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Swinnerton-Dyer [38] and Serre [34] introduced a certain differential operator θ on (ellip-
tic) modular forms over F̄p. In terms of the q-expansion

f =
∞∑

n=0
anqn (0.1)

(an ∈ F̄p) of such a form, θ is given by qd/dq. It lifts, by the same formula, to the space
of p-adic modular forms. This suggests a relation with the Tate twist of the mod p Galois
representation attached to f , if the latter is a Hecke eigenform.
Over C, this operator has been considered already by Ramanujan, where it fails to pre-

serve modularity “by a multiple of E2”. Maass modified it so that modularity is preserved,
sacrificing holomorphicity. Shimura studied Maass’ differential operators on more gen-
eral symmetric domains, as well as their iterations. They have become known as Maass–
Shimura operators and play an important role in the theory of automorphic forms [37,
chapter III].
At the same time, Serre’s p-adic operator has been studied in relation to mod p Galois

representations, congruences between modular forms, p-adic families of modular forms
and p-adic L-functions. As an example, we cite Coleman’s celebrated classicality theorem,
asserting that “overconvergent modular forms of small slope are classical” [6]. A key step
in Coleman’s original proof of that theorem was the observation that, although the p-
adic theta operator did not preserve the space of overconvergent modular forms, for any
k ≥ 0, θk+1 mapped overconvergent forms of weight −k to overconvergent forms of
weight k + 2.
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Underlying the p-adic theory is Katz’ geometric approach to the theta operator, via
the Gauss–Manin connection on the de Rham cohomology of the universal elliptic curve
[20,21]. Broadly speaking, Katz’ starting point is the unit-root splitting of the Hodge
filtration in this cohomology over the ordinary locus. It is supposed to replace the Hodge
decomposition overC, which can be used tomake a geometric theory of theC∞ operators
of Maass–Shimura, thereby explaining their arithmetic significance. This approach has
been adapted successfully to other Shimura varieties of PEL type, as long as they admit
a non-empty ordinary locus in their characteristic p fiber. For unitary Shimura varieties,
this has been done by Eischen [9,10], if p splits in the quadratic imaginary field [and the
signature is (n, n)]. Böcherer and Nagaoka [3] defined theta operators on Siegel modular
forms by studying their q-expansions.
The assumption that the ordinary locus is non-empty may nevertheless fail. This is the

case, for example, for Picardmodular surfaces [associated with the groupU (2, 1)] modulo
a primepwhich is inert in the underlying quadratic imaginary field. In this case, the abelian
varieties parametrized by the open dense μ-ordinary stratum [30] are not ordinary. More
generally, this happens for Shimura varieties associated with U (n,m) if n �= m, and p is
inert ([16], Lemma 8.10). Another complication present in these examples is the fact that
modular forms on U (n,m) admit Fourier–Jacobi (FJ) expansions at the cusps, which are
q-expansions with theta functions as coefficients.
One of the main goals of this paper is to define the theta operator for Picard modular

surfaces at a good inert prime and study its properties. To explain how we overcome the
need to consider the unit-root splitting of the cohomology of the universal abelian variety,
let us re-examine the case of the modular curve X of full levelN ≥ 3 over Zp ((p, N ) = 1).
We follow an approach of Gross [13], see also [1], who extended it to Hilbert modular
varieties. Let κ be a fixed algebraic closure ofFp, and consider the geometric characteristic
p fiber Xκ . Let A be the universal elliptic curve over Y = X\C (the complement of the
cusps) and let L = ωA/Y be its cotangent bundle at the origin. Then A extends to a
semi-abelian variety over X , and so does L = ωA/X . By definition, a weight k , level N
modular form over κ , is a global section of Lk over Xκ , i.e.

Mk (N ; κ) = H0
(
Xκ ,Lk

)
. (0.2)

Let Xord
κ be the ordinary locus in Xκ . Let τ : I → Xord

κ be the Igusa curve of level p,
classifying (besides the elliptic curve A and level structure classified by Xκ ) embeddings
of finite flat group schemes ι : μp ↪→ A[p]. Let

h ∈ H0 (Xκ ,Lp−1) (0.3)

be the Hasse invariant. As the universal ι : μp ↪→ A[p] over I induces an isomorphism

τ ∗L = ωA/I = ωA[p]/I
ι∗� ωμp/I = OI , (0.4)

the line bundle τ ∗L is trivialized over I by a canonical section a. In fact, ap−1 = τ ∗h.
Now, given a κ-valued modular form f ∈ H0(Xκ ,Lk ), we consider its pull-back τ ∗f to

I , divide by ak to get a function on I , and take its differential

ηf = d
(
τ ∗f /ak

)
∈ Ω1

I . (0.5)

The Gauss–Manin connection induces the Kodaira–Spencer isomorphism

KS : L2 ⊗O(C)∨ � Ω1
X . (0.6)



de Shalit and Goren Res Math Sci (2016) 3:28 Page 3 of 65

As τ is étale, Ω1
I = τ ∗Ω1

Xord
κ

and we may pull KS back to a similar isomorphism over I .
We can therefore look at

ak · KS−1(ηf ). (0.7)

This is a section of τ ∗(Lk+2⊗O(C)∨) over I . Since we divided andmultiplied by the same
power of a, it descends to Xord

κ . A calculation shows that it has at most simple poles at the
supersingular points Xss

κ , so

θ (f ) = h · ak · KS−1(ηf ) (0.8)

extends to a global section ofLk+p+1⊗O(C)∨ overXκ , i.e. to a cusp formofweight k+p+1
and level N over κ . Note that θ (f ) and ak · KS−1(ηf ) have the same q-expansions, since
the q-expansion of h is 1. It can be checked that θ coincides with the operator denoted by
Aθ in [21].
The absence of the unit-root splitting from the above-mentioned construction can be

“explained” by the use we made of the Igusa curve, which lies over the ordinary stratum.
In the case of Picard modular surfaces at an inert prime p, it is nevertheless possible to
construct an “Igusa surface” lying over the μ-ordinary part, even though the ordinary
stratum (in the usual sense) is empty. Our construction of the theta operator is based on
the same procedure, but there are now two automorphic vector bundles to consider, a line
bundleL and aplane bundleP . TheVerschiebunghomomorphismallowsus to project the
analogueofKS−1(ηf ) (which is a sectionofP⊗L) to anappropriate one-dimensional piece.
The resulting operator Θ enjoys all the desired properties. It has the right effect on

Fourier–Jacobi expansions, extends holomorphically across the 1-dimensional supersin-
gular locus, and compares well with the theta operators on embedded modular curves.
The theory of “theta cycles” [19] even presents a surprise (see 4.1).
Let us now review the contents of the paper in more detail. We denote byK a quadratic

imaginary field and by S̄ a compactified integral model of the Picard modular surface of
full level N ≥ 3, associated with K. The surface S̄ is defined over R0 = OK[1/2DKN ]
and we may consider its reduction modulo the prime p, which is assumed to be relatively
prime to 2N and inert in K. For simplicity, fix an algebraic closure κ of R0/pR0 and
consider the geometric fiber S̄κ = S̄×Spec(R0) Spec(κ). LetA be the universal semi-abelian
variety over S̄. It is relatively 3-dimensional, has complex multiplication by OK, and the
cotangent bundle at the origin, ωA/S̄ , is of type (2, 1). This means that ifΣ : OK ↪→ R0 is
the canonical embedding and Σ̄ its complex conjugate, then

ωA/S̄ = P ⊕ L, (0.9)

where P = ωA/S̄(Σ) is a plane bundle on which OK acts via Σ , and L = ωA/S̄(Σ̄) is a
line bundle on which it acts via Σ̄ . Scalar modular forms of weight k ≥ 0 defined over an
R0-algebra R are by definition elements of

Mk (N ;R) := H0
(
S̄R,Lk

)
. (0.10)

Our main interest is in R = κ . In this case, there are homomorphisms of vector bundles
VP : P → L(p) and VL : L → P (p) deduced from the Verschiebung homomorphism.
Here, for any vector bundle V over S̄κ , V (p) stands for its base change under the absolute
Frobenius morphism of degree p, Φ : S̄κ → S̄κ . The Hasse invariant is the map

hΣ̄ = V (p)
P ◦ VL : L→ L(p2). (0.11)
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Since L is a line bundle, L(p) � Lp, so hΣ̄ ∈ H0(S̄κ ,Lp2−1) is a modular form of weight
p2 − 1 over κ . The divisor of hΣ̄ is precisely the supersingular locus Sss ⊂ S̄κ . This is a
reduced 1-dimensional closed subscheme whose geometric points x are characterized by
the fact thatAx is supersingular (the Newton polygon of its p-divisible group has constant
slope 1/2). The structure of Sss has been determined by Vollaard [39], following work of
Bültel andWedhorn [4]. Its irreducible components are curves whose normalizations are
all isomorphic to the Fermat curve of degree p + 1. (If N is large enough, depending on
p, these components are even non-singular.) They intersect transversally at finitely many
points, which form the singular locus of Sss. This singular locus is also the superspecial
locus Sssp in S̄κ , characterized by the fact that x ∈ Sssp if and only if Ax is isomorphic to
a product of three supersingular elliptic curves. At x ∈ Sssp, the maps VP and VL vanish,
but over the general supersingular locus Sgss = Sss\Sssp, they are both of rank 1. The
complement of Sss in S̄κ is the dense, open μ-ordinary locus S̄μ. Over a μ-ordinary point
which does not belong to a cuspidal component, the p-divisible group of Ax is a product
of a height 2 group of multiplicative type, a height 2 group of local–local type, and a height
2 étale group (all stable underOK). See [8] and Sect. 2.1.2.
Section 1 is a rather thorough introduction to Picard modular surfaces and modular

forms that will serve us also in future work. Occasionally (e.g. when we compute the
Gauss–Manin connection in the complex model), we could not find a reference for the
results in the form that was needed. We preferred to work them out from scratch, rather
than embark on a tedious translation of notation. This section benefitted in several places
from the excellent exposition in Bellaïche’s thesis [2].
In Sect. 2 we review the geometry of S̄ and the automorphic vector bundles P and L

modulo an inert prime p. Here we follow [4,39], and the exposition in [8]. We construct
the Igusa surface of level p. It is a finite étale Galois cover

τ : Ī gμ → S̄μ (0.12)

of the μ-ordinary part in S̄κ , with Galois group Δ(p) = (OK/pOK)×. We prove that it
is relatively irreducible, and compactify it over the supersingular locus to get a normal
surface Ī g , finite and flat over S̄κ , which is totally ramified over Sss. TheHasse invariant has
a tautological p2−1 root a over the whole of Ī g . Thus a ∈ H0(Ī g, τ ∗L) and ap2−1 = τ ∗hΣ̄ .
In Sect. 3 we construct the theta operator. We pull back f ∈ H0(S̄κ ,Lk ) to Ī gμ, divide

by the non-vanishing section ak to get a function, and let

ηf = d
(
τ ∗f /ak

)
∈ H0 (Ī gμ,Ω1) . (0.13)

TheKodaira–Spencer isomorphismoverS is an isomorphismof rank twovector bundles

KS : P ⊗ L � Ω1
S . (0.14)

When we try to extend it to S̄, we find out that it has a pole along the cuspidal divisor
C = S̄\S. Nevertheless, in the characteristic p fiber, the map

(VP ⊗ 1) ◦ KS−1 : Ω1
Sκ → L(p) ⊗ L = Lp+1 (0.15)

extends holomorphically across C , and even acquires a simple zero there. We pull it back
from S̄μ to Ī gμ under the étale map τ , and define

Θ(f ) = ak · (VP ⊗ 1) ◦ KS−1(ηf ) ∈ H0
(
Ī gμ, τ ∗Lk+p+1) . (0.16)
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Thanks to the fact that we have multiplied by ak , this section descends to S̄μ. A pleasant
computation reveals thatΘ(f ) has no poles along Sss. We end up with

Θ(f ) ∈ H0
(
S̄κ ,Lk+p+1) , (0.17)

a weight k + p+ 1, level N modular form over κ .
It is curious to note that in the case of modular curves, ak · KS−1(ηf ) was of weight

k+2, but had poles at the supersingular points, and only θ (f ) = h ·ak ·KS−1(ηf ) extended
holomorphically to a weight k + p+ 1 modular form. Here, the projection VP takes care
of the shift by p+1 in the weight, and at the same time reduces the order of the pole along
Igss = Ī g\Ī gμ, so thatΘ(f ) becomes holomorphic over the whole surface.
The ultimate justification for our construction comes when we compute the effect of

Θ on Fourier–Jacobi expansions, which is essentially a “Tate twist”. The computation
uses both p-adic and complex formalisms. It may be possible to perform it entirely on the
“Mumford-Tate object” (see Section 4.5 of [9,26]), but we believe that our approach has
its own didactical merit.
In Sect. 4 we compare our theta operator with theta operators on embedded modular

curves. We also discuss theta cycles and filtrations on modular forms mod p.
Section 5 brings up p-adic modular forms in the style of Serre and Katz. The study of

overconvergent forms, intimately connectedwith the study of the canonical subgroup and
Coleman’s classicality theorem, will be the subject of another paper.
Many of the results of this paper, including the construction of the theta operator,

generalize to unitary Shimura varieties associated withU (n− 1, 1) for general n. Another
direction in which the setup could be generalized is to replaceK by an arbitrary CM field.
This seems to require substantial additional work, apart from a heavy load of notation,
even if the general lay-out would be the same. We refer the reader to [18] for a detailed
discussion of some of the topics treated here over general CM fields (albeit for a split
prime p).

1 Background
1.1 The unitary group and its symmetric space

1.1.1 Notation

Let K be an imaginary quadratic field, contained in C. We denote by Σ : K ↪→ C the
inclusion and by Σ̄ : K ↪→ C its complex conjugate. We use the following notation:

• dK—the square-free integer such that K = Q(
√
dK).

• DK—the discriminant of K, equal to dK if dK ≡ 1 mod 4 and 4dK if dK ≡ 2, 3
mod 4.

• δK = √DK—the square root with positive imaginary part, a generator of the different
of K, sometimes simply denoted δ.

• ωK = (1+√dK)/2 if dK ≡ 1 mod 4, otherwiseωK =
√
dK, so thatOK = Z+ZωK.

• ā—the complex conjugate of a ∈ K.
• Imδ(a) = (a− ā)/δ, for a ∈ K.

We fix an integerN ≥ 3 (the “tame level”) and let R0 = OK[1/(2dKN )]. This is our base
ring. If R is any R0-algebra and M is any R-module with OK-action, then M becomes an
OK ⊗ R-module and we have a canonical type decomposition

M = M(Σ)⊕M(Σ̄) (1.1)
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where M(Σ) = eΣM and M(Σ̄) = eΣ̄M, and where the idempotents eΣ and eΣ̄ are
defined by

eΣ = 1⊗ 1
2

+ δ ⊗ δ−1

2
, eΣ̄ =

1⊗ 1
2

− δ ⊗ δ−1

2
. (1.2)

Then M(Σ) (resp. M(Σ̄)) is the part of M on which OK acts via Σ (resp. Σ̄). The same
notation will be used for sheaves of modules on R-schemes, endowed with anOK action.
IfM is locally free, we say that it has type (p, q) ifM(Σ) is of rank p andM(Σ̄) is of rank q.
We denote by

T = resKQGm (1.3)

the non-split torus whose Q-points areK×, and by ρ the non-trivial automorphism of T,
which onQ-points induces ρ(a) = ā. The groupGm embeds inT and the homomorphism
a �→ a · ρ(a) from T to itself factors through a homomorphism

N : T→ Gm, (1.4)

the norm homomorphism. Its kernel ker(N ) is denoted T1.

1.1.2 The unitary group

Let V = K3 and endow it with the hermitian pairing

(u, v) = t ū

⎛

⎜⎝
δ−1

1
−δ−1

⎞

⎟⎠ v. (1.5)

We identifyVR withC
3 (K acting via the natural inclusionΣ). It then becomes a hermitian

space of signature (2, 1). Conversely, any 3-dimensional hermitian space over K whose
signature at the infinite place is (2, 1) is isomorphic toV after rescaling the hermitian form
by a positive rational number.
Let

G = GU(V, (, )) (1.6)

be the general unitary groupofV , regarded as an algebraic groupoverQ. For anyQ-algebra
A, we have

G(A) = {(g,μ) ∈ GL3(A⊗K)⊗ A×| (gu, gv) = μ · (u, v) ∀u, v ∈ VA
}
. (1.7)

WewriteG = G(Q),G∞ = G(R) andGp = G(Qp). A similar notational conventionwill
apply to any algebraic group overQwithout further ado. If p splits inK,Qp⊗K � Q

2
p and

Gp becomes isomorphic toGL3(Qp)×Q
×
p . The isomorphism depends on the embedding

of K in Qp, i.e. on the choice of a prime above p in K. For a non-split prime p, the group
Gp, like G∞, is of (semisimple) rank 1.
As μ is determined by g , we often abuse notation and write g for the pair (g,μ) and

μ(g) for the similitude factor (multiplier) μ. It is a character of algebraic groups over
Q, μ : G→Gm. Another character is det : G→ T, defined by det(g,μ) = det(g). If we let

ν = μ−1 · det : G→ T (1.8)

then bothμ anddet are expressible in terms of ν, namelyμ = ν ·(ρ◦ν) anddet = ν2 ·(ρ◦ν).
The groups

U = kerμ, SU = ker ν = kerμ ∩ ker(det) (1.9)

are the unitary and the special unitary group, respectively.
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We also introduce an alternating Q-linear pairing 〈, 〉 : V × V → Q (the polarization
form) defined by 〈u, v〉 = Imδ(u, v). We then have the formulae

〈au, v〉 = 〈u, āv〉 , 2(u, v) = 〈u, δv〉 + δ 〈u, v〉 . (1.10)

1.1.3 The hermitian symmetric domain

The group G∞ = G(R) acts on P
2
C = P(VR) by projective linear transformations and

preserves the open subdomain X of negative definite lines (in the metric (, )), which is
biholomorphic to the open unit ball in C

2. Every negative definite line is represented by a
unique vector t (z, u, 1), and such a vector represents a negative definite line if and only if

λ(z, u) def= Imδ(z)− uū > 0. (1.11)

One refers to the realization of X as the set of points (z, u) ∈ C
2 satisfying this inequality

as a Siegel domain of the second kind. It is convenient to think of the point x0 = (δ/2, 0) as
the “center” of X.
If we letK∞ be the stabilizer of x0 inG∞, thenK∞ is compactmodulo center (K∞∩U(R)

is compact and isomorphic to U (2) × U (1)). Since G∞ acts transitively on X, we may
identify X with G∞/K∞.
The usual upper half plane embeds in X as the set of points where u = 0.

1.1.4 The cusps ofX

The boundary ∂X ofX is the set of points (z, u) where Imδ(z) = uū, together with a unique
point “at infinity” c∞ represented by the line t (1 : 0 : 0). The lines represented by ∂X are
the isotropic lines in VR. The set of cusps CX is the set of K-rational isotropic lines. If
s ∈ K and r ∈ Q, we write

crs = (r + δss̄/2, s). (1.12)

Then CX = {crs |r ∈ Q, s ∈ K
}∪{c∞}. The groupG = G(Q) acts transitively on the cusps.

The stabilizer of a cusp is a Borel subgroup inG∞. SinceG acts transitively on the cusps,
we may assume that our cusp is c∞. It is then easy to check that its stabilizer P∞ has the
form P∞ = M∞N∞, where

M∞ =

⎧
⎪⎨

⎪⎩
tm(α,β) = t

⎛

⎜⎝
α

β

ᾱ−1

⎞

⎟⎠ | t ∈ R
×+, α ∈ C

×,β ∈ C
1

⎫
⎪⎬

⎪⎭
, (1.13)

N∞ =

⎧
⎪⎨

⎪⎩
n(u, r) =

⎛

⎜⎝
1 δū r + δuū/2

1 u
1

⎞

⎟⎠ |u ∈ C, r ∈ R

⎫
⎪⎬

⎪⎭
. (1.14)

The matrix tm(α,β) belongs to U∞ if and only if t = 1, and to SU∞ if furthermore
β = ᾱ/α. The group N∞ is contained in SU∞. Since N = N∞ ∩ G still acts transitively
on the set of finite cusps crs , we conclude that G acts doubly transitively on CX.
Of particular interest to us will be the geodesics connecting an interior point (z, u) to a

cusp c ∈ CX. If (z, u) = n(u, r)m(d, 1)x0 (recall x0 = t (δ/2 : 0 : 1)) where d is real and
positive (i.e. r = �z and d = √λ(z, u)), then the geodesic connecting (z, u) to c∞ can be
described by the formula

γ r
u (t) = n(u, r)m(t, 1)x0

= (r + δ(uū+ t2)/2, u) (d ≤ t <∞). (1.15)
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The same geodesic extends in the opposite direction for 0 < t ≤ d, and if u and r lie in
K, it ends there in the cusp cru. We shall call γ r

u (t) the geodesic retraction of X to the cusp
c∞. As 0 < t <∞, these parallel geodesics exhaust X.

1.2 Picard modular surfaces over C

1.2.1 Lattices and their arithmetic groups

Fix anOK-invariant lattice L ⊂ V which is self-dual in the sense that

L = {u ∈ V | 〈u, v〉 ∈ Z ∀v ∈ L} . (1.16)

Equivalently, L is its own OK-dual with respect to the hermitian pairing (, ). We assume
also that the Steinitz class1 of L as anOK-module is [OK], or, what amounts to the same,
that L is a free OK-module. When we introduce the Shimura variety later on, we shall
relax this last assumption, but the resulting scheme will be disconnected (over C).
Fix an integer N ≥ 1 and let

Γ = ΓL(N ) = {g ∈ G| gL = L and g(u) ≡ u mod NL ∀u ∈ L
}
, (1.17)

a discrete subgroup ofG∞. It is easy to see that ifN ≥ 3, then Γ is torsion free, acts freely
and faithfully on X, and is contained in SU∞. From now on, we assume that this is the
case.
If g ∈ G and μ(g) = 1 (i.e. g ∈ U ), the lattice gL is another lattice of the same sort and

the discrete group corresponding to it is gΓ g−1. Since U acts transitively on the cusps,
this reduces the study of Γ \X near a cusp to the study of a neighborhood of the standard
cusp c∞ (at the price of changing L and Γ ).
It is important to know the classification of lattices L as above (self-dual and OK-free).

Let e1, e2, e3 be the standard basis of K3. Let

L0 = SpanOK{δe1, e2, e3} (1.18)

and

L1 = SpanOK

{
δ

2
e1 + e3, e2,

δ

2
e1 − e3

}
. (1.19)

These two lattices are self-dual and, of course, OK-free. The following theorem is based
on the local–global principle and a classification of lattices over Qp by Shimura [35].

Lemma 1.1 ([28], p. 25) For any lattice L as above there exists a g ∈ U such that gL = L0
or gL = L1. If DK is odd, L0 and L1 are equivalent. If DK is even, they are inequivalent.

Indeed, if DK is even, L0 ⊗Qp and L1 ⊗Qp are Up-equivalent for every p �= 2, but not
for p = 2.

1.2.2 Picardmodular surfaces and the Baily–Borel compactification

We denote by XΓ the complex surface Γ \X. Since the action of Γ is free, XΓ is smooth.
We describe a topological compactification of XΓ . A standard neighborhood of the cusp
c∞ in X is an open set of the form

ΩR =
{
(z, u)|λ(z, u) > R

}
. (1.20)

The set CΓ = Γ \CX is finite, and we write cΓ = Γ c. We let X∗Γ be the disjoint union
of XΓ and CΓ . Let Γcusp be the stabilizer of c∞ in Γ . We topologize X∗Γ by taking

1The Steinitz class of a finite projectiveOK-module is the class of its top exterior power as an invertible module.
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Γcusp\ΩR ∪ {c∞,Γ } as a basis of neighborhoods at c∞,Γ . If c = g(c∞) where g ∈ U ,
we take g(g−1Γcuspg\ΩR) ∪ {cΓ } instead. The following theorem is well known.

