx, k) ∈ lx.
Then, we establish the invariance of L(x,ω) with respect to vertices in lx. Finally in the
third step, we show that L(x, ·) is invariant with respect to {τ(y,s)} and, hence, deterministic.

Proof (Proof of Theorem 4) Step 1: The convergence of L with vertex (0, 0). This is a
straightforward application of the classical subadditive ergodic theorem (see, for instance,
Theorem 2.5 of Akcoglu and Krengel [1]). For the sake of the reader we briefly recall the
argument next.
Fix x ∈ R

n, let I be the set of intervals of the form [a, b) ⊂ [0,∞), and consider the
map F : I × Ω → R

F ([a, b),ω) := L (bx, b, ax, a,ω).

Lemma 1 yields that F (·,ω) is a stationary subadditive family with respect to the measure
preserving semigroup (θc)c∈R+ given by θc ω = τ(cx,c)ω. Moreover, it follows from (13),
that the family {F ([a, b), ·) : [a, b) ⊆ (0, 1)} is uniformly integrable in Ω .
Then the subadditive ergodic theorem implies the existence a random variable L(x,ω; 0)

which is invariant with respect to {θc}c∈R+ , and an eventΩx,0 with full measure, such that,
for all ω ∈ Ωx,0,

lim
ρ→∞

1
ρ
F ([0, ρ),ω) = lim

ρ→∞
1
ρ
L (ρx, ρ, 0, 0,ω) = L(x,ω; 0).

Here, the parameter 0 in L(x,ω; 0) and Ωx,0 indicates that the vertex ofL is (0x, 0).
By the same argument, for each k ∈ Z, there exist a random variable L(x, ·; k), which

is invariant with respect to {θc}c∈R+ , and events Ωx,k of full measure such that, for all
ω ∈ Ωx,k ,

lim
ρ→∞

1
ρ
L (ρx, ρ, kx, k,ω) = L(x,ω; k). (18)

We note that, for all c ∈ R+ and k ∈ Z, L(x, θcω; k) = L(x,ω; k). Even so, L(x, ·; k) is not
necessarily deterministic, because the semigroup (θc)c∈R+ may not be ergodic.

Step 2: The invariance of L(x, ·; k) with respect to k ∈ Z. Let Ωx = ⋂
k∈Z Ωx,k . Then

L(x, · ; k) = L(x, · ; 0) on Ωx for all k ∈ Z. (19)
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The {θc} invariance of L(x, · ; k) and (11) imply, for all ω ∈ Ωx and k ∈ Z,

L(x,ω; k) = L(x, τ(x,1)ω; k) = lim
ρ→∞

1
ρ
L (ρx + x, ρ + 1, (k + 1)x, k + 1,ω).

The uniform Hölder continuity of 1
ρ
L (ρ·, ρ·, (k + 1)x, k + 1,ω) in Proposition 1 shows

lim
ρ→∞

1
ρ

∣
∣L (ρx + x, ρ + 1, (k + 1)x, k + 1,ω) − L (ρx, ρ, (k + 1)x, k + 1,ω)

∣
∣ = 0.

Combining the last two observations, we find that

L(x, · ; k) = lim
ρ→∞

1
ρ
L (ρx, ρ, (k + 1)x, k + 1,ω) = L(x, · ; k + 1).

We henceforth denote L(x, ·; k) by L(x, ·) and conclude that the rescaled function
ρ−1L (ρx, ρ, kx, k,ω) converges to L(x, ·) for all k ∈ Z and ω ∈ Ωx.

Step 3: L(x, ·) is deterministic. We show that L(x, ·) is translation invariant with respect to
{τ(y,s)}, (y, s) ∈ R

n+1. The conclusion then follows from ergodicity of {τ(y,s)}.
Fix ω ∈ Ωx and (y, s) ∈ R

n+1 and choose k1 ∈ Z so that k1 ∈ [s, s + 1). It follows from
(11) and (12), that

L (ρx, ρ, 0, 0, τ(y,s)ω) = L (ρx + y, ρ + s, y, s,ω)

≤ L (ρx + y, ρ + s, k1x, k1,ω) + L (k1x, k1, y, s,ω). (20)

Using (13), k1 − s ∈ [0, 1), γ ′ ∈ (1, 2) and that k1x and y are bounded, we observe

lim
ρ→∞

1
ρ

∣
∣L (k1x, k1, y, s)

∣
∣ ≤ lim

ρ→∞
C
ρ

(
∣
∣k1x − y

∣
∣γ

′ + |k1 − s|1− γ ′
2 + |k1 − s|

)

= 0.

For the other term in the right-hand side of (20), we have

lim
ρ→∞

1
ρ
L (ρx + y, ρ + s, k1x, k1,ω) = lim

ρ→∞
1
ρ
L (ρx, ρ, k1x, k1,ω)

+ lim
ρ→∞

[
1
ρ
L (ρx + y, ρ + s, k1x, k1,ω) − 1

ρ
L (ρx, ρ, k1x, k1,ω)

]

.

As in Step 2, the second term on the right-hand side above converges to zero in view of
Proposition 1, while the limit of the first term is precisely L(x,ω). It follows that

lim sup
ρ→∞

1
ρ
L (ρx, ρ, 0, 0, τ(y,s)ω) ≤ L(x,ω). (21)

Similarly, given (y, s) ∈ R
n+1, we choose k2 ∈ Z such that k2 ∈ (s − 1, s] and argue as

above to find

lim inf
ρ→∞

1
ρ
L (ρx, ρ, 0, 0, τ(y,s)ω) ≥ L(x,ω). (22)

Since (y, s) is arbitrary and Ωx has full measure, we conclude that L(x, ·) is translation
invariant. ��
Next, we show that the limit L is local uniform continuous, and the convergence holds

locally uniformly in x, again, with fixed vertices.

