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Abstract

We investigate a system of N Brownian particles with the Coulomb interaction in any
dimension d ≥ 2, and we assume that the initial data are independent and identically
distributed with a common density ρ0 satisfying

∫
Rd ρ0 ln ρ0 dx < ∞ and

ρ0 ∈ L
2d
d+2 (Rd ) ∩ L1(Rd, (1 + |x|2) dx). We prove that there exists a unique global strong

solution for this interacting partsicle system and there is no collision among particles
almost surely. For d = 2, we rigorously prove the propagation of chaos for this particle
system globally in time without any cutoff in the following sense. When N → ∞, the
empirical measure of the particle system converges in law to a probability measure and
this measure possesses a density which is the unique weak solution to the mean-field
Poisson–Nernst–Planck equation of single component.

Keywords: Noncollision among particles, Entropy and Fisher information estimates,
Martingale problem, Uniqueness, de Finetti–Hewitt–Savage theorem

1 Background
Let

(
�,F ,P

)
be a probability space, endowed with the standard d-dimensional Brownian

motions associated with this space. In this article, we consider the particle system with
the following form

dXi
t = 1

N

N∑

j �=i
F (Xi

t − Xj
t ) dt + √

2 dBi
t , i = 1, . . . , N, (1.1)

with the initial data {Xi
0}Ni=1, where {(Xi

t )t≥0}Ni=1 are the trajectories ofN particles (Xi
t ∈ R

d

for any t > 0), and {(Bi
t )t≥0}Ni=1 are a sequence of independent d-dimensional standard

Brownian motions. The interparticles force is taken to be the Coulomb interaction, and
it is described by the Newtonian potential,

F (x) = −∇Φ(x), Φ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

Cd
|x|d−2 if d ≥ 3,

− 1
2π

ln |x| if d = 2,
(1.2)

where Cd = 1
d(d − 2)αd

, αd = πd/2

Γ (d/2 + 1)
, i.e., αd is the volume of d-dimensional unit

ball. We recast F (x) = C∗x
|x|d , ∀x ∈ R

d\{0}, d ≥ 2, where C∗ = Γ (d/2)
2πd/2 . The first term
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on the right hand in (1.1) represents repulsive force on (Xi
t )t≥0 by all other particles.

The interacting particle system (1.1) is a typical physical model and appears in many
applications. For example, in semiconductor, (i) the electrons interact with each other
through the Coulomb repulsive force; (ii) the electrons interact with background, and it
is modeled by Brownian motions; (iii) the mass of electron is very light and the inertia can
be neglected, and the overdamped system of particles is used in (1.1).
Notice that if there exists two particles (Xi

t )t≥0 and (X
j
t )t≥0 colliding with each other for

some time t < ∞, then Xi
t = Xj

t , F (Xi
t − Xj

t ) = ∞, and then the solution to (1.1) breaks
up. Fortunately, we will prove that this will not happen. More precisely, when the initial
data Xi

0 �= Xj
0 almost surely (a.s.) for all i �= j, we will show that there exists a unique

global strong solution to system (1.1) and hence there is no collision a.s. among particles
in (1.1).
The second object of this paper is to provide a rigorous theory on propagation of chaos

for the above system (1.1) for d = 2. To do this, we will show the following main result:
For any fixed time T > 0, there exists a subsequence of the empirical measure μN :=
1
N
∑N

i=1 δXi
t
( μN are P(C([0, T ];Rd))-valued random variables) converging in law to a

deterministic probability measure μ as N goes to infinity, where P(C([0, T ];Rd)) is the
set of probability measures over C([0, T ];Rd). Furthermore, the time marginal law μt has
a density function ρt which is the unique weak solution to the Poisson–Nernst–Planck
equation (1.4) below.
In this paper, for k ≥ 1, we denote by Psym((Rd)k ) the set of symmetric probability

measures on (Rd)k (the law of any exchangeable (Rd)k-valued random variable X =
(X1, . . . , Xk ) belongs to Psym((Rd)k )). When f ∈ Psym((Rd)k ) has a density ρ ∈ L1((Rd)k ),
we introduce the entropy and the Fisher information of f :

Hk (f ) := 1
k

∫

Rkd
ρ ln ρ dx and Ik (f ) := 1

k

∫

Rkd

|∇ρ|2
ρ

dx.

Sometimes, we also use Hk (ρ) and Ik (ρ) to present Hk (f ) and Ik (f ), respectively. If f has
no density, we simply put Hk (f ) = +∞ and Ik (f ) = +∞. Notice that Hk (f ⊗k ) = H1(f )
and Ik (f ⊗k ) = I1(f ).
We will split the proof of propagation of chaos into three steps. First, we denote

f Nt and ρN
t as the joint time marginal distribution and density of (X1

t , . . . , XN
t )0≤t≤T ,

respectively, L(μN ) is the law of μN and ΦN = 1
N
∑N

i,j=1
i �=j

Φ(xi − xj). In Lemma 3.1,

when d = 2, using the uniform estimate of
∫ t
0 IN (f

N
s ) ds; when d ≥ 3, using the uni-

form estimate of
∫ t
0 〈ρN

s , |∇ΦN |2〉 ds, we prove that the sequence {L(μN )}N≥2 is tight in
P
(
P(C([0, T ];Rd))

)
. (It is well known C([0, T ];Rd) is a polish space and P(C([0, T ];Rd))

is metrizable, and it is also a polish space, see the “Appendix”.) Therefore there exists a
subsequence ofμN (without relabeling) and a P(C([0, T ];Rd))-valued randommeasureμ

such that μN converges in law to μ as N goes to infinity.
Second, for d = 2 and a.s. ω ∈ �, we prove that μ(ω) is exactly a solution to the

following self-consistent martingale problem with the initial data f0 in a new probability
space

(
C([0, T ];Rd),B,μ(ω)). This definition is the same as the Stroock–Varadhan [17],

and it is a variant of the definition of nonlinear martingale problem in [11, p. 40].

Definition 1 In the probability space (C([0, T ];Rd),B,μ, {Bt}0≤t≤T ), if a probability
measure μ ∈ P(C([0, T ];Rd)) with time marginal μ0 at time t = 0 is endowed with
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a μ-distributed canonical process (Xt )0≤t≤T ∈ C([0, T ];Rd), then let {Bt}0≤t≤T is the
natural filtration generated by (Xt )0≤t≤T , i.e.,

Bt = σ {Xs, s ≤ t} (1.3)

and B = B(C([0, T ];Rd)) (the σ -algebra of Borel sets over C([0, T ];Rd)). μ is called a
solution to the

(
g, C2

b (R
d)
)
-self-consistentmartingale problemwith the initial distribution

μ0 (meaning that X0 is distributed according to μ0), if for any ϕ ∈ C2
b (R

d), (Xt )0≤t≤T
induces the following process

Mt := ϕ(Xt ) − ϕ(X0) −
∫ t

0
g(Xs,L(Xs)) ds for any t ∈ [0, T ],

such that (Mt )0≤t≤T is amartingale with respect to (w.r.t.) the filtration {Bt}0≤t≤T , where

g(x,L(Xs)) =
∫

C([0,T ];Rd )
∇ϕ(x) · F (x − ys)μ(dy) + �ϕ(x) for any s ∈ [0, T ].

Indeed, Lemma 4.3 gives a martingale estimate for the N -particle system and Lemma
4.2 states a standard method of checking a process to be a martingale. Then Proposition
4.1 shows that μ(ω) is a solution to the above martingale problem for a.s. ω ∈ �.
Third, denoting (μt (ω))t≥0 as the time marginal of μ(ω). With the uniform estimates

of entropy and the second moments for the particle system (1.1), Lemma 3.2 shows that
(μt (ω))t≥0 has a density (ρt (ω))t≥0 a.s.. Using the fact that μ(ω) is a.s. a solution to the
self-consistent martingale problem in Definition 1, Theorem 5.2 shows that ρ(ω) is the
uniqueweak solution to themean-field Poisson–Nernst–Planck (PNP) equations of single
component:

⎧
⎪⎨

⎪⎩

∂tρ = �ρ + ∇ · (ρ∇c), x ∈ R
d, t > 0,

−�c = ρ(t, x),
ρ(t, x)t=0 = ρ0(x),

(1.4)

i.e., ρ(ω) is independent of ω and hence it is deterministic (so does μ), which finishes the
proof of propagation of chaos.
The concept of propagation of chaoswas originated byKac [8]. The propagation of chaos

for (1.1)with the smoothF has been rigorously provedbyMcKean in 1970swith a coupling
method, and the mean-field equation is a class of nonlinear parabolic equations [16]. For
singular interacting kernel, a cutoff parameter is usually introduced to desingularize F
by Fε , and the coupling method sometimes still can be used to prove the propagation of
chaos, c.f. [13].
The problem for the Newtonian potential without cutoff parameter is a challenging

problem, which is the content of this paper. In this case, the coupling method can no
longer be used and we adapt the nonlinear martingale problem method developed by
Stroock–Varadhan [17]. Model (1.1) is closely related to the vortex system for the two-
dimensional (2D) Navier–Stokes equation. In the vortex system, the interparticles force
is given by F (x) = −∇⊥Φ(x) for d = 2, where the operator ∇⊥ =

(
− ∂

∂x2 ,
∂

∂x1

)
. In a

series papers [18–20], Osada showed that the particles a.s. never encounter, so that the
singularity of kernel a.s. never visited. He also studied the propagation of chaos for the
Navier–Stokes equation with the random vortexmethod without regularized parameters.
In a recent importantworkof Fournier et al. [4], the authors significantly improvedOsada’s
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result: (i) They proved the propagation of chaos for the 2D viscous vortex model with any
positive viscosity coefficient; (ii) the convergence holds in a strong sense, called entropic.
Instead of repulsive force, if the attractive force is used (in this case, the sign of F is

changed), then the mean-field equation is the Keller–Segel equation. Much of analysis
used in this paper failed due to the change of sign. In fact, recently, there is a deep
result proved by Fournier and Jourdain [5, Proposition 4]: For any N ≥ 2 and T > 0, if
{(Xi,N

t )t∈[0,T ]}Ni=1 is the solution to the attractive model, then

P

(
∃s ∈ [0, T ], ∃1 ≤ i < j ≤ N : Xi,N

s = Xj,N
s
)

> 0,

i.e., the singularity is visited and the particle system is not clearly well defined. The sign of
F is crucially used in Lemmas 2.2 and 2.3 to achieve the uniform estimates. For a related
work, Godinho andQuininao proved propagation of chaos for the subcritical Keller–Segel
equations [6]. Some of their frameworks and techniques will be adapted to this paper.
This paper is organized as follows. The well posedness of theN -interacting particle sys-

tem (1.1) and the uniform estimates for the joint density of those particles are established
in Sect. 2. In Sect. 3, we show the tightness of the empirical measures of the trajectories
of the N particles. In Sect. 4, we prove that the limiting point of the empirical measures
is a.s. solution to the self-consistent martingale problem in Definition 1. In Sect. 5, we
provide a simple proof of the uniqueness of weak solution to the PNP equation (1.4), and
then, we prove the propagation of chaos results. Finally, in the “Appendix” we provide a
metrization of P(C([0, T ];Rd)).

2 Global well posedness of the N-interacting particle system in d ≥ 2
First, we give a definition of the strong solution to (1.1).

Definition 2 For any fixed T > 0, initial data {Xi
0}Ni=1 and given probability space

(
�,F ,P

)
endowed with a sequence of independent d-dimensional Brownian motions

{(Bi
t )t≥0}Ni=1, if there is a stochastic process {(Xi

t )t∈[0,T ]}Ni=1 adapted to (Ft )t∈[0,T ] such that
{(Xi

t )t∈[0,T ]}Ni=1 satisfies (1.1) a.s. in the probability space (�,F , (Ft )t≥0,P) for all t ∈ [0, T ],
we say that {(Xi

t )t∈[0,T ]}Ni=1 is a global strong solution to (1.1).

Next, we state some results about thewell posedness of theN -interacting particle system
(1.1) and the entropy and regularity properties for the density of those particles.

Theorem 2.1 For any d ≥ 2, let N ≥ 2 and T > 0. Consider a sequence of independent
d-dimensional Brownian motions {(Bi

t )t≥0}Ni=1 and the independent and identically dis-
tributed (i.i.d.) initial data {Xi

0}Ni=1 with a common distribution f0 satisfying H1(f0) < +∞
and a common density ρ0 ∈ L

2d
d+2 (Rd) ∩ L1(Rd, (1 + |x|2) dx). Then

(i) There exists a unique global strong solution to (1.1) and thus a.s. Xi
t �= Xj

t for all
t ∈ [0, T ], i �= j.