Theorem 1.2 (Satake, Baily–Borel) X∗Γ is projective, and the singularities at the cusps
are normal. In other words, there exists a normal complex projective surface S∗Γ and a
homeomorphism ι : S∗Γ (C) � X∗Γ , which on SΓ (C) = ι−1(XΓ ) is an isomorphism of
complex manifolds. S∗Γ is uniquely determined up to isomorphism.

1.2.3 The universal abelian variety over XΓ

With x ∈ X and with our choice of L, we shall now associate a PEL structure Ax =
(Ax, λx, ιx,αx) where

(1) Ax is a 3-dimensional complex abelian variety,
(2) λx is a principal polarization onAx (i.e. an isomorphismAx � At

x with its dual abelian
variety induced by an ample line bundle),

(3) ιx : OK ↪→ End(Ax) is an embedding of CM type (2, 1) (i.e. the action of ι(a) on the
tangent space of Ax at the origin induces the representation 2Σ + Σ̄) such that the
Rosati involution induced by λx preserves ι(OK) and is given by ι(a) �→ ι(ā),

(4) αx : N−1L/L � Ax[N ] is a full level N structure, compatible with the OK-action
and the polarization. The latter condition means that if we denote by 〈, 〉λ the Weil
“eN -pairing” on Ax[N ] induced by λx, then for l, l′ ∈ N−1L
〈
αx(l),αx(l′)

〉
λ
= e2π iN〈l,l′〉. (1.21)

Let Wx be the negative definite complex line in VR = C
3 defined by x, and W⊥

x its
orthogonal complement, a positive definite plane. Let Jx be the complex structure which
is multiplication by i onW⊥

x and by−i onWx. Let Ax = (VR, Jx)/L. Then the polarization
form 〈, 〉 is a Riemann form on L, which determines a principal polarization onAx as usual.
The action of OK is derived from the underlying K structure of V . As we have reversed
the complex structure onWx, the CM type is now (2,1). Finally the level N structure αx is
the identity map.
If γ ∈ Γ , then γ induces an isomorphism between Ax and Aγ (x). Conversely, if Ax and

Ax′ are isomorphic structures, it is easy to see that x′ and x must belong to the same
Γ -orbit. It follows that points of XΓ are in a bijection with PEL structures of the above
type for which the triple

(H1(Ax,Z), ιx, 〈, 〉λx ) (1.22)

is isomorphic to (L, ι, 〈, 〉) (here ι refers to theOK action on L), with the further condition
that αx is compatible with the isomorphism between L andH1(Ax,Z) in the sense that we
have a commutative diagram

0→ L → N−1L → N−1L/L→ 0
↓ ↓ ↓ αx

0→ H1(Ax,Z)→ N−1H1(Ax,Z)→ Ax[N ] → 0
. (1.23)

1.2.4 A “moving lattice”model for the universal abelian variety

Wewant to assemble the individualAx into an abelian variety A over X. In otherwords, we
want to construct a 5-dimensional complexmanifoldA, together with a holomorphicmap
A → X whose fiber over x is identified with Ax. For that, as well as for the computation
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of the Gauss–Manin connection below, it is convenient to introduce another model, in
which the complex structure on C

3 is fixed, but the lattice varies.
For simplicity, we assume from now on that L = L0 is spanned over OK by δe1, e2 and

e3. The case of L1 can be handled similarly.
Let C

3 be given the usual complex structure, and let a ∈ OK act on it via the matrix

ι′(a) =
⎛

⎜⎝
a

a
ā

⎞

⎟⎠ . (1.24)

Given x = (z, u) ∈ X, consider the lattice

L′x = Spanι′(OK)

⎧
⎪⎨

⎪⎩

⎛

⎜⎝
0
1
1

⎞

⎟⎠ ,

⎛

⎜⎝
−1
0
−u

⎞

⎟⎠ ,

⎛

⎜⎝
u

−z/δ
z/δ

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
⊂ C

3. (1.25)

The map Tx : C
3 → C

3 which sends ζ = t (ζ1, ζ2, ζ3) to

T (ζ ) = λ(z, u)−1

⎧
⎪⎨

⎪⎩
−ζ1

⎛

⎜⎝
ūz

(z − z̄)/δ
ū

⎞

⎟⎠− ζ2

⎛

⎜⎝
z̄ + δuū

u
1

⎞

⎟⎠+ ζ̄3

⎛

⎜⎝
z
u
1

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
(1.26)

is a complex linear isomorphism between C
3 and (VR, Jx). In fact, it sends Ce1 + Ce2

linearly to W⊥
x and Ce3 conjugate-linearly to Wx. It intertwines the ι′ action of OK on

C
3 with its ι-action on (VR, Jx). It furthermore sends L′x to L. In fact, an easy computation

shows that it sends the three generating vectors of L′x to δe1, e2 and e3, respectively. We
conclude that Tx induces an isomorphism

Tx : A′x = C
3/L′x � Ax. (1.27)

Consider the differential forms dζ1, dζ2 and dζ3. As their periods along any l ∈ L′x
vary holomorphically in z and u, the five coordinates ζ1, ζ2, ζ3, z, u form a local system
of coordinates on the family A′ → X. Identifying A′ with A allows us to put the desired
complex structure on the family A. Alternatively, we may define A′ as the quotient of
C
3 × X by ζ �→ ζ + l(z, u) where l(z, u) varies over the holomorphic lattice-sections.
The model A′ has another advantage that will become clear when we examine the

degeneration of the universal abelian variety at the cusp c∞. It suffices to note at this point
that the first two of the three generating vectors of L′x depend only on u.

1.3 The Picard moduli scheme

1.3.1 Themoduli problem

Fix N ≥ 3 and L = L0 ⊂ V as before. Let R be an R0-algebra. LetM(R) be the collection
of (isomorphism classes of) PEL structures (A, λ, ι,α) where

(1) A/R is an abelian scheme of relative dimension 3
(2) λ : A � At is a principal polarization
(3) ι :OK → End(A/R) is a homomorphism such that (1) ιmakes Lie(A/R) a locally free

R-module of type (2, 1), (2) theRosati involution induced on ι(OK) byλ is ι(a) �→ ι(ā).
(4) α : N−1L/L � A[N ] is an isomorphism of OK-group schemes over R which is

compatible with the polarization in the sense that there exists an isomorphism νN :
Z/NZ � μN of group schemes over R such that
〈
α

(
l
N

)
,α
(
l′

N

)〉

λ

= νN
(〈
l, l′
〉

mod N
)
. (1.28)
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In addition we require that for every multiple N ′ of N , locally étale over Spec(R),
there exists a similar levelN ′-structure α′, restricting to α onN−1L/L. One says that
α is locally étale symplectic liftable ([26], 1.3.6.2).

In view of Lemma 1.1, the last condition of symplectic liftability is void if DK is odd,
while if DK is even it is equivalent to the following condition ([2], I.3.1):

• For any geometric point η : R → k (k algebraically closed field, necessarily of char-
acteristic different from 2), theOK⊗Z2 polarized module (T2Aη , 〈, 〉λ) is isomorphic
to (L⊗ Z2, 〈, 〉) under a suitable identification of lim← μ2n (k) with Z2.

The choice of L0 was arbitrary. If we took L1 as our basic lattice, we would get a similar
moduli problem.
A level N structure α can exist only if the group schemes Z/NZ and μN become

isomorphic over R, but the isomorphism νN is then determined by α.
M becomes a functor on the category of R0-algebras (and more generally, on the cate-

gory of R0-schemes) in the obvious way. The following theorem is of fundamental impor-
tance ([26], I.4.1.11).

Theorem 1.3 The functor R �→M(R) is represented by a smooth quasi-projective scheme
S over Spec(R0), of relative dimension 2.

We call S the (open) Picard modular surface of level N . It comes equipped with a
universal structure (A, λ, ι,α) of the above type over S. We call A the universal abelian
scheme over S. For every R0-algebra R and PEL structure in M(R), there exists a unique
R-point of S such that the given PEL structure is obtained from the universal one by base
change.
We refer to [26], 1.4.3 for the relation between the given formulation of the moduli

problem and other formulations due, e.g. to Kottwitz.

1.3.2 The Shimura variety ShK
We briefly recall the interpretation of the Picard modular surface as a canonical model of
a Shimura variety. The symmetric domain X can be interpreted as a G∞-conjugacy class
of homomorphisms

h : S = resCRGm → GR (1.29)

turning (G,X) into a Shimura datum in the sense of Deligne [7]. In fact hx(i) = Jx. The
reflex field associated with this datum turns out to be K. Let K∞ be the stabilizer of x0 in
G∞ and K 0

f ⊂ G(Af ) the subgroup stabilizing L̂ = L ⊗ Ẑ. Let Kf be the subgroup of K 0
f

inducing the identity on L/NL. Let K = K∞Kf ⊂ G(A). Then the Shimura variety ShK
is a complex quasi-projective variety whose complex points are isomorphic, as a complex
manifold, to the double coset space

ShK (C) � G(Q)\G(A)/K

= G(Q)\(X×G(Af )/Kf ). (1.30)

The theory of Shimura varieties provides a canonical model for ShK overK. The following
important theorem complements the one on the representability of the functorM.
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Theorem 1.4 The canonical model of ShK is the generic fiber SK of S.

Let us explain only how to associate with a point of ShK (C) a point in S(C). For that
we have to associate an element of M(C) with g ∈ G(A), and show that the structures
associated with g and to γ gk (γ ∈ G, k ∈ K ) are isomorphic. Let x = xg = g∞(x0) ∈ X.
Let Lg = gf (̂L) ∩ V (the intersection taking place in VA = L̂⊗Q) and

Ag = (VR, Jx)/Lg . (1.31)

Note that Jx depends only on g∞K∞ and Lg only on gf K 0
f , so Ag depends only on gK 0.

Let μ̃(g) be the unique positive rational number such that for every prime p,

ordpμ̃(g) = ordpμ(gp). (1.32)

Such a rational number exists since μ(gp) is a p-adic unit for almost all p and Q has class
number 1. We claim that

〈, 〉g = μ̃(g)−1 〈, 〉 : Lg × Lg → Q

induces a principal polarization λg on Ag . That this is a (rational) Riemann form follows
from the fact that (u, v)Jx = 〈u, Jxv〉 + i 〈u, v〉 is hermitian positive definite. That 〈, 〉g is
indeed Z-valued and Lg is self-dual follows from the choice of μ̃(g) since locally at p the
dual of gpLp under 〈, 〉 : Vp × Vp → Qp is μ(gp)−1gpLp. We conclude that there exists a
unique polarization λg : Ag → At

g such that

〈u, v〉λg = exp(2π il 〈u, v〉g ) (1.33)

for every u, v ∈ Ag [l] = l−1Lg/Lg and every l ≥ 1. This polarization is principal.
Since gf commutes with the K-structure on VA, Lg is still an OK-lattice, hence ιg is

defined.
Finally αg is derived from

N−1L/L = N−1L̂/̂L
gf→ N−1L̂g /̂Lg = N−1Lg/Lg = Ag [N ]. (1.34)

We note that αg depends only on gK because Kf ⊂ K 0
f is the principal level-N subgroup,

and that it lifts to level N ′ structure for any multiple N ′ of N , by the same formula. The
isomorphism νN,g between Z/NZ and μN (C) that makes (1.28) work is self-evident [see
(1.49)]. Let Ag ∈M(C) be the structure just constructed.
Let now γ ∈ G(Q). Then the action of γ on V induces an isomorphism between the

tuples Ag and Aγ g . Indeed, γ : VR → VR intertwines the complex structures xg and xγ g ,
and carries Lg to Lγ g , so induces an isomorphism of the abelian varieties, which clearly
commutes with the PEL structures.
This shows thatAg depends solely on the double coset of g inG(Q)\G(A)/K . One is left

now with two tasks which we leave out: (i) proving that if Ag � Ag ′ , then g and g ′ belong
to the same double coset, and that every A ∈M(C) is obtained in this way, (ii) identifying
the canonical model of ShK over K with SK.

1.3.3 The connected components of ShK
Recall that G′ = SU = ker(ν : G→ T). Since G′ is simple and simply connected, strong
approximation holds and

G′(A) = G′(Q)G′∞K ′f . (1.35)
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Here K ′ = K ∩G′(A), K ′f = K ∩G′(Af ). From the connectedness of G′∞, we deduce that

G′(Q)\G′(A)/K ′ (1.36)

is connected.
As N ≥ 3, ν(K ) ∩K× = {1}. Here K× = ν(G(Q)), and it follows that

G′(Q)\G′(A)/K ′ ↪→ G(Q)\G(A)/K (1.37)

is injective. We now claim (see also Theorem 2.4 and 2.5 of [7]) that

ν : π0(G(Q)\G(A)/K ) � π0(T(Q)\T(A)/ν(K )) (1.38)

is a bijection. For ν is surjective ([7] (0.2)) and continuous (on double coset spaces) so
clearly induces a surjective map between the sets of connected components. On the other
hand, if [g1] and [g2] (double cosets of gi ∈ G(A)) are mapped by ν to the same connected
component inT(Q)\T(A)/ν(K ), then sinceG∞ ismapped onto the connected component
of the identity in T(Q)\T(A)/ν(K ), modifying g1 by an element of G∞ we may assume
that

ν([g1]) = ν([g2]) ∈ T(Q)\T(A)/ν(K ), (1.39)

without changing the connected component in which [g1] lies. Once this has been estab-
lished, for appropriate representatives gi of the double cosets, g−11 g2 ∈ G′(A), so by the
connectedness of G′(Q)\G′(A)/K ′, [g1] and [g2] lie in the same connected component of
G(Q)\G(A)/K .
The group π0(T(Q)\T(A)/ν(K )) is the group

K×\K×A /C×ν(Kf ) = K×\K×f /ν(Kf ). (1.40)

It sits in a short exact sequence

0→ μK\UK/ν(Kf )→ K×\K×f /ν(Kf )
cl→ ClK → 0, (1.41)

where UK is the product of local units at all the finite primes and ClK is the class group.

1.3.4 The cl and νN invariants of a connected component

The norm N : K× → Q
× satisfies N ◦ ν = ννρ = μ and hence induces a map

K×\K×f /ν(Kf )→ Q
×+\Q×f /μ(Kf ). (1.42)

Using the lattice L as an integral structure in V , we see that G comes from a group
scheme GZ over Z, whose points in any ring A are

GZ(A) =
{
(g,μ) ∈ GLOK⊗A(LA)× A×| 〈gu, gv〉 = μ 〈u, v〉} . (1.43)

We likewise get that μ is a homomorphism from GZ to Gm. The diagram

GZ(Zp)
μ→ Z

×
p

↓ ↓
GZ(Zp/NZp)

μ→ (Zp/NZp)×
(1.44)

commutes, GZ(Zp) = K 0
p and the kernel of GZ(Zp) → GZ(Zp/NZp) is Kp. This shows

that μ(Kf ) ⊂ Ẑ
×(N ), the product of local units congruent to 1 mod N . But

Q
×+\Q×f /Ẑ×(N ) = (Z/NZ)×. (1.45)
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To conclude, we have shown the existence of two maps from the set of connected
components:

cl : π0(G(Q)\G(A)/K )→ ClK (1.46)

νN : π0(G(Q)\G(A)/K )→ (Z/NZ)×. (1.47)

These two maps are independent: together they map π0(G(Q)\G(A)/K ) onto ClK ×
(Z/NZ)×. On the other hand, they have a non-trivial common kernel, which grows with
N , as is evident from the interpretation ofK×\K×f /ν(Kf ) as the Galois group of a certain
class field extension of K. The map cl gives the restriction to the Hilbert class field, while
the map νN gives the restriction to the cyclotomic field Q(μN ). We have singled out cl
and νN , because when N ≥ 3, they have an interpretation in terms of the complex points
of ShK .

Proposition 1.5 Let [g] ∈ G(Q)\G(A)/K = ShK (C). Then

(i) cl([g]) is the Steinitz class of the lattice Lg = gf (L̂) ∩ V in ClK.
(ii) νN ([g]) is (essentially) the νN,g that appears in the definition of αg (see 1.3.1).

Proof (i) cl([g]) is the class of the ideal (ν(gf )) associated with the idele ν(gf ) ∈ K×f . This
ideal is in the same class as (det(gf )), because μ(gf ) ∈ Q

×
f , so (μ(gf )) is principal. But

the class of (det(gf )) is the Steinitz class of Lg , since the Steinitz class of L is trivial.
(ii) To find νN ([g]), we first project the idele μ(gf ) to Ẑ

× using Q
×
f = Q

×+Ẑ
×. But this is

just μ̃(gf )−1μ(gf ). We then take the result modulo N , so

νN ([g]) = μ̃(gf )−1μ(gf ) mod N. (1.48)

Now the definition of the tuple (Ag , λg , ιg ,αg ) is such that if u, v ∈ N−1L/L, then
〈
αg (u),αg (v)

〉
λg
= exp

(
2π iN
〈
gf u, gf v

〉
g

)

= exp
(
2π iμ̃(gf )−1N

〈
gf u, gf v

〉)

= exp
(
2π iμ̃(gf )−1μ(gf )N 〈u, v〉

)

= exp (2π iνN ([g])N 〈u, v〉) (1.49)

Part (ii) follows if we identify νN,g ∈ IsomC(N−1Z/Z,μN ) with νN ([g]) ∈ (Z/NZ)×

using exp(2π i(·)).

1.3.5 The complex uniformization

Recall that X = G∞/K∞ and that it was equipped with a base point x0 (corresponding
to (z, u) = (δK/2, 0) in the Siegel domain of the second kind). Let 1 = g1, . . . , gm ∈
G(Af ) (m = #(K×\K×f /ν(Kf ))) be representatives of the connected components of
G(Q)\G(A)/K , and define congruence groups

Γj = G(Q) ∩ gjKf g−1j . (1.50)

We write [x, gj] for G(Q)(x, gjKf ) ∈ G(Q)\(X × G(Af )/Kf ) = G(Q)\G(A)/K . Then
[x′, gj] = [x, gj] if and only if x′ = γ x for γ ∈ Γj . The map

m∐

j=1
XΓj =

m∐

j=1
Γj\X � ShK (C) (1.51)

sending Γjx to [x, gj] is an isomorphism.
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Note that Γ1 = Γ is the principal level-N congruence subgroup inGZ(Z), the stabilizer
of L. Similarly, Γj is the principal level-N congruence subgroup in the stabilizer of Lgj , and
is thus a group of the type considered in 1.2.1, except that we have dropped the assumption
on the Steinitz class of Lgj . As N ≥ 3, det(γ ) = 1 and μ(γ ) = 1 for all γ ∈ Γj , for every j.
Indeed, on the one hand these are inK× andQ

×+, respectively. On the other hand, they are
local units which are congruent to 1 mod N everywhere. It follows that Γj are subgroups
of G′(Q) = SU(Q).
We get a similar decomposition to connected components (as an algebraic surface)

SC =
m∐

j=1
SΓj (1.52)

and we write S∗C =
∐m

j=1 S∗Γj for the Baily–Borel compactification.

1.4 Smooth compactifications

1.4.1 The smooth compactification of XΓ

Webegin byworking in the complex analytic category and follow the exposition of [5]. The
Baily–Borel compactification X∗Γ is singular at the cusps and does not admit a modular
interpretation. For general unitary Shimura varieties, the theory of toroidal compactifi-
cations provides smooth compactifications that depend, in general, on extra data. It is a
unique feature of Picard modular surfaces, stemming from the finiteness ofO×K, that this
smooth compactification is canonical. As all cusps are equivalent (if we vary the lattice
L or Γ ), it is enough, as usual, to study the smooth compactification at c∞. In [5] this is
described for an arbitrary L (not even OK-free), but for simplicity we write it down only
for L = L0.
As N ≥ 3, elements of Γ stabilizing c∞ lie in N∞.2 The computations, which we omit,

are somewhat simpler if N is even, an assumption made for the rest of this section. Let

Γcusp = Γ ∩ N∞. (1.53)

Lemma 1.6 Let N ≥ 3 be even. The matrix n(s, r) ∈ Γcusp if and only if: (i) (dK ≡ 1
mod 4) s ∈ NOK, r ∈ NDKZ, (ii) (dK ≡ 2, 3 mod 4) s ∈ NOK and r ∈ 2−1NDKZ .

LetM = N |DK| in case (i) andM = 2−1N |DK| in case (ii). This is the width of the cusp
c∞. Let

q = q(z) = e2π iz/M. (1.54)

For R > 0, the domain ΩR =
{
(z, u) ∈ X| λ(z, u) > R

}
is invariant under Γcusp and if R is

large enough, two points of it are Γ -equivalent if and only if they are Γcusp-equivalent. A
sufficiently small punctured neighborhood of c∞ in X∗Γ therefore looks like Γcusp\ΩR. As

n(s, r)(z, u) = (z + δs̄(u+ s/2)+ r, u+ s) (1.55)

we obtain the following description of Γcusp\ΩR. Let� = NOK and E = C/�, an elliptic
curve with complex multiplication byOK. Let T be the quotient

T = (C× C)/� (1.56)

where the action of s ∈ � is via

[s] : (t, u) �→
(
e2π iδs̄(u+s/2)/Mt, u+ s

)
. (1.57)

2No confusion should arise from the use of the letter N to denote both the level and the unipotent radical of P.
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It is a line bundle over E via the second projection. We denote the class of (t, u) modulo
the action of� by [t, u].

Proposition 1.7 Let TR ⊂ T be the disk bundle consisting of all the points [t, u] where

|t| < e−π |δ|(R+uū)/M. (1.58)

(This condition is invariant under the action of �.) Let T ′R be the punctured disk bundle
obtained by removing the zero section from TR. Then the map (z, u) �→ (q(z), u) induces an
analytic isomorphism between Γcusp\ΩR and T ′R.

Proof This follows from the discussion so far and the fact that λ(z, u) > R is equivalent to
the above condition on t = q(z) ([5], Prop. 2.1).

To get a smooth compactification X̄Γ of XΓ (as a complex surface), we glue the disk
bundle TR to XΓ along T ′R. In other words, we complete T ′R by adding the zero section,
which is isomorphic to E. The same procedure should be carried out at any other cusp of
CΓ .
Note that the geodesic (1.15) connecting (z, u) ∈ X to the cusp c∞ projects in X̄Γ to a

geodesicwhichmeetsE transversally at the pointu mod �.We caution that this geodesic
in XΓ depends on (z, u) and c∞ and not only on their images modulo Γ .
The line bundle T is the inverse of an ample line bundle on E. In fact, T ∨ is the N -th

(resp. 2N -th) power of one of the four basic theta line bundles if dK ≡ 1 mod 4 (resp.
dK ≡ 2, 3 mod 4). A basic theta function of the lattice� satisfies, for u ∈ C and s ∈ �,

θ (u+ s) = α(s)e2π s̄(u+s/2)/|δ|N 2
θ (u) (1.59)

where α : �→±1 is a quasi-character (see [31], p. 25). Recalling the relation betweenM
andN , and the assumption thatN was even, we easily get the relation between T and the
theta line bundles.
Recall that with any x = (z, u) ∈ X we associated a complex abelian variety Ax, and

another model A′x of the same abelian variety (1.27). This allowed us to define sections
dζ1, dζ2 and dζ3 of ωA/X. A simple matrix computation gives the following.

Lemma 1.8 The sections dζ1 and dζ3 are invariant under Γcusp. The section dζ2 is invari-
ant modulo the sub-bundle generated by dζ1.