Lemma 3 Assume (A). The map L : Rn → R is locally uniformly continuous, and there
exists an event Ω1 with P(Ω1) = 1 such that, for all R > 0 and ω ∈ Ω1,

lim
ρ→∞ sup

x∈BR

∣
∣
∣
∣
1
ρ
L (ρx, ρ, 0, 0,ω) − L(x)

∣
∣
∣
∣ = 0. (23)
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Proof For any R > 0. For all x, y ∈ BR, in view of Theorem 4 and Proposition 1, there
exists ω ∈ Ωx ∩ Ωy such that

L(x) − L(y) = lim
ε→0

(L ε(x, 1, 0, 0,ω) − L ε(y, 1, 0, 0,ω)) ≤ C|x − y|α ,
where the Hölder component and the bound C only depend on R and the parameters in
(A). Since the estimate above still holds if x and y are switched, it follows that L is local
uniform continuous.
For each z ∈ Q

n, let Ωz be the event of full measure defined in Theorem 4. Let Ω1 :=
⋂

z∈Qn Ωz ∈ F and observe that P(Ω1) = 1.
Fix R > 0 . For any x ∈ BR, there exist {xk} ∈ Q

n ∩ B2R such that xk → x as k → ∞.
Note that, for all ω ∈ Ω1,

∣
∣L ε(x, 1, 0, 0,ω) − L(x)

∣
∣ ≤ ∣

∣L ε(x, 1, 0, 0,ω) − L ε(xk , 1, 0, 0,ω)
∣
∣

+ ∣
∣L ε(xk , 1, 0, 0) − L(xk )

∣
∣ + ∣

∣L(xk ) − L(x)
∣
∣ .

Proposition 1, the fact that {xk}k∈N ∪ {x} ⊆ B2R, and the local uniform continuity of L
yield that, for all ω ∈ Ω1, limε→0L ε(x, 1, 0, 0,ω) = L(x). It also follows from these facts
that {L ε(·, 1, 0, 0,ω)}ε∈(0,1) and L are equicontinuous on B2R, and, hence, (23) holds. ��
Next, we prove Theorem 1. The argument follows as in [6,8] from a combination of

Egoroff’s and Birkhoff’s ergodic theorems. We need, however, to extend the method to
the setting of space-time random environment and, in particular, modify the reasoning
so that it does not rely on uniform continuity with respect to the vertex.

Proof (Proof of Theorem 1) Step 1.We first show that (23) to: for all 0 < r < R and R ≥ 1,

P

[

lim
ρ→∞ sup

(x,t)∈QR,r,R

∣
∣
∣
∣
1
ρ
L (ρx, ρt, 0, 0,ω) − tL

(x
t

)∣
∣
∣
∣ = 0

]

= 1. (24)

Fix an ω ∈ Ω1 and observe that
1
ρ
L (ρx, ρt, 0, 0,ω) − tL

(x
t

)
= t

[
1
ρt

L

(
ρtx
t

, ρt, 0, 0,ω
)

− L
(x
t

)]

.

Since r ≤ t ≤ R and |x| ≤ R, we have |x/t| ≤ R/r, and

sup
(x,t)∈QR,r,R

∣
∣
∣
∣
1
ρt

L (ρx, ρt, 0, 0,ω) − L
(x
t

)∣
∣
∣
∣ ≤ sup

r≤t≤R
y∈BR/r

∣
∣
∣
∣
1
ρt

L (ρty, ρt, 0, 0,ω) − L(y)
∣
∣
∣
∣ .

In view of (23), for any δ > 0, there exists ρδ = ρδ(r, R,ω) > 0 such that, if ρ′ > ρδ , then

sup
y∈BR/r

∣
∣
∣
∣
1
ρ′L (ρ′y, ρ′, 0, 0,ω) − L(y)

∣
∣
∣
∣ < δ.

It follows that, if ρ > r−1ρδ , then ρt > ρδ for all t ∈ [r, R] and, as a consequence,

sup
r≤t≤R

sup
y∈BR/r

∣
∣
∣
∣
1
ρt

L (ρty, ρt, 0, 0,ω) − L(y)
∣
∣
∣
∣ < δ.

Combining the estimates above, yields (24).

Step 2. We show that, for all R > r > 0 with R ≥ 1,

P

[

lim
ρ→∞ sup

(y,s)∈QR

sup
(x,t)∈QR,r,R(y,s)

∣
∣
∣
∣
1
ρ
L (ρx, ρt, ρy, ρs,ω) − (t − s)L

(
x − y
t − s

)∣
∣
∣
∣ = 0

]

= 1.

(25)
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Note that by choosing a sequence Rk ↑ ∞, rk ↓ 0 and intersecting events of full measures,
the above statement is equivalent to that of Theorem 1. Hence, we only need to prove that

P

[

lim sup
ρ→∞

sup
(y,s)∈QR

sup
(x,t)∈QR,r,R(y,s)

1
ρ
L (ρx, ρt, ρy, ρs,ω) − (t − s)L

(
x − y
t − s

)

≤ 0
]

= 1,

(26)

and

P

[

lim inf
ρ→∞ inf

(y,s)∈QR
inf

(x,t)∈QR,r,R(y,s)

1
ρ
L (ρx, ρt, ρy, ρs,ω) − (t − s)L

(
x − y
t − s

)

≥ 0
]

= 1.

(27)

Observe that, in view of (24), as ρ → ∞ and for all ω ∈ Ω1,

Xρ(ω) := sup
(x,t)∈BR,r,R

∣
∣
∣
∣
1
ρ
L (ρx, ρt, 0, 0,ω) − tL

(x
t

)∣
∣
∣
∣ → 0.

Then Egoroff’s theorem yields, for any 0 < ε < 1, an event Ωε ⊂ Ω1 such that P(Ωε) ≥
1 − εn+1/8 and

lim
ρ→∞ sup

ω∈Ωε

Xρ(ω) = 0.