(ii) Denote by (f Nt )0≤t≤T the joint time marginal distribution function of
(X1

t , . . . , XN
t )0≤t≤T and assume ‖ρ0‖Lr (Rd ) < ∞ for some r > d ≥ 2. Then f Nt (X) has

a density function ρN
t (X), and it is the unique weak solution to the following linear

Fokker–Plank equation:

∂tρ
N = �ρN + 1

2
∇ · (ρN∇ΦN ), (2.1)

where ΦN = 1
N
∑N

i,j=1
i �=j

Φ(xi − xj).
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(iii) Denote m2(ρ) :=
∫
Rd |x|2ρ dx. For all t > 0,

HN (f Nt ) +
∫ t

0
IN (f Ns ) ds ≤ H1(f0), for d ≥ 2; (2.2)

〈
ρN
t , ΦN

〉
+ 1

2

∫ t

0

〈
ρN
s , |∇ΦN |2

〉
ds ≤ (N − 1)C(d)‖ρ0‖2

L
2d
d+2

for d ≥ 3;

(2.3)

sup
1≤i≤N

E[|Xi
t |2] ≤

⎧
⎪⎪⎨

⎪⎪⎩

m2(ρ0) +
(

4 + 1
2π

)

t if d = 2,

3m2(ρ0) + 3t
2
C(d)‖ρ0‖2

L
2d
d+2

+ 6td if d ≥ 3,
(2.4)

where C(d) = 1
d(d−2)π

{
Γ (d)
Γ ( d2 )

} 2
d
.

(iv) For any d ≥ 2 and 1 < p < ∞,

sup
t∈[0,T ]

‖ρN
t ‖pLp(RNd ) + 4(p − 1)

p
‖∇((ρN )

p
2 )‖2L2([0,T ]×RNd ) ≤ ‖ρ0‖NpLp(Rd ), (2.5)

and there exists a constant C (depending only on T and the radius of the support of
ρN ) such that

‖∇ρN‖2L2([0,T ]×RNd ) ≤ 1
2
‖ρ0‖2NL2(Rd ); (2.6)

‖∂tρN‖2L2(0,T ;W−2,∞
loc (RNd )) ≤ C‖ρ0‖2NL2 for d = 2, 3; (2.7)

‖∂tρN‖2L2(0,T ;W−1,∞
loc (RNd )) ≤ C(‖ρ0‖2NL2 + ‖ρ0‖2NLq ) for all d ≥ 4

and some q > d. (2.8)

Additionally, the definition of weak solution to Eq. (2.1) is given as follows.

Definition 3 (Weak solution) Let the initial data ρN
0 ∈ L1+ ∩ L

2d
d+2 (RNd) and T > 0, we

shall say that ρN is a weak solution to (2.1) with the initial data ρN
0 if it satisfies:

1. integrability and time regularity:

ρN ∈ L∞(0, T ; L1 ∩ L
2d
d+2 (RNd)), (ρN )

d
d+2 ∈ L2(0, T ;H1(RNd))

∂tρ
N ∈ Lk2 (0, T ;W−1,k1

loc (RNd)) for some k1, k2 ≥ 1;

2. for all ϕ ∈ C∞
c (RNd), 0 < t ≤ T , the following holds:

∫

RNd
ρN (·, t)ϕ dX =

∫

RNd
ρN
0 ϕ dX − 1

2

∫ t

0

∫

RNd
∇ϕ · ∇ΦNρN dXds

+
∫ t

0

∫

RNd
ρN�ϕ dXds. (2.9)

Next, we will split into two subsections to prove Theorem 2.1.

2.1 Noncollision among particles for the system (1.1)

Since the interacting force F of (1.1) is singular, we regularize F firstly. We directly recall
below a lemma stated in [13, Lemma 2.1.], which collects some useful properties of the
regularization. In addition, we add (iv) for a estimate on Φε .
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Lemma 2.1 Suppose J (x) ∈ C2(Rd), supp J (x) ⊂ B(0, 1), J (x) = J (|x|) and J (x) ≥ 0. Let
Jε(x) = 1

εd
J ( x

ε
) and Φε(x) = Jε ∗ Φ(x) for x ∈ R

d, Fε(x) = −∇Φε(x), then Fε(x) ∈ C1(Rd),
∇ · Fε(x) = Jε(x) and

(i) Fε(0) = 0 and Fε(x) = F (x)g
( |x|

ε

)
for any x �= 0, where g(r) = 1

C∗
∫ r
0 J (s)sd−1 ds,

C∗ = Γ (d/2)
2πd/2 , d ≥ 2 and g(r) = 1 for r ≥ 1;

(ii) |Fε(x)| ≤ min
{C|x|

εd
, |F (x)|} and |∇Fε(x)| ≤ C

εd
;

(iii) For any bounded domain B and some 1 < q < d
d−1 , ‖Fε‖Lq(B) is uniformly bounded

in ε;
(iv) when d ≥ 3, Φε(x) = Φ(x) for any |x| ≥ ε > 0; when d = 2 and 0 < ε ≤ 1,

Φε(x) = Φ(x) + Φε(1) for any |x| ≥ ε. And

Φε(ε) → +∞, as ε → 0+ for d ≥ 2. (2.10)

Proof of (iv): Let r = |x|. By the proof of (i), one knows that
rd−1∂rΦε(r) = −

∫ r

0
Jε(s)sd−1 ds = −

∫ r
ε

0
J (s)sd−1 ds = −C∗g

( r
ε

)
. (2.11)

Then for any r ≥ ε, we integrate the above equality and use the fact that g(r) = 1 for
r ≥ 1,

− Φε(r) =
∫ ∞

r
∂sΦε(s) ds = −C∗

∫ ∞

r

g
( s

ε

)

sd−1 ds

= −C∗
∫ ∞

r

1
sd−1 ds = − C∗

(d − 2)rd−2 for d ≥ 3; (2.12)

Φε(r) − Φε(1) =
∫ r

1
∂sΦε(s) ds = −C∗

∫ r

1

g
( s

ε

)

s
ds

= − 1
2π

∫ r

1

1
s
ds = − 1

2π
ln r for d = 2, ε ≤ 1. (2.13)

��
In this article, we take a cutoff function J (x) ≥ 0, J (x) ∈ C3

0 (Rd),

J (x) =
{
C(1 + cosπ |x|)2 if |x| ≤ 1,

0 if |x| > 1,

where C is a constant such that C|Sd−1| ∫ 10 (1+ cosπr)2rd−1 dr = 1 and |Sd−1| = 2πd/2

Γ (d/2) .

Proof (i) of Theorem 2.1: First, we consider the followingN -interacting particle system via
the regularized force:

{
dXi,ε

t = 1
N
∑N

j �=i Fε(Xi,ε
t − Xj,ε

t ) dt + √
2 dBi

t ,
Xi,ε
t |t=0 = Xi

0,
(2.14)

which has a unique global strong solution {(Xi,ε
t )t≥0}Ni=1.

Define a random variable

Aε(t) := inf
0≤s≤t

min
i �=j

|Xi,ε
s − Xj,ε

s |.
Fix T > 0, define the stopping time

τε :=
{
0 if ε ≥ Aε(0);
sup{t ∧ 2T : Aε(t) ≥ ε} if ε < Aε(0).

(2.15)
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The key step is to prove that

lim
ε→0

P(τε ≤ T ) = 0, (2.16)

We adapt the techniques of [6,24] to prove (2.16). Define a random process (Φε,N
t )0≤t≤2T

as

Φ
ε,N
t := 1

N

N∑

i,j=1
i �=j

Φ(xi − xj)Φε

(
Xi,ε
t∧τε

− Xj,ε
t∧τε

)
. (2.17)

Then one has the following basic fact

{τε ≤ T } ⊂
{

sup
t∈[0,T ]

Φ
ε,N
t ≥ Φε,N

τε

}

, (2.18)

and the proof of (2.16) is divided into three steps as follows.
Step 1 We show that

Φ
ε,N
t = ΦN

0 + Mt∧τε − 2
N 2

∫ t∧τε

0

N∑

i=1

⎛

⎜
⎜
⎜
⎝

N∑

j=1
j �=i

Fε(Xi,ε
s − Xj,ε

s )

⎞

⎟
⎟
⎟
⎠

2

ds, (2.19)

where

Mt∧τε := −
√
2

N

N∑

i,j=1
i �=j

∫ t∧τε

0
Fε(Xi,ε

s − Xj,ε
s ) · (dBi

s − dBj
s);

ΦN
0 := 1

N

N∑

i,j=1
i �=j

Φ(Xi
0 − Xj

0) (2.20)

and we prove (Mt∧τε )0≤t≤T is a martingale w.r.t. the filtration generated by the Brownian
motions {(Bi

t )0≤t≤T }Ni=1.
Using the Itô’s formula and the fact �Φε(x) = −Jε(x) = 0 on |x| ≥ ε, one has

Φε

(
Xi,ε
t∧τε

− Xj,ε
t∧τε

)
= Φ

(
Xi
0 − Xj

0

)
− √

2
∫ t∧τε

0
Fε(Xi,ε

s − Xj,ε
s ) · (dBi

s − dBj
s)

−
∫ t∧τε

0
Fε(Xi,ε

s − Xj,ε
s ) ·

⎡

⎣ 1
N

N∑

k �=i
Fε(Xi,ε

s − Xk,ε
s ) − 1

N

N∑

k �=j
Fε(X

j,ε
s − Xk,ε

s )

⎤

⎦ ds.

(2.21)

Summing (2.21) together, we obtain (2.19) and thus only need to show that (Mt∧τε )0≤t≤T
is a martingale. Using the fact |Fε(x)| ≤ C|x|

εd
in Lemma 2.1 and

{
(Xi,ε

t )0≤t≤T
}N
i=1 are

exchangeable, one has
∫ T

0
E[|Fε(Xi,ε

t − Xj,ε
t )|2] dt ≤ C

∫ T
0 E[|Xi,ε

t − Xj,ε
t |2] dt

ε2d

≤ C
∫ T
0 (E[|Xi,ε

t |2] + E[|Xj,ε
t |2]) dt

ε2d

= 2C
∫ T
0 (E[|Xi,ε

t |2]) dt
ε2d

. (2.22)
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If one can prove that
∫ T

0
E|Xi,ε

t |2 dt < C(ε, T ), (2.23)

then by [17, Corollary 3.2.6], {∫ t∧τε

0 Fε(Xi,ε
s −Xj,ε

s ) · (dBi
s −dBj

s)}0≤t≤T is a martingale w.r.t.
the filtration generated by the Brownianmotions (Bi

t )0≤t≤T and (Bj
t )0≤t≤T , and thenMt∧τε

is a martingale w.r.t. the filtration generated by the Brownian motions {(Bi
t )0≤t≤T }Ni=1.

Below we prove (2.23).
According to Eq. (2.14) and the fact (

∑N
i=1 ai)2 ≤ N

∑N
i=1 a2i , one has

E[|Xi,ε
t |2] = E[|Xi

0 + 1
N

∫ t

0

N∑

j �=i
Fε(Xi,ε

s − Xj,ε
s ) ds + √

2Bi
t |2]

≤ 3E[|Xi
0|2] + 3t

N 2E

⎡

⎢
⎣

∫ t

0

⎛

⎝
N∑

j �=i
Fε(Xi,ε

s − Xj,ε
s )

⎞

⎠

2

ds

⎤

⎥
⎦+ 6E[|Bi

t |2]

≤ 3E[|Xi
0|2] + 3t

N
E

⎡

⎣
∫ t

0

N∑

j �=i
F2

ε (Xi,ε
s − Xj,ε

s ) ds

⎤

⎦+ 6td.

Since {(Xi,ε
t )t≥0}Ni=1 are exchangeable, one has

E[|Xi,ε
t |2] ≤ 3E[|Xi

0|2] + 3Ct
Nε2d

∫ t

0

N∑

j �=i

(
E[|Xi,ε

s |2] + E[|Xj,ε
s |2]

)
ds + 6td

≤ 3E[|Xi
0|2] + 6Ct

ε2d

∫ t

0
E[|Xi,ε

s |2] ds + 6td.

Hence by Gronwall’s lemma, one obtains (2.23).
Step 2 We prove that there exists a constant C (depending only on H1(ρ0), m2(ρ0),

‖ρ0‖
L

2d
d+2

, d, T and N ) such that for any R > 0 and small enough ε,

P(τε ≤ T ) ≤ C
R

+ P

(

inf
t∈[0,T ]

Mt∧τε > −R, sup
t∈[0,T ]

Mt∧τε ≥ 1
N

Φε(ε) − R
)

(2.24)

and split the proof into two cases.
Case1 (d ≥ 3): Using the fact Φε(x) > 0, if τε ≤ T , then Φε,N

τε
≥ 1

N Φε(ε). Combining
(2.18), one has

P(τε ≤ T ) ≤ P

(

sup
t∈[0,T ]

Φ
ε,N
t ≥ 1

N
Φε(ε)

)

=: I1. (2.25)

From (2.19), one also has

0 < Φ
ε,N
t ≤ ΦN

0 + Mt∧τε . (2.26)

Directly from (2.25) and (2.26), one has

I1 ≤ P

(

sup
t∈[0,T ]

Mt∧τε ≥ 1
N

Φε(ε) − ΦN
0

)

= P

(

inf
t∈[0,T ]

Mt∧τε ≥ −ΦN
0 , sup

t∈[0,T ]
Mt∧τε ≥ 1

N
Φε(ε) − ΦN

0

)

(2.27)

Then for any R > 0,

I1 ≤ P(−ΦN
0 ≤ −R) + P

(

inf
t∈[0,T ]

Mt∧τε > −R, sup
t∈[0,T ]

Mt∧τε ≥ 1
N

Φε(ε) − R
)

. (2.28)
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Using the Markov’s inequality to the first term of (2.28) and combining (2.25), one has

P(τε ≤ T ) ≤ E[|ΦN
0 |]

R
+ P

(

inf
t∈[0,T ]

Mt∧τε > −R, sup
t∈[0,T ]

Mt∧τε ≥ 1
N

Φε(ε) − R
)

.