Thus dζ1, dζ3 and dζ2 mod 〈dζ1〉descend towell-defined sections in the neighborhood
TR � Γcusp\ΩR ∪ E of E in X̄Γ .

1.4.2 The smooth compactification of S

The arithmetic compactification S̄ of the Picard surface S (overR0) is due to Larsen [28,29]
(see also [2,26]). We summarize the results in the following theorem. We mention first
that as SC has a canonical model S over R0, its Baily–Borel compactification S∗C has a
similar model S∗ over R0, and S embeds in S∗ as an open dense subscheme.

Theorem 1.9 (i) There exists a projective scheme S̄, smooth over R0, of relative dimension
2, together with an open dense immersion of S in S̄, and a proper morphism p : S̄ → S∗,
making the following diagram commutative
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S → S̄

↓
p
↙

S∗
. (1.60)

(ii) As a complex manifold, there is an isomorphism

S̄C �
m∐

j=1
X̄Γj , (1.61)

extending the isomorphism of SC with
∐m

j=1 XΓj .
(iii) Let C = p−1(S∗\S). Let RN be the integral closure of R0 in the ray class field KN

of conductor N over K. Then the connected components of CRN are geometrically
irreducible and are indexed by the cusps of S∗RN over which they sit. Furthermore, each
component E ⊂ CRN is an elliptic curve with complex multiplication byOK.

We call C the cuspidal divisor. If c ∈ S∗C\SC is a cusp, we denote the complex elliptic
curve p−1(c) by Ec. Although Ec is in principle definable over the Hilbert class field K1,
no canonical model of it over that field is provided by S̄. On the other hand, Ec does come
with a canonical model over KN , and even over RN .
We refer to [2,28] for a moduli-theoretic interpretation of C as a moduli space for

semi-abelian schemes with a suitable action ofOK and a “level-N structure”.

1.4.3 Change of level

Assume that N ≥ 3 is even, and N ′ = QN . We then obtain a covering map XΓ (N ′) →
XΓ (N ) where by Γ (N ) we denote the group previously denoted by Γ . Near any of the
cusps, the analytic model allows us to analyze this map locally. Let E′ be an irreducible
cuspidal component of X̄Γ (N ′) mapping to the irreducible component E of X̄Γ (N ). The
following is a consequence of the discussion in the previous sections.

Proposition 1.10 Themap E′ → E is amultiplication-by-Q isogeny, hence étale of degree
Q2. When restricted to a neighborhood of E′, the covering X̄Γ (N ′) → X̄Γ (N ) is of degree Q3

and has ramification index Q along E, in the normal direction to E.

Corollary 1.11 The pull-back to E′ of the normal bundle T (N ) of E is the Qth power of
the normal bundle T (N ′) of E′.

1.5 The universal semi-abelian schemeA
1.5.1 The universal semi-abelian scheme over S̄

As Larsen and Bellaïche explain, the universal abelian scheme π : A→ S extends canon-
ically to a semi-abelian scheme π : A→ S̄. The polarization λ extends over the boundary
C = S̄\S to a principal polarization λ of the abelian part ofA. The action ι ofOK extends
to an action on the semi-abelian variety, which necessarily induces separate actions on
the toric part and on the abelian part.
Let E be a connected component of CRN , mapping (over C and under the projection p)

to the cusp c ∈ S∗C. Then there exist (1) a principally polarized elliptic curve B defined over
RN , with complex multiplication by OK and CM type Σ , and (2) an ideal a of OK, such
that every fiber Ax of A over E is an OK-group extension of B by the OK-torus a⊗Gm.
Both B (with its polarization) and the ideal class [a] ∈ ClK are uniquely determined by
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the cusp c. Only the extension class in the category ofOK-groups varies as we move along
E. Note that since the Lie algebra of the torus is of type (1, 1), the Lie algebra of such an
extensionAx is of type (2, 1), as is the case at an interior point x ∈ S. If we extend scalars
to C, the isomorphism type of B is given by another ideal class [b] (i.e. B(C) � C/b). In
this case, we say that the cusp c is of type (a, b).
The above discussion defines a homomorphism (of fppf sheaves over Spec(RN ))

E → Ext1OK (B, a⊗Gm). (1.62)

As we shall see soon, the Ext group is represented by an elliptic curve with CM by OK,
defined over RN , and this map is an isogeny.

1.5.2 OK-semi-abelian schemes of type (a, b)

We digress to discuss the moduli space for semi-abelian schemes of the type found above
points of E. Let R be an R0-algebra, B an elliptic curve over R with complex multiplication
by OK and CM type Σ , and a an ideal of OK. Consider a semi-abelian scheme G over R,
endowed with anOK action ι : OK → End(G), and a short exact sequence

0→ a⊗Gm → G → B→ 0 (1.63)

ofOK-group schemes overR.We call all this data a semi-abelian scheme of type (a, B) (over
R). The group classifying such structures is Ext1OK (B, a⊗Gm). Any χ ∈ a∗ = Hom(a,Z)
defines, by push-out, an extension Gχ of B by Gm, hence a point of Bt = Ext1(B,Gm). We
therefore get a homomorphism from Ext1OK (B, a ⊗ Gm) to Hom(a∗, Bt ). A simple check
shows that its image is in HomOK (a∗, Bt ) = δKa⊗OK Bt and that this construction yields
an isomorphism

Ext1OK (B, a⊗Gm) � δKa⊗OK Bt . (1.64)

Here we have used the canonical identification a∗ = δ−1K a−1 (via the trace pairing).
Although (δK) is a principal ideal, so can be ignored, it is better to keep track of its
presence. We emphasize that the CM type of Bt , with the natural action of OK derived
from its action on B, is Σ̄ rather thanΣ .
Thus over δKa⊗OKBt , there is a universal semi-abelian schemeG(a, B) of type (a, B), and

any G as above, over any base R′/R, is obtained from G(a, B) by pull-back (specialization)
with respect to a unique map Spec(R′)→ δKa⊗OK Bt .
When R = C, B � C/b for a unique ideal class [b] (with OK acting via Σ). Then,

canonically, Bt = C/δ−1K b
−1 (with OK acting via Σ̄). The pairing between the lattices,

b× δ−1K b
−1 → Z is (x, y) �→ TrK/Q(xȳ). Since theOK action on Bt is via Σ̄ ,

Ext1OK (C/b, a⊗Gm) � δKa⊗OK C/δ−1K b
−1 = C/ab

−1. (1.65)

The universal semi-abelian variety G(a, B) will now be denoted G(a, b). In 1.6.2, we give a
complex analytic model of this G(a, b).

1.6 Degeneration ofA along a geodesic connecting to a cusp

1.6.1 The degeneration to a semi-abelian variety

It is instructive to use the “moving lattice model” to compute the degeneration of the
universal abelian scheme along a geodesic, as we approach a cusp. To simplify the com-
putations, assume for the rest of this section, as before, that N ≥ 3 is even and that the
cusp is the standard cusp at infinity c = c∞. In this case, we have shown that Ec = C/�,
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where � = NOK, and we have given a neighborhood of Ec in X̄Γ the structure of a disk
bundle in a line bundle T . See Proposition 1.7.
Consider the geodesic (1.15) connecting (z, u) to c∞. Consider the universal abelian

scheme in the moving lattice model [cf (1.27)]. Of the three vectors used to span L′x over
OK in (1.25), the first two do not depend on z. As u is fixed along the geodesic, they are
not changed. The third vector represents a cycle that vanishes at the cusp (together with
all itsOK-multiples). We conclude that A′x degenerates to

C
3/Spanι′(OK)

⎧
⎪⎨

⎪⎩

⎛

⎜⎝
0
1
1

⎞

⎟⎠ ,

⎛

⎜⎝
1
0
u

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
. (1.66)

Making the change of variables (ζ ′1, ζ ′2, ζ ′3) = (ζ1, ζ2+ ūζ1, ζ3) does not alter theOK action
and gives the more symmetric model

Gu = C
3/Spanι′(OK)

⎧
⎪⎨

⎪⎩

⎛

⎜⎝
0
1
1

⎞

⎟⎠ ,

⎛

⎜⎝
1
ū
u

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
(1.67)

(but note that ζ ′2, unlike ζ2, does not vary holomorphically in the family {Gu}, only in each
fiber individually).
Let e(x) = e2π ix : C → C

× be the exponential map, with kernel Z. For any ideal a of
OK, it induces a map

ea : a⊗ C → a⊗ C
× (1.68)

with kernel a⊗1. As usual we identify a⊗CwithC(Σ)⊕C(Σ̄), sending a⊗ζ �→ (aζ , āζ ).
We now note that if we use this identification to identify C

3 with C ⊕ (OK ⊗ C) (an
identification which is compatible with theOK action), then the ι′(OK)-span of the vector
t (0, 1, 1) is just the kernel of eOK . We conclude that

Gu � {C⊕ (OK ⊗ C
×)}/Lu (1.69)

where Lu is the sub-OK-module

Lu =
{
(s, eOK (sū, s̄u))| s ∈ OK

}
. (1.70)

This clearly gives Gu the structure of anOK-semi-abelian variety of type (OK,OK), i.e. an
extension

0→ OK ⊗ C
× → Gu → C/OK → 0. (1.71)

1.6.2 The analytic uniformization of the universal semi-abelian variety of type (a, b)

We now compare the description that we have found for the degeneration ofA along the
geodesic connecting (z, u) to c∞ with the analytic description of the universal semi-abelian
variety of type (a, b).

Proposition 1.12 Let a and b be two ideals ofOK. For u ∈ C consider

Gu � {C⊕ (a⊗ C
×)}/Lu (1.72)

where

Lu =
{
(s, ea(sū, s̄u))| s ∈ b

}
. (1.73)

Then Gu is a semi-abelian variety of type (a, b), any complex semi-abelian variety of this
type is a Gu, and Gu � Gv if and only if u− v ∈ ab

−1.
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Proof That Gu is a semi-abelian variety of type (a, b) is obvious. That any abelian variety
of this type is a Gu follows by passing to the universal cover C

2(Σ) ⊕ C(Σ̄), and noting
that by a change of variables in the Σ- and Σ̄-isotypical parts, we may assume that the
lattice by which we divide is of the form

a

⎛

⎜⎝
0
1
1

⎞

⎟⎠⊕ b

⎛

⎜⎝
1
ū
u

⎞

⎟⎠ . (1.74)

Finally, the map u �→ [Gu] is a homomorphism C → Ext1OK (C/b, a ⊗ C
×), so we only

have to prove that Gu is split if and only if u ∈ ab
−1. But one can check easily that Gu is

trivial if and only if (sū, s̄u) ∈ ker ea = a ⊗ 1 = {(a, ā)|a ∈ a} for every s ∈ b, and this
holds if and only if u ∈ ab

−1.

Corollary 1.13 Let N ≥ 3 be even. Let c = c∞ be the cusp at infinity. Then the map

Ec → Ext1OK (C/OK,OK ⊗ C
×) (1.75)

sending u to the isomorphism class of the semi-abelian variety above u mod � is the
isogeny of multiplication by N.

Proof In view of the computations above, and the description of a neighborhood of Ec in
X̄Γ given in Proposition 1.7 this map is identified with the canonical map

C/NOK → C/OK. (1.76)

The extra data carried by u ∈ Ec, which are forgotten by the map of the corollary, come
from the level N structure. As mentioned before, according to [28] and [2] the cuspidal
divisor C has a modular interpretation as the moduli space for semi-abelian schemes
of the type considered above, together with level-N structure (M∞,N structures in the
language of [2]). A level-N structure on a semi-abelian variety G of type (a, b) consists of
(i) a level-N structures α : N−1OK/OK � a⊗μN on the toric part (ii) a level-N structure
β : N−1OK/OK � N−1b/b = B[N ] on the abelian part (iii) anOK-splitting γ of the map
G[N ]→ B[N ].
Over c = c∞, when a = b = OK, there are obvious natural choices for α and β

(independent of u), but the splittings γ in (iii) form a torsor under OK/NOK. If we
consider the splitting

γu : N−1OK/OK � s �→ (s, eOK (sū, s̄u)) mod Lu (1.77)

then the tuples (Gu,α,β , γu) and (Gv,α,β , γv) are isomorphic if and only if u ≡ v
mod NOK, i.e. if and only if u and v represent the same point of Ec.

1.7 The basic automorphic vector bundles

1.7.1 Definition and first properties

Recall that we have denoted by π : A→ S̄ the universal semi-abelian variety over S̄ (over
the base ring R0). Let ωA be the relative cotangent space at the origin of A. If e : S̄ → A
is the zero section,

ωA = e∗
(
Ω1

A/S̄

)
. (1.78)
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This is a rank 3 vector bundle over S̄ and the action ofOK allows to decompose it according
to types. We let

P = ωA(Σ), L = ωA(Σ̄). (1.79)

Then P is a plane bundle, and L a line bundle.
Over S (but not over the cuspidal divisor C = S̄\S), we have the usual identification

ωA = π∗Ω1
A/S . The relative de Rham cohomology ofA/S is a rank 6 vector bundle sitting

in an exact sequence (the Hodge filtration)

0→ ωA → H1
dR(A/S)→ R1π∗OA → 0. (1.80)

Since, for any abelian scheme, R1π∗OA = ω∨At (canonical isomorphism, see [31]), and
λ : A→ At is an isomorphism which reverses CM types, we obtain an exact sequence

0→ ωA → H1
dR(A/S)→ ω∨A(ρ)→ 0. (1.81)

The notation M(ρ) means that M is a vector bundle with an OK action and in M(ρ)
the vector bundle structure is that ofM, but the OK action is conjugated. Decomposing
according to types, we have two short exact sequences

0→ P → H1
dR(A/S)(Σ)→ L∨(ρ)→ 0 (1.82)

0→ L→ H1
dR(A/S)(Σ̄)→ P∨(ρ)→ 0.

The pairing 〈, 〉λ on H1
dR(A/S) induced by the polarization is OS-linear, alternating,

perfect, and satisfies
〈
ι(a)x, y

〉
λ
= 〈x, ι(ā)y〉

λ
. It follows thatH1

dR(A/S)(Σ) andH1
dR(A/S)(Σ̄)

are maximal isotropic subspaces and are set in duality. As ωA is also isotropic, this pairing
induces pairings

P × P∨(ρ)→ OS, L× L∨(ρ)→ OS. (1.83)

These two pairings are the tautological pairings between a vector bundle and its dual.
Another consequence of this discussion that we wish to record is the canonical isomor-

phism over S

detP = L(ρ)⊗ det
(
H1
dR(A/S)(Σ)

)
. (1.84)

1.7.2 The factors of automorphy corresponding toL andP
The formulae below can be deduced also from the matrix calculations in the first few
pages of [36]. Let Γ = Γj be one of the groups used in the complex uniformization of SC,
cf Sect. 1.3.5. Via the analytic isomorphism XΓ � SΓ with the jth connected component,
the vector bundles P and L are pulled back to XΓ and then to the symmetric space X,
where they can be trivialized, hence described by means of factors of automorphy. Let us
denote by Pan and Lan the two vector bundles on XΓ , in the complex analytic category,
or their pull-backs to X.
To trivializeLan, wemust choose anowhere vanishingglobal sectionoverX. Asusual,we

describe it only on the connected component containing the standard cusp, corresponding
to j = 1 (where L = Lg1 = L0). Recalling the “moving lattice model” (1.27) and the
coordinates ζ1, ζ2, ζ3 introduced there, we note that dζ3 is a generator of Lan = ωA(Σ̄).
For reasons that will become clear later (cf Sect. 1.12), we use 2π i · dζ3 to trivialize Lan
over X. Suppose

γ =
⎛

⎜⎝
a1 b1 c1
a2 b2 c2
a3 b3 c3

⎞

⎟⎠ ∈ Γ ⊂ SU∞. (1.85)
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If γ (z, u) = (z′, u′), then

z′ = a1z + b1u+ c1
a3z + b3u+ c3

, u′ = a2z + b2u+ c2
a3z + b3u+ c3

(1.86)

and

γ

⎛

⎜⎝
z
u
1

⎞

⎟⎠ = j(γ ; z, u)

⎛

⎜⎝
z′

u′

1

⎞

⎟⎠ , j(γ ; z, u) = a3z + b3u+ c3. (1.87)

Lemma 1.14 The following relation holds for every γ ∈ U∞

λ(z, u) = λ(γ (z, u)) · |j(γ ; z, u)|2. (1.88)

Proof Let v = v(z, u) = t (z, u, 1). Then

λ(z, u) = −(v, v). (1.89)

As v(γ (z, u)) = j(γ ; z, u)−1 · γ (v(z, u)) the lemma follows from (γ v, γ v) = (v, v).

LetV = Lie(A/X) = ω∨A/X andW = V(Σ̄) = L∨an (a line bundle). At a point x = (z, u) ∈
X the fiber Vx is identified canonically with (VR, Jx) and thenWx =Wx = C · t (z, u, 1).

Proposition 1.15 For x = (z, u) ∈ X let

v3(z, u) = λ(z, u)−1

⎛

⎜⎝
z
u
1

⎞

⎟⎠ ∈Wx. (1.90)

Then (i) v3(z, u) is a nowhere vanishing holomorphic section ofW , (ii)
〈
dζ3, v3

〉 ≡ 1, (iii) the
automorphy factor corresponding to dζ3 is the function j(γ ; z, u).

Proof Since, by construction, dζ3 is a nowhere vanishing holomorphic section of L (over
X), (i) follows from (ii). To prove (ii), we transfer v3(z, u) to the moving lattice model and
get t (0, 0, 1), which is the dual vector to dζ3. To prove (iii), we compute in VR (with the
original complex structure!)

γ∗v3(z, u)
v3(γ (z, u))

= λ(γ (z, u))
λ(z, u)

j(γ ; z, u) = j(γ ; z, u)−1, (1.91)

and recall that sinceWγ (z,u) is precisely the linewhere the complex structure in (VR, Jγ (z,u))
has been reversed, in (VR, Jγ (z,u)) we have

γ∗v3(z, u)
v3(γ (z, u))

= j(γ ; z, u)−1. (1.92)

Dualizing, we get (x = (z, u))

(γ−1)∗dζ3|x
dζ3|γ (x) = j(γ , x). (1.93)

This concludes the proof.

Consider next the plane bundle Pan. As we will only be interested in scalar-valued
modular forms, we do not compute its matrix-valued factor of automorphy (but see [36]).
It is important to know, however, that the line bundle detPan gives nothing new.
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Proposition 1.16 There is an isomorphism of analytic line bundles over XΓ ,

detPan � Lan. (1.94)

Moreover, dζ1∧dζ2 is a nowhere vanishing holomorphic section of detPan overX, and the
factor of automorphy corresponding to it is j(γ ; z, u).

Proof Since a holomorphic line bundle on XΓ = Γ \X is determined, up to an isomor-
phism, by its factor of automorphy, and j(γ ; z, u) is the factor of automorphy of Lan
corresponding to dζ3, it is enough to prove the second statement. Let U = V(Σ) be the
plane bundle dual to Pan. Let

v1(z, u) = −λ(z, u)−1
⎛

⎜⎝
ūz

(z − z̄)/δ
ū

⎞

⎟⎠ (1.95)

and

v2(z, u) = −λ(z, u)−1
⎛

⎜⎝
z̄ + δuū

u
1

⎞

⎟⎠ (1.96)

(considered as vectors in (VR, Jx) = Vx). As we have seen in (1.27), these two vector fields
are sections of U and at each point x ∈ X form a basis dual to dζ1 and dζ2. It follows that
they are holomorphic sections and that v1 ∧ v2 is the basis dual to dζ1 ∧ dζ2. We must
show that the factor of automorphy corresponding to v1 ∧ v2 is j(γ ; z, u)−1, i.e. that

γ∗(v1 ∧ v2(z, u))
v1 ∧ v2(γ (z, u))

= j(γ ; z, u)−1. (1.97)

Working in VR = C
3 (with the original complex structure)

γ∗(v1 ∧ v2(z, u))
v1 ∧ v2(γ (z, u))

· 1
j(γ ; z, u)

= γ∗(v1 ∧ v2(z, u))
v1 ∧ v2(γ (z, u))

· γ∗v3(z, u)
v3(γ (z, u))

= γ∗(v1 ∧ v2 ∧ v3(z, u))
v1 ∧ v2 ∧ v3(γ (z, u))

. (1.98)

But

v1 ∧ v2 ∧ v3(z, u) = δλ(z, u)−1e1 ∧ e2 ∧ e3, (1.99)

because

det

⎛

⎜⎝
ūz z̄ + δuū z

(z − z̄)/δ u u
ū 1 1

⎞

⎟⎠ = δλ(z, u)2. (1.100)

As det(γ ) = 1, this gives

γ∗(v1 ∧ v2(z, u))
v1 ∧ v2(γ (z, u))

· 1
j(γ ; z, u)

= λ(γ (z, u))
λ(z, u)

= 1
j(γ ; z, u)j(γ ; z, u)

, (1.101)

and the proof is complete.

1.7.3 The relation detP � L over S̄K
The isomorphism between detP andL is in fact algebraic and even extends to the generic
fiber S̄K of the smooth compactification.
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Proposition 1.17 One has detP � L over S̄K.

Proof Since Pic(S̄K) ⊂ Pic(S̄C), it is enough to prove the proposition over C. By GAGA,
it is enough to establish the triviality of detP ⊗ L−1 in the analytic category. For each
connected component XΓ of SC, the section (dζ1 ∧ dζ2)⊗ dζ−13 descends from X to XΓ ,
because dζ1 ∧ dζ2 and dζ3 have the same factor of automorphy j(γ , x) (γ ∈ Γ , x ∈ X).
This section is nowhere vanishing on XΓ and extends to a nowhere vanishing section on
X̄Γ , trivializing detP⊗L−1. In fact, if c is the standard cusp, dζ1∧dζ2 and dζ3 are already
well defined and nowhere vanishing sections of detP and L in the neighborhood

Γcusp\ΩR = (Γcusp\ΩR) ∪ Ec (1.102)

of Ec (see 1.4.1). This is a consequence of the fact that j(γ , x) = 1 for γ ∈ Γcusp.
An alternative proof is to use Theorem 4.8 of [14]. In our case, it gives a functor V �→ [V]

fromthe categoryofG(C)-equivariant vector bundles on the compact dualP2
C of ShK to the

category of vector bundles with G(Af )-action on the inverse system of Shimura varieties
ShK . Here P

2
C = G(C)/H(C), where H(C) is the parabolic group stabilizing the line C·

t (δ/2, 0, 1) in G(C) = GL3(C) × C
×, and the irreducible V are associated with highest

weight representations of the Levi factor L(C) ofH(C). It is straightforward to check that
detP andL are associated with the same character of L(C), up to a twist by a character of
G(C), which affects the G(Af )-action (hence the normalization of Hecke operators), but
not the structure of the line bundles themselves. The functoriality of Harris’ construction
implies that detP and L are isomorphic also algebraically.

We de not know whether detP and L are isomorphic as algebraic line bundles over
S. This would be equivalent, by (1.84), to the statement that for every PEL structure
(A, λ, ι,α) ∈ M(R), for any R0-algebra R, det(H1

dR(A/R)(Σ)) is the trivial line bundle on
Spec(R). To our regret, we have not been able to establish this, although a similar statement
in the “Siegel case”, namely that for any principally polarized abelian scheme (A, λ) over
R, detH1

dR(A/R) is trivial, follows at once from the Hodge filtration (1.81). Our result,
however, suffices to guarantee the following corollary, which is all that we will be using in
the sequel.

Corollary 1.18 For any characteristic p geometric point Spec(k) → Spec(R0), we have
detP � L on S̄k . A similar statement holds for morphisms SpecW (k)→ Spec(R0).