In particular, there exists Tε > 0 such that, for all ρ > Tε ,

sup
ω∈Ωε

Xρ(ω) <
ε

2
. (28)

The ergodic theorem gives an event Ω̃ε such that P(Ω̃ε) = 1 and for all ω ∈ Ω̃ε ,

lim
K→∞

1
Vol(QK )

∫

BK

∫ K

−K
χΩε

(
τ(y,s)ω

)
dsdy = P(Ωε) ≥ 1 − 1

8
εn+1.

It follows that, for every ω ∈ Ω̃ε , there exists Kε(ω) such that if K > Kε(ω),

Vol
{
(y, s) ∈ QK : τ(y,s)ω ∈ Ωε

} ≥
(

1 − 1
4
εn+1

)

Vol(QK ).

Let Ω̃1 be Ω1, for each k ∈ N, k ≥ 2, let Ω̃ 1
k
be defined as Ω̃ε with ε = 1

k , set Ω̃ :=
∩∞
k=1Ω̃ 1

k
, and note Ω̃ ∈ F and P(Ω̃) = 1.

Fix now an ω ∈ Ω̃ . For any ε > 0 small, choose k large such that 1
k < ε

2 , and, for
R ≥ 1 given, set ρε(ω) = R−1 max{T1/k , K1/k (ω)}, and observe that if ρ > ρε , then
ρR > max{T1/k , K1/k}.
For each (y, s) ∈ QR, let C+

ρεR(y, s) (and, respectively, C
−
ρεR(y, s)) be the region bounded

between the cylinder QρεR(y, s) and the cone at (y, s) with unit upward (and, respectively,
downward) opening, that is

C+
ρεR(y, s) := QρεR(y, s) ∩ {(x, t) : t > s, |x − y|/(t − s) ≤ 1},

C−
ρεR(y, s) := QρεR(y, s) ∩ {(x, t) : t < s, |x − y|/(s − t) ≤ 1},

and note that, for ε small,

Vol
(
QρR ∩ C±

ερR

)
≥ 1

8
εn+1 Vol(QρR).

It follows that, for every (y, s) ∈ QR, there exists (ŷ, ŝ) ∈ QR such that (ρŷ, ρ ŝ) ∈ C+
ρεR(ρy, ρs)

and τ(ρŷ,ρ ŝ)ω ∈ Ω1/k .
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We observe that
1
ρ
L (ρx, ρt, 0, 0, τ(ρy,ρs)ω) − tL

(x
t

)
= 1

ρ
L (ρx, ρt, 0, 0, τ(ρŷ,ρ ŝ)ω) − tL

(x
t

)
+ Eρ ,

(29)

with

Eρ := 1
ρ
L (ρ(x + y), ρ(t + s), ρy, ρs,ω) − 1

ρ
L (ρ(x + ŷ), ρ(t + ŝ), ρŷ, ρ ŝ,ω),

which is the error term resulted from the change of vertices. Because (ρŷ, ρ ŝ) ∈ Ω1/k , the
difference of the first two terms on the right-hand side of (29) is bounded from above by
ε
2 .
In view of (12), the error |Eρ | can be bounded by

|Eρ | ≤ |E1
ρ | + |E2

ρ |,
where

E1
ρ := 1

ρ
L (ρ(x + y), ρ(t + s), ρy, ρs,ω) − 1

ρ
L (ρ(x + ŷ), ρ(t + ŝ), ρy, ρs,ω),

and

E2
ρ := 1

ρ
L (ρŷ, ρ ŝ, ρy, ρs,ω).

Proposition 1 yields that |E1
ρ | = O(εα) for some exponent α depending on R, while (13)

gives

|E2
ρ | ≤ C

(

|s − ŝ| + ρ− γ ′
2 |s − ŝ|1− γ ′

2

)

≤ CRε,

provided that |y − ŷ|/|s − ŝ| ≤ 1 and |s − ŝ| ≤ εR.
In conclusion we have that, uniformly for all (y, s) ∈ QR

1
ρ
L (ρx, ρt, 0, 0, τ(ρy,ρs)ω) − tL

(x
t

)
≤ ε

2
+ O(εα) + CRε,

and, therefore, for all ω ∈ Ω̃ ,

sup
(y,s)∈QR

sup
(x,t)∈QR,r,R

1
ρ
L (ρx, ρt, 0, 0, τ(ρy,ρs)ω) − tL

(x
t

)
≤ ε

2
+ �(εR) + CRε.

Sending ε → 0, we obtain that

P

[

lim sup
ρ→∞

sup
(y,s)∈QR

sup
(x,t)∈QR,r,R

1
ρ
L (ρx, ρt, 0, 0, τ(ρy,ρs)ω) − tL

(x
t

)
≤ 0

]

= 1.

In view of (11), the statement above is equivalent to (26).
Similarly, by repeating the argument above, choosing (ρŷ, ρ ŝ) ∈ C−

ρεR(ρy, ρs) and
τ(ρŷ,ρ ŝ)ω ∈ Ω1/k , we can bound the quantity in (29) from below, and establish (27). ��

Finally, we note the following fact about L and H defined by (5).

Corollary 1 The functions L : Rn → R and H : Rn → R are convex.

The convexity of L is a straightforward consequence of Theorem 1. Finally, as the
Legendre transform of a convex function, H is also convex.
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4 The proof of Theorem 3
According to the remarks at the end of Sect. 2, this also completes the proof of the
homogenization result of Theorem 2.
For each p ∈ R

n, let wε := εwε( ·
ε
, ·

ε
;ω, p), where wε is the solution to the approximate

cell problem (9). It follows that

wε + (wε)t − εtr
(
A

( ·
ε
,
·
ε
,ω

)
D2wε

)
+ H

(
p + Dwε ,

·
ε
,
·
ε
,ω

)
= 0 in R

n × R.