(2.29)

Moreover, E[|ΦN
0 |] can be controlled by

E[|ΦN
0 |] = 〈ρN

0 , ΦN 〉 = (N − 1)
∫

R2d
ρ0(x)ρ0(y)Φ(x − y) dxdy

≤ (N − 1)C(d)‖ρ0‖2
L

2d
d+2

, (2.30)

where C(d) = 1
d(d−2)π

{
Γ (d)
Γ ( d2 )

} 2
d
, and the last inequality comes from the Hardy–

Littlewood–Sobolev inequality. Plugging (2.30) into (2.29) gives (2.24) for d ≥ 3.
Case2 (d = 2): For small enough ε, using the fact that Φε(x) = − 1

2π ln |x| + Φε(1) >

− 1
2π |x| for any |x| ≥ ε by (iv) in Lemma 2.1, one has

Φε,N
τε

≥ 1
N

Φε(ε) − 1
π

N∑

i=1
|Xi,ε

τε
| ≥ 1

N
Φε(ε) − 1

π

N∑

i=1
sup

t∈[0,T ]
|Xi,ε

t | if τε ≤ T. (2.31)

Combining (2.18), one has

P(τε ≤ T ) ≤ P

(

sup
t∈[0,T ]

Φ
ε,N
t ≥ 1

N
Φε(ε) − 1

π

N∑

i=1
sup

t∈[0,T ]
|Xi,ε

t |
)

=: I2. (2.32)

From (2.19) and the fact thatΦε(x) > − 1
2π |x| for any |x| ≥ ε and small enough ε, one also

has

− 1
π

N∑

i=1

∣
∣
∣Xi,ε

t∧τε

∣
∣
∣ < Φ

ε,N
t ≤ ΦN

0 + Mt∧τε . (2.33)

Denote Y := ΦN
0 + 1

π

∑N
i=1 supt∈[0,T ] |Xi,ε

t |. From (2.33), one has

I2 ≤ P

(

sup
t∈[0,T ]

Mt∧τε ≥ 1
N

Φε(ε) − ΦN
0 − 1

π

N∑

i=1
sup

t∈[0,T ]
|Xi,ε

t |
)

= P

(

inf
t∈[0,T ]

Mt∧τε ≥ −ΦN
0 − inf

t∈[0,T ]

{
1
π

N∑

i=1

∣
∣
∣Xi,ε

t∧τε

∣
∣
∣

}

, sup
t∈[0,T ]

Mt∧τε ≥ 1
N

Φε(ε) − Y
)

.

(2.34)

Combining (2.34) and (2.32), for any R > 0, one has

P(τε ≤ T )

≤ P

(

inf
t∈[0,T ]

Mt∧τε ≥ −ΦN
0 − inf

t∈[0,T ]

{
1
π

N∑

i=1

∣
∣
∣Xi,ε

t∧τε

∣
∣
∣

}

, sup
t∈[0,T ]

Mt∧τε ≥ 1
N

Φε(ε) − Y
)

≤ P

(

inf
t∈[0,T ]

Mt∧τε ≥ −Y, sup
t∈[0,T ]

Mt∧τε ≥ 1
N

Φε(ε) − Y
)

≤ P(−Y ≤ −R) + P

(

inf
t∈[0,T ]

Mt∧τε > −R, sup
t∈[0,T ]

Mt∧τε ≥ 1
N

Φε(ε) − R
)

. (2.35)
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The first term of (2.35) is given by the Markov’s inequality

P(−Y ≤ −R) ≤
E

[∣∣
∣ΦN

0 + 1
π

∑N
i=1 supt∈[0,T ] |Xi,ε

t |
∣
∣
∣
]

R

≤
E[|ΦN

0 |] + 1
π

∑N
i=1 E

[
supt∈[0,T ] |Xi,ε

t |
]

R
. (2.36)

Therefore we need to evaluate E[supt∈[0,T ] |Xi,ε
t |].

E

[

sup
t∈[0,T ]

|Xi,ε
t |
]

≤
{

E

[

sup
t∈[0,T ]

|Xi,ε
t |2

]} 1
2

. (2.37)

By the Itô formula, one has

d|Xi,ε
t |2 = 2Xi,ε

t ·
⎛

⎝ 1
N

N∑

j �=i
Fε(Xi,ε

t − Xj,ε
t ) dt + √

2 dBi
t

⎞

⎠+ 4td. (2.38)

Since x · Fε(x) = x · F (x)g( |x|
ε
) = 1

2π g(
|x|
ε
) ≤ 1

2π by Lemma 2.1, then
∑N

i=1 2X
i,ε
t ·(

1
N
∑N

j �=i Fε(Xi,ε
t − Xj,ε

t )
)

= 1
N
∑N

i,j=1
i �=j

Φ(xi − xj)(Xi,ε
t − Xj,ε

t ) · Fε(Xi,ε
t − Xj,ε

t ) ≤ N−1
2π .

Summing (2.38) and integrating in time, one has
N∑

i=1
|Xi,ε

t |2 ≤
N∑

i=1
|Xi

0|2 +
(

4 + 1
2π

)

Nt + 2
√
2

N∑

i=1

∫ t

0
Xi,ε
s · dBi

s. (2.39)

Taking expectation, one has

E

[

sup
r∈[0,t]

|Xi,ε
r |2

]

≤ E

[

sup
r∈[0,t]

( N∑

i=1
|Xi,ε

r |2
)]

≤
N∑

i=1
E[|Xi

0|2] +
(

4 + 1
2π

)

Nt

+ 2
√
2E
[

sup
r∈[0,t]

∣
∣
∣
∣
∣

N∑

i=1

∫ r

0
Xi,ε
s · dBi

s

∣
∣
∣
∣
∣

]

≤
N∑

i=1
E[|Xi

0|2] +
(

4 + 1
2π

)

Nt

+ 2
√
2

⎛

⎝E

⎡

⎣ sup
r∈[0,t]

∣
∣
∣
∣
∣

N∑

i=1

∫ r

0
Xi,ε
s · dBi

s

∣
∣
∣
∣
∣

2⎤

⎦

⎞

⎠

1
2

. (2.40)

From (2.23),
(∑N

i=1
∫ t
0 X

i,ε
s · dBi

s

)

0≤t≤T
is a martingale w.r.t. the filtration generated by

the Brownian motions {(Bi
t )t≥0}Ni=1. Then using the Doob’s inequality for martingale [10,

see p. 203, Theorem 7.31], one has

E

⎡

⎣ sup
r∈[0,t]

∣
∣
∣
∣
∣

N∑

i=1

∫ r

0
Xi,ε
s · dBi

s

∣
∣
∣
∣
∣

2⎤

⎦ ≤ 4E

⎡

⎣

∣
∣
∣
∣
∣

N∑

i=1

∫ t

0
Xi,ε
s · dBi

s

∣
∣
∣
∣
∣

2⎤

⎦ . (2.41)

Combining the exchangeability of {(Xi,ε
t )t≥0}Ni=1, we obtain that

E

⎡

⎣

∣
∣
∣
∣
∣

N∑

i=1

∫ t

0
Xi,ε
s · dBi

s

∣
∣
∣
∣
∣

2⎤

⎦ = E

[ N∑

i=1

∫ t

0
|Xi,ε

s |2 ds
]

= NE

[∫ t

0
|Xi,ε

s |2 ds
]

≤ NE

[∫ t

0
sup
r∈[0,s]

|Xi,ε
r |2 ds

]

. (2.42)
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Combining (2.40), (2.41) and (2.42) together, one has

E

[

sup
r∈[0,t]

|Xi,ε
r |2

]

≤
N∑

i=1
E[|Xi

0|2] +
(

4 + 1
2π

)

Nt

+ 4
√
2N

(∫ t

0
E

[

sup
r∈[0,s]

|Xi,ε
r |2

]

ds
) 1

2

≤
N∑

i=1
E[|Xi

0|2] +
(

4 + 1
2π

)

Nt

+ 8N +
∫ t

0
E

[

sup
r∈[0,s]

|Xi,ε
r |2

]

ds. (2.43)

By Gronwall’s lemma, one has

E

[

sup
t∈[0,T ]

|Xi,ε
t |2

]

≤ C(T,N ). (2.44)

Plugging (2.44) into (2.36), one has

P(−Y ≤ −R) ≤ E[|ΦN
0 |] + NC(T,N )

π

R
. (2.45)

Plugging (2.45) into (2.35), one has

P(τε ≤ T ) ≤ E[|ΦN
0 |] + NC(T,N )

π

R

+P

(

inf
t∈[0,T ]

Mt∧τε > −R, sup
t∈[0,T ]

Mt∧τε ≥ 1
N

Φε(ε) − R
)

. (2.46)

For E[|ΦN
0 |] = N−1

2π
∫
R2d ρ0(x)ρ0(y)| ln |x − y|| dx dy, using the logarithmic Hardy–

Littlewood–Sobolev inequality (see [21, p. 173, Lemma 6.8]), one has

H1(ρ0) + 2
∫

R2d
ρ0(x)ρ0(y) ln |x − y| dx dy ≥ −1 − ln π . (2.47)

On the other hand,
∫

R2d
ρ0(x)ρ0(y) ln |x − y| dx dy ≤

∫

R2d
ρ0(x)ρ0(y)(x2 + y2) dx dy = 2m2(ρ0). (2.48)

Combining (2.47) and (2.48), one knows that E[|ΦN
0 |] can be controlled by H1(ρ0) and

m2(ρ0). Thus (2.24) holds for d = 2.
Step 3 Setting Ta := inf{t ≥ 0,Mt∧τε = a}. Then from this definition, for small

enough ε such that Φε(ε) > R, one directly has

P

(

inf
t∈[0,T ]

Mt∧τε > −R, sup
t∈[0,T ]

Mt∧τε ≥ 1
N

Φε(ε) − R
)

≤ P

(
T 1

N Φε(ε)−R ≤ T < T−R
)

≤ P

(
T 1

N Φε(ε)−R ≤ T−R
)
.

(2.49)

Using the classical results on martingale [2, see p. 395, Theorem 5.3], one has

P(T 1
N Φε(ε)−R ≤ T−R) = 1 − P(T−R < T 1

N Φε(ε)−R) = NR
Φε(ε)

. (2.50)

Combining (2.24), (2.49) and (2.50) together, we have

P(τε ≤ T ) ≤ C
R

+ NR
Φε(ε)

. (2.51)
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Taking R2 = Φε(ε) and letting ε → 0 in the above inequality, combining the fact
Φε(ε)

ε→0+−−−→ +∞ by (iv) in Lemma 2.1, one obtains (2.16) immediately.
Below, we define {(Xi

t )t≥0}Ni=1 as a limit of {(Xi,ε
t )t≥0}Ni=1 and show that it is the unique

strong solution to (1.1).
Since τε is decreasing with respect to ε, (2.16) implies that

P( lim
ε→0

τε > T ) = lim
ε→0

P(τε > T ) = 1. (2.52)

In other words, for a.s. ω ∈ �, there exists a ε0(ω) such that if ε ≤ ε0(ω),

τε(ω) ≥ T.

Since Fε(x) = F (x) for any |x| ≥ ε and |Xi,ε
t − Xj,ε

t | > ε for t ∈ [0, T ], we know that
{(Xi,ε

t )t≥0}Ni=1 satisfies the following equation on t ∈ [0, T ],

Xi,ε
t (ω) = Xi

0(ω) + 1
N

N∑

j �=i

∫ t

0
F (Xi,ε

s (ω) − Xj,ε
s (ω)) ds + √

2Bi
t (ω), i = 1, . . . , N.

(2.53)

Since F (x) is Lipschitz continuous in {x ∈ R
d, |x| > ε}, using the uniqueness of the above

ODE, then the solution on t ∈ [0, T ] is unique, i.e.,

Xi,ε
t (ω) ≡ Xi,ε0

t (ω) for any ε ≤ ε0, t ≤ T, i = 1, . . . , N. (2.54)

If we define Xi
t := limε→0 Xi,ε

t , then Xi
t is exactly the unique strong solution to (1.1) on

t ∈ [0, T ]. Since T is arbitrary, the global existence and uniqueness of strong solution to
the system (1.1) can be achieved immediately. ��

2.2 A uniform priori estimates for the density of N-interacting particle system

First, we start from the regularized system of (1.1) to achieve the uniform estimates of
entropy and the secondmoments. Notice that the sign of F is crucially used in this section.
For example, we used the positivity of Jε to prove (2.55), (2.56) and (2.70).