Proof Since S̄ is a regular scheme, detP ⊗ L−1 � O(D) for a Weil divisor D supported
on vertical fibers over R0. Since any connected component Z of S̄k is irreducible, we can
modify D so that D and Z are disjoint, showing that detP ⊗ L−1|Z is trivial. The second
claim is proved similarly.

1.7.4 Modular forms

Let R be an R0-algebra. A modular form of weight k ≥ 0 and level N ≥ 3 defined over R
is an element of the finite R-module

Mk (N, R) = H0
(
S̄R,Lk

)
. (1.103)

We usually omit the subscript R, remembering that S̄ is now to be considered over R. The
well-known Koecher principle says that H0(S̄,Lk ) = H0(S,Lk ). See [2], Section 2.2, for
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an arithmetic proof valid integrally over any R0-algebra R. A cusp form is an element of
the space

M0
k (N, R) = H0

(
S̄,Lk ⊗O(C)∨

)
. (1.104)

As we shall see below (cf Corollary 1.23), if k ≥ 3, there is an isomorphismLk⊗O(C)∨ �
Ω2

S̄ ⊗ Lk−3. In particular, cusp forms of weight 3 are “the same” as holomorphic 2-forms
on S̄.
An alternative definition (à la Katz) of a modular form of weight k and level N defined

over R, is as a “rule” f which assigns to every R-scheme T , and every A = (A, λ, ι,α) ∈
M(T ), together with a nowhere vanishing section ω ∈ H0(T,ωA/T (Σ̄)), an element
f (A,ω) ∈ H0(T,OT ) satisfying

• f (A, λω) = λ−k f (A,ω) for every λ ∈ H0(T,OT )×

• The “rule” f is compatible with base change T ′/T .

Indeed, if f is an element ofMk (N, R), then given such anA andω, the universal property
of S produces a unique morphism ϕ : T → S over R, ϕ∗A = A, and we may let f (A,ω) =
ϕ∗f /ωk . Conversely, given such a rule f we may cover S by Zariski open sets T where L
is trivialized, and then the sections f (AT ,ωT )ωk

T (ωT a trivializing section over T ) glue to
give f ∈ Mk (N, R).While viewing f as a “rule” rather than a section is amatter of language,
it is sometimes more convenient to use this language.
Let R → R′ be a homomorphism of R0-algebras. Then Bellaïche proved the following

theorem ([2], 1.1.5).

Theorem 1.19 If k ≥ 3 (resp. k ≥ 6), thenM0
k (N, R) (resp. Mk (N, R)) is a locally free finite

R-module, and the base-change homomorphism

R′ ⊗M0
k (N, R) �M0

k (N, R
′) (1.105)

is an isomorphism (resp. base change for Mk (N, R)).

Bellaïche considers only weights divisible by 3, but his proofs generalize to all k (cf
remark on the bottom of p. 43 in [2]).
OverC, pullingback toX andusing the trivializationofL givenby thenowhere vanishing

section 2π i · dζ3, a modular form of weight k is a collection (fj)1≤j≤m of holomorphic
functions on X satisfying

fj(γ (z, u)) = j(γ ; z, u)k fj(z, u) ∀γ ∈ Γj (1.106)
(the Koecher principle means that no condition has to be imposed at the cusps).

1.8 The Kodaira–Spencer isomorphism

Let π : A → S be an abelian scheme of relative dimension 3, as in the Picard moduli
problem. The Gauss–Manin connection

∇ : H1
dR(A/S)→ H1

dR(A/S)⊗OS Ω
1
S (1.107)

defines the Kodaira–Spencer map
KS ∈ HomOS

(
ωA ⊗OS ωAt ,Ω1

S
)

(1.108)
as the composition of the maps

ωA = H0(A,Ω1
A/S) ↪→ H1

dR(A/S)
∇→ H1

dR(A/S)⊗OS Ω
1
S

� R1π∗OA ⊗OS Ω
1
S � ω∨At ⊗OS Ω

1
S , (1.109)
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and finally using Hom(L,M∨ ⊗ N ) = Hom(L ⊗M,N ). Recall that if A is endowed with
an OK action via ι, then the induced action of a ∈ OK on At is induced from the action
on Pic(A), taking a line bundleM to ι(a)∗M. As the polarization λ : A→ At isOS-linear
but satisfies λ◦ ι(a) = ι(aρ)◦λ, it follows that the inducedOK action onAt is of type (1, 2)
and hence ω∨At is of type (1, 2).

Lemma 1.20 The map KS induces maps

KS(Σ) : ωA(Σ)→ ω∨At (Σ)⊗OS Ω
1
S

KS(Σ̄) : ωA(Σ̄)→ ω∨At (Σ̄)⊗OS Ω
1
S (1.110)

hence maps, denoted by the same symbols,

KS(Σ) : ωA(Σ)⊗OS ωAt (Σ)→ Ω1
S

KS(Σ̄) : ωA(Σ̄)⊗OS ωAt (Σ̄)→ Ω1
S . (1.111)

The CM-type-reversing isomorphism λ∗ : ωAt → ωA induced by the principal polarization
satisfies

KS(Σ)(λ∗x ⊗ y) = KS(Σ̄)(λ∗y⊗ x) (1.112)

for all x ∈ ωAt (Σ̄) and y ∈ ωAt (Σ).

Proof The first claim follows from the fact that the Gauss–Manin connection commutes
with the endomorphisms, hence preserves CM types. The second claim is a consequence
of the symmetry of the polarization, see [11], Prop. 9.1 on p.81 (in the Siegel modular
case).

Observe that ωA(Σ) ⊗OS ωAt (Σ), as well as ωA(Σ̄) ⊗OS ωAt (Σ̄), are vector bundles of
rank 2.

Lemma 1.21 If S is the Picardmodular surface andA = A is the universal abelian variety,
then

KS(Σ) : ωA(Σ)⊗OS ωAt (Σ)→ Ω1
S (1.113)

is an isomorphism, and so is KS(Σ̄).

Proof This is well known and follows fromdeformation theory. For a self-contained proof,
see [2], Prop. II.2.1.5.

Proposition 1.22 The Kodaira–Spencer map induces a canonical isomorphism of vector
bundles over S

P ⊗ L � Ω1
S . (1.114)

Proof We need only use λ∗ to identify ωAt (Σ) with ωA(Σ̄).

We refer to Corollary 1.29 for an extension of this result to S̄.

Corollary 1.23 There is an isomorphism of line bundles L3 � Ω2
S .
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Proof Takedeterminants andusedetP � L.Weemphasize thatwhileKS(Σ) is canonical,
the identification of detP with L depends on a choice, which we shall fix later on once
and for all.

The last corollary should be compared to the case of the open modular curve Y (N ),
where the square of the Hodge bundle ωE of the universal elliptic curve becomes isomor-
phic toΩ1

Y (N ). Over C, as the isomorphism between L3 andΩ2
S takes dζ⊗33 to a constant

multiple of dz ∧ du (see Corollary 1.31), the differential form corresponding to a modular
form ( fj)1≤j≤m of weight 3, is (up to a constant) (fj(z, u)dz ∧ du)1≤j≤m.

1.9 Extensions to the boundary of S

1.9.1 The vector bundlesP andL over C

Let E ⊂ CRN be a connected component of the cuspidal divisor (over the integral closure
RN of R0 in the ray class fieldKN ). As we have seen, E is an elliptic curve with CM byOK.
If the cusp at which E sits is of type (a, B) (a an ideal of OK, B an elliptic curve with CM
byOK defined over RN ), then E maps via an isogeny to δKa⊗OK Bt = Ext1OK (B, a⊗Gm).
In particular, E and B are isogenous over KN .
Consider G, the universal semi-abelian OK-threefold of type (a, B), over δKa ⊗OK Bt .

The semi-abelian schemeA over E is the pull-back of this G. Clearly, ωA/E = P ⊕ L and
P = ωA/E(Σ) admits over E a canonical rank 1 sub-bundle P0 = ωB. Since the toric part
and the abelian part of G are constant, L,P0 and Pμ = P/P0 are all trivial line bundles
when restricted to E. It can be shown that P itself is not trivial over E.

1.9.2 More identities over S̄

We have seen thatΩ2
S � L3. For the following proposition, compare [2], Lemme II.2.1.7.

Proposition 1.24 Working overKN , let Ej (1 ≤ j ≤ h) be the connected components of C.
Then

Ω2
S̄ � L3 ⊗

h⊗

j=1
O(Ej)∨. (1.115)

Proof By [15] II.6.5,Ω2
S̄ � L3 ⊗⊗h

j=1O(Ej)nj for some integers nj and we want to show
that nj = −1 for all j. By the adjunction formula on the smooth surface S̄, if we denote by
KS̄ a canonical divisor,O(KS̄) = Ω2

S̄ , then

0 = 2gEj − 2 = Ej · (Ej + KS̄). (1.116)

We conclude that

deg
(
Ω2

S̄ |Ej
)
= Ej · KS̄ = −Ej · Ej > 0. (1.117)

Here Ej · Ej < 0 because Ej can be contracted to a point (Grauert’s theorem). As L|Ej and
O(Ei)|Ej (i �= j) are trivial, we get

− Ej · Ej = njEj · Ej, (1.118)

hence nj = −1 as desired.
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1.10 Fourier–Jacobi expansions

1.10.1 The infinitesimal retraction

We follow the arithmetic theory of Fourier–Jacobi expansions as developed in [2]. Let
Ŝ be the formal completion of S̄ along the cuspidal divisor C = S̄\S. We work over R0
and denote by C (n) the n-th infinitesimal neighborhood of C in S̄. The closed immersion
i : C ↪→ Ŝ admits a canonical left inverse r : Ŝ → C , a retraction satisfying r ◦ i = IdC .
This is not automatic, but rather a consequence of the rigidity of tori, as explained in
[2], Proposition II.2.4.2. As a corollary, the universal semi-abelian scheme A/C (n) is the
pull-back of A/C via r. The same therefore holds for P and L, namely there are natural
isomorphisms r∗(P|C ) � P|C (n) and r∗(L|C ) � L|C (n) . As a consequence, the filtration

0→ P0 → P → Pμ → 0 (1.119)

extends canonically to C (n). Since L,P0 and Pμ are trivial on C , they are trivial over C (n)

as well.

1.10.2 Arithmetic Fourier–Jacobi expansions

We fix an arbitrary Noetherian R0-algebra R and consider all our schemes over R, without
a change in notation. As usual, we let OŜ = lim←OC (n) (a sheaf in the Zariski topology
on C). Via r∗, this is a sheaf of OC -modules. Choose a global nowhere vanishing section
s ∈ H0(C,L) trivializing L. Such a section is unique up to a unit of R on each connected
component of C . This s determines an isomorphism

Lk |̂S � OŜ , f �→ f /(r∗s)k (1.120)

for each k , hence a ring homomorphism

FJ : ⊕∞k=0Mk (N, R)→ H0(C,OŜ). (1.121)

We call FJ (f ) the (arithmetic) Fourier–Jacobi expansion of f . It depends on s in an obvious
way.
To understand the structure of H0(C,OŜ) let I ⊂ OS̄ be the sheaf of ideals defining C,

so that C (n) is defined by In. The conormal sheaf N = I/I2 is the restriction i∗OS̄(−C)
of I = OS̄(−C) to C . It is an ample invertible sheaf on C , since (over RN ) its degree on
each component Ej is −E2

j > 0.
Now r∗ supplies, for every n ≥ 2, a canonical splitting of

0→ I/In → OS̄/In �→ OS̄/I → 0. (1.122)

Inductively, we get a direct sum decomposition

OS̄/In �
n−1⊕

m=0
Im/Im+1 (1.123)

asOC -modules, hence, since Im/Im+1 � Nm, an isomorphism

H0(C,OC (n) ) �
n−1⊕

m=0
H0(C,Nm), f �→

n−1∑

m=0
cm(f ). (1.124)

This isomorphism respects the multiplicative structure, so is a ring isomorphism. Going
to the projective limit, and noting that the cm(f ) are independent of n, we get

FJ (f ) =
∞∑

m=0
cm(f ) ∈

∞∏

m=0
H0(C,Nm). (1.125)
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1.10.3 Fourier–Jacobi expansions overC

Working over C, we shall now relate the infinitesimal retraction r to the geodesic retrac-
tion, and the powers of the conormal bundle N to theta functions. Recall the analytic
compactification of XΓ described in Proposition 1.7. Let E be the connected component
of X̄Γ \XΓ corresponding to the standard cusp c∞. As before, we denote by E(n) its nth
infinitesimal neighborhood. The line bundle T |E is just the analytic normal bundle to E,
and hence we have an isomorphism

Nan � T ∨ (1.126)

between the analytification ofN = I/I2 and the dual of T .

Lemma 1.25 The infinitesimal retraction r : E(n) → E coincides with the map induced
by the geodesic retraction (1.15).

Proof The meaning of the lemma is this. The infinitesimal retraction induces a map of
ringed spaces

ran : E(n)
an → Ean (1.127)

where Ean is the analytic space associated with E with its sheaf of analytic functionsOhol
E ,

and E(n)
an is the same topological space with the sheaf Ohol

S̄ /In
an. The geodesic retraction

(sending (z, u) to u mod �) is an analytic map rgeo : Ean(ε) → Ean, where Ean(ε) is our
notation for some tubular neighborhood of Ean in S̄an. On the other hand, there is a
canonical map can of ringed spaces from E(n)

an to Ean(ε). We claim that these three maps
satisfy rgeo ◦ can = ran.
To prove the lemma, note that the infinitesimal retraction r : E(n) → E is uniquely

characterized by the fact that the OK-semi-abelian variety Ax = x∗A at any point x :
Spec(R) → E(n) is equal to Ar◦x (an equality respecting the PEL structures). See [2],
II.2.4.2. The computations of Sect. 1.6 show that the same is true for the infinitesimal
retraction obtained from the geodesic retraction. We conclude that the two retractions
agree on the level of “truncated Taylor expansions”.

Consider now a modular form of weight k and level N over C, f ∈ Mk (N,C). Using
the trivialization of Lan over the symmetric space X given by 2π i · dζ3 as discussed in
Sect. 1.7.2, we identify f with a collection of functions fj on X, transforming under Γj
according to the automorphy factor j(γ ; z, u)k . As usual, we look at Γ = Γ1 only, and at
the expansion of f = f1 at the standard cusp c∞, the other cusps being in principle similar.
On the arithmetic FJ expansion side, this means that we concentrate on one connected
componentE ofC , which lies on the connected component of SC corresponding to g1 = 1.
It also means that as the section s used to trivialize L along E, we must use a section that,
analytically, coincides with 2π i · dζ3.
Pulling back the sheaf Nan from E = C/� to C, it is clear that q = q(z) = e2π iz/M

maps, at each u ∈ C, to a generator of T ∨ = Nan = Ian/I2
an, and we denote by qm the

corresponding generator ofNm
an = Im

an/Im+1
an . If

f (z, u) =
∞∑

m=0
θm(u)e2π imz/M =

∞∑

m=0
θm(u)qm (1.128)

is the complex analytic Fourier expansion of f at a neighborhood of c∞, then cm(z, u) =
θm(u)qm ∈ H0(E,Nm

an) is just the restriction of the section denoted above by cm(f ) to E.
The functions θm are classical elliptic theta functions (for the lattice�).
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1.11 The Gauss–Manin connection in a neighborhood of a cusp

1.11.1 A computation of∇ in the complexmodel

We shall now compute the Gauss–Manin connection in the complex model near the
standard cusp c∞. Recall that we use the coordinates (z, u, ζ1, ζ2, ζ3) as in Sect. 1.2.4. Here
dζ1 and dζ2 form a basis for P and dζ3 for L. The same coordinates served to define
also the semi-abelian variety Gu (denoted alsoAu) over the cuspidal component E at c∞,
cf Sect. 1.6. As explained there (1.69), the projection to the abelian part is given by the
coordinate ζ1 (moduloOK), so dζ1 is a basis for the sub-line-bundle of ωA/E coming from
the abelian part, which was denoted P0. In Sect. 1.10.1, it is explained how to extend the
filtrationP0 ⊂ P canonically to the formal neighborhood Ŝ of E using the retraction r, by
pulling back from the boundary. It was also noted that complex analytically, the retraction
r is the germ of the geodesic retraction introduced earlier. From the analytic description
of the degeneration ofA(z,u) along a geodesic, it becomes clear that P0 = r∗(P0|E) is just
the line bundleOŜ · dζ1 ⊂ ωA/̂S . It follows that Pμ = OŜ · dζ2 mod P0.
We shall now pull back these vector bundles to X and compute the Gauss Manin

connection ∇ complex analytically on ωA/X. We write P0 = OX · dζ1 for P0,an etc.
dropping the decoration an. Recalling thatOK = Z⊕ ZωK, we let

α1 =
⎛

⎜⎝
0
1
1

⎞

⎟⎠ , α2 =
⎛

⎜⎝
1
0
u

⎞

⎟⎠ , α3 =
⎛

⎜⎝
u

−z/δ
z/δ

⎞

⎟⎠ (1.129)

and

α′1 = ι′(ωK)α1 =
⎛

⎜⎝
0
ωK
ω̄K

⎞

⎟⎠ , α′2 = ι′(ωK)α2 =
⎛

⎜⎝
ωK
0

ω̄Ku

⎞

⎟⎠ ,

α′3 = ι′(ωK)α3 =
⎛

⎜⎝
ωKu

−ωKz/δ
ω̄Kz/δ

⎞

⎟⎠ . (1.130)

These 6 vectors span L′(z,u) over Z. Let β1, . . . ,β ′3 be the dual basis to {α1, . . . ,α′3} in
H1
dR(A/OX), i.e.

∫
α1
β1 = 1 etc. As the periods of the βi ’s along the integral homology are

constant, the β-basis is horizontal for the Gauss–Manin connection. The first coordinate
of the αi and α′i gives us

dζ1 = 0 · β1 + 1 · β2 + u · β3 + 0 · β ′1 + ωK · β ′2 + ωKu · β ′3, (1.131)

and we find that

∇(dζ1) =
(
β3 + ωKβ ′3

)⊗ du. (1.132)

Similarly, we find

∇(dζ2) = −δ−1
(
β3 + ωKβ ′3

)⊗ dz (1.133)

∇(dζ3) =
(
β2 + ω̄Kβ ′2

)⊗ du+ δ−1
(
β3 + ω̄Kβ ′3

)⊗ dz.

1.11.2 A computation of KS in the complexmodel

We go on to compute the Kodaira–Spencer map on P , i.e. the map denoted KS(Σ). For
that, we have to take ∇(dζ1) and ∇(dζ2) and project them to R1π∗OA(Σ)⊗Ω1

X. We then
pair the result, using the polarization form 〈, 〉λ on H1

dR(A) (reflecting the isomorphism
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R1π∗OA(Σ) = Lie(At )(Σ) = ω∨At (Σ) � L∨(ρ) (1.134)

coming from λ), with dζ3.
To perform the computation, we need two lemmas.

Lemma 1.26 The Riemann form on L′x, associated with the polarization λ, is given in the
basis α1,α2,α3,α′1,α′2,α′3 by the matrix

J =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1

1
−1

1
−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1.135)

Proof This is an easy computation using the transition map T between L and L′x and the
fact that on L the Riemann form is the alternating form 〈, 〉 = Imδ(, ).

For the formulation of the next lemma recall that if A is a complex abelian variety, a
polarization λ : A→ At induces an alternating form 〈, 〉λ on H1

dR(A) as well as a Riemann
form on the integral homology H1(A,Z). We compare the two.

Lemma 1.27 Let (A, λ) be a principally polarized complex abelian variety. If α1, . . . ,α2g
is a symplectic basis for H1(A,Z) in which the associated Riemann form is given by amatrix
J , and β1, . . . ,β2g is the dual basis of H1

dR(A), then the matrix of the bilinear form 〈, 〉λ on
H1
dR(A) in the basis β1, . . . ,β2g is (2π i)−1J .

Proof These are essentially Riemann’s bilinear relations. For example, if A is the Jacobian
of a curve C and the basis α1, . . . ,α2g has the standard intersection matrix

J =
(

0 I
−I 0

)
(1.136)

then the lemma follows from the well-known formula for the cup product (ξ , η being
differentials of the second kind on C)

ξ ∪ η = 1
2π i

g∑

i=1

(∫

αi

ξ

∫

αi+g
η −
∫

αi

η

∫

αi+g
ξ

)
. (1.137)

Using the two lemmas, we get

KS(dζ1 ⊗ dζ3) =
〈
β3 + ωKβ ′3, dζ3

〉
λ
· du (1.138)

=
〈
β3 + ωKβ ′3, β1 + uβ2 + zδ−1β3 +
ω̄Kβ ′1 + ω̄Kuβ ′2 + ω̄Kzδ−1β ′3

〉
λ
· du

= −δ(2π i)−1du.
Similarly,

KS(dζ2 ⊗ dζ3) =
〈−δ−1(β3 + ωKβ ′3), dζ3

〉
λ
· dz (1.139)

= (2π i)−1dz.

We summarize.
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Proposition 1.28 Let z, u, ζ1, ζ2, ζ3 be the standard coordinates in a neighborhood of the
cusp c∞. Then, complex analytically, the Kodaira–Spencer isomorphism

KS(Σ) : P ⊗ L � Ω1
X (1.140)

is given by the formulae

KS(dζ1 ⊗ dζ3) = −δ(2π i)−1du, KS(dζ2 ⊗ dζ3) = (2π i)−1dz. (1.141)

Corollary 1.29 The Kodaira–Spencer isomorphism P ⊗ L � Ω1
S extends meromorphi-

cally over S̄.Moreover, in a formal neighborhood Ŝ of C, its restriction to the line sub-bundle
P0⊗L is holomorphic, and on any direct complement of P0⊗L in P ⊗L, it has a simple
pole along C.

Proof As we have seen, dζ1 ⊗ dζ3 and dζ2 ⊗ dζ3 define a basis of P ⊗ L at the boundary,
with dζ1⊗dζ3 spanning the line sub-bundleP0⊗L. On the other hand du is holomorphic
there, while dz has a simple pole along the boundary.

Corollary 1.30 The induced map

ψ : Ω1
X → Pμ ⊗ L (1.142)

(Pμ = P/P0) obtained by inverting the isomorphism KS(Σ) and dividing P by P0 kills du
and maps dz to 2π i · dζ2 ⊗ dζ3.

Proof As we have seen, dζ1 is a basis for P0.

Corollary 1.31 The isomorphism L3 � Ω2
S maps dζ⊗33 to a constant multiple of dz ∧ du.

Proof The isomorphism detP � L carries dζ1 ∧ dζ2 to a constant multiple of dζ3, so the
corollary follows from (1.141).