(30)

Then, for any R > 0, (10) is equivalent to

lim sup
ε→0

sup
(x,t)∈QR

∣
∣wε(x, t; p,ω) + H (p)

∣
∣ = 0. (31)

For the proof of Theorem 3 we need to recall some notions from convex analysis. We
have seen that H is a convex function defined on R

n. The epigraph of H is defined by

epi (H ) = {
(p, s) : p ∈ R

n and s ∈ [H (p),∞)
}
.

Note that epi (H ) is a closed convex subset of Rn+1. Given a closed convex subset D of
R
k , a point p ∈ D is called an extreme point if, whenever p = λx + (1 − λ)y, x, y ∈ D and

λ ∈ [0, 1], then either x = p or y = p. A point p ∈ D is called an exposed point, if there
exists a linear functional f : Rk → R such that f (p) > f (p′) for all p′ ∈ D \ {p}.
We denote by ∂L(q) the subdifferential of L at q. If ∂L(q) contains exactly one element,

then L is differentiable at q and the unique element is DL(q). The following classification
of vectors p ∈ R

n will be useful in the proof of Theorem 3.

Lemma 4 Let L and H be defined by Theorem 4 and (5), respectively. Then

(i) for all p ∈ R
n, (p,H (p)) is on the boundary of epi (H ) and p ∈ ∂L(q) for some q ∈ R

n,
and

(ii) if (p,H (p)) is an exposed point of epi (H ), then p = DL(q) for some q ∈ R
n.

Proof The domain of H is Rn and, since H is continuous and locally bounded, it follows
thatH is a closed proper convex function. The first claimof part (i) is obvious.Hence, there
exists q ∈ R

n so that the function x �→ x · q −H (x) achieves its supremum at p. It follows
that q ∈ ∂H (p). Since H is a closed proper convex function, by [25, Corollary 23.5.1],
p ∈ ∂L(q) also holds. Part (ii) follows directly from [25, Corollary 25.1.2]. ��

Proof (Proof of Theorem 3) Step 1: We prove that for any fixed ω ∈ Ω̃ , p ∈ R
n and R ≥ 1,

lim sup
ε→0

sup
(x,t)∈QR

(
wε(x, t; p) + H (p)

) ≤ 0. (32)

Lemma 4 (i) yields a q ∈ R
n such that p ∈ ∂L(q). This implies

H (p) + L(q) − p · q = 0. (33)

Arguing by contradiction, we assume (32) fails, so there exist δ > 0, a subsequence
εk → 0, and a sequence {(zk , sk )}k∈N ∈ QR such that

wεk (zk , sk ) + H (p) ≥ δ > 0.

For notational simplicity, the subscript k in εk and in (zk , sk ) is henceforth suppressed.
Since ω and p are also fixed, any dependence on these parameters is also suppressed.
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Next, for some small real number c > 0 and some λ ∈ (0, 1) close to 1 to be chosen and
(x, t) ∈ R

n × (−∞, s), we define

W ε(x, t) := λ (wε(x, t) − wε(z, s)) − cδψ(x) − cδ(s − t),

where

ψ(x) :=
(
(1 + |x − z|2) 12 − 1

)
;

note that

|Dψ(x)| < 1 and (1 + |x|2)− 3
2 Id ≤ D2ψ(x) ≤ (1 + |x|2)− 1

2 Id.

Let Uε := {(x, t) ∈ R
n × R : W ε ≥ − δ

4 } ∩ {(x, t) ∈ R
n × R : t ≤ s}. It follows that

W ε
t − εtr

(

A
(
x
ε
,
t
ε

)

D2W ε

)

+ H
(

p + DW ε ,
x
ε
,
t
ε

)

≤ H (p) − δ

4
in Uε . (34)

Indeed, if ϕ ∈ C2(Rn × R) and if W ε − ϕ attains a local maximum at (x0, t0) in Uε , then
the mapping

(x, t) �→ wε(x, t) − λ−1(ϕ(x, t) + cδψ(x − z) + cδ(s − t))

attains a local maximum at (x0, t0).
Since wε is the viscosity solution of (30), we find

wε(x0, t0) + λ−1 (ϕt (x0, t0) − cδ)

− λ−1εtr
(

A
(
x0
ε
,
t0
ε

)

(D2ϕ(x0, t0) + cδD2ψ(x0)
)

+H
(

p + λ−1(Dϕ(x0, t0) + cδDψ(x0)),
x0
ε
,
t0
ε

)

≤ 0,

while the convexity of H in p gives

H
(

p + Dϕ(x0, t0),
x0
ε
,
t0
ε

)

= H
(
λ
(
p + Dϕ(x0, t0) + cδDψ(x0)

λ

)
+ (1 − λ)

(
p − cδDψ(x0)

1 − λ

)
,
x0
ε
,
t0
ε

)

≤ λH
(
p + Dϕ(x0, t0) + cδDψ(x0)

λ
,
x0
ε
,
t0
ε

)
+ (1 − λ)H

(
p − cδDψ(x0)

1 − λ
,
x0
ε
,
t0
ε

)
.