Lemma 2.2 Let {(Xi,ε
t )t≥0}Ni=1 be the unique strong solution to (2.14) and (f N,εt )t≥0 be its

joint time marginal distribution with density (ρN,ε
t )t≥0. We have the uniform estimates for

entropy:

HN (f N,εt ) +
∫ t

0
IN (f N,εs ) ds ≤ H1(f0) for d ≥ 2, (2.55)

〈
ρ
N,ε
t , ΦN,ε

〉
+ 1

2

∫ t

0

〈
ρN,ε
s , |∇ΦN,ε|2

〉
ds ≤ (N − 1)C(d)‖ρ0‖2

L
2d
d+2

for d ≥ 3,

(2.56)

where ΦN,ε(x) = 1
N
∑N

i,j=1
i �=j

Φ(xi − xj)Φε(xi − xj), C(d) = 1
d(d−2)π

{
Γ (d)
Γ ( d2 )

} 2
d
. We also have

the second moment estimates:

sup
1≤i≤N

E[|Xi,ε
t |2] ≤

⎧
⎪⎪⎨

⎪⎪⎩

m2(ρ0) +
(

4 + 1
2π

)

t if d = 2,

3m2(ρ0) + 3t
2
C(d)‖ρ0‖2

L
2d
d+2

+ 6td if d ≥ 3.
(2.57)
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Proof Denote by XN,ε
t = (X1,ε

t , . . . , XN,ε
t ). For any ϕ ∈ C2

b (R
Nd), applying the Itô formula

one deduces that

ϕ(XN,ε
t ) = ϕ(XN,ε

0 ) +
∫ t

0

1
N

N∑

i,j=1
i �=j

Fε(Xi,ε
s − Xj,ε

s ) · ∇xiϕ(X
N,ε
s ) ds

+√
2

N∑

i=1

∫ t

0
∇xiϕ(X

N,ε
s ) · dBi

s +
∫ t

0
�ϕ(XN,ε

s ) ds.

Taking expectation, one has

∫

RNd
ϕρ

N,ε
t dX =

∫

RNd
ϕρN

0 dX +
∫ t

0

∫

RNd

⎛

⎜
⎜
⎜
⎝

1
N

N∑

i,j=1
i �=j

Fε(xi − xj) · ∇xiϕ

⎞

⎟
⎟
⎟
⎠

ρN,ε
s dXds

+
∫ t

0

∫

RNd
�ϕρN,ε

s dXds.

Thus ρ
N,ε
t is a classical positive solution to

∂tρ
N,ε
t = 1

2
∇ · (ρN,ε

t ∇ΦN,ε) + �ρ
N,ε
t , t > 0, (2.58)

where ΦN,ε(x) = 1
N
∑N

i,j=1
i �=j

Φ(xi − xj)Φε(xi − xj).

We compute the entropy:
d
dt

HN (f N,εt ) = 1
N

∫

RNd
(1 + ln ρ

N,ε
t )∂tρN,ε

t dX

= 1
2N

∫

RNd
(1 + ln ρ

N,ε
t )∇ · (ρN,ε

t ∇ΦN,ε) dX + 1
N

∫

RNd
(1 + ln ρ

N,ε
t )�ρ

N,ε
t dX

= − 1
2N

∫

RNd
∇ΦN,ε · ∇ρ

N,ε
t dX − IN (f N,εt )

= − 1
N 2

∫

RNd

N∑

i,j=1
i �=j

Jε(xi − xj)ρN,ε
t dX − IN (f N,εt ). (2.59)

By the fact Jε(xi − xj) ≥ 0 in Lemma 2.1 and the symmetry of ρN,ε
t , one has

HN (f N,εt ) +
∫ t

0
IN (f N,εs ) ds + N − 1

N

∫ t

0

∫

R2d
Jε(x1 − x2)ρ(2),N,ε

s (x1, x2) dx1dx2ds

= HN (f N0 ) (2.60)

where ρ
(2),N,ε
s is the second marginal density. Since {Xi

0}Ni=1 are i.i.d. with common dis-
tribution f0, one has HN (f N0 ) = H1(f0). Then combining the positivity of Jε , (2.55) is
obtained.
Next, multiplying (2.58) with ΦN,ε(x) and integrating, one has

d
dt

〈
ρ
N,ε
t , ΦN,ε

〉
=
〈
1
2
∇ · (ρN,ε

t ∇ΦN,ε) + �ρ
N,ε
t , ΦN,ε

〉

= −
〈

ρ
N,ε
t ,

1
2
|∇ΦN,ε|2

〉

−
〈

ρ
N,ε
t ,

2
N

N∑

i,j=1
i �=j

Jε(xi − xj)
〉

. (2.61)
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When d ≥ 3, combining the positivity of Jε and (2.30), one has
〈
ρ
N,ε
t , ΦN,ε

〉
+ 1

2

∫ t

0

〈
ρN,ε
s , |∇ΦN,ε|2

〉
ds

≤ −
∫ t

0

〈

ρN,ε
s ,

2
N

N∑

i,j=1
i �=j

Jε(xi − xj)
〉

ds +
〈
ρN
0 , ΦN

〉

≤
〈
ρN
0 , ΦN

〉
≤ (N − 1)C(d)‖ρ0‖2

L
2d
d+2

, (2.62)

which means (2.56) is true.
Finally, we prove the secondmoment estimates. Combining the fact that

(∑N
i=1
∫ t
0 X

i,ε
s ·

dBi
s
)
t≥0 is a martingale and taking expectation of (2.39), one has

E

[ N∑

i=1

∣
∣
∣Xi,ε

t

∣
∣
∣
2
]

≤ E

[ N∑

i=1
|Xi

0|2
]

+
(

4 + 1
2π

)

Nt for d = 2. (2.63)

Since {Xi
0}Ni=1 are i.i.d. with common density ρ0, one has 1

N E[
∑N

i=1 |Xi
0|2] = m2(ρ0).

Combining the fact that {(Xi,ε
t )t≥0}Ni=1 are exchangeable, one obtains the second moment

estimates for two dimension.
For d ≥ 3, since

Xi,ε
t = Xi

0 + 1
N

∫ t

0

N∑

j �=i
Fε(Xi,ε

s − Xj,ε
s ) ds + √

2Bi
t , for i = 1, . . . , N, (2.64)

then

|Xi,ε
t |2 ≤ 3|Xi

0|2 + 3t
N 2

∫ T

0

⎛

⎝
N∑

j �=i
Fε(Xi,ε

s − Xj,ε
s )

⎞

⎠

2

ds + 6|Bi
t |2. (2.65)

By the exchangeability of {(Xi,ε
t )t≥0}Ni=1, one has

E

⎡

⎢
⎣

1
N 2

∫ T

0

⎛

⎝
N∑

j �=i
Fε(Xi,ε

s − Xj,ε
s )

⎞

⎠

2

ds

⎤

⎥
⎦

=
∫ T

0
E

⎡

⎢
⎢
⎢
⎣

1
N 3

N∑

i=1

⎛

⎜
⎜
⎜
⎝

N∑

j=1
j �=i

Fε(Xi,ε
t − Xj,ε

t )

⎞

⎟
⎟
⎟
⎠

2⎤

⎥
⎥
⎥
⎦

dt

=
∫ T

0

〈

ρ
N,ε
t ,

1
N 3

N∑

i=1

⎛

⎜
⎜
⎜
⎝

N∑

j=1
j �=i

Fε(xi − xj)

⎞

⎟
⎟
⎟
⎠

2
〉

dt (2.66)

Using the identity:
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|∇ΦN,ε|2 =
N∑

i=1
|∂iΦN,ε|2 = 4

N 2

N∑

i=1

⎛

⎜
⎜
⎜
⎝

N∑

j=1
j �=i

Fε(xi − xj)

⎞

⎟
⎟
⎟
⎠

2

, (2.67)

and combining (2.56), one has

∫ T

0

〈

ρ
N,ε
t ,

1
N 3

N∑

i=1

⎛

⎜
⎜
⎜
⎝

N∑

j=1
j �=i

Fε(xi − xj)

⎞

⎟
⎟
⎟
⎠

2
〉

dt = 1
N

∫ T

0

〈

ρ
N,ε
t ,

1
4
|∇ΦN,ε|2

〉

dt

≤ 1
2
C(d)‖ρ0‖2

L
2d
d+2

. (2.68)

Taking expectation of (2.65), using the fact E[|Bi
t |2] = td and combining (2.66), (2.68),

one has

E

[
|Xi,ε

t |2
]

≤ 3m2(ρ0) + 3t
2
C(d)‖ρ0‖2

L
2d
d+2

+ 6td. (2.69)

Combining (2.63) and (2.69) together, one obtains (2.57). ��
Starting from the regularized system of (1.1), we also have a uniform priori regularity
estimates.

Lemma 2.3 Let {(Xi,ε
t )t≥0}Ni=1 be the unique strong solution to (2.14) and (ρN,ε

t )t≥0 be its
joint time marginal density. We have the uniform regularity estimates: For any d ≥ 2 and
1 < p < ∞,

sup
t∈[0,T ]

∥
∥
∥ρN,ε

t

∥
∥
∥
p

Lp(RNd )
+ 4(p − 1)

p
‖∇((ρN,ε)

p
2 )‖2L2([0,T ]×RNd ) ≤ ‖ρ0‖NpLp(Rd ), (2.70)

and there exists a constant C (depending only on T and the radius of the support of ρN,ε)
such that

‖∇ρN,ε‖2L2([0,T ]×RNd ) ≤ 1
2
‖ρ0‖2NL2(Rd ), (2.71)

‖∂tρN,ε‖2L2(0,T ;W−2,∞
loc (RNd )) ≤ C‖ρ0‖2NL2 for d = 2, 3; (2.72)

‖∂tρN,ε‖2L2(0,T ;W−1,∞
loc (RNd )) ≤ C(‖ρ0‖2NL2 + ‖ρ0‖2NLq ) for all d ≥ 4 and some q > d.

(2.73)

Proof For any p > 1, multiplying (2.58) with p(ρN,ε)p−1 and integrating, one has
d
dt

∫

RNd
(ρN,ε

t )p dX + 4(p − 1)
p

∫

RNd

∣
∣
∣∇((ρN,ε)

p
2 )
∣
∣
∣
2
dX

+p − 1
N

∫

RNd

N∑

i,j=1
i �=j

(ρN,ε)pJε(xi − xj) dX = 0. (2.74)

By the positivity of Jε , we have
∫

RNd
(ρN,ε

t )p dX + 4(p − 1)
p

∫ t

0

∫

RNd

∣
∣
∣∇
(
(ρN,ε)

p
2
)∣∣
∣
2
dXds

≤
∫

RNd

(
ρN
0

)p
dX =

(∫

Rd
ρ
p
0 dx

)N
, (2.75)
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which implies (2.70). Taking p = 2 in (2.75), then

2
∫ t

0

∫

RNd
|∇(ρN,ε)|2 dXds ≤

∫

RNd
(ρN

0 )2 dX = ‖ρ0‖2NL2(Rd ) . (2.76)

i.e., (2.71) holds. From (2.75), one also has

sup
t∈[0,T ]

‖ρN,ε
t ‖Lp(RNd ) ≤ ‖ρN

0 ‖Lp(RNd ) = ‖ρ0‖NLp(Rd ). (2.77)

For any BR ⊂ R
Nd , multiplying (2.58) with test function ϕ(x) ∈ C∞

0 (BR) and integrating
in space, one has

∫

RNd
∂tρ

N,εϕ dX =
∫

RNd
−
(
1
2
∇ΦN

ε ρN,ε + ∇ρN,ε
)

· ∇ϕ dX (2.78)

=
∫

RNd

(
1
2
ΦN

ε ∇ρN,ε · ∇ϕ + 1
2
ΦN

ε ρN,ε�ϕ − ∇ρN,ε · ∇ϕ

)

dX

(2.79)

For d = 2, 3, since ‖Φε‖Lq′ (B) is uniformly bounded in ε for any bounded domain B and
some 1 < q′ < d

d−2 , then ‖ΦN,ε‖Lq′ (B) is uniformly bounded too. Then from (2.79), one
has

∣
∣
∣
∣

∫

RNd
∂tρ

N,εϕ dX
∣
∣
∣
∣ ≤ 1

2
‖ΦN,ε‖L2

(‖∇ρN,ε‖L2‖∇ϕ‖L∞

+‖ρN,ε‖L2‖�ϕ‖L∞ ) + ‖∇ρN,ε‖L2‖∇ϕ‖L2
≤ CR(‖∇ϕ‖L∞ + ‖�ϕ‖L∞ )(‖ρN,ε‖L2 + ‖∇ρN,ε‖L2 ). (2.80)

For d ≥ 4, by the fact that ‖Fε‖Lq′ (B) is uniformly bounded in ε for any bounded domain
B and some 1 < q′ < d

d−1 by Lemma 2.1 (iii), then ‖∇ΦN,ε‖Lq′ (B) is uniformly bounded
too. Using (2.78), it holds that

∣
∣
∣
∣

∫

RNd
∂tρ

N,εϕ dX
∣
∣
∣
∣ ≤ 1

2
‖ρN,ε‖Lq‖∇ΦN,ε‖Lq′ ‖∇ϕ‖L∞ + ‖∇ρN,ε‖L2‖∇ϕ‖L2

≤ CR‖∇ϕ‖L∞ (‖ρN,ε‖Lq + ‖∇ρN,ε‖L2 ), (2.81)

where 1
q + 1

q′ = 1 and q > d ≥ 4. Combining (2.80) and (2.81) derives that for any
t ∈ [0, T ],

‖∂tρN,ε‖W−2,∞(BR) ≤ sup
ϕ∈C∞

0 (BR)

∣
∣
∣
∫
RNd ∂tρN,εϕ dx

∣
∣
∣

‖ϕ‖W 2,∞(BR)
≤ CR(‖ρN,ε‖L2 + ‖∇ρN,ε‖L2 )

for d = 2, 3; (2.82)

‖∂tρN,ε‖W−1,∞(BR) ≤ sup
ϕ∈C∞

0 (BR)

∣
∣
∣
∫
RNd ∂tρN,εϕ dx

∣
∣
∣

‖ϕ‖W 1,∞(BR)
≤ CR(‖ρN,ε‖Lq + ‖∇ρN,ε‖L2 )

for d ≥ 4. (2.83)

Combining (2.71), (2.77), (2.82) and (2.83) together, there exists a constant C (depending
only on T and R) such that

∫ T

0
‖∂tρN,ε‖W−2,∞(BR) dt ≤ C‖ρ0‖2NL2 for d = 2, 3; (2.84)

∫ T

0
‖∂tρN,ε‖W−1,∞(BR) dt ≤ C(‖ρ0‖2NL2 + ‖ρ0‖2NLq ) for all d ≥ 4 and some q > d,

(2.85)

which finishes the proof of (2.72) and (2.73). ��
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Next, we finish the rest proof of Theorem 2.1.