1.11.3 Transferring the results to the algebraic category

The computations leading to (1.141) of course descend (still in the analytic category) to
SC, because they are local in nature. They then hold a fortiori in the formal completion
ŜC along the cuspidal component E. Recall that the sections dζ1, dζ3 and dζ2 mod 〈dζ1〉
(respectively, du and dz mod 〈du〉) are well defined in ŜC, because as global sections
defined over X they are invariant under Γcusp (see Lemma 1.8). But the Gauss–Manin
and Kodaira–Spencer maps are defined algebraically on S, and bothΩ1

Ŝ and ωA/̂S are flat
over R0, so from the validity of the formulae over C we deduce their validity in Ŝ over
R0, provided we identify the differential forms figuring in them (suitably normalized) with
elements of Ω1

Ŝ and ωA/̂S defined over R0. In particular, they hold in the characteristic p
fiber as well.
From the relation

dq
q
= 2π i

M
dz, (1.143)

we deduce that the map ψ has a simple zero along the cuspidal divisor.
Finally, although we have done all the computations at one specific cusp, it is clear that

similar computations hold at any other cusp.
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1.12 Fields of rationality

1.12.1 Rationality of local sections ofP andL
We have compared the arithmetic surface S with the complex analytic surfaces Γj\X
(1 ≤ j ≤ m), and the compactifications of these two models. We have also compared the
universal semi-abelian scheme A and the automorphic vector bundles P and L in both
models. In this section, we want to compare the local parameters obtained from the two
presentations, and settle the question of rationality. For simplicity, we shall work rationally
and not integrally, which is all we need. In order to work integrally, one would have to
study degeneration and periods of abelian varieties integrally, which is more delicate, see
[28], Ch.I, Sections 3,4.
We shall need to look at local parameters at the cusps, and as the cusps are defined only

over KN , we shall work with SKN instead of SK. With a little more care, working with
Galois orbits of cusps, we could probably prove rationality over K, but for our purpose
KN is good enough.
If ξ and η belong to aKN -module, we write ξ ∼ η tomean that η = cξ for some c ∈ K×N .
Webeginwith the vector bundlesP andL.OverC, they yield analytic vector bundlesPan

and Lan on each XΓj (1 ≤ j ≤ m). Assume for the rest of this section that j = 1 and write
Γ = Γ1. Similar results will hold for every j. The vector bundles P and L are trivialized
over the unit ball X by means of the nowhere vanishing sections dζ3 ∈ H0(X,Lan) and
dζ1, dζ2 ∈ H0(X,Pan). These sections do not descend to XΓ , but

σan = (dζ1 ∧ dζ2)⊗ dζ−13 ∈ H0 (XΓ , detP ⊗ L−1
)

(1.144)

does, as the factors of automorphy of dζ1 ∧ dζ2 and dζ3 are the same (cf Sect. 1.7.2).
Furthermore, this factor of automorphy (i.e. j(γ ; z, u)) is trivial on Γcusp, the stabilizer of
c∞ in Γ , so dζ1∧dζ2 and dζ3 define sections of detP andL on ŜC, the formal completion
of S̄C along the cuspidal divisor Ec = p−1(c∞) ⊂ S̄C. The same also holds for dζ1 and dζ2
mod 〈dζ1〉 individually (Lemma 1.8). Along Ec,P has a canonical filtration

0→ P0 → P → Pμ → 0 (1.145)

and dζ1 is a generator of P0. (Compare (1.63) and (1.71) and note that the projection to
C/OK = B(C) is via the coordinate ζ1, so dζ1 is a generator of P0|Ec = ωB.) As we have
shown in Sect. 1.10.1, this filtration extends to the formal neighborhood ŜC of Ec. The
vector bundlesP andL, as well as the filtration onP , are defined overKN . It makes sense
therefore to ask whether certain sections are KN -rational. Recall that the cusp c∞ is of
type (OK,OK).

Proposition 1.32 (i) 2π i·dζ3 ∈ H0(̂SKN ,L). In otherwords, this section isKN -rational.
(ii) Similarly 2π i · dζ2 projects (modulo P0) to a KN -rational section of Pμ.
(iii) Let B be the elliptic curve over KN associated with the cusp c∞ as in Sect. 1.5.1.

Let ΩB ∈ C
× be a period of a basis ω of ωB = H0(B,Ω1

B/KN
) (i.e. the lattice of

periods of ω is ΩB · OK). This ΩB is well defined up to an element of K×N . Then
ΩB · dζ1 ∈ H0(̂SKN ,P0) is KN -rational.

Proof Let E be the component of CKN which over C becomes Ec. Let G be the universal
semi-abelian scheme over E. Then G is a semi-abelian scheme which is an extension of
B×KN E by the torus (OK ⊗Gm,KN )×KN E. At any point u ∈ E(C), we have the analytic
model Gu (1.69) for the fiber of G at u, but the abelian part and the toric part are constant.
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Over E, the line bundle P0 is (by definition) ωB×E/E. As the lattice of periods of a suitable
KN -rational differential is ΩB · OK, while the lattice of periods of dζ1 is OK, part (iii)
follows. For parts (i) and (ii), observe that the toric part of G is in fact defined over K and
that e∗OK maps the cotangent space ofOK⊗Gm,K isomorphically to theK-span of 2π idζ2
and 2π idζ3.

Corollary 1.33 ΩB · σan is a nowhere vanishing global section of detP ⊗ L−1 over SΓ ,
rational over KN .

Proof Recall that we denote by SΓ the connected component of SKN whose associated
analytic space is the complex manifold XΓ . We have seen that as an analytic section
ΩB · σan descends to XΓ and extends to the smooth compactification X̄Γ . By GAGA, it is
algebraic. Since X̄Γ is connected, to check its field of definition, it is enough to consider
it at one of the cusps. By the Proposition, its restriction to the formal neighborhood of Ec
(c = c∞) is defined over KN .

The complex periodsΩB (and their powers) appear as the transcendental parts of special
values of L-functions associated with Grossencharacters of K. They are therefore instru-
mental in the construction of p-adic L-functions on K. We expect them to appear in the
p-adic interpolation of holomorphic Eisenstein series on the group G, much as powers of
2π i (values of ζ (2k)) appear in the p-adic interpolation of Eisenstein series on GL2(Q).

1.12.2 Rationality of local parameters at the cusps

We keep the assumptions and the notation of the previous section. Analytically, neigh-
borhoods of Ec∞ were described in Sect. 1.4.1 with the aid of the parameters (z, u). Let Ŝ
denote the formal completion of S̄KN along E. Let r : Ŝ → E be the infinitesimal retraction
discussed in Sect. 1.10.1. If i : E ↪→ Ŝ is the closed embedding, then r ◦ i = IdE. If I is
the sheaf of definition of E, then N = I/I2 is the conormal bundle to E and hence its
analytification is the dual of the line bundle T ,

Nan = T ∨. (1.146)

Consider r∗N on Ŝ. The retraction allows us to split the exact sequence

0→ N → i∗Ω1
Ŝ → Ω1

E → 0 (1.147)

using Ω1
E = i∗r∗Ω1

E ⊂ i∗Ω1
Ŝ . Thus i

∗Ω1
Ŝ = N × Ω1

E. The map i ◦ r : Ŝ → Ŝ induces a
sheaf homomorphism r∗i∗Ω1

Ŝ → Ω1
Ŝ , which becomes the identity if we restrict it to E (i.e.

follow it with i∗). By Nakayama’s lemma, it is an isomorphism. It follows that

Ω1
Ŝ = r∗i∗Ω1

Ŝ = r∗N × r∗Ω1
E. (1.148)

Let x ∈ E and represent it by u ∈ C (modulo �). Then q = e2π iz/M , where M is the
width of the cusp (1.54), is a local analytic parameter on a classical neighborhood Ux of x
which vanishes to first order along E. Note that q depends on the choice of u (see Remark
below). It follows that dq, the image of q in Ian/I2

an, is a basis ofNan (on Ux ∩ E). But

2π i · dz = M
dq
q

(1.149)

(mod 〈du〉) is independent of u [see (1.55)], so represents a global meromorphic section
of r∗Nan, with a simple pole along E ⊂ ŜC. By GAGA, this section is (meromorphic)
algebraic.
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Proposition 1.34 (i)The section 2π i ·dz mod 〈du〉 isKN -rational, i.e. it is the analytifica-
tion of a section of r∗N . (ii)The sectionΩB ·du isKN -rational, i.e. belongs toH0(E,Ω1

E/KN
).

Proof The proof relies on the Kodaira–Spencer isomorphism KS(Σ) (1.141), which is a
KN -rational (even K-rational) algebraic isomorphism between P ⊗ L and Ω1

S . As we
have shown, it extends to a meromorphic homomorphism from P ⊗ L to Ω1

S̄ over S̄.
Over Ŝ it induces an isomorphism of P0 ⊗ L onto r∗Ω1

E ⊂ Ω1
Ŝ carrying the KN -rational

sectionΩBdζ1 ⊗ 2π idζ3 to −ΩBδ · du, proving part (ii) of the proposition. It also carries
2π idζ2 ⊗ 2π idζ3 to 2π idz, but the latter is only meromorphic. We may summarize the
situation over Ŝ by the following commutative diagram with exact rows:

0→ Î ⊗ P0 ⊗ L→ Î ⊗ P ⊗ L→ Î ⊗ Pμ ⊗ L→ 0
↓ ↓ KS(Σ) ↓

0→ r∗Ω1
E → Ω1

Ŝ → r∗N → 0
. (1.150)

Let h be a KN -rational local equation of E, i.e. a KN -rational section of I in some Zariski
open U intersecting E non-trivially, vanishing to first order along E ∩ U. The differential
η = h · (2π idz) is regular on U , and to prove that it is KN -rational we may restrict it
to Ŝ and check rationality there. But in Ŝ we have a KN -rational product decomposition
Ω1

Ŝ = r∗N × r∗Ω1
E and the projection of η to the second factor is 0, so it is enough

to prove rationality of its projection to r∗N . This projection is the image, under KS(Σ),
of h · (2π idζ2 ⊗ 2π idζ3 mod P0 ⊗ L), so our assertion follows from parts (i) and (ii)
of the previous proposition. This proves that η, hence h−1η = 2π idz is a KN -rational
differential. An alternative proof of part (ii) is to note that E is isogenous overKN to B, so
up to a KN -multiple has the same period.

Remark 1.1 The parameter q is not a well-defined parameter at x and depends not only
on x, but also on the point u used to uniformize it. If we change u to u+ s (s ∈ �), then q is
multiplied by the factor e2π iδs̄(u+s/2)/M , so althoughOhol

S̄C ,x
⊂ ÔS̄C ,x and analytic parameters

may be considered as formal parameters, the question whether q itself is KN -rational is
not well defined (in sharp contrast to the case of modular curves!).

1.12.3 Normalizing the isomorphism detP � L
Let us fix a nowhere vanishing section

σ ∈ H0 (SK, detP ⊗ L−1
)
. (1.151)

This section is determined up to K×. From now on, we shall use this section to identify
detP with L whenever such an identification is needed. From Corollary 1.33, we deduce
that when we base change to C, on each connected component XΓ

σ ∼ ΩB · σan. (1.152)

2 Picardmodular schemesmodulo an inert prime
2.1 The stratification

2.1.1 The three strata

Let p be a rational prime which is inert inK and relatively prime to 2N.Then κ0 = R0/pR0
is isomorphic to Fp2 .We fix an algebraic closure κ of κ0 and consider the characteristic p
fiber

S̄κ = S̄ ×R0 κ . (2.1)
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Unless otherwise specified, in this section we let S and S̄ denote the characteristic p fibers
Sκ and S̄κ .We also use the abbreviation ωA for ωA/S̄ etc.
Recall that an abelian variety over an algebraically closed field of characteristic p is called

supersingular if the Newton polygon of its p-divisible group has a constant slope 1/2. It
is called superspecial if it is isomorphic to a product of supersingular elliptic curves. The
following theorem combines various results proved in [4,39,40]. See also [8], Theorem
2.1.

Theorem 2.1 (i) There exists a closed reduced 1-dimensional subscheme Sss ⊂ S̄, dis-
joint from the cuspidal divisor (i.e. contained in S), which is uniquely characterized
by the fact that for any geometric point x of S, the abelian varietyAx is supersingular
if and only if x lies on Sss. The scheme Sss is defined over κ0.

(ii) Let Sssp be the singular locus of Sss. Then x lies in Sssp if and only ifAx is superspecial.
If x ∈ Sssp, then

ÔSss ,x � κ[[u, v]]/
(
up+1 + vp+1

)
. (2.2)

(iii) Assume that N is large enough (depending on p). Then the irreducible components of
Sss are non-singular and in fact are all isomorphic to the Fermat curve Cp given by
the equation

xp+1 + yp+1 + zp+1 = 0. (2.3)

There are p3 + 1 points of Sssp on each irreducible component and through each such
point pass p + 1 irreducible components. Any two irreducible components are either
disjoint or intersect transversally at a unique point.

(iv) Without the assumption of N being large (but under N ≥ 3 as usual), the irreducible
components of Sss may have multiple intersections with each other, including self-
intersections. Their normalizations are nevertheless still isomorphic to Cp.

We call S̄μ = S̄\Sss (or Sμ = S̄μ ∩ S) the μ-ordinary or generic locus, Sgss = Sss\Sssp the
general supersingular locus, and Sssp the superspecial locus. Then S̄ = S̄μ ∪ Sgss ∪ Sssp is a
stratification.

2.1.2 The p-divisible group

Let x : Spec(k) → S (k an algebraically closed field) be a geometric point of S, Ax the
corresponding fiber ofA, andAx(p) its p-divisible group. LetG be the p-divisible group of
a supersingular elliptic curve over k (the group denoted by G1,1 in the Manin-Dieudonné
classification). The following theorem can be deduced from [4,39].

Theorem 2.2 (i) If x ∈ Sμ, then

Ax(p) � (OK ⊗ μp∞ )×G× (OK ⊗Qp/Zp). (2.4)

(ii) If x ∈ Sss, thenAx(p) is isogenous toG3, and x ∈ Sssp if and only if the two groups are
isomorphic.

While the p-divisible group of aμ-ordinary geometric fiber actually splits as a product of
its multiplicative, local–local and étale parts, over the whole of Sμ we only get a filtration

0 ⊂ Fil2A(p) ⊂ Fil1A(p) ⊂ Fil0A(p) = A(p) (2.5)
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byOK-stable p-divisible groups. Here gr2 = Fil2 is of multiplicative type, gr1 = Fil1/Fil2

is a local–local group and gr0 = Fil0/Fil1 is étale, each of height 2 (OK-height 1).

2.2 New relations betweenP andL in characteristic p

For proofs and more details on this subsection, see [8], Section 2.2.

2.2.1 The line bundlesP0 andPμ over S̄μ

Consider the universal semi-abelian variety A over the Zariski open set S̄μ. Over the
cuspidal divisor C = S̄\S, P = ωA(Σ) admits a canonical filtration

0→ P0 → P → Pμ → 0 (2.6)

where P0 is the cotangent space to the abelian part of A, and Pμ is the Σ-component of
the cotangent space to the toric part ofA. This filtration exists already in characteristic 0,
but when we reduce the Picard surface modulo p, it extends to the whole of S̄μ. Over the
non-cuspidal part Sμ, we may set

P0 = ker
(
ωA[p]0 → ωA[p]μ

)
(2.7)

whereA[p]μ is the p-torsion inA(p)μ = Fil2A(p). Then Pμ is identified with ωA[p]μ (Σ).

2.2.2 Frobenius and Verschiebung

Let A(p) = A ×S̄,Φ S̄ be the base change of A with respect to the absolute Frobenius
morphism Φ of degree p of S̄. The relative Frobenius is an OS̄-linear isogeny FrobA :
A→ A(p), characterized by the fact that pr1 ◦ FrobA is the absolute Frobenius morphism
ofA.Over S (but not over the boundary C), we have the dual abelian schemeAt , and the
Verschiebung VerA : A(p) → A is the OS-linear isogeny which is dual to FrobAt : At →
(At )(p).
We clearly have ωA(p) = ω

(p)
A , and we let

F : ω(p)
A → ωA, V : ωA → ω

(p)
A (2.8)

be theOS̄-linear maps of vector bundles induced by the isogenies FrobA and VerA on the
cotangent spaces. We refer to [8] for a discussion how to define V over the whole of S̄,
despite the fact that VerA is only defined over S.
TakingΣ-components, we get the map

VP : P = ωA(Σ)→ ω
(p)
A (Σ) = ωA(Σ̄)(p) = L(p), (2.9)

and taking the Σ̄-component, we similarly get

VL : L→ P (p). (2.10)

Proposition 2.3 Over S̄μ both VP and VL are of rank 1,

P0 = kerVP (2.11)

and the image of VL is a direct sum complement to P (p)
0 :

P (p) = P (p)
0 ⊕ V (L). (2.12)

Recall that over any base scheme in characteristic p, and for any line bundleM, its base
changeM(p) under the absolute Frobenius is canonically isomorphic to its pth powerMp.
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Corollary 2.4 Over S̄μ, Pμ � Lp, P0 � L1−p, and Lp2 � L. For k ≥ 1 odd, P (pk ) �
Lp−1⊕L. For k ≥ 2 even,P (pk ) � L1−p⊕Lp, but for k = 0we only have an exact sequence

0→ L1−p → P → Lp → 0. (2.13)

Corollary 2.5 Over S̄μ, Lp2−1,Pp2−1
μ and Pp+1

0 are trivial line bundles.

2.2.3 Extending the filtration onP over Sgss
In order to determine to what extent the filtration on P and the relation between L and
the two graded pieces of the filtration extend into the supersingular locus, we have to
employ Dieudonné theory. The following is proved in [8].

Proposition 2.6 (i) LetP0 = kerVP (this agrees with what was denoted byP0 over S̄μ).
Then outside Sssp, V (P) = L(p) and P0 is a rank 1 submodule.

(ii) Let Pμ = P/P0. Then outside Sssp we have Pμ � Lp and P0 � L1−p.

For VL, we similarly get the following.

Proposition 2.7 Outside Sssp, VL maps L injectively onto a sub-line-bundle of P (p).

At a superspecial point, both VP and VL vanish.

2.2.4 The Hasse invariant

As we have just seen, the fact that VP and VL are both of rank 1 “extends” across the
general supersingular locus Sgss. However, while Im(VL) and ker(V (p)

P ) = P (p)
0 made up

a frame of P over S̄μ, over Sgss these two line bundles coincide. To state a more precise
result, we make the following definition.

Definition 2.8 The Hasse invariant is

hΣ̄ = V (p)
P ◦ VL ∈ Hom

(
L,L(p2)

)
. (2.14)

As L(p2) � Lp2 , the Hasse invariant is a global section of Lp2−1, i.e. a modular form of
weight p2 − 1 over κ ,

hΣ̄ ∈ Mp2−1(N, κ). (2.15)

It turns out that hΣ̄ has a simple zero along the supersingular locus Sss. Once again,
this requires a little computation with Dieudonné modules. Equivalently, we have the
following theorem.

Theorem 2.9 The divisor of hΣ̄ is Sss (with its reduced subscheme structure).

2.3 The open Igusa surfaces

2.3.1 The Igusa scheme

Let N ≥ 3 as always, and let M be the moduli problem of Sect. 1.3.1. Let n ≥ 1 and
consider the following moduli problem on κ0-algebras:

• MIg(pn)(R) is the set of isomorphism classes of pairs (A, ε) where A ∈M(R) and

ε : δ−1K OK ⊗ μpn ↪→ A[pn] (2.16)

is a closed immersion ofOK-group schemes over R.
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It is clear that if (A, ε) ∈ MIg(pn)(R), then A is fiber-by-fiber μ-ordinary and therefore
A ∈M(R) defines an R-point of Sμ. The image of ε is then A[pn]μ, the maximal subgroup
scheme of A[pn] of multiplicative type. It is also clear that the functor R � MIg(pn)(R)
is relatively representable over M, and therefore as N ≥ 3 and M is representable, this
functor is also representable by a scheme Igμ(pn) whichmaps to Sμ. See [23] for the notion
of relative representability. We call Igμ(pn) the Igusa scheme of level pn.

Proposition 2.10 The morphism τ : Igμ(pn) → Sμ is finite and étale, with the Galois
groupΔ(pn) = (OK/pnOK)× acting as a group of deck transformations.

Proof Every μ-ordinary abelian variety has a unique finite flat OK-subgroup scheme of
multiplicative type A[pn]μ of rank p2n. Such a subgroup scheme is, locally in the étale
topology, isomorphic to δ−1K OK ⊗ μpn , and any two isomorphisms differ by a unique
automorphism of δ−1K OK ⊗ μpn . ButΔ(pn) = AutOK (δ

−1
K OK ⊗ μpn ). If we let γ ∈ Δ(pn)

act on the pair (A, ε) via

γ ((A, ε)) = (A, ε ◦ γ−1) (2.17)

Δ(pn) becomes a group of deck transformation and the proof is complete.

2.3.2 A compactification over the cusps

The proof of the following proposition mimics the construction of S̄.We omit it.

Proposition 2.11 Let Igμ(pn) be the normalization of S̄μ = S̄\Sss in Igμ(pn). Then,
Igμ(pn) → S̄μ is finite étale and the action of Δ(pn) extends to it. The boundary
Igμ(pn)\Igμ(pn) is non-canonically identified withΔ(pn)× C.

We define similarly Ig∗μ, and note that it is finite étale over S∗μ.

Proposition 2.12 Let A denote the pull-back of the universal semi-abelian variety from
S̄μ to Igμ(pn). ThenA is equipped with a canonical Igusa level structure

ε : δ−1K OK ⊗ μpn � A[pn]μ. (2.18)

Over C and after base change to RN /pRN the toric part of A is locally Zariski of the form
a⊗Gm and ε is then anOK-linear isomorphism between δ−1K OK ⊗ μpn and a⊗ μpn .

2.3.3 A trivialization ofL over the Igusa surface

From now on, we focus on Igμ = Igμ(p) although similar results hold when n > 1, and
would be instrumental in the study of p-adic modular forms. The vector bundle ωA pulls
back to a similar vector bundle over Igμ. But there

ω
μ
A :=ωA[p]μ (2.19)

is a rank 2 quotient bundle stable underOK (of type (1, 1)), and the isomorphism ε induces
an isomorphism

ε∗ : ωμA � ω
δ−1K OK⊗μp

. (2.20)

Now Lie(δ−1K OK ⊗ μp) = δ−1K OK ⊗ Lie(μp) = δ−1K OK ⊗ Lie(Gm) and by duality

ω
δ−1K OK⊗μp

= OK ⊗ ωGm, (2.21)
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with 1 ⊗ dT/T as a generator (if T is the parameter of Gm). Here we have used the fact
that the Z-dual of δ−1K OK is OK via the trace pairing. This is the constant vector bundle
OK ⊗ R = R(Σ)⊕ R(Σ̄).

Proposition 2.13 The line bundles L, P0 and Pμ are trivial over Igμ.

Proof Use ε∗ as an isomorphism between vector bundles and note that L = ω
μ
A(Σ̄) and

Pμ = ω
μ
A(Σ). The relation P0 ⊗ Pμ = detP � L implies the triviality of P0 as well.

Note that the trivialization ofL andPμ is canonical, because it uses only the tautological
map ε which exists over the Igusa scheme. The trivialization of P0 on the other hand
depends on how we realize the isomorphism detP � L.
We can now give an alternative proof to the fact that Lp2−1 and Pp2−1

μ are trivial on S̄μ.
Denote byOIg the structure sheaf of Igμ. By the projection formula, τ∗(τ ∗L) � L⊗τ∗OIg .
Taking determinants, we get

det τ∗(τ ∗L) � Lp2−1 ⊗ det τ∗OIg . (2.22)

As τ ∗L � OIg , we get thatLp2−1 � OS̄ . The same argument works forPμ and forP0.The
fact that Pp+1

0 is already trivial could be deduced by a similar argument had we worked
out an analogue of Ig(p) classifying symplectic isomorphisms of G[p] with gr1A[p]. The
role ofΔ(p) for such a moduli space would be assumed by

Δ1(p) = ker(N : (OK/pOK)× → F
×
p ), (2.23)

which is a group of order p+ 1.We do not go any further in this direction here.

2.4 Compactification of the Igusa surface along the supersingular locus

2.4.1 Extracting a p2 − 1 root from hΣ̄ over Igμ

Let a be the canonical nowhere vanishing section of L over Igμ which is sent to eΣ̄ · (1⊗
dT/T ) under the trivialization

ε∗ : L = ω
μ
A(Σ̄) � (OK ⊗ ωGm )(Σ̄) = R(Σ̄). (2.24)

Here R is any R0/pR0-algebra over which we choose to work. In other words, a =
(ε∗)−1(eΣ̄ ·1⊗dT/T ).Dually,a is thehomomorphism fromLie(A)(Σ̄) to δ−1K ⊗Lie(Gm)(Σ̄)
arising from ε−1. Let a(k) = a⊗k ∈ H0(Igμ,Lk ).