We use the growth assumption (6) to choose λ(p) ∈ (0, 1] so that 1 − λ(p) is small and

−λδ + λH (p) + (1 − λ) sup
p′∈B1(p)

sup
(x,t)∈Rn×R

H (p′, x, t) ≤ H (p) − 3δ
4
,

andwefix a small enough c > 0 so that c < 1/8 and cδ < 1−λ. Then, for all (x, t) ∈ R
n×R,

p − cδ(1 − λ)−1Dψ(x) ∈ B1(p) and |tr (A(x, t)cδD2ψ(x))| <
δ

16
.
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Combining the estimates above, we get, for ε sufficiently small,

ϕt (x0, t0) − εtr
(

A
(
x0
ε
,
t0
ε

)

D2ϕ(x0, t0)
)

+ H
(

p + Dϕ(x0, t0),
x0
ε
,
t0
ε

)

≤ − λwε(x0, t0) + cδ + εcδtr
(

A
(
x0
ε
,
t0
ε

)

D2ψ(x0)
)

+H
(

p + Dϕ(x0, t0),
x0
ε
,
t0
ε

)

− λH
(

p + Dϕ(x0, t0) + cδDψ(x0)
λ

,
x0
ε
,
t0
ε

)

≤ −W ε(x0, t0) − λwε(z, s) + (1 − λ)H
(

p − cδDψ(x0)
1 − λ

,
x0
ε
,
t0
ε

)

+ δ

4

≤ −W ε(x0, t0) − λδ + λH (p) + (1 − λ) sup
p′∈B1(p)

‖H (p′, ·, ·)‖L∞ + δ

4

≤ −W ε(x0, t0) + H (p) − δ

2
≤ H (p) − δ

2
, (35)

with the last inequality holding because (x0, t0) ∈ Uε and, hence, −W ε(x0, t0) ≤ δ
4 . This

proves (34).
Next we compare W ε with V ε := V ε(x, t) which is defined, for some large r > 0 to be

chosen, by

V ε(x, t) := L ε(x, t, z − rq, s − r)−L ε(z, s, z − rq, s − r) − p · (x − z) + H (p)(t − s).

(36)

In view of (15), V ε satisfies

V ε
t − εtr

(

A
(
x
ε
,
t
ε

)

D2V ε

)

+ H
(

p + DV ε ,
x
ε
,
t
ε

)

= H (p) in R
n × (−r + s,∞).

Let ∂sUε := {t < s}∩∂{W ε ≥ − δ
4 } be the parabolic boundary of the space-time domain

Uε and note thatW ε = − δ
4 on ∂sUε .

The comparison principle for (34), yields

sup
Uε

(W ε − V ε) = sup
∂sUε

(W ε − V ε) = − δ

4
− inf

∂sUε

V ε , (37)

and, since (z, s) ∈ Uε ∩ {t = s} is an interior point of Uε andW ε(z, s) = V ε(z, s) = 0, the
left-hand side is non-negative.
In view of the bound |wε| ≤ C and the linear growth of ψ(x) + (s − t), we find that

Uε ⊂ QR′ (z, s) provided R′ = 2C/cδ. It follows that

inf
(x,t)∈QR′ (z,s)

(
L ε(x, t, z − rq, s − r) − L ε(z, t, z − rq, s − r)

− p · (x − z) + H (p)(t − s)
)

≤ − δ

4
.

Send ε → 0. Since {(zj, sj)} ⊂ QR, we may assume that (z, s) → (z0, s0). By Theorem 1,
L ε converges uniformly on QR′ (z, s). We get

inf
(x,t)∈QR′+1(z0 ,s0)

(
(r − s0 + t)L

(
x − z0 + rq
r − s0 + t

)

− rL(q)

− p · (x − z0) + H (p)(t − s0)
)

≤ − δ

4
.
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The fact p ∈ ∂L(q) implies

L
(
x − z0 + rq
r − s0 + t

)

− L(q) ≥ p ·
(
x − z0 + rq
r − s0 + t

− q
)

= p · (x − z0) + (s0 − t)q
r − s0 + t

. (38)

As a result, for r sufficiently large, we have

inf
(x,z)∈QR′+1(z0 ,s0)

(
(t − s0)

(
H (p) + L(q) − p · q)) ≤ − δ

4
,

which, combined with (33), yields 0 ≤ −δ/4. This is a contradiction and, hence, (32) must
hold.

Step 2: For any fixed ω ∈ Ω̃ , p ∈ R
n and R ≥ 1,

lim inf
ε→0

inf
(x,t)∈QR

wε(x, t; p) + H (p) ≥ 0. (39)

We claim that this task can be reduced to the case of (p,H (p)) being an exposed point of
epi (H ).
Indeed, assume that (39) holds for all exposed (p,H (p)). Then if p ∈ R

n is such that
(p,H (p)) is an extreme point of epi (H ), then by Straszewicz’s theorem [25, Theorem 18.6],
there exists a sequence {pj} converging to p, such that {(pj, H (pj))} are exposed points of
epi (H ). In view of the continuity of the mapping p �→ wε(·, ·, p), (39) holds for extremal
(p,H (p)).
For any other p ∈ R

n, (p,H (p)) can be written as a convex combination of extremal
{(pj, H (pj))}n+2

j=1 . We have proved that (39) holds for each pj . Since the mapping p �→
wε(·, ·, p) is concave, and p is a convex combination of {pj}n+2

j=1 , we conclude that (39) holds
for p.

Step 3: If p ∈ R
n and if (p,H (p)) is an exposed point of epi (H ), then (39) holds. Although

the proof of (39) follows along the lines of Step 1, there is an important difference. The
inequality (33), which holds for any p ∈ ∂L(q), is useful only to establish the upper bound
as seen in Step 1. Here, however, p satisfies the additional condition that (p,H (p)) is
exposed, and, hence, in view of Lemma 4, p = DL(q) for some q ∈ R

n. This amounts to

L(y) − L(q) = p · (y − q) + o(|y − q|), (40)

which is a stronger fact than (33).
Arguing by contradiction, we assume that (39) fails, so there exists δ > 0, a subsequence

{εk}k∈N converging to 0, a sequence {(zk , sk )}k∈N ⊆ QR such that

−wεk (zk , sk ) − H (p) ≥ δ > 0;

as before, the subscript k is suppressed henceforth.
Using (6), we take λ > 1 such that

λδ + λH (p) + (λ − 1) inf
p′∈B1(p)

inf
(x,t)∈Rn×R

H (p′, x, t) ≥ H (p) + 3δ
4
.