Proof (ii) of Theorem 2.1: Using the uniform estimates for the joint distribution of strong
solution to (2.14), we split into three steps to study the joint distribution of strong solution
to (1.1).
Step 1 We show that ρ

N,ε
t is relatively compact.

Combining (2.55) and (2.57), then there exists a constant C independent of ε such that
∫

RNd
ρ
N,ε
t | ln ρ

N,ε
t | dX < C for any t ∈ [0, T ]. (2.86)

Hence, it holds

lim
K→∞

∫

ρ
N,ε
t ≥K

ρ
N,ε
t dX ≤ lim

K→∞
1

lnK

∫

RNd
ρ
N,ε
t | ln ρ

N,ε
t | dX = 0, (2.87)

whichmeans that ρN,ε is uniformly integrable in L1(RNd). Combining the tightness of ρN,ε

according to (2.57) and the Dunford-Pettis theorem [22] together, we have the following
classical compactness: There exists a subsequence of {ρN,ε

t }ε>0 (without relabeling) such
that

ρ
N,ε
t ⇀ ρN

t in L1(RNd) as ε → 0. (2.88)

Step 2 We show that ρN obtained above is the unique weak solution to (2.1).
For any ϕ ∈ C∞

c (RNd), ρN,ε
t (X) satisfies the following equation:

d
dt

∫

RNd
ρN,εϕ dX = 1

N

N∑

i,j=1
i �=j

∫

RNd
∇xiϕ · Fε(xi − xj)ρN,ε dX +

∫

RNd
�ϕρN,ε dX. (2.89)

Based on the uniform estimates (2.71), (2.72), (2.73) and the Lions–Aubin lemma, there
exists a subsequence of {ρN,ε}ε>0 (without relabeling) such that for any ball BR ⊂ R

Nd ,

ρN,ε → ρN in L2
(
0, T ; L2(BR)

)
as ε → 0. (2.90)

Direct computation shows that
∣
∣
∣
∣

∫ t

0

∫

RNd
∇xiϕ · Fε(xi − xj)ρN,ε dXds −

∫ t

0

∫

RNd
∇xiϕ · F (xi − xj)ρN dXds

∣
∣
∣
∣

≤
∫ t

0

∫

RNd
|∇xiϕ|

(
|Fε(xi − xj)||ρN,ε − ρN | + |Fε(xi − xj) − F (xi − xj)|ρN

)
dXds,

(2.91)

and then
∫ t

0

∫

RNd
|∇xiϕ||Fε(xi − xj)||ρN,ε − ρN | dXds

≤ CR‖∇ϕ‖L∞‖Fε‖Lq′ (B2R)

∫ t

0
‖ρN,ε − ρN‖Lq(RNd ) ds, (2.92)

where 1
q′ + 1

q = 1, 1 < q′ < d
d−1 and d < q < r. Here r is a constant given in (ii) of

Theorem 2.1. Below, we estimate
∫ t
0 ‖ρN,ε − ρN‖Lq ds. Since supt∈[0,T ] ‖ρN,ε‖Lr ≤ ‖ρ0‖NLr

for any r > d by (2.70), then supt∈[0,T ] ‖ρN‖Lr ≤ ‖ρ0‖NLr . By the interpolation inequality,
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for any 2 ≤ d < q < r,
∫ t

0
‖ρN,ε − ρN‖Lq ds ≤

∫ t

0
‖ρN,ε − ρN‖θ

Lr‖ρN,ε − ρN‖1−θ

L2 ds

≤ 2θ‖ρ0‖θN
Lr (Rd )

∫ t

0
‖ρN,ε − ρN‖1−θ

L2 ds

≤ 2θ‖ρ0‖θN
Lr (Rd )C(T )

(∫ t

0
‖ρN,ε − ρN‖2L2 ds

) 1−θ
2

(2.93)

where θ
r + 1−θ

2 = 1
q . Since

∫ t

0

∫

RNd
|∇xiϕ||Fε(xi − xj) − F (xi − xj)|ρN dXds

≤ CR‖∇ϕ‖L∞‖Fε − F‖Lq′ (B2R)

∫ t

0
‖ρN‖Lq ds

≤ CR‖∇ϕ‖L∞‖Fε − F‖Lq′ (B2R)T‖ρ0‖NLq (2.94)

Combining (2.90), (2.91), (2.92), (2.93) and (2.94), letting ε → 0 in (2.89), one has ρN

satisfies the following equation
∫

RNd
ρN (·, t)ϕ dX =

∫

RNd
ρN
0 ϕ dX + 1

N

N∑

i,j=1
i �=j

∫ t

0

∫

RNd
∇xiϕ · F (xi − xj)ρN dXds

+
∫ t

0

∫

RNd
�ϕρN dXds. (2.95)

By F (x) = −∇Φ(x), we have
∫

RNd
ρN (·, t)ϕ dX =

∫

RNd
ρN
0 ϕ dX − 1

2

∫ t

0

∫

RNd
∇ϕ · ∇ΦNρN dXds

+
∫ t

0

∫

RNd
�ϕρN dXds. (2.96)

Combining the regularity of ρN from Lemma 2.3, we obtain that ρN is exactly a weak
solution to (2.1).
Suppose ρ̄N is another weak solution to (2.1) with the same initial data. One has

‖ρN
t − ρ̄N

t ‖22 = 1
2

∫ t

0

∫

RNd
(ρN − ρ̄N )2�ΦN dXds

− 1
2

∫ t

0
‖∇(ρN − ρ̄N )‖22 ds ≤ 0, (2.97)

which means ρN ≡ ρ̄N .
Step 3 Finally, we prove ρN

t (X) is the density of f Nt (X).
By (2.16), one has

1 = P

{

ω : lim
ε→0

sup
t∈[0,T ]

|XN,ε
t − XN

t | = 0
}

. (2.98)

It can be deduced that

XN,ε
t → XN

t a.s. for any 0 ≤ t ≤ T as ε → 0. (2.99)

Therefore,

f N,εt ⇀ f Nt narrowly. (2.100)
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From Step 1 and Step 2, we know that all the limited subsequence of {ρN,ε
t }ε>0 weakly

converges to ρN . Combining the fact df N,εt (X) = ρ
N,ε
t dX and (2.100), then df Nt (X) =

ρN
t dX . ��

Proof (iii) and (iv) of Theorem 2.1: (iv) comes from Lemma 2.3 and (2.90) by the standard
method. Now we prove (iii). Combining (2.55) and the fact that the functionals H and I
both are lower semicontinuous [4, Lemma 4.2.], one has

HN
(
f Nt
)

+
∫ t

0
IN (f Ns ) ds ≤ lim inf

ε→0

{
HN (f N,εt ) +

∫ t

0
IN (f N,εs ) ds

}

≤ H1(f0) for any d ≥ 2, (2.101)

which gives (2.2).
Recalling (2.99) and the fact inf

0≤s≤T
min
i �=j

|Xi
s−Xj

s | > 0 a.s. from the proof of (i) of Theorem

2.1, then combining (2.56) and using the Fatou’s Lemma, for d ≥ 3, one has
〈
ρN
t , ΦN

〉
+ 1

2

∫ t

0

〈
ρN
s , |∇ΦN |2

〉
ds

= E

[

ΦN (XN
t ) + 1

2

∫ t

0
|∇ΦN (XN

t )|2 ds
]

≤ lim inf
ε→0

E

[

ΦN,ε(XN,ε
t ) + 1

2

∫ t

0
|∇ΦN,ε(XN,ε

t )|2 ds
]

= lim inf
ε→0

{
〈
ρ
N,ε
t , ΦN,ε〉+ 1

2

∫ t

0

〈
ρN,ε
s , |∇ΦN,ε|2〉 ds

}

≤ (N − 1)C(d)‖ρ0‖2
L

2d
d+2

, (2.102)

which gives (2.3).
Since

E[|Xi
t |2] ≤ lim inf

ε→0
E[|Xi,ε

t |2], (2.103)

then combining (2.57), one has (2.4). We have concluded the proof of Theorem 2.1 so far.
��

3 Tightness of the empirical measures
Lemma 3.1 For any N ≥ 2 and d ≥ 2, let {(Xi,N

t )0≤t≤T }Ni=1 be the unique solution to
(1.1) with the i.i.d initial data {Xi,N

0 }Ni=1. Suppose the common density ρ0(x) ∈ L
2d
d+2 (Rd)∩

L1(Rd, (1 + |x|2)dx) and H1(ρ0) < +∞. Set μN = 1
N
∑N

i=1 δXi,N
t
, then

(i) The sequence {L(X1,N )} is tight in P(C([0, T ];Rd)).
(ii) The sequence {L(μN )} is tight in P

(
P(C([0, T ];Rd))

)
.

Proof For d = 2, we directly cite the proof of Lemma 5.2 in [4].
For d ≥ 3, in order to prove (i), it means that for fixed η > 0, T > 0, one should

find a compact subset Kη,T of C([0, T ];Rd) such that sup
N≥2

P
{
(X1,N

t )t∈[0,T ] /∈ Kη,T
} ≤ η.

Considering the particle system (1.1), for any 0 ≤ s < t ≤ T , one has

X1,N
t − X1,N

s = 1
N

∫ t

s

N∑

j �=1
F (X1,N

r − Xj,N
r ) dr + √

2(B1
t − B1

s ). (3.1)
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A direct computation shows the time regularity of the Brownian motion term:

E[
√
2|B1

t − B1
s |] ≤ √

2(E[|B1
t − B1

s |2])
1
2 = √

2d |t − s| 12 . (3.2)

The estimate for the drift term is given by

∣
∣
∣
∣
∣
∣

1
N

∫ t

s

N∑

j �=1
F (X1

r − Xj
r) dr

∣
∣
∣
∣
∣
∣
≤ (t − s)

1
2

N

⎧
⎪⎨

⎪⎩

∫ t

s

⎛

⎝
N∑

j �=1
F (X1

r − Xj
r)

⎞

⎠

2

dr

⎫
⎪⎬

⎪⎭

1
2

≤ (t − s)
1
2

N

⎧
⎪⎨

⎪⎩

∫ T

0

⎛

⎝
N∑

j �=1
F (X1

t − Xj
t )

⎞

⎠

2

dt

⎫
⎪⎬

⎪⎭

1
2

. (3.3)

Denoting UN
T := 1

N
{ ∫ T

0 (
∑N

j �=1 F (X1
t − Xj

t ))2 dt
} 1
2 , B(s, t) :=

√
2|B1t −B1s |
|t−s| 12

. Then combining

(3.1) and (3.3) together, one has for any 0 ≤ s, t ≤ T ,

|X1,N
t − X1,N

s | ≤ (t − s)
1
2 (UN

T + B(s, t)). (3.4)

By the exchangeability of {(Xi,N
t )0≤t≤T }Ni=1, one has

E[(UN
T )2] =

∫ T

0
E

⎡

⎢
⎢
⎢
⎣

1
N 3

N∑

i=1

⎛

⎜
⎜
⎜
⎝

N∑

j=1
j �=i

F (Xi
t − Xj

t )

⎞

⎟
⎟
⎟
⎠

2⎤

⎥
⎥
⎥
⎦

dt

=
∫ T

0

〈

ρN
t ,

1
N 3

N∑

i=1

⎛

⎜
⎜
⎜
⎝

N∑

j=1
j �=i

F (xi − xj)

⎞

⎟
⎟
⎟
⎠

2
〉

dt. (3.5)

Using the identity:

|∇ΦN |2 =
N∑

i=1
|∂iΦN |2 = 4

N 2

N∑

i=1

⎛

⎜
⎜
⎜
⎝

N∑

j=1
j �=i

F (xi − xj)

⎞

⎟
⎟
⎟
⎠

2

, (3.6)

and combining (2.3), one has

E[(UN
T )2] = 1

N

∫ T

0

〈

ρN
t ,

1
4
|∇ΦN |2

〉

dt ≤ 1
2
C̄(d)‖ρ0‖2

L
2d
d+2

< ∞ for d ≥ 3. (3.7)

Hence by the Markov’s inequality, combining (3.2) and (3.7), for any η > 0, one can find
a constant Rη > 0 (depending only on d and ‖ρ0‖

L
2d
d+2

) such that

sup
N≥2

P
{
UN
T + B(s, t) ≥ Rη

} ≤ E
[
UN
T + B(s, t)

]

Rη

≤ η

2
. (3.8)

Since E[|X1,N
0 |2] < ∞, then one can find a constant aη > 0 (depending only on m2(ρ0))

such that

sup
N≥2

P
{∣∣X1,N

0
∣
∣ > aη

} ≤ η

2
. (3.9)
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Now we construct the following set

Kη,T := {
X ∈ C([0, T ];Rd), |X0| ≤ aη , |Xt − Xs| ≤ Rη(t − s)

1
2 ,

∀ 0 ≤ s < t ≤ T, d ≥ 3
}
,

which is a compact subset ofC([0, T ];Rd) by Ascoli’s theorem. Combining (3.4), (3.8) and
(3.9), one has

sup
N≥2

P
{
(X1,N

t )t∈[0,T ] /∈ Kη,T
}

≤ sup
N≥2

P
{|X1,N

0 | > aη

}+ sup
N≥2

P
{|X1,N

t − X1,N
s | > Rη(t − s)

1
2
}

≤ sup
N≥2

P
{|X1,N

0 | > aη

}+ sup
N≥2

P
{
B(s, t) + UN

T > Rη

} ≤ η, (3.10)

which finishes the proof of (i). (ii) follows from the exchangeability of {(Xi,N
t )0≤t≤T }Ni=1,

see [23, Proposition 2.2] or [15, Lemma 4.5].