Proposition 2.14 (i) Let γ ∈ Δ(p) = (OK/pOK)×. ThenΔ(p) acts on H0(Igμ,L) and

γ ∗a = Σ̄(γ )−1 · a. (2.25)

(ii) The section a is a p2 − 1 root of the Hasse invariant over Igμ, i.e.

a
(
p2 − 1

) = hΣ̄ . (2.26)

Proof (i) This part is a restatement of the action of Δ(p). At two points of Igμ(R) lying
over the same point of Sμ(R) and differing by the action of γ ∈ Δ(p), the canonical
embeddings

δ−1K ⊗ μp ↪→ A[p] (2.27)

differ by ι(γ ) (2.17). The induced trivializations of Lie(A)(Σ̄) differ by Σ̄(γ ) and by
duality we get (i).
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(ii) Since over any Fp-base, VerGm = 1, we have a commutative diagram

Lie(A)(Σ̄)(p2)
V 2∗→ Lie(A)(Σ̄)

↓ a(p2) ↓ a
δ−1K ⊗ Lie(Gm)(Σ̄) = δ−1K ⊗ Lie(Gm)(Σ̄)

. (2.28)

Using the isomorphism Lie(A)(Σ̄)(p2) � Lie(A)(Σ̄)p2 , we get the commutative dia-
gram

Lie(A)(Σ̄)p2
hΣ̄→ Lie(A)(Σ̄)

↓ a(p2) ↓ a
δ−1K ⊗ Lie(Gm)(Σ̄) = δ−1K ⊗ Lie(Gm)(Σ̄)

, (2.29)

from which we deduce that hΣ̄ = a(p2 − 1).

2.4.2 The compactification Ig of Igμ

In this section, we follow the method outlined in [1, Sections 6-9] and [12] for Hilbert
modular varieties. Quite generally, let L→ X be a line bundle associatedwith an invertible
sheaf L on a scheme X . Write Ln for the line bundle L⊗n over X . Let s : X → Ln be a
section. Consider the fiber product

Y = L×Ln X (2.30)

where the two maps to Ln are λ �→ λn and s. Let p : Y
pr2→ X be the projection which

factors also as Y
pr1→ L→ Ln → X (since X s→ Ln → X is the identity). Consider

p∗L = L×X (L×Ln X). (2.31)

This line bundle on Y has a tautological section t : Y → p∗L,

t : y = (λ, x) �→ (λ, y) = (λ, (λ, x)) (2.32)

Here s(x) = λn and

tn(y) = (λn, y) = (s(x), y) = p∗s(y) (2.33)

so t is an nth root of p∗s.Moreover, Y has the universal propertywith respect to extracting
nth roots from s: If p1 : Y1 → X , and t1 ∈ Γ (Y1, p∗1L) is such that tn1 = p∗1s, then there
exists a unique morphism h : Y1 → Y covering the two maps to X such that t1 = h∗t.
The map L→ Ln is finite flat of degree n and if n is invertible on the base, finite étale is

away from the zero section. Indeed, locally on X it is the map A
1×X → A

1×X which is
just raising to nth power in the first coordinate. By base change, it follows that the same
is true for the map p : Y → X : this map is finite flat of degree n and étale away from the
vanishing locus of the section s (assuming n is invertible). We remark that if L is the trivial
line bundle, we recover usual Kummer theory.
Applying this in our example with n = p2 − 1, we define the complete Igusa surface of

level p, Ig = Ig(p) as

Ig = L×Lp2−1 S̄ (2.34)

where the map S → Lp2−1 is hΣ̄ . From the universal property and part (ii) of Proposition
2.14 we get a map of S̄-schemes

Igμ → Ig . (2.35)
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This map is an isomorphism over S̄μ because both schemes are étale torsors for Δ(p) =
(OK/pOK)× and the map respects the action of this group.We summarize the discussion
in the following theorem (for the last point, consult [32], Proposition 2, p.198).

Theorem 2.15 The morphism τ : Ig → S̄ satisfies the following properties:

(i) It is finite flat of degree p2 − 1, étale over S̄μ, totally ramified over Sss.
(ii) Δ(p) acts on Ig as a group of deck transformations and the quotient is S̄.
(iii) Let s0 ∈ Sgss(F̄p). Then there exist local parameters u, v at s0 such that ÔS,s0 =

F̄p[[u, v]], Sgss ⊂ S is formally defined by u = 0, and if s̃0 ∈ Ig maps to s0 under τ ,
then ÔIg,s̃0 = F̄p[[w, v]] where wp2−1 = u. In particular, Ig is regular in codimension
1.

(iv) Let s0 ∈ Sssp(F̄p). Then there exist local parameters u, v at s0 such that ÔS,s0 =
F̄p[[u, v]], Sss ⊂ S is formally defined at s0 by up+1 + vp+1 = 0, and if s̃0 ∈ Ig maps
to s0 under τ , then

ÔIg,s̃0 = F̄p[[w, u, v]]/
(
wp2−1 − up+1 − vp+1

)
(2.36)

In particular, s̃0 is a normal singularity of Ig.

2.4.3 Irreducibility of Ig

So far we have avoided the delicate question of whether Ig is “relatively irreducible”,
i.e. whether τ−1(T ) is irreducible if T ⊂ S̄ is an irreducible (equivalently, connected)
component. Using an idea of Katz, and following the approach taken by Ribet [33], the
irreducibility of τ−1(T ) could be proven for any level pn if we could prove the following:

• Let q = p2. For any r sufficiently large and for any γ ∈ (OK/pnOK)× there exists
a μ-ordinary abelian variety with PEL structure A ∈ Sμ(Fqr ) such that the image of
Gal(F̄q/Fqr ) in

Aut
(
IsomF̄q (δ

−1
K ⊗ μpn , A[pn]μ)

)
= (OK/pnOK)× (2.37)

contains γ .

See also the discussion in 5.2.5. Instead, we shall give a different argument valid for the
case n = 1.

Proposition 2.16 The morphism τ : Ig → S̄ induces a bijection on irreducible compo-
nents.

Proof Since Ig is a normal surface, connected components and irreducible components
are the same. Let T be a connected component of S̄ and Tss = T ∩Sss. Let τ−1(T ) =∐Yi
be the decomposition into connected components. As τ is finite and flat, each τ (Yi) = T.
Since τ is totally ramified over Tss, there is only one Yi.

3 Modular formsmodulo p and the theta operator
3.1 Modular forms mod p as functions on Ig

3.1.1 Representingmodular forms by functions on Ig

The Galois group Δ(p) = (OK/pOK)× acts on the coordinate ring H0(Igμ,O) and we let
H0(Igμ,O)(k) be the subspace where it acts via the character Σ̄k . Then
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H0(Igμ,O) =
p2−2⊕

k=0
H0(Igμ,O)(k) (3.1)

and each H0(Igμ,O)(k) is free of rank 1 over H0(Sμ,O) = H0(Igμ,O)(0).
For any 0 ≤ k , the map f �→ f /a(k) is an embedding

Mk (N, κ0) ↪→ H0(Igμ,O)(k). (3.2)

Lemma 3.1 Fix 0 ≤ k < p2 − 1. Then we have a surjective homomorphism
⊕

n≥0
Mk+n(p2−1)(N, κ0) � H0(Igμ,O)(k). (3.3)

Proof Take f ∈ H0(Igμ,O)(k), so that f · a(k) ∈ H0(Igμ,Lk )(0) and hence descends to
g ∈ H0(Sμ,Lk ).This gmayhavepoles alongSss, but somehn

Σ̄
g will extendholomorphically

to S and hence represents a modular form of weight k + n(p2 − 1), which will map to f
because a(k + n(p2 − 1)) = hn

Σ̄
a(k).

Proposition 3.2 The resulting ring homomorphism

r :
⊕

k≥0
Mk (N, κ0) � H0(Igμ,O) (3.4)

obtained by dividing amodular form of weight k by a(k) is surjective, respects theZ/(p2−1)
Z-grading on both sides, and its kernel is the ideal generated by (hΣ̄ − 1).

Proof We only have to prove that anything in ker(r) is a multiple of hΣ̄ − 1, the rest
being clear. Since r respects the grading, we may assume that for some k ≥ 0 we have
fj ∈ Mk+j(p2−1)(S, κ0) and f =∑m

j=0 fj ∈ ker(r), i.e.

m∑

j=0
a(k)−1h−j

Σ̄
fj = 0. (3.5)

But then fm = −hmΣ̄
(∑m−1

j=0 h−j
Σ̄
fj
)
, so
∑m

j=0 fj =
∑m−1

j=0 (1− hm−j
Σ̄

)fj belongs to (1− hΣ̄ ).

As a result, we get that

Ig∗μ = Spec

⎛

⎝
⊕

k≥0
Mk (N, κ0)/(hΣ̄ − 1)

⎞

⎠ (3.6)

and

S∗μ = Spec

⎛

⎝
⊕

k≥0
Mk(p2−1)(N, κ0)/(hΣ̄ − 1)

⎞

⎠ . (3.7)

3.1.2 Fourier–Jacobi expansionsmodulo p

The arithmetic Fourier–Jacobi expansion (1.125) depended on a choice of a nowhere van-
ishing section s of L along the boundary C = S̄\S of S̄. As the boundary C̃ = Igμ\Igμ
is (non-canonically) identified with Δ(p) × C , we may “compute” the Fourier–Jacobi
expansion on the Igusa surface rather than on S. But on the Igusa surface, a is a
canonical choice for such an s. We may therefore associate a canonical Fourier–Jacobi
expansion
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F̃J (f ) =
∞∑

m=0
cm(f ) ∈

∞∏

m=0
H0(C̃,Nm) (3.8)

along the boundary of Ig , with every

f ∈ M∗(N, R) =
∞⊕

k=0
Mk (N, R) (3.9)

(R a κ0-algebra). The following proposition becomes almost a tautology.

Proposition 3.3 The Fourier–Jacobi expansion F̃J (hΣ̄ ) of the Hasse invariant is 1. More-
over, for f1 and f2 in the graded ring M∗(N, R), r(f1) = r(f2) if and only if F̃J (f1) = F̃J (f2).

Proof The first statement is tautologically true. For the second, note that for f ∈ Mk (N, R),
F̃J (f ) is the (expansion of the) image of f /a(k) in H0(C̃,OÎg ) where Îg is the formal
completion of Ig along C̃ , while r(f ) is the image of f /a(k) inH0(Igμ,O). The proposition
follows from the fact that by Proposition 2.16 the irreducible components of Igμ are in
bijection with the connected components of S̄, so every irreducible component of Igμ
contains at least one cuspidal component (“q-expansion principle”). A function on Igμ
that vanishes in the formal neighborhood of any cuspidal component must therefore
vanish on any irreducible component, so is identically 0.

3.1.3 The filtration of amodular formmodulo p

Let f ∈ Mk (N, R), where R is a κ0-algebra as before. Define the filtration ω(f ) to be the
minimal j ≥ 0 such that r(f ) = r(f ′) (equivalently FJ (f ) = FJ (f ′)) for some f ′ ∈ Mj(N, R).
The following proposition follows immediately from previous results.

Proposition 3.4 Let f ∈ Mk (N, R). Then 0 ≤ ω(f ) ≤ k and

ω(f ) ≡ k mod (p2 − 1). (3.10)

Letω(f ) = k−(p2−1)n.Thenn is the order of vanishing of f along Sss. Equivalently, k−ω(f )
is the order of vanishing of the pull-back of f to Ig along Igss. In addition, ω(f m) = mω(f ).

3.2 The theta operator

3.2.1 Definition ofΘ(f )

We work over κ = F̄p. Let S be the (open) Picard surface over κ and Ig = Ig(p) the
Igusa surface of level p (completed along the supersingular locus as explained above). To
simplify the notation, we denote by Z = Sss = S\Sμ the supersingular locus of S, by Z̃ =
Igss = Ig\Igμ its pre-image under the covering map τ : Ig → S, by Z′ = Sgss = Sss\Sssp
the smooth part of Z, and by Z̃′ = Iggss = Igss\Igssp the pre-image of Z′ under τ .
Let f ∈ H0(S,Lk ). Then τ ∗f /ak ∈ H0(Igμ,O) has a pole of order at most k along Z̃, and

the Galois group acts on it via Σ̄k . Let

ηf = d(τ ∗f /ak ) ∈ H0(Igμ,Ω1
Ig ) = H0(Igμ, τ ∗Ω1

S ). (3.11)

The Kodaira–Spencer isomorphism KS(Σ) is an isomorphism

KS(Σ) : P ⊗ L � Ω1
S . (3.12)

Let

ψ = (VP ⊗ 1) ◦ KS(Σ)−1 : Ω1
S → L(p) ⊗ L � Lp+1. (3.13)
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We denote by ψ also the map induced on the base change of these vector bundles by
τ ∗ to Ig and consider ψ(ηf ). As Δ(p) still acts on ψ(ηf ) via Σ̄k , its action on akψ(ηf ) is
trivial, so this section descends to Sμ.We define

Θ(f ) = akψ(ηf ) ∈ H0(Sμ,Lk+p+1). (3.14)

A priori, this extends only to a meromorphic modular form of weight k + p+ 1, as it may
have poles along Z.

3.2.2 Themain theorem

For the formulation of the next theorem, we need to define what wemean by the standard
cuspidal component of S̄ or Ig . Since its definition involves a transition back and forth
betweenC and κ , we need to fix, besides the embedding of RN inC also a homomorphism

RN → κ (3.15)

extending the map R0 → κ0 ⊂ κ , and we letP be its kernel (a prime above p).
Recall that according to [2,28] the cuspidal schemeC = S̄\S classifiesOK-semi-abelian

varieties with level N structure. The standard component of C over C is the component
which classifies extensions of the elliptic curve C/OK by the OK-torus OK ⊗ C

× (thus
sits over a cusp of type (OK,OK) in S∗C), together with a level-N structure (α,β , γ ) (see
[2], I.4.2 and Sect. 1.6.2), where

α : OK/NOK = OK ⊗ Z/NZ → OK ⊗ C
× (3.16)

is given by 1⊗ (a �→ exp(2π ia/N )) and

β : OK/NOK = N−1OK/OK → C/OK (3.17)

is the canonical embedding. (The splitting γ varies along the component.) The standard
component of C over RN is the one which becomes this component after base change
to C. The standard component of C over κ is the reduction modulo P of the standard
component of C over RN . Finally, Ig maps to S̄ (over κ) and the cuspidal components
mapping to a given component E of C are classified by the embedding of δ−1K OK ⊗ μp
in the toric part of A. Since the toric part of the universal semi-abelian variety over the
standard component isOK ⊗Gm, we may define the standard cuspidal component of Ig
to be the component where the map

ε : δ−1K OK ⊗ μp → OK ⊗Gm (3.18)

is the natural embedding. Here we use the fact that

δ−1K OK ⊗ μp = OK ⊗ μp (3.19)

since δK is invertible inOK/pOK. Let Ẽ ⊂ C̃ = Ig\Ig be this standard component.

Theorem 3.5 (i) The operator Θ maps H0(S,Lk ) to H0(S,Lk+p+1).
(ii) The effect ofΘ on Fourier–Jacobi expansions is a “Tate twist”. More precisely, let

F̃J (f ) =
∞∑

m=0
cm(f ) (3.20)

be the canonical Fourier–Jacobi expansion of f along Ẽ (thus cm(f ) ∈ H0(Ẽ,Nm)).
Then
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F̃J (Θ(f )) =M−1
∞∑

m=0
mcm(f ). (3.21)

Here M (equal to N |DK| or 2−1N |DK|) is the width of the cusp.
(iii) If f ∈ H0(S,Lk ) and g ∈ H0(S,Ll), then

Θ(fg) = fΘ(g)+Θ(f )g. (3.22)

(iv) Θ(hΣ̄ f ) = hΣ̄Θ(f ) (equivalently,Θ(hΣ̄ ) = 0).

Corollary 3.6 The operatorΘ extends to a derivation of the graded ring of modular forms
mod p, and for any f ,Θ(f ) is a cusp form.

Parts (iii) and (iv) of the theorem are clear from the construction. The proof of (i), that
Θ(f ) is in fact holomorphic along Sss, will be given in 3.4. We shall now study its effect on
Fourier–Jacobi expansions, i.e. part (ii). That a factor likeM−1 is necessary in (ii) becomes
evident if we consider what happens to FJ expansions under level change. IfN is replaced
by N ′ = NQ, then the conormal bundle becomes theQ-th power of the conormal bundle
of level N ′, i.e.N = N ′Q (see Sect. 1.4.3). It follows that what was them-th FJ coefficient
at levelN becomes theQm-th coefficient at levelN ′.The operatorΘ commutes with level
change, but the factorM−1, which changes to (QM)−1, takes care of this.

3.3 The effect ofΘ on FJ expansions

Let E be the standard cuspidal component of S̄ (over the ring RN ). We have earlier
trivialized the line bundle L along E in two seemingly different ways, that we must now
compare.On the one hand, after reducingmoduloP (the prime ofRN above p fixed above)
and pulling L back to the Igusa surface, we got a canonical nowhere vanishing section a
trivializingL over Igμ, and in particular along any of the p2−1 cuspidal components lying
over E in Igμ. Using Ẽ as a reference, there is a unique section of L along E which pulls
back to a|Ẽ . On the other hand, extending scalars from RN to C, shifting to the analytic
category, restricting to the connected component X̄Γ on which E lies, and then pulling
back to a neighborhood of the cusp c∞ in the unit ballX, we have trivializedL|E bymeans
of the section 2π idζ3, which we showed to be KN -rational.

Lemma 3.7 The sections a|Ẽ and 2π idζ3 “coincide” in the sense that they come from the
same section in H0(E,L).

Proof Let A be the universal semi-abelian variety over E. Its toric part isOK⊗Gm, hence,
taking Σ̄-component of the cotangent space at the origin

L|Ẽ = ωA/Ẽ(Σ̄) = (δ−1K OK ⊗ ωGm )(Σ̄) (3.23)

admits the canonical section eΣ̄ · (1 ⊗ dT/T ). Tracing back the definitions and using
(1.69), this section becomes, under the base change RN ↪→ C, just 2π idζ3. On the other
hand, when we reduce it modulo P and use the Igusa level structure ε at the standard
cusp, it pulls back to the section “with the same name” eΣ̄ · (1⊗ dT/T ), because along Ẽ
(3.18) induces the identity on cotangent spaces. The lemma follows from the fact that, by
definition, ε∗a = eΣ̄ · (1⊗ dT/T ) too.
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Lemma 3.8 The sections a|p+1Ẽ and 2π idζ2⊗2π idζ3 mod P0⊗L “coincide” in the sense
that they come from the same section in H0(E,Pμ ⊗ L).

Proof Let σ2 (resp. σ3) be the KN -rational section of Pμ (resp. L) along E, which over C

becomes the section 2π idζ2 (resp. 2π idζ3). We have just seen that modulo P, when we
identify Ẽ with E (via the covering map τ : Ig → S̄), σ3 reduces to a. To conclude, we
must show that the map

V : P/P0 = Pμ � L(p) (3.24)

carries σ2 to σ
(p)
3 . This will map, underL(p) � Lp, to ap.Along E, the line bundlesPμ and

L are just theΣ- and Σ̄-parts of the cotangent space at the origin of the torusOK ⊗Gm,
and σ2 and σ3 are the sections

σ2 = eΣ · (1⊗ dT/T ), σ3 = eΣ̄ · (1⊗ dT/T ). (3.25)

Since in characteristic p, V = Ver∗ : ωGm → ω
(p)
Gm

maps dT/T to (dT/T )(p), for the
OK-torus, V (σ2) = σ

(p)
3 , and we are done.

To prove part (ii) of themain theorem, we argue as follows. Let g = f /ak be the function
on Igμ obtained by trivializing the line bundleL.We have to study the FJ expansion along
Ẽ ofψ(dg)/ap+1, whereψ is themap defined in (3.13). For that purpose, wemay restrict to
a formal neighborhood of Ẽ. This formal neighborhood is isomorphic, under the covering
map τ : Igμ → S̄μ, to the formal neighborhood Ŝ of E in S. We may therefore regard dg
as an element ofΩ1

Ŝ . Now

ψ : Ω1
Ŝ → Pμ ⊗ L (3.26)

is a homomorphism of OŜ-modules defined over RN so, having restricted to Ŝ, we may
study the effect of ψ on FJ expansions by embedding ŜC in a tubular neighborhood S̄(ε)
of E and using complex analytic Fourier–Jacobi expansions. We are thus reduced to a
complex-analytic computation, near the standard cusp at infinity.
Let

g(z, u) =
∞∑

m=0
θm(u)qm (3.27)

where q = e2π iz/M and θm is a theta function, so that θm(u)qm is a section ofNm along E
(now over C). Then

dg = 2π iM−1
∞∑

m=0
mθm(u)qmdz +

∞∑

m=0
θ ′m(u)qmdu. (3.28)

According to Corollary 1.30, ψ(du) = 0, and ψ(dz) = 2π idζ2 ⊗ dζ3. It follows that

ψ(dg) = M−1
∞∑

m=0
mθm(u)qm · 2π idζ2 ⊗ 2π idζ3. (3.29)

Recalling that in characteristic p, 2π idζ2 ⊗ 2π idζ3 reduced to ap+1, the proof of part (ii)
of the theorem is now complete. For the convenience of the reader, we summarize the
transitions between complex and p-adic maps in the following diagram:
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/ κ Ω1
S̄μ/κ

KS(Σ)−1→ P ⊗ L
∩ ↓ mod P0

/κ Ω1
Ŝ/κ

ψ→ Pμ ⊗ L V⊗1� Lp+1

↑ mod P ↑
/RN Ω1

Ŝ/RN
ψ→ Pμ ⊗ L

↓ ⊗RN C ↓
/C Ω1

Ŝ/C
ψ→ Pμ ⊗ L

∪ ↑ mod P0

/C Ω1
S̄(ε)/C

KS(Σ)−1an→ P ⊗ L

. (3.30)

We next turn to part (i).

3.4 A study of the theta operator along the supersingular locus

3.4.1 De Rham cohomology in characteristic p

We continue to consider the Picard surface S over κ and recall some facts about de Rham
cohomology in characteristic p. Let U = Spec(R) ↪→ S be a closed point s0 (R = κ =
OS,s0/mS,s0 ), a nilpotent thickening of a closed point, or an affine open subset of S. We
consider the restriction of the universal abelian scheme to R and denote it by A/R. Let
A(p) = R⊗φ,R A be its base change with respect to the map φ(x) = xp. Let

D = H1
dR(A/R), (3.31)

a locally free R-module of rank 6. The de Rham cohomology of A(p) is

D(p) = R⊗φ,R D. (3.32)

The R-linear Frobenius and Verschiebung morphisms Frob : A → A(p), Ver : A(p) → A
induce (by pull-back) linear maps

F : D(p) → D, V : D→ D(p). (3.33)

Both F and V are everywhere of rank 3, which implies that their kernel and image are
locally free direct summands. Moreover, ImF = kerV and ImV = ker F = ωA(p)/R. The
maps F and V preserve the typesΣ , Σ̄ , but note that D(p)(Σ) = D(Σ̄)(p) etc.
The principal polarization on A induces one on A(p), and these polarizations induce

symplectic forms

〈, 〉 : D × D→ R, 〈, 〉(p) : D(p) × D(p) → R (3.34)

where the second form is just the base change of the first. For x ∈ D(p), y ∈ D, we have
〈
Fx, y
〉 = 〈x, Vy〉(p) . (3.35)

In addition, for a ∈ OK
〈
ι(a)x, y

〉 = 〈x, ι(ā)y〉 . (3.36)

As VF = FV = 0, the first relation implies that ImF and ImV are isotropic subspaces. So
is ωA/R.
The Gauss–Manin connection is an integrable connection

∇ : D→ Ω1
R ⊗ D. (3.37)
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It is a priori defined (e.g. in [24]) when R is smooth over κ , but we can define it by base
change also when R is a nilpotent thickening of a point of S (see [25], where R is a local
Artinian ring).
We shall need to deal only with the first infinitesimal neighborhood of a point, R =

OS,s0/m
2
S,s0 . In this case,Dhas a basis of horizontal sections. Indeed,R = κ[u, v]/(u2, uv, v2)

where u and v are local parameters at s0, and

Ω1
R = (Rdu+ Rdv)/ 〈udu, vdv, udv + vdu〉

(p is odd). If x ∈ D and

∇x = du⊗ x1 + dv ⊗ x2 (3.38)

then x̃ = x−ux1−vx2 is horizontal, so thehorizontal sections spanD overRbyNakayama’s
lemma. It follows that if D0 = D∇ is the space of horizontal sections,

R⊗κ D0 = D, (3.39)

∇ = d ⊗ 1 and we can identify D0 = H1
dR(As0/κ), i.e. every de Rham class at s0 has a

unique extension to a horizontal section x ∈ H1
dR(A/R).