After λ is fixed, we choose 0 < c < 1
8 so that cδ < λ − 1, and for x ∈ R

n and t ≤ s, we
define

W ε(x, t) := λ (wε(x, t) − wε(z, s)) + cδ
(
(1 + |x − z|2) 12 − 1

)
+ cδ(s − t),

and set Uε := {W ε ≤ δ
4 } ∩ {t ≤ s}.
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We claim that

W ε
t − εtr

(

A
(
x
ε
,
t
ε

)

D2W ε

)

+ H
(

p + DW ε ,
x
ε
,
t
ε

)

≥ H (p) + δ

4
in Uε . (41)

This can be proved by the same argument that led to (34), provided we replace (35) by

H
(

p + Dϕ(x0, t0),
x0
ε
,
t0
ε

)

− λH
(

p + Dϕ(x0, t0) − cδDψ(x0)
λ

,
x0
ε
,
t0
ε

)

≥ (λ − 1)H
(

p − cδDψ(x0)
λ − 1

,
x0
ε
,
t0
ε

)

.

Then we compareW ε with the function V ε defined by (36) on the domain Uε , and get

sup
Uε

(V ε − W ε) = sup
∂sUε

(V ε − W ε) = − δ

4
+ sup

∂sUε

V ε ,

The left-hand side is non-negative since V ε(z, s) = W ε(z, s) = 0 and (z, s) is an interior
point of Uε . Moreover, if R′ = 2‖wε‖L∞/cδ, then Uε ⊂ QR′ (z, s), and, hence

sup
QR′ (z,s)

(
L ε(x, t, z − rq, s − r) − L ε(z, t, z − rq, s − r)

− p · (x − z) + H (p)(t − s)
)

≥ δ

4
.

As in Step 1, we may assume (zk , sk ) → (z0, s0) ∈ QR. Sending εk to 0, we get

sup
(x,t)∈QR′+1(z0 ,s0)

(
(r − s0 + t)L

(
x − z0 + rq
r − s0 + t

)

− rL(q)

−p · (x − z0) + H (p)(t − s0)
)

≥ δ

4
. (42)

Using that p = DL(q) and L(q) + H (p) = p · q, we have

(r − s0 + t)L
(
x − z0 + rq
r − s0 + t

)

− rL(q) − p · (x − z0) + H (p)(t − s0)

= (r − s0 + t)
[

L
(
x − z0 + rq
r − s0 + t

)

− L(q) − p · x − z0 + rq − (r − s0 + t)q
r − s0 + t

]

= (r − s0 + t) · o
(∣

∣
∣
∣
x − z0 + (s0 − t)q

r − s0 + t

∣
∣
∣
∣

)

Since |x − z0 + (s0 − t)q| ≤ (1 + |q|)R is finite and the estimate (42) holds for all large r,
sending r → ∞, yields δ

4 ≤ 0, which is a contradiction. ��

5 Some formulae for the effective hamiltonian
Arguments similar to the ones in [22] yield that, once homogenization theory is estab-
lished, the effective Hamiltonian H (p) is given by

H (p) = inf
ψ∈S sup

(x,t)∈Rn+1

[
ψt − tr

(
A(x, t)D2ψ(x, t)

) + H (p + Dψ(x, t), x, t)
]
,

where the sup of the value of the differential operator evaluated onψ should be interpreted
in the viscosity sense, and

S :=
{
ψ : Rn+1 × Ω → R : ψ(·, ·,ω) ∈ C(Rn+1),

lim
|(x,t)|→∞

|ψ(x, t,ω)|
|(x, t)| = 0 for a.s. ω ∈ Ω ,

ψ(x + y, t + s,ω) − ψ(x, t,ω) is stationary in (y, s) for all (x, t) ∈ R
n+1

}
.
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that is, S is the set of random processes that are sublinear in (x, t) and have stationary
increments. Note that if ψ ∈ S is also differentiable with respect to (x, t), then the
stationarity of increments is equivalent toψt andDψ being stationary, and the sublinearity
is equivalent to E[ψt ] = 0 and E[Dψ] = 0.
Another formula for effectiveHamiltonianwas introduced in [18] for timehomogeneous

random environment, and then generalized in [19] to space-time random environment,
both under the assumption that the diffusion term is given by the identity matrix. We
recall how this formula was obtained, and write it in the form that it should take when the
diffusion matrix is more general.
Any random variable b̃ gives rise to a stationary random process b(x, t,ω) = b̃(τ(x,t)ω).

In the reverse direction, for any stationary random process b(x, t,ω), we can lift it to the
probability space and identify it with b̃(ω) := b(0, 0,ω). For notational simplicity, we omit
the tilde in b̃ from now on. The translation group {τ(x,t) : (x, t) ∈ R

n+1} acting on L2(Ω)
are isometric. Let ∂t , Di, i = 1, 2, · · · , n, by an abuse of notations, be the corresponding
infinitesimal generators; we denote further D = (D1, · · · , Dn).
Let B := L∞(Ω ,Rn) be the space of essentially bounded maps from Ω to Rn. Given any

b ∈ B and A = σσT satisfying (A1), (A2), and (A3), let x(t,ω) be the diffusion process
starting from 0 at time 0 such that

dx(t) = b(τ(x(t),−t)ω)dt + √
2σ (x(t),−t)dBt for all t > 0.