From the tightness of {L(μN )} in P
(
P(C([0, T ];Rd))

)
by Lemma 3.1, one has that there

exists a subsequence ofμN ∈ P(C([0, T ];Rd)) (without relabeling) and a randommeasure
μ ∈ P(C([0, T ];Rd)) such that

μN → μ in law as N → ∞. (3.11)

Next, we prove that the limited measure-valued process μ has a density a.s..

Lemma 3.2 For any N ≥ 2 and d ≥ 2, let {(Xi,N
t )t≥0}Ni=1 be the unique strong solution to

(1.1) with the i.i.d. initial data {Xi,N
0 }Ni=1 such that L(Xi,N

0 ) = f0, df0 = ρ0(x) dx. Denote by
(f Nt )t≥0 the joint timemarginal distribution of {(Xi,N

t )t≥0}Ni=1 and f
(j),N
t be the j-thmarginal

of f Nt for any j ≥ 1. If ρ0(x) ∈ L
2d
d+2 (Rd) ∩ L1(Rd, (1 + |x|2) dx) and H1(ρ0) < +∞, then

(i) f (j),Nt has a density ρ
(j),N
t and there exists a subsequence ρ

(j),N
t (without relabeling)

weakly converging to ρj in L1(Rdj) as N → ∞ with the following regularity:

Hj(f
j
t ) +

∫ t

0
Ij(f

j
s ) ds ≤ H1(f0),

∫

Rdj
|x|2ρj

t (x) dx < ∞, (3.12)

where df jt = ρ
j
t dx.

(ii) The limited measure-valued process (μt )t≥0 of the subsequence processes μN =
1
N
∑N

i=1 δXi,N
t

(without relabeling) has a density (ρt )t≥0 a.s.. At time t = 0, ρt takes
the initial density ρ0.

Proof Step 1 By Theorem 2.1, we know that f Nt has a density ρN
t satisfying the entropy

inequality (2.2). Then f (j),Nt also has a density ρ
(j),N
t . Combining (2.2) and Lemma 3.3 in

[7], one has

Hj(f
(j),N
t ) +

∫ t

0
Ij(f

(j),N
s ) ds ≤ HN (f Nt ) +

∫ t

0
IN (f Ns ) ds ≤ H1(f0) < ∞. (3.13)

Combining (2.4) and the exchangeability of {(Xi,N
t )t≥0}Ni=1, one has∫

Rdj
|x|2ρ(j),N

t (x) dx = jE[|X1
t |2] < ∞. (3.14)

Similarly with (2.87), one has the following uniformly integrable property of ρ(j),N in
L1(Rdj),

lim
K→∞

∫

ρ(j),N≥K
ρ(j),N dx ≤ lim

K→∞
1

lnK

∫

Rdj
ρ(j),N | ln ρ(j),N | dx = 0. (3.15)
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And then using the Dunford-Pettis theorem, there exists a subsequence of ρ(j),N
t (without

relabeling) and ρ
j
t ∈ L1(Rdj) such that

ρ
(j),N
t ⇀ ρ

j
t in L1(Rdj) weakly as N → ∞, (3.16)

and ρ
j
t satisfies (3.12).

Combining
∫
Rdj ρ

(j),N
t dx ≡ 1, we also obtain that

∫

Rdj
ρ
j
t (x) dx ≡ 1. (3.17)

Then combining (3.16) and (3.17), one has
∫

Rdj
ϕ(x)ρ(j),N

t (x) dx N→∞−−−−→
∫

Rdj
ϕ(x)ρj

t (x) dx for any ϕ ∈ Cb(Rdj). (3.18)

Step 2 For any ϕ ∈ Cb(Rdj), we show that

E [〈ϕ,μt ⊗ · · · ⊗ μt〉] =
∫

Rdj
ϕρ

j
t dx. (3.19)

Define I j,Nt := E
[〈ϕ,μN

t ⊗ · · · ⊗ μN
t 〉] = E

[
1
Nj
∑N

i1 ,...,ij=1 ϕ(Xi1 ,N
t , . . . , Xij ,N

t )
]
, then by

the exchangeability of {(Xi,N
t )t≥0}Ni=1, we have

I j,Nt = 1
Nj

N∑

i1 ,...,ij=1
ik �=i�

E

[
ϕ
(
Xi1 ,N
t , . . . , Xij ,N

t

)]

+ 1
Nj

N∑

i1 ,...,ij=1
ik=i� for some k �=�

E

[
ϕ
(
Xi1 ,N
t , . . . , Xij ,N

t

)]

=: I1 + I2. (3.20)

By (3.18), one has

I1 = N !
(N − j)!NjE[ϕ(X

1,N
t , . . . , Xj,N

t )] →
∫

Rdj
ϕρ

j
t dx as N → ∞. (3.21)

Since |ϕ| ≤ C , one also has

|I2| ≤ CC2
j N

j−1

Nj → 0 as N → ∞. (3.22)

Let N → ∞ in (3.20) and combining (3.21), (3.22), there exists a subsequence of I j,Nt
(without relabeling) such that

I j,Nt →
∫

Rdj
ϕρ

j
t dx as N → ∞. (3.23)

On the other hand, for any ϕ ∈ Cb(Rdj) andm ∈ P(Rd), define�(m) := 〈ϕ, m⊗· · ·⊗m〉.
By induction from (4.20) below in Lemma 4.4, one can deduce that � ∈ Cb(P(Rd)). Since
μN
t → μt in law as N → ∞, then

I j,Nt → E [〈ϕ,μt ⊗ · · · ⊗ μt〉] as N → ∞. (3.24)

Combining (3.23) and (3.24), we obtain (3.19).
Step 3 Now we prove that μt has a density ρt a.s. for any time t ≥ 0.
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By strong law of large numbers, for any ϕ ∈ Cb(Rd), one has

a.s. w.r.t (�,F ,P) 〈μN
0 ,ϕ〉 → 〈f0,ϕ〉 as N → ∞. (3.25)

Since 〈μN
0 ,ϕ〉 is uniformly bounded a.s., then

E[|〈μN
0 − f0,ϕ〉|] → 0 as N → ∞, (3.26)

which implies thatμN
0 converges in law to the constant random variable f0 by Proposition

3.3. in [14]. Since ρ0 is the density of f0, then μ0 = f0 has a density ρ0.
For t > 0, letπt = L(μt ) ∈ P

(
P(Rd)

)
anddefine the projectionπ

j
t = ∫

P(Rd ) g
⊗j πt (dg) ∈

P(Rdj) for any j ≥ 1 in the following sense

∀ϕ ∈ Cb(Rdj), 〈π j
t ,ϕ〉 :=

∫

g∈P(Rd )

∫

Rdj
ϕ(X) g⊗j(dX)πt (dg).

Then E [〈ϕ,μt ⊗ · · · ⊗ μt〉] = 〈π j
t ,ϕ〉. From Step 2, we know that f (j),Nt narrowly con-

verges to π
j
t as N → ∞ for all j ≥ 1. Then combining the uniform estimates (2.4) and

applying Theorem 4.1 in [4] (a refined version of the de Finetti–Hewitt–Savage theorem),
μt has a density denoted by ρt a.s. such that

E[H1(μt )] =
∫

P(Rd )
H1(g)πt (dg) = sup

j≥1
Hj(π

j
t ) ≤ lim inf

N→∞ HN (f Nt ) < ∞, (3.27)

E[I1(μt )] =
∫

P(Rd )
I1(g)πt (dg) = sup

j≥1
Ij(π

j
t ) ≤ lim inf

N→∞ IN (f Nt ) (3.28)

where the last inequality of (3.27) comes from (2.2) and (2.4).

4 The self-consistent martingale problem
As a preparatory work, recalling directly from the definition of time marginal law and
the probability measure on the path space for a stochastic process, we have the following
lemma.

Lemma 4.1 Let (Xt )0≤t≤T ∈ C([0, T ];Rd) be a stochastic process, μ ∈ P(C([0, T ];Rd))
be the law of (Xt ), and μt (x) be the time marginal law of (Xt ) on the space Rd. Then for
any ψ ∈ Cb(Rd) and t ∈ [0, T ],

∫

C([0,T ];Rd )
ψ(Xt ) dμ(X) =

∫

Rd
ψ(x) dμt (x).

The following lemma gives a standard method of checking a stochastic process to be a
solution to the martingale problem in Definition 1, and it is stated in [3, p. 174] without a
proof. For completeness, we give a detail proof below.

Lemma 4.2 A probability measure μ ∈ P(C([0, T ];Rd)) with time marginal μ0 at t = 0,
endowed with a μ-distributed canonical process (Xt )0≤t≤T ∈ C([0, T ];Rd), is a solution
to the

(
g, C2

b (R
d)
)
-self-consistent martingale problem with the initial distribution μ0 in

Definition 1 if and only if

E

[ n∏

k=1
hk (Xtk )

(

ϕ(Xt ) − ϕ(Xtn ) −
∫ t

tn
g(Xr,L(Xr )) dr

)]

= 0 (4.1)

for all ϕ ∈ C2
b (R

d), whenever 0 ≤ t1 < · · · < tn < t ≤ T, h1, . . . , hn ∈ B(Rd) (or
equivalently h1, . . . , hn ∈ Cb(Rd) ), where B(Rd) is the space of bounded Borel measurable
functions.
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Proof (i) If (Xt )0≤t≤T is a solution to the (g, C2
b (R

d))-self-consistent martingale prob-
lem with the initial distribution μ0 in Definition 1, i.e., let Mt = ϕ(Xt ) − ϕ(X0) −
∫ t
0 g(Xr,L(Xr)) dr, then (Mt )0≤t≤T is a martingale w.r.t. the filtration {Bt}0≤t≤T , and
then

E

[ n∏

k=1
hk (Xtk )

(

ϕ(Xt ) − ϕ(Xtn ) −
∫ t

tn
g(Xr,L(Xr )) dr

)]

= E

[

E

[ n∏

k=1
hk (Xtk )

(

ϕ(Xt ) − ϕ(Xtn ) −
∫ t

tn
g(Xr,L(Xr )) dr

) ∣∣
∣
∣Btn

]]

= E

[ n∏

k=1
hk (Xtk )E

[(Mt − Mtn
) |Btn

]
]

= 0, (4.2)

where the first and second equalities come from Theorem B.2. b) and e) in [17], respec-
tively.
(ii) By the definition of martingale, in order to prove (Mt )0≤t≤T is a martingale w.r.t.

the filtration {Bt}0≤t≤T , one need to show that for any 0 < s < t ≤ T ,

E[(Mt − Ms)|Bs] = 0. (4.3)

For any 0 ≤ t1 < · · · < tn = s < t ≤ T and Ak ∈ B(Rd) (k = 1, . . . , n), taking
{hk (x)}nk=1 as n indicator functions {1(x∈Ak )}nk=1, then h1, . . . , hn ∈ B(Rd). If (4.1) holds,
then

E

[ n∏

k=1
1(Xtk ∈Ak )

(

ϕ(Xt ) − ϕ(Xtn ) −
∫ t

tn
g(Xr,L(Xr )) dr

)]

= 0. (4.4)

Now we show that (4.4) implies (4.3) by the contradiction method. If (4.3) does not
hold, then there exists 0 < s < t ≤ T such that E [(Mt − Ms)|Bs] �= 0, i.e.,

μ ((Xt ) : E [(Mt − Ms)|Bs] > 0) > 0 or μ ((Xt ) : E [(Mt − Ms)|Bs] < 0) > 0.(4.5)

Without loss of generality, we assume that

μ ((Xt ) : E [(Mt − Ms)|Bs] > 0) > 0. (4.6)

Since μ ((Xt ) : E[(Mt − Ms)|Bs) ≥ 1/k]) is an increase sequence and has the following
inequality

lim
k→∞

μ ((Xt ) : E[(Mt − Ms)|Bs)] ≥ 1/k) = μ ((Xt ) : E [(Mt − Ms)|Bs] > 0) > 0,

then there is a k0 such that

μ ((Xt ) : E[(Mt − Ms)|Bs)] ≥ 1/k0) > 0.