There is a similar connection onD(p). The isogenies Frob and Ver, like any isogeny, take
horizontal sections with respect to the Gauss–Manin connection to horizontal sections,
e.g. if x ∈ D and ∇x = 0, then Vx ∈ D(p) satisfies ∇(Vx) = 0.
The pairing 〈, 〉 is horizontal for ∇ , i.e.

d
〈
x, y
〉 = 〈∇x, y〉+ 〈x,∇y〉 . (3.40)

Remark 3.1 In the theory of Dieudonné modules, one works over a perfect base. It is
then customary to identify D with D(p) via x↔ 1⊗ x. This identification is only σ -linear
where σ = φ, now viewed as an automorphism of R. The operator F becomes σ -linear,
V becomes σ−1-linear, and (3.35) reads

〈
Fx, y
〉 = 〈x, Vy〉σ .With this convention, F and V

switch types, rather than preserve them.

3.4.2 The Dieudonnémodule at a gss point

Assume from now on that s0 ∈ Z′ = Sgss is a closed point of the general supersingular
locus. We write D0 for H1

dR(As0/κ).

Lemma 3.9 There exists a basis e1, e2, f3, f1, f2, e3 of D0 with the following properties.
Denote by e(p)1 = 1⊗ e1 ∈ D(p)

0 etc.

(i) OK acts on the ei viaΣ and on the fi via Σ̄ (hence it acts on the e(p)i via Σ̄ and on the
f (p)i viaΣ).

(ii) The symplectic pairing satisfies
〈
ei, fj
〉 = − 〈fj , ei

〉 = δij ,
〈
ei, ej
〉 = 〈fi, fj

〉 = 0. (3.41)

(iii) The vectors e1, e2, f3 form a basis for the cotangent space ωA0/κ . Hence e1 and e2 span
P and f3 spans L.

(iv) ker(V ) is spanned by e1, f2, e3. Hence P0 = P ∩ ker(V ) is spanned by e1.
(v) Ve2 = f (p)3 , Vf3 = e(p)1 , Vf1 = e(p)2 .
(vi) Ff (p)1 = −e3, Ff (p)2 = −e1, Fe(p)3 = −f2.
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Proof Up to a slight change of notation, this is the unitaryDieudonnémodulewhich Bültel
andWedhorn call a “braid of length 3” and denote by B̄(3), cf [4] (3.2). The classification in
loc. cit. Proposition 3.6 shows that the Dieudonné module of a μ-ordinary abelian variety
is isomorphic to B̄(2) ⊕ S̄, that of a gss abelian variety is isomorphic to B̄(3) and in the
superspecial case we get B̄(1)⊕ S̄2.

3.4.3 Infinitesimal deformations

Let OS,s0 be the local ring of S at s0, m its maximal ideal, and R = OS,s0/m
2. This R is a

truncated polynomial ring in two variables, isomorphic to κ[u, v]/(u2, uv, v2).
As remarked above, the de Rham cohomology D = H1

dR(A/R) has a basis of horizontal
sections and we may identify D∇ with D0 and D with R⊗κ D0.
Grothendieck tells us that A/R is completely determined by A0 and by the Hodge

filtration ωA/R ⊂ D = R ⊗κ D0. Since A is the universal infinitesimal deformation of A0,
we may choose the coordinates u and v so that

P = SpanR{e1 + ue3, e2 + ve3}. (3.42)

The fact that ωA/R is isotropic implies then that

L = SpanR{f3 − uf1 − vf2}. (3.43)

Consider the abelian scheme A(p). It is not the universal deformation of A(p)
0 over R. In

fact, the map φ : R→ R factors as

R π→ κ
φ→ κ

i→ R, (3.44)

and therefore A(p), unlike A, is constant: A(p) = Spec(R) ×Spec(κ) A
(p)
0 . As with D, D(p) =

R ⊗κ D
(p)
0 , ∇ = d ⊗ 1, but this time the basis of horizontal sections can be obtained also

from the trivialization of A(p), and ωA(p)/R = SpanR{e(p)1 , e(p)2 , f (p)3 }.
SinceV and F preserve horizontality, e1, f2, e3 span ker(V ) over R inD, and the relations

in (v) and (vi) of Lemma 3.9 continue to hold. Indeed, the matrix of V in the basis
at s0 prescribed by that lemma, continues to represent V over Spec(R) by “horizontal
continuation”. The matrix of F is then derived from the relation (3.35).
The Hodge filtration nevertheless varies, so we conclude that

P0 = P ∩ ker(V ) = SpanR{e1 + ue3}. (3.45)

The conditionV (L) = P (p)
0 , which is the “equation” of the closed subscheme Z′ ∩Spec(R)

(see Theorem 2.9) means

V (f3 − uf1 − vf2) = e(p)1 − ue(p)2 ∈ R · e(p)1 (3.46)

and this holds if and only if u = 0.We have proved the following lemma.

Lemma 3.10 Let s0 ∈ Sgss and the notation be as above. Then the closed subscheme
Sgss ∩ Spec(R) is given by the equation u = 0.

3.4.4 The Kodaira–Spencer isomorphism along the general supersingular locus

We keep the assumptions of the previous subsections and compute what the Gauss–
Manin connection does to P0. A typical element of P0 is g(e1 + ue3) for some g ∈ R.
Then

∇(g(e1 + ue3)) = dg ⊗ (e1 + ue3)+ gdu⊗ e3. (3.47)
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Note that when we divide by ωA/R and project H1
dR(A/R) to H1(A,O), e1 + ue3 dies, and

the image e3 of e3 becomes a basis for the line bundle that we calledL∨(ρ) = H1(A,O)(Σ).
Recall the definition of ψ given in (3.13), but note that this definition only makes sense
over Spec(OS,s0 ) or its completion, where KS(Σ) is an isomorphism, and can be inverted.

Proposition 3.11 Let s0 ∈ Z′ = Sgss. Choose local parameters u and v at s0 so that in
OS,s0 the local equation of Z′ becomes u = 0. Then at s0, ψ(du) has a zero along Z′.

Proof Let i : Z′ ↪→ S be the locally closed embedding. We must show that in a suitable
Zariski neighborhood of s0, where u = 0 is the local equation of Z′, i∗ψ(du) = 0. It is
enough to show that the image ofψ(du) in the fiber at every point s of Z′ near s0, vanishes.
All points being alike, it is enough to do it at s0. In other words, we denote by ψ0 the map

ψ0 : Ω1
S,s0 → Pμ ⊗ L|s0 � Lp+1|s0 . (3.48)

and show that ψ0(du) = 0. We may now work over Spec(R), where R = OS,s0/m
2. It is

enough to show that in the diagram

PR ⊗ LR
KS(Σ)→ Ω1

R
↓ ↓
Ps0 ⊗ Ls0 � Ω1

S,s0

(3.49)

KS(Σ) maps the line sub-bundle P0,R ⊗ LR onto Rdu. Once we have passed to the infini-
tesimal neighborhood Spec(R), we can replace the local parameters u, v by any two formal
parameters for which u = 0 defines Z′ ∩ Spec(R). We may therefore assume, in view of
Lemma 3.10, that u and v have been chosen as in Sect. 3.4.3. But then (3.47) shows that the
restriction of KS(Σ) to Z′, i.e. the homomorphism i∗KS(Σ), maps i∗P0 onto i∗R ·du⊗ e3.
This concludes the proof.

3.4.5 A computation of poles along the supersingular locus

We are now ready to prove the following.

Proposition 3.12 Let k ≥ 0, and let f ∈ H0(S,Lk ) be a modular form of weight k in
characteristic p. ThenΘ(f ) ∈ H0(S,Lk+p+1).

Proof Apriori, the definition that we have given forΘ(f ) produces ameromorphic section
of Lk+p+1 which is holomorphic on the μ-ordinary part Sμ but may have a pole along
Z = Sss. Since S is a non-singular surface, it is enough to show that Θ(f ) does not have a
pole along Z′ = Sgss, the non-singular part of the divisor Z. Consider the degree p2 − 1
covering τ : Ig → S, which is finite, étale over Sμ and totally ramified along Z. Let s0 ∈ Z′

and let s̃0 ∈ Ig be the closed point above it. Let u, v be formal parameters at s0 for which
Z′ is given by u = 0, as in Theorem 2.15. As explained there, we may choose formal
parameters w, v at s̃0 where wp2−1 = u (and v is the same function v pulled back from S
to Ig). It follows that inΩ1

Ig we have

du = −wp2−2dw. (3.50)

We now follow the steps of our construction. Dividing f by ak , we get a function g = f /ak

on Ig with a pole of order at most k along Z̃, the supersingular divisor on Ig , whose local
equation is w = 0. In ÔIg,s̃0 we may write
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g =
∞∑

l=−k
gl(v)wl. (3.51)

Then

dg =
∞∑

l=−k
lgl(v)wl−1dw +

∞∑

l=−k
wlg ′l (v)dv

= −
∞∑

l=−k
lglwl−(p2−1)du+

∞∑

l=−k
wlg ′l (v)dv. (3.52)

Applying the map ψ (extended OIg -linearly from S to Ig), and noting that ψ(du) has a
zero along Z′, hence a zero of order p2 − 1 along Z̃′, we conclude that ψ(dg) has a pole
of order k (at most) along Z̃′. Finally, Θ(f ) = ak · ψ(dg) becomes holomorphic along Z̃′,
and also descends to S. It is therefore a holomorphic section of Pμ ⊗ Lk+1 � Lk+p+1.

It is amusing to compare the reasons for the increase by p + 1 in the weight of Θ(f )
for modular curves and for Picard modular surfaces. In the case of modular curves the
Kodaira–Spencer isomorphism is responsible for a shift by 2 in the weight, but the section
acquires simple poles at the supersingular points. One has to multiply it by the Hasse
invariant, which has weight p − 1, to make the section holomorphic and hence a total
increase by p+ 1 = 2+ (p− 1) in the weight. In our case, the map ψ is responsible for a
shift by p+ 1 (the p coming from Pμ � Lp), but the section turns out to be holomorphic
along the supersingular locus. See Section 4.2.

4 Further results onΘ

4.1 Relation to the filtration and theta cycles

In part (ii) ofTheorem3.5,wehave described thewayΘ acts onFourier–Jacobi expansions
at the standard cusp. A similar formula holds at all the other cusps. We deduce from it
that modular forms in the image of Θ have vanishing FJ coefficients in degrees divisible
by p. Moreover, for such a form f ∈ Im(Θ), Θp−1(f ) and f have the same FJ expansions,
and hence the same filtration. Note also that if r(f1) = r(f2), then r(Θ(f1)) = r(Θ(f2)).We
may therefore define unambiguously

Θ(r(f )) = r(Θ(f )). (4.1)

As we clearly have

ω(Θ(f )) = ω(f )+ p+ 1− a
(
p2 − 1

)
(4.2)

for some a ≥ 0 we deduce the following result.

Proposition 4.1 Let f ∈ Mk (N, κ) be a modular form modulo p, and assume that r(f ) ∈
Im(Θ). Then

r(f ) = r
(
Θp−1(f )

)
. (4.3)

There exists a unique index 0 ≤ i ≤ p− 2 such that

ω(Θ i+1(f )) = ω
(
Θ i(f )
)
+ p+ 1− (p2 − 1

)
. (4.4)

For any other i in this range

ω(Θ i+1(f )) = ω
(
Θ i(f )
)
+ p+ 1. (4.5)
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This is reminiscent of the “theta cycles” for classical (i.e. elliptic) modular formsmodulo
p, see [19,21,34]. Recall that if f is a mod p modular form of weight k on Γ0(N ) with
q-expansion

∑
anqn (an ∈ F̄p), then θ (f ) is a mod pmodular form of weight k + p+ 1

with q-expansion
∑

nanqn (Katz denotes θ (f ) by Aθ (f )). One has ω(θ (f )) < ω(f )+ p+ 1
if and only if ω(f ) ≡ 0 mod p. In such a case, we say that the filtration “drops” and we
have

ω(θ (f )) = ω(f )+ p+ 1− a(p− 1) (4.6)

for some a > 0. As a corollary, ω(f ) can never equal 1 mod p for an f ∈ Im(θ ). Assume
now that f ∈ Im(θ ) is a “low point” in its “theta cycle”, namely, ω(f ) is minimal among all
ω(θ i(f )). Then ω(θ i+1(f )) < ω(θ i(f ))+ p+ 1 for one or two values of i ∈ [0, p− 2], which
are completely determined by ω(f ) mod p [19].
This is not true anymore for Picard modular forms. Not only is the drop in the theta

cycle unique, but the question of when exactly it occurs is mysterious and deserves further
study.Wemake the following elementary observation showing that whether a drop in the
filtration occurs in passing from f toΘ(f ) can not be determined by ω(f ) modulo p alone.
Let f and k be as in Proposition 4.1.

(1) If k ≤ p2 − 1, then ω(f ) = k.
(2) If k < p + 1, then ω(Θ i(f )) = k + i(p + 1) for 0 ≤ i ≤ p − 2, so the drop occurs at

the last step of the theta cycle, i.e. at weight k + (p − 2)(p + 1), which is congruent
to k − 2 modulo p.

(3) If k < p+ 1 but r(f ) /∈ Im(Θ), then starting withΘ(f ) instead of f , one sees that the
drop in the theta cycle ofΘ(f ) occurs either in passing fromΘp−2(f ) toΘp−1(f ), or
in passing fromΘp−1(f ) toΘp(f ).

4.2 Compatibility between theta operators for elliptic and Picard modular forms

4.2.1 The theta operator for elliptic modular forms

The theta operator for elliptic modular forms modulo p was introduced by Serre and
Swinnerton-Dyer in terms of q-expansions, but its geometric construction was given by
Katz [20,21]. Katz relied on a canonical splitting of the Hodge filtration over the ordinary
locus, but Gross gave in [13], Proposition 5.8, the construction after which we modeled
ourΘ .
Let us quickly repeat Gross’ construction as outlined in the introduction. Let X be the

open modular curve X(N ) over F̄p (N ≥ 3, p � N ) and Iord the Igusa curve of level p
lying over Xord = X\Xss, the ordinary part of X. Let X̄ and Īord be the curves obtained
by adjoing the cusps to X and Iord, respectively. Let L = ωE/X be the cotangent bundle
of the universal elliptic curve, extended over the cusps as usual. Classical modular forms
of weight k and level N are sections of Lk over X̄ . Let a be the tautological nowhere
vanishing section of L over Īord. Given a modular form f of weight k , we consider r(f ) =
τ ∗f /ak where τ : Īord → X̄ is the covering map, and apply the inverse of the Kodaira–
Spencer isomorphism KS : L2 → Ω1

Iord to get a section KS−1(dr(f )) ofL2 over Īord.When
multiplied by ak it descends to X̄ord, and when this is multiplied further by h = ap−1,
the Hasse invariant for elliptic modular forms, it extends holomorphically over Xss to an
element

θ (f ) = ak+p−1KS−1(dr(f )) ∈ H0
(
X̄ ,Lk+p+1) . (4.7)
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4.2.2 An embedding of amodular curve in S̄

To illustrate our idea, and to simplify the computations, we assume that N = 1 and
dK ≡ 1 mod 4, so that D = DK = dK. This conflicts of course with our running
hypothesis N ≥ 3, but for the current section does not matter much. We shall treat only
one special embedding of the modular curve X̄ = X0(D) into S̄ (there are many more).
Embed SL2(R) = SU (1, 1) in G′∞ via

(
a b
c d

)
�→
⎛

⎜⎝
a b

1
c d

⎞

⎟⎠ . (4.8)

This embedding induces an embedding of symmetric spaces H ↪→ X, z �→ t (z, 0). One
can easily compute that the intersection of Γ , the stabilizer of the lattice L0 in G′∞, with
SL2(R), is the subgroup of SL2(Z) given by

Γ 0(D) =
{(

a b
c d

)
: D|b
}
. (4.9)

Let E0 = C/OK, endowed with the canonical principal polarization and CM type Σ . For
z ∈ H, let �z = Z + Zz and Ez = C/�z. Let Mz be the cyclic subgroup of order D of Ez
generated by D−1z mod �z. Using the model (1.27) of the abelian variety Az associated
with the point t (z, 0) ∈ X, we compute that

Az � E0 × (OK ⊗ Ez)/(δK ⊗Mz) (4.10)

with the obvious OK-structure. The group δK ⊗Mz is a cyclic subgroup of OK ⊗ Ez of
orderD, generated by δ−1K ⊗ z mod OK⊗�z. The principal polarization on Az provided
by the complex uniformization is the product of the canonical polarization of E0 and the
principal polarization ofOK ⊗ Ez/δK ⊗Mz obtained by descending the polarization

λcan : OK ⊗ Ez → δ−1K ⊗ Ez = (OK ⊗ Ez)t (4.11)

of degree D2, modulo the maximal isotropic subgroup δK ⊗Mz of ker(λcan).
It is now clear that over any R0-algebra R we have the same moduli-theoretic construc-

tion, sending a pair (E,M) whereM is a cyclic subgroup of degree D to A(E,M), withOK
structure and polarization given by the same formulae. This gives a modular embedding
j : X → S which is generically injective. To make this precise at the level of schemes
(rather than stacks), one would have to add a level N structure and replace the base ring
R0 by RN .

4.2.3 Comparison of the two theta operators

From now on, we work over F̄p. The modular interpretation of the embedding j : X̄ → S̄
allows us to complete it to a diagram

Īord
j→ Igμ

τ ↓ ↓ τ
X̄ord

j→ S̄μ

. (4.12)

Note that j(Xss) ⊂ Sssp, i.e. the embedded modular curve cuts the supersingular locus at
superspecial points.
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Lemma 4.2 The pull-back j∗ωA/S decomposes as a product ωE0 × (OK ⊗ ωE/X ). Under
this isomorphism,

j∗L = (OK ⊗ ωE/X )(Σ̄) (4.13)

j∗P0 = ωE0

j∗Pμ � (OK ⊗ ωE/X )(Σ).

The line bundle j∗P0 is constant, and Pμ, originally a quotient bundle of P , becomes a
direct summand when restricted to X̄ .

Proof This is straightforward from the construction of j, and the fact that E0 is supersin-
gular, while E is ordinary over X̄ord.Note thatOK⊗E/δK⊗M andOK⊗E have the same
cotangent space.

Proposition 4.3 Identify j∗L with ωE/X (OK acting via Σ̄). Then for f ∈ H0(S̄,Lk ) =
Mk (N, F̄p)

θ (j∗(f )) = j∗(Θ(f )). (4.14)

Proof We abbreviate Iord by I and Igμ by Ig. The pull-back via j of the tautological section
a of L over Ig is the tautological section a of j∗L = ωE/X .We therefore have

j∗(dr(f )) = dr(j∗(f )) (4.15)

(r(f ) = τ ∗f /ak is the function on Ig denoted earlier also by g). It remains to check the
commutativity of the following diagram

Ω1
Ig

KS(Σ)−1→ P ⊗ L V⊗1→ Lp+1

↓ j∗0 ↓ j∗

Ω1
I

KS−1→ j∗L2 ×h→ j∗Lp+1
. (4.16)

Here j∗0 is the map j∗Ω1
Ig → Ω1

I on differentials whose kernel is the conormal bundle of
I in Ig . For that we have to compare the Kodaira–Spencer maps on S and on X. As we
have seen in the lemma, P/P0 = Pμ pulls back under j to L(ρ) (the line bundle L with
the OK action conjugated). But, KS(Σ)(P0 ⊗ L) maps under j∗ to the conormal bundle,
so we obtain a commutative diagram

Ω1
Ig

KS(Σ)← P ⊗ L
↓ j∗0 ↓ mod P0

Ω1
I

KS← j∗L(ρ)⊗ j∗L
. (4.17)

The commutativity of the diagram

Pμ
V→ L(p)

↓ ↓
j∗L(ρ) ×h→ j∗L(p)

(4.18)

follows from the definition of the Hasse invariant h on X. IdentifyingL(p) withLp as usual
and tensoring the last diagram with L provides the last piece of the puzzle.

Remark 4.1 The proposition follows, of course, also from the effect of θ and Θ on q-
expansions, once we compare FJ expansions on S̄ to q-expansions on the embedded X̄ .
The geometric proof given here has the advantage that it explains the precise way in which
VP ⊗ 1 replaces “multiplication by h′′.
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5 The Igusa tower and p-adic modular forms
We shall be very brief, since from now on the development follows closely the classical
case of p-adic modular forms onGL(2), with minor modifications. A general reference for
this section is Hida’s book [16], although, strictly speaking, our case (p inert) is excluded
there.

5.1 Geometry modulo pm

5.1.1 The Picard surfacemodulo pm

Letm ≥ 1, and write Rm = R0/pmR0 = OK/pmOK. Let

S(m) = S ×Spec(R0) Spec(Rm) (5.1)

so that S(1) = Sκ0 is the special fiber, and use a similar notation for the complete surface
S̄(m).Write S(m)

μ (resp. S̄(m)
μ ) for the Zariski open subset of points whose image in S̄(1) lies

in S(1)μ (resp. in S̄(1)μ ).
The generic fiber (in the sense of Raynaud) of the formal scheme

lim→ S̄(m)
μ (5.2)

is a rigid analytic space which we shall denote by S̄rigμ . We shall refer to its complement
in S̄rig (the rigid analytic space associated with S̄) as the supersingular tube. Its Cp-points
are the points of S̄(Cp) whose reduction modulo p lies in Sss(F̄p).