In the above, (Bt )t≥0 is a standard m-dimensional Brownian motion, independent of H
and σ . This process can be viewed as a diffusion in the probability space as follows. Pick
a starting point ω ∈ Ω , and define the walk ω(t) = τ(x(t,ω),−t)ω, t ≥ 0. This is a Markov
process on Ω with generator

Lb,σ = −∂t + tr (σ (ω)σ (ω)TD2) + b(ω) · D. (43)

Let D := {Φ ∈ L∞(Ω ;R) : E[Φ] = 1,Φ > 0 and (∂tΦ , DΦ) ∈ L∞}. Finally, let
E :=

{
(b,Φ) ∈ B × D : ∂tΦ + D2

ij(AΦ) − div (bΦ) = 0
}
, (44)

where the equation should be understood in the weak sense, that is for all G ∈
C∞
0 (Rn+1,R),

∫

R

∫

Rn

[
∂tG(x, t) + 〈−b + div A,DG(x, t)〉]Φ(τ(t,x)ω)

+ 〈ADΦ(τ(t,x)ω), DG(x, t)〉 dxdt = 0.

Hence,E consists of all pairs (b,Φ) such thatΦ is the density of an invariantmeasure of the
Markov processLb,σ . We note that for any v ∈ R

n, the pair (b,Φ), where bj = vj + DiAij
and Φ ≡ 1, satisfies the equation above and, hence, E is non-empty.
Following [18,19], the effective Hamiltonian, for each p ∈ R

n, should be given by

H̃ (p) = sup
(b,Φ)∈E

E [(〈−b, p〉 − L(−b(ω),ω))Φ(ω)] . (45)

Note that in this formula, A does not need to be uniformly elliptic and can be degenerate.
As a corollary of Theorem 2, we can show that the above formulae for effective Hamil-

tonian holds in the setting of this paper.

Theorem 5 Assume (A) so that Theorem 2 holds. Then, for all p ∈ R
n, H (p) = H̃ (p).



Jing et al. Res Math Sci (2017) 4:6 Page 19 of 20

Weonly sketch the proof. Given the homogenization result, TheoremB of [21] provides
a method to establish H̃ ≤ H , which is easily applied here. Note that even though [21]
concerned only time homogeneous environment, the proof of Theorem B there does not
rely on this fact.
The inequality H̃ (p) ≥ H (p) follows from the fact that, for any δ > 0, there exists

ψδ ∈ S , such that ψδ is a subsolution to

∂tψδ − tr (A(x, t,ω)D2ψδ) + H (p + Dψδ , x, t,ω) ≤ H̃ (p) + δ on R
d+1.

This claim is proved in [19] forA ≡ Id, but the proof, which utilizes themin-max theorem,
extends easily to general diffusion matrix A ∈ C1,α . We emphasize that neither A = Id
nor A being uniformly elliptic is needed for this claim.
It is difficult to prove the homogenization result of this paper using the method of

[18,19]. Indeed, in these references, the uniform lower bound lim inf ε→0 infQR (uε−u) ≥ 0
is established using the ergodic theorem, which requires uniqueness of invariant measure
for a given drift. For this, the uniform ellipticity of A is crucial. The stronger assumption
that H grows superquadratically in p does not seem to help to remove uniform ellipticity
requirement of A. In that sense, the fact that (45) provides the formula for the effective
Hamiltonian for possibly degenerate diffusionmatrixA, though only under the restrictive
superquadratic growth assumption, is a new fact.

Author details
1Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, USA, 2Department of
Mathematics, University of Wisconsin Madison, Van Vleck Hall, 480 Lincoln Drive, Madison, WI 53706, USA.

Acknowledgements
WJ is supported in part by the NSF Grant DMS-1515150. PS is supported in part by the NSF Grant DMS-1266383 and
DMS-1600129. HT is supported in part by the NSF Grant DMS-1361236.

Received: 30 June 2016 Accepted: 29 November 2016

References
1. Akcoglu, M.A., Krengel, U.: Ergodic theorems for superadditive processes. J. Reine Angew. Math. 323, 53 (1981). doi:10.

1515/crll.1981.323.53
2. Armstrong, S.N., Cardaliaguet, P.: Stochastic homogenization of quasilinear Hamilton–Jacobi equations andgeometric

motions. J. Eur. Math. Soc. (accepted)
3. Armstrong, S.N., Tran, H.V., Yu, Y.: Stochastic homogenization of a nonconvex Hamilton–Jacobi equation. Calc. Var.

Partial Differ. Equ. 54(2), 1507 (2015). doi:10.1007/s00526-015-0833-2
4. Armstrong, S.N., Tran, H.V., Yu, Y.: Stochastic homogenization of nonconvex Hamilton–Jacobi equations in one space

dimension. J. Differ. Equ. 261(5), 2702 (2016). doi:10.1016/j.jde.2016.05.010
5. Armstrong, S.N., Souganidis, P.E.: Stochastic homogenization of Hamilton–Jacobi and degenerate Bellman equations

in unbounded environments. J. Math. Pures Appl. (9) 97(5), 460 (2012). doi:10.1016/j.matpur.2011.09.009
6. Armstrong, S.N., Souganidis, P.E.: Stochastic homogenization of level-set convex Hamilton–Jacobi equations. Int.

Math. Res. Not. 2013(15), 3420 (2013)
7. Armstrong, S.N., Tran, H.V.: Stochastic homogenization of viscous Hamilton–Jacobi equations and applications. Anal.

PDE 7(8), 1969 (2014). doi:10.2140/apde.2014.7.1969
8. Armstrong, S.N., Tran, H.V.: Viscosity solutions of general viscous Hamilton–Jacobi equations. Math. Ann. 361(3–4),

647 (2015). doi:10.1007/s00208-014-1088-5
9. Cannarsa, P., Cardaliaguet, P.: Hölder estimates in space-time for viscosity solutions of Hamilton–Jacobi equations.