In other words,

B := {
(Xt ) : E[(Mt − Ms)|Bs)] ≥ 1/k0

} ∈ Bs and μ(B) > 0. (4.7)

From the definition of σ -complete algebra Bs, there exists a sequence of 0 ≤ t̄1 < · · · <

t̄n = s < t ≤ T and Āk ∈ B(Rd) (k = 1, . . . , n) such that

B̃ := {(Xt ) : Xt̄k ∈ Āk , k = 1, . . . , n} ⊂ B and μ(̃B) > 0. (4.8)
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we have

E

[ n∏

k=1
1(Xt̄k

∈Āk )

(

ϕ(Xt ) − ϕ(Xt̄n ) −
∫ t

t̄n
g(Xr,L(Xr )) dr

)]

= E

[
1((Xt )∈B̃) (Mt − Ms)

]
= E

[
E[1((Xt )∈B̃) (Mt − Ms) |Bs]

]

= E

[
1((Xt )∈B̃)E [(Mt − Ms) |Bs]

]
≥ 1

k0
E[1((Xt )∈B̃)] = 1

k0
μ(̃B) > 0, (4.9)

which is a contradiction to (4.4).
By the fact that any bounded Borel measurable function can be approximated by a

sequence of bounded continuous functions and using the dominated convergence the-
orem, one knows that (4.1) holds for any h1, . . . , hn ∈ B(Rd) is equivalent for any
h1, . . . , hn ∈ Cb(Rd). ��

From Lemma 4.2, for solving the martingale problem in Definition 1, we just need to
prove (4.1). Therefore we construct a functional ψ on C([0, T ];Rd)×C([0, T ];Rd) in the
following way: For any 0 ≤ t1 < · · · < tn < t ≤ T , ϕ ∈ C2

b (R
d), h1, . . . , hn ∈ Cb(Rd),

X, Y ∈ C([0, T ];Rd), define

ψ(X, Y ) :=
n∏

k=1
hk (Xtk )

[

ϕ(Xt ) − ϕ(Xtn ) −
∫ t

tn
∇ϕ(Xs) · F (Xs − Ys) ds

−
∫ t

tn
�ϕ(Xs) ds

]

(4.10)

ψε(X, Y ) :=
n∏

k=1
hk (Xtk )

[

ϕ(Xt ) − ϕ(Xtn ) −
∫ t

tn
∇ϕ(Xs) · Fε(Xs − Ys) ds

−
∫ t

tn
�ϕ(Xs) ds

]

(4.11)

We also define a functional on P(C([0, T ];Rd)) below, for any Q ∈ P(C([0, T ];Rd)),

Kψ (Q):=
∫

C×C
ψ(X, Y )Q(dX)Q(dY ), (4.12)

then we have the following martingale estimate lemma.

Lemma 4.3 For N ≥ 2 and d ≥ 2, let
{
(Xi,N

t )t≥0
}N
i=1 be the unique solution to (1.1) with

the i.i.d. initial random variables {Xi,N
0 }Ni=1. Set μN = 1

N
∑N

i=1 δXi,N
t
, then there exists a

constant C (depending only on ‖ϕ‖C1
b (Rd ),s ‖h1‖Cb(Rd ), . . . , ‖hn‖Cb(Rd ) and T) such that

E[(Kψ (μN ))2] ≤ C
N

for all 0 < t ≤ T. (4.13)

Proof By the definition of Kψ (Q), simple computation shows that

Kψ (μN ) =
∫

C2
ψ(X, Y )μN (dX)μN (dY ) = 1

N 2

N∑

i,j=1
ψ(Xi,N

t , Xj,N
t )

= 1
N 2

N∑

i,j=1

{ n∏

k=1
hk
(
Xi,N
tk

) [
ϕ(Xi,N

t ) − ϕ(Xi,N
tn )

−
∫ t

tn
∇ϕ(Xi,N

s ) · F (Xi,N
s − Xj,N

s ) ds −
∫ t

tn
�ϕ(Xi,N

s ) ds
]}

. (4.14)
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Using the Itô formula, for any 1 ≤ i ≤ N , ϕ ∈ C2
b (R

d), one has

ϕ(Xi,N
t ) = ϕ(Xi,N

0 ) + C∗

N

N∑

j=1

∫ t

0

∇ϕ(Xi,N
s ) · (Xi,N

s − Xj,N
s )

|Xi,N
s − Xj,N

s |d
ds +

∫ t

0
�ϕ(Xi,N

s ) ds

+√
2
∫ t

0
∇ϕ(Xi,N

s ) · dBi
s. (4.15)

Plugging (4.15) into (4.14), one has

Kψ (μN ) =
√
2

N

N∑

i=1

n∏

k=1
hk (Xi,N

tk )
∫ t

tn
∇ϕ(Xi,N

s ) · dBi
s. (4.16)

Then one has

E[|Kψ (μN )|2] = 2
N 2E

⎡

⎣

∣
∣
∣
∣
∣

N∑

i=1
h1(Xi,N

t1 ) . . . hn(Xi,N
tn )

∫ t

tn
∇ϕ(Xi,N

s ) · dBi
s

∣
∣
∣
∣
∣

2⎤

⎦ . (4.17)

Denoting Mi = h1(Xi,N
t1 ) . . . hn(Xi,N

tn )
∫ t
tn ∇ϕ(Xi,N

s ) · dBi
s. Since the Brownian motions

{(Bi
t )t≥0}Ni=1 are independent, then when i �= j,

E

[
MiMj

]
= 0,

and then

E

⎡

⎣

∣
∣
∣
∣
∣

N∑

i=1
Mi

∣
∣
∣
∣
∣

2⎤

⎦ = E

[ N∑

i=1
|Mi|2

]

≤ NC, (4.18)

whereC depends only onT , ‖ϕ‖C1
b (Rd ) and ‖h1‖Cb(Rd ), . . . , ‖hn‖Cb(Rd ). Plugging (4.18) into

(4.17), one can achieve (4.13) immediately. ��

Lemma 4.4 Let E be a polish space. Assume a sequence of P(E)-valued random variables
μN converge in law to a random measure μ. For any ψ(x, y) ∈ Cb(E × E) and Q ∈ P(E),
define a functional Kψ : P(E) → R, Q �→ Kψ (Q) = ∫

E2 ψ(x, y)Q(dx)Q(dy). Then

Kψ (μN ) → Kψ (μ) in law as N → ∞. (4.19)

Proof For any Q ∈ P(E), ψ(x, y) ∈ Cb(E × E) and ϕ ∈ Cb(R), define a functional Γ :
P(E) → R, Q �→ Γ (Q) = ϕ

(Kψ (Q)
)
.We prove that

Γ ∈ Cb(P(E)). (4.20)

Here, the space P(E) is endowed with a metric induced by the narrowly convergence, and
it is a Polish space too. Note that ϕ ∈ Cb(P(E)) if and only if a sequence μN (∈ P(E))
narrowly converge to μ as N → ∞ ⇒ ϕ(μN ) converges to ϕ(μ) as N → ∞.
For any sequence QN (∈ P(E)) narrowly converge to Q, by [1, p. 23, Theorem 2.8], the

following convergence result holds,

Kψ (QN ) → Kψ (Q),

hence ϕ
(Kψ (QN )

) → ϕ
(Kψ (Q)

)
, i.e., (4.20) holds.

Since the sequence μN converges in law to μ, then

E

[
ϕ
(
Kψ (μN )

)]
→ E

[
ϕ
(Kψ (μ)

)]
as N → ∞,

which gives (4.19). ��
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Proposition 4.1 For d = 2, let
{
(Xi,N

t )0≤t≤T
}N
i=1 be the unique solution to (1.1) with the

i.i.d initial data {Xi,N
0 }Ni=1 and the common initial distribution f0 and density ρ0 satis-

fies H (ρ0) < ∞, m2(ρ0) < ∞. Suppose μ is the limited P(C([0, T ];Rd))-valued random
variable of a subsequence of empirical measures μN = 1

N
∑N

i=1 δXi,N
t
. Then there exists

a μ-distributed canonical process (Xt )0≤t≤T ∈ C([0, T ];Rd), and μ is a.s. solution to the
(
g, C2

b (R
d)
)
-self-consistent martingale problemwith the initial distribution f0 in Definition

1.

Proof SinceC([0, T ];Rd) is ametric space, then for anyμ ∈ P(C([0, T ];Rd)), there exists a
probability space

(
�̃, F̃ , P̃

)
and μ-distributed random variable (Xt )0≤t≤T ∈ C([0, T ];Rd).

One can take the probability space as (C([0, T ];Rd),B,μ) as defined in Definition 1 and
the random variable as the identity map.
For the P(C([0, T ];Rd))-valued random variable μ in the probability space (�,F ,P),

recallingMt in Definition 1, let

Mt (μ) = ϕ(Xt ) − ϕ(X0) −
∫ t

0

∫

C([0,T ];Rd )
∇ϕ(Xs) · F (Xs − Ys)μ(dY ) ds

−
∫ t

0
�ϕ(Xs) ds,

where L(X0) = f0.
To verify (Mt (μ))0≤t≤T is a martingale w.r.t. the filtration {Bt}0≤t≤T a.s. for μ in

(�,F ,P), by Lemma 4.2, one only needs to show that (4.1) holds a.s. w.r.t (�,F ,P).
Then by the definition of the function ψ in (4.10) and the functional Kψ in (4.12), (4.1)
equals the following equality

Kψ (μ) = 0 a.s. w.r.t (�,F ,P) (4.21)

holds.
Following the spirit of [4], one has

E[|Kψ (μ)|] ≤ E[|Kψ (μ) − Kψε (μ)|] + E[|Kψε (μ)|]. (4.22)

here ψε and Kψε are defined by (4.11) and (4.12).
It is obvious that ψε ∈ Cb(C([0, T ];Rd) × C([0, T ];Rd)) for any fixed ε > 0. Then

combining (3.11) and using Lemma 4.4, we obtain that

lim
N→∞E[|Kψε (μN )|] = E

[Kψε (μ)|
]
, (4.23)

Define A1(ε) = E[|Kψ (μ) − Kψε (μ)|] and A2(ε, N ) = E[|Kψε (μN )|], (4.22) equals to
E[|Kψ (μ)|] ≤ A1(ε) + lim

N→∞A2(ε, N ). (4.24)

Combining the fact |Fε(x)| ≤ |F (x)|, Fε(x) = F (x) for |x| ≥ ε by Lemma 2.1 and Lemma
4.1, there exists a constant C (depending only on d, ‖ϕ‖C1

b (Rd ), ‖h1‖Cb(Rd ), . . . , ‖hn‖Cb(Rd )
and T ) such that

A1(ε) = E

[∣∣
∣
∣
∣

∫ t

tn

∫

C×C

n∏

k=1
hk (Xtk )∇ϕ(Xs) · [Fε(Xs − Ys) − F (Xs − Ys)] μ(dX)μ(dY )ds

∣
∣
∣
∣
∣

]

≤ CE

[∫ t

tn

∫

C×C

∣
∣Fε(Xs − Ys) − F (Xs − Ys)

∣
∣ μ(dX)μ(dY )ds

]

≤ 2CE

[∫ t

tn

∫

|X−Y |≤ε

∣
∣F (X − Y )

∣
∣ μs(dX)μs(dY )ds

]

.
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Since μs has a density ρs a.s. by Lemma 3.2, then

A1(ε) ≤ CE
[∫ t

tn

∫

|X−Y |≤ε

ρs(X)ρs(Y )
|X − Y |d−1 dXdYds

]

. (4.25)

By Lemma 4.3, there exists a constant C (depending only on ‖ϕ‖C1
b (Rd ), ‖h1‖Cb(Rd ), . . . ,

‖hn‖Cb(Rd ) and T ) such that

A2(ε, N ) = E[|Kψε (μN )|] ≤ E[|Kψε (μN ) − Kψ (μN )|] + E[|Kψ (μN )|]
≤ E[|Kψε (μN ) − Kψ (μN )|] + C√

N
. (4.26)

From (4.14), one has

|Kψε (μN ) − Kψ (μN )| =
∣
∣
∣
∣
∣
∣

1
N 2

N∑

i,j=1

n∏

k=1
hk
(
Xi,N
tk

) ∫ t

tn
∇ϕ(Xi,N

s )

·
[
Fε(Xi,N

s − Xj,N
s ) − F (Xi,N

s − Xj,N
s )

]
ds

∣
∣
∣
∣
∣
∣

≤ C
N 2

N∑

i,j=1

∫ t

tn

∣
∣
∣Fε(Xi,N

s − Xj,N
s ) − F (Xi,N

s − Xj,N
s )

∣
∣
∣ ds, (4.27)

where C is a constant depending only on ‖ϕ‖C1
b (Rd ), ‖h1‖Cb(Rd ), . . . , ‖hn‖Cb(Rd ).