5.1.2 p-Adicmodular forms of integral weight k

The vector bundlesP andL induce vector bundles on S̄(m) and S̄rigμ which we shall denote
by the same symbols (the latter in the rigid analytic category). Let k ∈ Z (k may be
negative). Let R be a topological Kp-algebra. We define a p-adic modular form of weight
k and tame level N over R to be an element f of

Mp
k (N ;R) :=H0

(
S̄rigμ ⊗̂KpR,Lk

)
. (5.3)

Note that Mp
k (N ;R) = R⊗̂KpM

p
k (N ;Kp). A p-adic modular form f is said to be overcon-

vergent if there exist finitely many Kp-affinoids Xi contained in the supersingular tube
and a section ofLk over (S̄rig\⋃Xi)⊗̂KpR which restricts to f.We denote the subspace of
overconvergent modular forms byMoc

k (N ;R).
Note that ifR is not of topologically finite typeoverKp ourdefinitionof “overconvergent”

is a priori stronger than asking f to extend to a strict neighborhood of S̄rigμ ⊗̂KpR in
S̄rig⊗̂KpR.
The spaceMp

k (N ;Kp) is a p-adic Banach space whose unit ball is given by

Mp
k (N ;Op) = lim← H0

(
S̄(m)
μ ,Lk

)
. (5.4)

5.1.3 q-Expansion principle

Whetherwe are dealingwith an f ∈ H0(S̄(m)
μ ,Lk ) or an f ∈ Mp

k (N ;Kp) the sameprocedure
as in Sect. 1.10.2 allows us to associate with f a Fourier–Jacobi expansion FJ (f ) (1.125).
Recall, however, that FJ (f ) depends on the section s ∈ H0(C,L) used to trivialize L|C .
Note that if f ∈ Mp

k (N ;Kp), the coefficients of FJ (f ) are theta functions with bounded
denominators, since a suitable Kp-multiple of f lies inMp

k (N ;Op).
As with classical modular forms, we have the q-expansion principle, stemming from the

fact that C meets every component of S̄rigμ .
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Lemma 5.1 If FJ (f ) = 0, then f = 0.

Corollary 5.2 If f ∈ Mp
k (N ;Op) and FJ (f ) is divisible by p (in the sense that every cj(f ) ∈

H0(C,N j) is divisible by pwith respect to the integral structure on S̄), then f ∈ pMp
k (N ;Op).

5.2 The Igusa scheme of level pn

5.2.1 μ-Ordinary abelian schemes over Rm-algebras

Let m ≥ 1 and let R be an Rm-algebra. If A ∈ S(m)
μ (R) ⊂ M(R), then A is fiber-by-fiber

μ-ordinary, hence A[pn]μ, the largest R-subgroup scheme of A[pn] of multiplicative type
(dual to the étale quotientA[pn]et ), is a finite flatOK-subgroup scheme of rank p2n. Locally
in the étale topology it is isomorphic to δ−1K OK ⊗ μpn .

5.2.2 Igusa level structure of level pn

Fixm ≥ 1 and n ≥ 1 and consider the moduli problem associating with an Rm-algebra R
μ-ordinary tuples A ∈ S(m)

μ (R) together with an isomorphism of finite flat group schemes
over R

ε = ε(m)
n : δ−1K OK ⊗ μpn � A[pn]μ. (5.5)

This moduli problem is representable by a scheme Ig(pn)(m)
μ , and the map “forget ε′′ is a

finite étale cover

τ = τ (m)
n : Ig(pn)(m)

μ → S(m)
μ (5.6)

of degree (p2 − 1)p2(n−1). It extends to a finite étale cover Ig(pn)(m)
μ of S̄(m)

μ . The group

Δ(pn) = (OK/pnOK)× = AutOK

(
δ−1K OK ⊗ μpn

)
(5.7)

acts on the covering τ as a group of deck transformations via

γ (A, ε) = (A, ε ◦ γ−1), (5.8)

and the pre-image of the cuspidal divisor C is non-canonically isomorphic to Δ(pn)× C.
These constructions satisfy the usual compatibilities inm and n.

5.2.3 The trivialization ofLwhenm ≤ n

Assume now that m ≤ n. In this case, multiplication by pn is 0 on R, so the inclusion of
A[pn] in A induces an isomorphism between the cotangent spaces at the origin ωA[pn]/R
and ωA/R. To see it note that if G is either A[pn] or A, its Lie algebra, by definition, is the
finite flat R-module

Lie(G) = ker (G(R[ε])→ G(R)) . (5.9)

Here R[ε] is the ring of dual numbers over R. It follows that

Lie(A[pn]) = Lie(A)[pn] = Lie(A), (5.10)

and dualizing we get ωA/R = ωA[pn]/R.
The same holds of course for μpn and Gm. The reasoning used for m = n = 1 applies

and shows that ε induces a canonical isomorphism between L|Ig(pn)(m)
μ

and OIg(pn)(m)
μ
.We

denote by a = a(m)
n the section which corresponds to 1 ∈ OIg(pn)(m)

μ
, i.e. the trivializing

section.
The groupΔ(pn) acts on a via the character

Σ̄−1 : Δ(pn) = (OK/pnOK)× → (OK/pmOK)× = R×m. (5.11)



de Shalit and Goren Res Math Sci (2016) 3:28 Page 58 of 65

From now on we take n = m and use a to trivialize L along C̃ = τ−1(C), the cuspidal
divisor in Ig(pm)(m)

μ . If f ∈ H0(S̄(m)
μ ,Lk ), then τ ∗f /ak is a function on Ig(pm)(m)

μ and we
may attach to it a canonical FJ expansion

F̃J (f ) =
∞∑

j=0
cj(f ) (5.12)

where cj(f ) ∈ H0(C̃,N j) as before. This FJ expansion does not depend on any choice (but
is defined along C̃ and not along C).

5.2.4 Congruences between FJ expansions force congruences between the weights

Let k1 ≤ k2 be two integers. The following lemma follows formally from the definitions.

Lemma 5.3 Let fi ∈ H0(S̄(m)
μ ,Lki )andassume that f1 is not divisible by p. Suppose F̃J (f1) =

F̃J (f2). Then k1 ≡ k2 mod (p2 − 1)pm−1.

Proof Let T̃ be an irreducible component of Ig(pm)(m)
μ . Then, τ being finite étale, τ (T̃ ) is

both open and closed in S̄(m)
μ , so must be an irreducible component T of S̄(m)

μ . It follows
that τ (T̃ ) meets C , hence T̃ meets C̃ , and the q-expansion principle holds in Ig(pm)(m)

μ .
We therefore have an equality

τ ∗f1/ak1 = τ ∗f2/ak2 (5.13)

between functions on Ig(pm)(m)
μ .Since the left-hand side is not divisible bypby assumption,

so is the right-hand side. The group Δ(pm) acts on the left-hand side via Σ̄k1 and on
the right-hand side via Σ̄k2 . But these two characters are equal if and only if k1 ≡ k2
mod (p2 − 1)pm−1, because the exponent of the groupΔ(pm) is (p2 − 1)pm−1.

In practice, one would like to deduce the same result from congruences between FJ
expansions along C , not along C̃. This is deeper and depends on Igusa’s irreducibility
theorem.

Theorem 5.4 Consider τ = τ
(1)
n : Ig(pn)(1)μ → S̄(1)μ = S̄μ,κ0 and extend scalars from κ0 to

κ . Let T be an irreducible component of S̄μ,κ . Then τ−1(T ) is irreducible in Ig(pn)μ,κ .

Proof The theorem can be proved by the same method used by Hida [16, 8.4], [17], or by
the method of Ribet to which we alluded in 2.4.3. In that section, we proved the theorem
for n = 1 by a third method, due to Igusa, studying the image of inertia around Sss. See
also the discussion of the big Igusa tower BigIg below, which turns out to be reducible.

Theorem 5.5 Let f1 and f2 be mod pm modular forms as above and assume that f1 is
not divisible by p. Trivialize L|C by choosing a lift of C to C̃ (i.e. a section of the map
τ |C̃ : C̃ → C) and using the trivialization of L along this lift which is supplied by the
section a. Then if FJ (f1) = FJ (f2), k1 ≡ k2 mod (p2 − 1)pm−1.

Here FJ (f ) = ∑∞j=0 cj(f ) and cj(f ) ∈ H0(C,N j). The lift of C to C̃ exists since C̃ �
Δ(pm) × C (non-canonically). If we change the lift (locally on the base) by γ ∈ Δ(pm),
then FJ (fi) changes by the factor Σ̄(γ )ki .

Proof By Igusa’s irreducibility theorem, it is enough to know that FJ (fi) (i = 1, 2) agree on
the given lift of C , to conclude that τ ∗f1/ak1 = τ ∗f2/ak2 on the whole of Ig(pm)(m)

μ , hence
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the result follows by the Lemma. Note that the underlying topological spaces of Ig(pm)(m)
μ

and Ig(pm)(1)μ are the same, and hence for the irreducibility theorem, it is enough to deal
with the special fiber.

Corollary 5.6 Let fi ∈ Mp
ki (N ;Op) (i = 1, 2) and assume that f1 is not divisible by p.

Trivialize L|C by fixing an OK-isomorphism of the p-divisible group of the toric part of
the universal semi-abelian varietyA|C with δ−1K OK⊗μp∞ , and using this isomorphism to
identify L|C = ωA/C (Σ̄) withOC . Suppose that with this trivialization

FJ (f1) ≡ FJ (f2) mod pm. (5.14)

Then k1 ≡ k2 mod
(
p2 − 1

)
pm−1.

5.2.5 Irreducibility of the Igusa tower and the big Igusa tower

It is possible to define an even larger Igusa tower (BigIg(pn))n≥1 over κ = F̄p, of which
(Ig(pn))n≥1 is a quotient. If R is a κ-algebra and A ∈ Sμ(R), then A[pn] admits a filtration
as in 2.1.2. One can define BigIg(pn) as the moduli space ofμ-ordinary tuples A, equipped
withOK-isomorphisms

ε2 : δ−1K OK ⊗ μpn � gr2A[pn]

ε1 : G[pn] � gr1A[pn]

ε0 : OK ⊗ Z/pnZ � gr0A[pn]. (5.15)
This would be, in the language of [17], the GU-Igusa tower. If we insist that the iso-
morphisms respect the pairings induced on these group schemes by the polarization and
Cartier duality (gr0 and gr2 are dual to each other, gr1 is self-dual), we would get the
U-Igusa tower. Both these towers are reducible, by the reasoning of [16, 8.4.1] or [17],
and by the description of the connected components of the characteristic 0 fiber of the
Shimura variety given in 1.3.3. The SU-Igusa tower, which is irreducible, turns out to be
our tower (Ig(pn)). It is also the quotient of (BigIg(pn)) under the map “forget ε0 and ε1”.
Thus there is no real advantage in studying the tower BigIg.

5.3 p-adic modular forms of p-adic weights

5.3.1 The space of p-adic weights

Let
Xp = lim← Z/(p2 − 1)pm−1Z, (5.16)

This is the space of p-adic weights. If k ∈ Xp, then Σ̄k is a well-defined locallyQp-analytic
homomorphism ofO×p to itself, but note that not every such homomorphism is a Σ̄k for
some k from Xp.

5.3.2 p-adicmodular forms à la Serre

Weworkwith S̄ (hence also the cuspidal divisorC) over the baseOp, thep-adic completion
of R0. Little is lost by extending the base further to ON,P, the completion of the ring of
integers of the ray class field KN at a prime P above p. After such a base extension the
irreducible components of C become absolutely irreducible. The reader may assume that
this is the case.
Consider the p-divisible group of the toric part of the universal semi-abelian varietyA|C .

Once and for all fix anOK-isomorphismof itwith δ−1K OK⊗μp∞ , anduse this isomorphism
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to identify L|C = ωA/C (Σ̄) with OC . This choice is unique up to multiplication by
O×p on each irreducible component of C . It determines a FJ expansion FJ (f ) for every
f ∈ Mp

k (N ;Kp) as in (1.125), and is equivalent to splitting the projection τ |C̃ : C̃ → C
from the boundary of the Igusa tower

(
Igμ(pn)

)∞
n=1 to the boundary of the Picardmodular

surface.
Let k ∈ Xp. The spaceMSerre

k (N ;Kp) will be a subspace of the Banach algebra

FJ p = Kp ⊗Op

∞∏

j=0
H0(C,N j). (5.17)

It will consist of all the f ∈ FJ p for which there exists a sequence (fν), fν ∈ Mp
kν (N ;Kp),

(kν ∈ Z), with FJ (fν) converging to f , and kν converging in Xp to k. As we have seen,
if the sequence (FJ (fν)) converges, the kν have to converge in Xp. We shall denote by
MSerre

k (N ;Op) the intersection ofMSerre
k (N ;Kp) with

∏∞
j=0H0(C,N j).

Proposition 5.7 (i) If k ∈ Z, then MSerre
k (N ;Kp) = Mp

k (N ;Kp). In other words, we do
not get any new p-adic modular forms by allowing limits of p-adic modular forms of
varying weights, if the weights converge to an integral k.

(ii) In the definition of MSerre
k (N ;Kp) we can require fν ∈ Mkν (N ;Kp) (classical modular

forms of integral weight kν ) and still get the same space.
(iii) MSerre

k (N ;Kp) is a closed subspace of FJ p. The product of two fi ∈ MSerre
ki is in

MSerre
k1+k2 .

(iv) If f ∈ MSerre
k (N ;Op), then its reduction modulo p appears in Mk ′ (N ; κ0) for some

positive integer k ′ sufficiently close to k in Xp.

Proof LetHΣ̄ ∈ Mp2−1(N ;Op) be a lift of the Hasse invariant hΣ̄ to characteristic 0. Such
a lift exists by general principles, whenever p is large enough. For the few exceptional
primes p we may replace hΣ by a high enough power of it, which is liftable, and use the
same argument. This lift satisfies FJ (HΣ̄ ) ≡ 1 mod p, so H−1

Σ̄
∈ Mp

1−p2 (N ;Op) is a p-

adic modular form defined over Op. Indeed, HΣ̄ mod pm ∈ H0(S̄(m)
μ ,Lp2−1) is nowhere

vanishing over S̄(m)
μ , and taking the limit of its inverse overm we get H−1

Σ̄
. Suppose, as in

(i), that k, kν ∈ Z, kν → k in Xp, and fν ∈ Mp
kν (N ;Kp) are such that FJ (fν) converge in

FJ p to f. Replacing fν by fνH
peν
Σ̄

for suitable eν , we may assume that the kν are increasing

and are all in the same congruence class modulo p2 − 1. But then fνH
(k−kν )/(p2−1)
Σ̄

are in
Mp

k (N ;Kp) and their FJ expansions converge to f in FJ p. This proves (i). For (ii) note
that if f ∈ H0(S̄(m)

μ ,Lk ), then for all sufficiently large e, fHpe
Σ̄

extends to an element of
Mk+(p2−1)pe (N ;Rm) and has the same FJ expansion as f. Thus every p-adic modular form
of integral weight is the p-adic limit of classical forms of varying weights, and the same is
therefore true for Serre modular forms of p-adic weight. Points (iii) and (iv) are obvious.

5.3.3 p-Adicmodular forms à la Katz

We now explain Katz’ point of view of the same objects. Let

V (m)
n = H0

(
Ig(pn)(m)

μ ,O
)

(5.18)

be the ring of regular functions on Ig(pn)(m)
μ . Let

V (m) = lim→ V (m)
n , V = lim← V (m). (5.19)
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We call V the space of Katz p-adic modular forms (of all weights). Let

γ ∈ Δ = O×p = lim← Δ(pn) (5.20)

act on V (m) and on V as usual, γ (f ) = f ◦γ−1, and recall that γ−1(A, ε(m)
n ) = (A, ε(m)

n ◦γ ).
Thus

γ (f )(A, ε) = f (A, ε ◦ γ ) (5.21)

(i.e. γ acts by “right translation”). Let k ∈ Xp and define

MKatz
k (N ;Op) = V (Σ̄k ) =

{
f ∈ V | γ (f ) = Σ̄k (γ ) · f ∀γ ∈ Δ

}
. (5.22)

We similarly defineMKatz
k (N ;Rm) = V (m)(Σ̄k ).

By the irreducibility of the Igusa tower and the q-expansion principle the FJ expansion
map

V → FJ p(Op) (5.23)

is injective. It depends on our choice of the splitting of C̃ → C .

Proposition 5.8 For k ∈ Xp, there is a natural isomorphism

MSerre
k (N ;Op) � MKatz

k (N ;Op). (5.24)

Proof Given k ∈ Z and f ∈ H0(S̄(m)
μ ,Lk ), the functions (τ (m)

n )∗f /(a(m)
n )k ∈ V (m)

n for all
n ≥ m, and these functions satisfy the obvious compatibility in n, so they define

f Katz ∈ V (m)(Σ̄k ). (5.25)

If k ∈ Z, this gives, by going to the inverse limit overm, a map

f �→ f Katz, Mp
k (N ;Op)→ MKatz

k (N ;Op). (5.26)

This map is an isomorphism, which can be enhanced to include p-adic weights k ∈ Xp as
follows. If kν ∈ Z, kν → k ∈ Xp and if fν ∈ Mp

kν (N ;Op) are such that FJ (fν) converge to
f ∈ MSerre

k (N ;Op), then reducing modulo pm for a fixed m, (f (m)
ν )Katz ∈ V (m)(Σ̄kν ). But

for a fixedm, for all large enough ν,

V (m)(Σ̄kν ) = V (m)(Σ̄k ), (5.27)

and the sequence FJ (f (m)
ν ) stabilizes, so taking the limit over ν we get a well defined

(f (m))Katz ∈ V (m)(Σ̄k ). Finally, an inverse limit overm gives f Katz ∈ MKatz
k (N ;Op). It is by

now standard that this gives an isomorphism between MSerre
k (N ;Op) and MKatz

k (N ;Op).
As we have seen earlier, when k ∈ Z, this is also the same asMp

k (N ;Op).

From now on, it is therefore legitimate to denote these spaces by the common notation
Mp

k (N ;Op) and refer to them simply as p-adic modular forms of p-adic weight k.

5.4 p-Adic modular forms of p-adic bi-weights

5.4.1 The space of bi-weights

A new feature of p-adic modular forms on Picard modular surfaces, that does not show
up in the classical theory of GL2(Q), is that even if we restrict attention to scalar-valued
p-adic modular forms, we sometimes need to consider classical vector-valued forms to
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approach them. This phenomenon, as we shall explain below, does not show up in the
mod p theory, but is essential to the p-adic theory.
The space Xp of p-adic weights can be written as Z/(p2 − 1)Z× Zp, and when we

decompose it in such a way we write

k = (w, j) = (ω(k), 〈k〉) (5.28)

for the two components. The space of bi-weights X(2)
p is, by definition, the quotient of X2

p
modulo the relation

((w1, j1), (w2, j2)) ≡ ((0, j1), (pw1 + w2, j2)) ≡ ((pw2 + w1, j1), (0, j2)). (5.29)

If k1 and k2 are inXp, then the character Σ̄k1Σk2 : Δ→ O×p depends only on the image
of (k1, k2) in X

(2)
p . Here Δ = lim← Δ(pn) is also O×p , but in the rôle of the Galois group of

the Igusa tower. The image of Z
2 is dense in X2

p, hence also in X
(2)
p .

5.4.2 The line bundleL(k1,k2) over S̄rigμ and p-adicmodular forms of integral bi-weights

Letm ≥ 1. The plane bundle P admits a canonical filtration

0→ P0 → P → Pμ → 0 (5.30)

over S̄(m)
μ defined by choosing any n ≥ m and setting

P0 = ker(ωA[pn]0 → ωA[pn]μ ), Pμ = ωA[pn]μ (Σ)

(recall ωA = ωA[pn]0 ). We also recall that L = ωA[pn]μ (Σ̄).
If m = 1 we showed that over S̄(1)μ , L � Pp

μ and Pμ � Lp. This is no longer true for
generalm and we let for (k1, k2) ∈ Z

2

L(k1 ,k2) = Lk1 ⊗ Pk2
μ . (5.31)

Going to the limit overm, this defines a rigid analytic line bundle over S̄rigμ .
We define the space of p-adic modular forms of bi-weight (k1, k2) and level N over Op

as

Mp
k1 ,k2 (N ;Op) = lim← H0

(
S̄(m)
μ , L(k1 ,k2)

)
. (5.32)

This is the unit ball of the p-adic Banach space

Mp
k1 ,k2 (N ;Kp) = Kp ⊗Op M

p
k1 ,k2 (N ;Op) = H0

(
S̄rigμ ,L(k1 ,k2)

)
. (5.33)

5.4.3 The trivialization ofL(k1,k2) over the Igusa tower

As before, fixm, letm ≤ n and consider the isomorphism

ε∗ : τ ∗ωA[pn]μ � OK ⊗OIg(pn)(m)
μ

(5.34)

induced by the Igusa level structure ε = ε
(m)
n . Taking Σ̄ and Σ-types, it induces trivial-

izations

τ ∗L � OIg(pn)(m)
μ
, τ ∗Pμ � OIg(pn)(m)

μ
(5.35)

and we let a = a(m)
n and ā = ā(m)

n be the sections corresponding to 1. Of course, the
trivialization of L is the one that we have met before.
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Let ak1 ,k2 = ak1 āk2 . Then we may trivialize τ ∗L(k1 ,k2) by s �→ s/ak1 ,k2 to get a function
on Ig(pn)(m)

μ . This allows us to define, as usual, canonical Fourier–Jacobi expansion F̃J (f )
(along C̃), and if wemake a choice of a splitting of τ : C̃ → C , a Fourier–Jacobi expansion
FJ (f ) (along C) for every f ∈ Mp

k1 ,k2 (N ;Kp).

5.4.4 p-Adicmodular forms of p-adic bi-weights

The yoga of p-adic weights, either à la Serre or à la Katz, allows us now to define the space

Mp
k1 ,k2 (N ;Kp) (5.36)

of p-adic modular forms of any bi-weight (k1, k2) ∈ X
(2)
p . If we follow Serre, we define

them as elements of the Banach space FJ p via limits of p-adic modular forms of integral
bi-weights. If we follow Katz, we have

Mp
k1 ,k2 (N ;Op) = V

(
Σ̄k1Σk2

)
. (5.37)

We let the reader complete the details, which are identical to the case of a single weight
treated before.

5.5 The theta operator for p-adic modular forms

Weare finally able to define the operatorΘ on p-adicmodular forms. Compare [22, V.5.8].
Let f ∈ Mp

k1 ,k2 (N ;Op). Assume first that k1 and k2 are from Z, and reduce modulo pm, to
get f ∈ H0(S̄(m)

μ ,Lk1 ⊗ Pk2
μ ). Take any n ≥ m, pull back to Ig(pn)(m)

μ , divide by ak1 ,k2 and
consider

ηf = d
(
τ ∗f /ak1 ,k2

)
∈ H0
(
Ig(pn)(m)

μ ,Ω1
Ig

)
. (5.38)

Apply KS−1 to ηf .This results in a section ofL⊗P .As explained before, when we project
this section to L ⊗ Pμ, we get a section that is holomorphic along C̃ and even vanishes
there (recall KS had a pole along the cuspidal divisor). Multiply back by ak1 ,k2 and use
Galois descent to descend the resulting section to S(m)

μ .
We may now take the limit over m to get our Θ , if (k1, k2) ∈ Z

2. A further limit
over weights, as in the proof of Proposition 5.8, allows us to extend the definition to
(k1, k2) ∈ X

(2)
p . Using Katz’ approach, where the process of dividing and multiplying back

by ak1 ,k2 is already built into the isomorphism with V (Σ̄k1Σk2 ), Θ is nothing but the
map

Θ : f �→ (1⊗ prμ) ◦ KS−1 ◦ d(f ) (5.39)

sending V (Σ̄k1Σk2 ) to V (Σ̄k1+1Σk2+1). Here prμ : P → Pμ is the projection defined
over S̄rigμ .

Theorem 5.9 Let (k1, k2) ∈ X
(2)
p . The operator,

Θ : Mp
k1 ,k2 (N ;Op)→ Mp

k1+1,k2+1(N ;Op) (5.40)

defined by the above formula, satisfies the following properties (and is uniquely determined
by its effect on q-expansions).

(i) When one reduces Mp
k1 ,k2 (N ;Op) modulo p, and uses the isomorphism Pμ � Lp, Θ

reduces to the operator
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Θ : Mk (N ; κ)→ Mk+p+1(N ; κ) (5.41)

on mod p modular forms.
(ii) The effect ofΘ on the canonical FJ expansion F̃J (f ) is given by “q d

dq ”, i.e. by the formula
(3.21).

We omit the proof of (ii), which goes along the same lines as in the mod p theory.
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