Comm. Pure Appl. Math. 63(5), 590 (2010). doi:10.1002/cpa.20315
10. Cardaliaguet, P., Silvestre, L.: Hölder continuity to Hamilton–Jacobi equations with superquadratic growth in the

gradient and unbounded right-hand side. Comm. Partial Differ. Equ. 37(9), 1668 (2012). doi:10.1080/03605302.2012.
660267

11. Crandall, M.G., Lions, P.L., Souganidis, P.E.: Maximal solutions and universal bounds for some partial differential
equations of evolution. Arch. Rational Mech. Anal. 105(2), 163 (1989). doi:10.1007/BF00250835

12. Evans, L.C.: The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. R. Soc. Edinburgh Sect.
A 111(3–4), 359 (1989)

13. Evans, L.C.: Periodic homogenisation of certain fully nonlinear partial differential equations. Proc. R. Soc. Edinburgh
Sect. A 120(3–4), 245 (1992)

14. Feldman, W., Souganidis, P.E.: Preprint (2016) Homogenization and non-homogenization of certain non-convex
Hamilton-Jacobi equations (2016). arXiv:1609.09410

http://dx.doi.org/10.1515/crll.1981.323.53
http://dx.doi.org/10.1515/crll.1981.323.53
http://dx.doi.org/10.1007/s00526-015-0833-2
http://dx.doi.org/10.1016/j.jde.2016.05.010
http://dx.doi.org/10.1016/j.matpur.2011.09.009
http://dx.doi.org/10.2140/apde.2014.7.1969
http://dx.doi.org/10.1007/s00208-014-1088-5
http://dx.doi.org/10.1002/cpa.20315
http://dx.doi.org/10.1080/03605302.2012.660267
http://dx.doi.org/10.1080/03605302.2012.660267
http://dx.doi.org/10.1007/BF00250835
http://arxiv.org/abs/1609.09410


Jing et al. Res Math Sci (2017) 4:6 Page 20 of 20

15. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, Stochastic Modelling and Applied
Probability, vol. 25, 2nd edn. Springer, New York (2006)

16. Ishii, H.: Almost periodic homogenization of Hamilton-Jacobi equations. In: International Conference on Differential
Equations, vol. 1, 2, pp. 600–605 (Berlin, 1999). World Sci. Publ., River Edge, NJ (2000)

17. Jing, W., Souganidis, P.E., Tran, H.V.: Large time average of reachable sets and Applications to Homogenization of
interfaces moving with oscillatory spatio-temporal velocity. Preprint (arXiv:1408.2013 [math.AP])

18. Kosygina, E., Rezakhanlou, F., Varadhan, S.R.S.: Stochastic homogenization of Hamilton–Jacobi–Bellman equations.
Comm. Pure Appl. Math. 59(10), 1489 (2006). doi:10.1002/cpa.20137

19. Kosygina, E., Varadhan, S.R.S.: Homogenization of Hamilton–Jacobi–Bellman equations with respect to time-space
shifts in a stationary ergodic medium. Comm. Pure Appl. Math. 61(6), 816 (2008). doi:10.1002/cpa.20220

20. Lions, P.L., Papanicolaou, G.C., Varadhan, S.: Homogenization of Hamilton–Jacobi Equations. Unpublished preprint
(1987)

21. Lions, P.L., Souganidis, P.E.: Stochastic homogenization of Hamilton–Jacobi and “viscous”–Hamilton–Jacobi equations
with convex nonlinearities—revisited. Commun. Math. Sci. 8(2), 627 (2010). http://projecteuclid.org/getRecord?
id=euclid.cms/1274816896

22. Lions, P.L., Souganidis, P.E.: Homogenization of “viscous” Hamilton–Jacobi equations in stationary ergodic media.
Comm. Partial Differ. Equ. 30(1–3), 335 (2005). doi:10.1081/PDE-200050077

23. Majda, A.J., Souganidis, P.E.: Large-scale front dynamics for turbulent reaction-diffusion equations with separated
velocity scales. Nonlinearity 7(1), 1 (1994). http://stacks.iop.org/0951-7715/7/1

24. Rezakhanlou, F., Tarver, J.E.: Homogenization for stochastic Hamilton–Jacobi equations. Arch. Ration. Mech. Anal.
151(4), 277 (2000). doi:10.1007/s002050050198

25. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, NJ
(1970)

26. Schwab, R.W.: Stochastic homogenization of Hamilton–Jacobi equations in stationary ergodic spatio-temporalmedia.
Indiana Univ. Math. J. 58(2), 537 (2009). doi:10.1512/iumj.2009.58.3455

27. Souganidis, P.E.: Stochastic homogenization of Hamilton–Jacobi equations and some applications. Asymptot. Anal.
20(1), 1 (1999)

28. Ziliotto, B.: Stochastic homogenization of nonconvex Hamilton–Jacobi equations: a counterexample. Comm. Pure
Appl. Math. (2016). doi:10.1002/cpa.21674

http://arxiv.org/abs/1408.2013
http://dx.doi.org/10.1002/cpa.20137
http://dx.doi.org/10.1002/cpa.20220
http://projecteuclid.org/getRecord?id=euclid.cms/1274816896
http://projecteuclid.org/getRecord?id=euclid.cms/1274816896
http://dx.doi.org/10.1081/PDE-200050077
http://stacks.iop.org/0951-7715/7/1
http://dx.doi.org/10.1007/s002050050198
http://dx.doi.org/10.1512/iumj.2009.58.3455
http://dx.doi.org/10.1002/cpa.21674

	Stochastic homogenization of viscous superquadratic Hamilton–Jacobi equations in dynamic random environment
	Abstract
	1 Background
	Notations

	2 Assumptions, the fundamental solution, and the main results
	2.1 The general setting and assumptions
	2.2 The fundamental solution
	2.3 Main theorems

	3 The long-time behavior of the fundamental solution
	3.1 Long-time average of mathscrL

	4 The proof of Theorem 3
	5 Some formulae for the effective hamiltonian
	Acknowledgements
	References