Then by the exchangeability of {(Xi
t )t≥0}Ni=1 and the fact |Fε(x)| ≤ |F (x)|, Fε(x) = F (x)

for |x| ≥ ε, we have

E[|Kψε (μN ) − Kψ (μN )|] ≤ C
∫ t

tn

∫

|x−y|<ε

ρ
(2),N
s (x, y)

|x − y|d−1 dx dy ds, (4.28)

When d = 2, similarly with the proof of Lemma 3.3. in [4], one obtains that
∫

|x−y|<ε

ρ
(2),N
s (x, y)
|x − y| dxdy ≤ Cε

2−q
q {I2(ρ(2),N

s )} 1
q , (4.29)

∫

|X−Y |≤ε

ρs(X)ρs(Y )
|X − Y | dXdY ≤ Cε

2−q
q {I2(ρ⊗2

s )} 1
q = Cε

2−q
q {I1(ρs)}

1
q (4.30)

where 0 < q < 2 and C is a constant depending only on q.
Plugging (4.29) and (4.30) into (4.28) and (4.25), respectively, one has

E[|Kψε (μN ) − Kψ (μN )|] ≤ Cε
2−q
q

∫ t

tn
{I2(ρ(2),N

s )} 1
q ds

≤ Cε
2−q
q
{ ∫ t

tn
I2(ρ(2),N

s ) ds
} 1

q , (4.31)

and

A1(ε) ≤ Cε
2−q
q E

[∫ t

tn
{I1(ρs)}

1
q ds

]

≤ Cε
2−q
q

{∫ t

tn
E[I1(ρs)] ds

} 1
q
. (4.32)

where C is a constant depending only on q and T .
Using (3.13) and (3.14), there exists a constant C (depending only on T , H1(f0) and

m2(ρ0)) such that
∫ t

0
I2(ρ(2),N

s ) ds ≤ C for all t ∈ [0, T ]; (4.33)
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from (3.28), one also has
∫ t

0
E[I1(ρs)] ds ≤

∫ t

0
lim inf
N→∞ IN (f Ns ) ds ≤ C for all t ∈ [0, T ]. (4.34)

Combining (4.26), (4.31) and (4.33), there exists a constant C (depending only on q, T ,
H1(f0) andm2(ρ0)) such that

A2(ε, N ) ≤ Cε
2−q
q + C√

N
for all t ∈ [0, T ], 0 < q < 2. (4.35)

Plugging (4.34) into (4.32), there exists a constant C (depending only on q, T , H1(f0) and
m2(ρ0)) such that

A1(ε) ≤ Cε
2−q
q for all t ∈ [0, T ], 0 < q < 2. (4.36)

Plugging (4.35) and (4.36) into (4.24)

E[|Kψ (μ)|] ≤ Cε
2−q
q for all t ∈ [0, T ], 0 < q < 2. (4.37)

Let ε goes to 0, one obtains that

E[|Kψ (μ)|] = 0, (4.38)

which means (4.21) holds. ��

5 Propagation of chaos for 2D
5.1 The refined hyper-contractivity and uniqueness for the mean-field

Poisson–Nernst–Planck equations 1.4

In this subsection, we prove the uniqueness of weak solution to 1.4 by the standard
semigroup method, see [12]. We use the following definition of weak solution to (1.4).

Definition 4 (Weak solution) Let the initial data ρ0(x) ∈ L1+ ∩ L
2d
d+2 (Rd) and T > 0. c is

the potential associated with ρ and is given by c(t, x) = Φ ∗ρ(t, x). We shall say that ρ(t, x)
is a weak solution to (1.4) with the initial data ρ0(x) if it satisfies:

1. Regularity:

ρ ∈ L∞ (
0, T ; L1 ∩ L

2d
d+2 (Rd)

)
, ρ

d
d+2 ∈ L2(0, T ;H1(Rd)) (5.1)

and ∂tρ ∈ Lp(0, T ;W−1,q
loc (Rd)) for some p, q ≥ 1. (5.2)

2. For all ϕ ∈ C∞
0 (Rd) and 0 < t ≤ T , the following holds,

∫

Rd
ρ(t, x)ϕ(x) dx −

∫

Rd
ρ0(x)ϕ(x) dx +

∫ t

0

∫

Rd
∇ϕ(x) · ∇ρ(s, x) dx ds

=
∫ t

0

∫

Rd

∫

Rd
ρ(s, x)ρ(s, y)F (x − y) · ∇ϕ(x) dydx ds. (5.3)

Remark 5.1 Notice that the regularity of ρ(t, x) is enough to make sense of each term in
(5.3). By the Hardy–Littlewood–Sobolev inequality, one has

∣
∣
∣
∣

∫

Rd

∫

Rd
ρ(s, x)ρ(s, y)F (x − y) · ∇ϕ(x) dy dx

∣
∣
∣
∣

= C∗

2

∣
∣
∣
∣−
∫

R2d

(ϕ(x) − ϕ(y)) · (x − y)
|x − y|2

ρ(s, x)ρ(s, y)
|x − y|d−2 dx dy

∣
∣
∣
∣

≤ C∗

2

∫

R2d

ρ(s, x)ρ(s, y)
|x − y|d−2 dx dy ≤ C(d)‖ρ(·, s)‖2

L
2d
d+2 (Rd )

. (5.4)
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Theorem 5.1 The global weak solution to (1.4) is unique if the initial data ρ0 satisfy the
following conditions

(i) m2(ρ0) < ∞ and H1(ρ0) < ∞ for d = 2;
(ii) ‖ρ0‖

L
d
2 +γ

< ∞ for any 0 < γ < 1, d ≥ 3.

Proof Follows the spirit of [12], we outline the proof briefly.
Step 1 From Eq. (1.4), for any T > 0, there is a uniform in time bound estimates:

sup
t∈[0,T ]

H (ρt ) ≤ H (ρ0), sup
t∈[0,T ]

m2(ρt ) ≤ C(T, d,m2(ρ0)), sup
t∈[0,T ]

‖ρt‖Lp ≤ ‖ρ0‖Lp .

There, one has the following estimates:

sup
t∈[0,T ]

∫

R2
ρ(t, x)| ln ρ(t, x)| dx ≤ C(T,m2(ρ0), H1(ρ0)) (5.5)

and sup
t∈[0,T ]

‖ρ(t, ·)‖
L
d
2 +γ

≤ ‖ρ0‖
L
d
2 +γ

for any d ≥ 3. (5.6)

Step 2 For any fixed T > 0, 0 < γ < 1, by (5.5) and (5.6), the refined hyper-
contractivity holds,

tq−1| ln t|1−γ ‖ρ(·, t)‖qLq ≤ C(d, q, T,m2(ρ0), H1(ρ0))

for any t ∈ (0, 1], q ≥ 1, d = 2; (5.7)

tq− d
2 − 2γ q

d+2γ ‖ρ(·, t)‖qLq ≤ C(d, q, T, ‖ρ0‖
L
d
2 +γ

)

for any t ∈ (0, T ], q ≥ d
2

+ γ , d ≥ 3. (5.8)

Combining the above properties of refined hyper-contractivity with the standard semi-
group theory, one can prove that there exists a time 0 < t1 < T (depending only on
C(d, q, T,m2(ρ0), H1(ρ0)) or C(d, q, T, ‖ρ0‖

L
d
2 +γ

) ) such that the weak solution to (1.4) is
unique in t ∈ [0, t1].
Step 3 Finally, since t1 is a constant only depending on C(d, q, T,m2(ρ0), H1(ρ0)) or

C(d, q, T, ‖ρ0‖
L
d
2 +γ

), taking t1 as a new initial time, repeating the above process, we have
that model (1.4) has a unique weak solution in t ∈ [t1, 2t1]. One can continue this process
and obtain a unique global solution in [0, T ). ��

5.2 Propagation of chaos result

First, for d = 2, we show that the limitedmeasure-valued random variableμ satisfies that:
For any ϕ ∈ C2

b (R
d) and t ∈ [0, T ], the time marginal measure μt ∈ P(Rd) a.s. solves the

following equation

〈μt ,ϕ〉 = 〈f0,ϕ〉 +
∫ t

0

∫

R2d
∇ϕ(x) · F (x − y)μs(dx)μs(dy)ds +

∫ t

0
〈μs,�ϕ〉 ds. (5.9)

Proposition 5.1 For N ≥ 2 and d = 2, let {(Xi,N
t )0≤t≤T }Ni=1 be the unique solution to

(1.1) with the i.i.d initial data {Xi,N
0 }Ni=1 and the common density ρ0 satisfies H (ρ0) <

∞, m2(ρ0) < ∞. Then the limited measure-valued process μt of the subsequence processes
μN
t = 1

N
∑N

i=1 δXi,N
t

(without relabeling) a.s. satisfies (5.9).
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Proof From Proposition 4.1, we know that

Mt (μ) = ϕ(Xt ) − ϕ(X0) −
∫ t

0

∫

C([0,T ];Rd )
∇ϕ(Xs) · F (Xs − Ys)μ(dY ) ds

−
∫ t

0
�ϕ(Xs) ds.

is a martingale w.r.t. the filtration {Bt}0≤t≤T a.s. in (�,F ,P), i.e.,

Eμ[Mt (μ)] = 0 a.s. w.r.t (�,F ,P) , (5.10)

where Eμ means taking the expectation in the probability space (C([0, T ];Rd),B,Bt ,μ).
Applying Lemma 4.1, we have

〈μt ,ϕ〉 − 〈f0,ϕ〉 −
∫ t

0

∫

R2d
∇ϕ(x) · F (x − y)μs(dx)μs(dy) ds −

∫ t

0
〈μs,�ϕ〉 ds = 0 a.s.,

(5.11)

one obtains (5.9) immediately. ��
Next, we recall the following standard equivalent notions of propagation of chaos from

the lecture of Sznitman [23, Proposition 2.2].

Definition 5 Let E be a polish space. A sequence of symmetric probability measures f N

on EN are said to be f -chaotic; f is a probability measure on E, if one of three following
equivalent conditions is satisfied:

(i) The sequence of second marginals f 2,N ⇀ f ⊗ f as N → ∞;
(ii) For all j ≥ 1, the sequence of j-th marginals f j,N ⇀ f ⊗j as N → ∞;
(iii) The empirical measure 1

N
∑N

i=1 δXi,N (Xi,N , i = 1, . . . , N are canonical coordinates
on EN ) converges in law to the constant random variable f as N → ∞.

Finally, putting together some results above, we have the following propagation of chaos
result.

Theorem 5.2 For d = 2, let {(Xi,N
t )0≤t≤T }Ni=1 be the unique solution to (1.1) with the i.i.d

initial data {Xi,N
0 }Ni=1 and the common initial density ρ0 satisfiesH (ρ0) < ∞, m2(ρ0) < ∞.

Then the empirical measure 1
N
∑N

i=1 δXi,N
t

goes in probability to a deterministic measure
μ in P(C([0, T ];Rd)) as N → ∞. Furthermore, (μt )t≥0 has a density (ρt )t≥0, ρt takes the
initial density ρ0 at time t = 0, and ρt is the unique weak solution to (1.4).

Proof Let μN := 1
N
∑N

i=1 δXi,N
t
. First, by Lemma 3.1, one knows the sequence L(μN ) is

tight inP
(
P(C([0, T ];Rd))

)
. Denoteμ as a limiting point of a subsequence ofμN . Then by

Proposition 5.1, one knows that μt satisfies (5.9) a.s.. And Lemma 3.2 shows that (μt )t≥0
has a density (ρt )t≥0 a.s. and ρt takes the initial density ρ0 at time t = 0. Recalling equation
(5.9), we deduce that

∫

Rd
ϕρt dx =

∫

Rd
ϕρ0 dx + 1

2π

∫ t

0

∫

R2d
∇ϕ(x) · x − y

|x − y|2 ρs(x)ρs(y) dxdyds

+
∫ t

0

∫

Rd
�ϕρs dxds, (5.12)

i.e., ρt a.s. is a weak solution to (1.4) with the initial data ρ0. Finally, by the uniqueness of
weak solution to (1.4) from Theorem 5.1, ρt is deterministic, which completes the proof
of Theorem 5.2 immediately. ��
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Finally, we make a remark on the possible using stochastic PDE method.

Remark 5.2 For any test function ϕ ∈ Cb(Rd), setting F (0) = 0 and using the fact from (i)
of Theorem 2.1 Xi

t �= Xj
t a.s. for all t ∈ [0, T ], i �= j, by Itô’s formula, one has the following

stochastic equation

〈μN
t − μN

0 ,ϕ〉 = 1
2

∫ t

0

∫

R2d
(∇ϕ(X) − ∇ϕ(Y )) · F (X − Y )μN

s (dX)μN
s (dY )ds

+
∫ t

0

∫

Rd
�ϕ(X)μN

s (dX)ds +
√
2

N

N∑

i=1

∫ t

0
∇ϕ(Xi

s ) · dBi
s. (5.13)

Then passing to the limit N → ∞, the nonlinear term
∫ t
0
∫
R2d (∇ϕ(X) − ∇ϕ(Y )) · F (X −

Y )μN
s (dX)μN

s (dY )ds is the difficult one. Set ψ(X, Y ) = (∇ϕ(X) − ∇ϕ(Y )) · F (X − Y ) in
(4.19) of Lemma 4.4. Notice that ψ has a singularity 1

|X−Y |d−2 , it requires more delicate
estimates to pass Kψ (μN ) → Kψ (μ) in law as N → ∞. We leave this question for
future.
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Appendix: Metrization ofP(C([0, T ];Rd))
First, by the Stone-Weierstrass theorem, it is well known that C([0, T ];Rd) is a sep-
arable space; hence, it is a polish space. Then there is a dense sequence (ϕn)n∈N in
C0
(
C([0, T ];Rd)

)
. One can define the weak-∗ distance [25, page 98],

for any g1, g2 ∈ P(C([0, T ];Rd)), d1(g1, g2) :=
∑

n∈N

1
2n

(1 ∧ |〈g1 − g2,ϕn〉|),

then (P(C([0, T ];Rd)), d1) is a Polish space [9, Section 15.7].
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