
Besser Res Math Sci (2016) 3:26 
DOI 10.1186/s40687-016-0073-x

RESEARCH Open Access

On the regulator formulas of Bertolini,
Darmon and Rotger
Amnon Besser*

To the memory of Robert Coleman.*Correspondence:
bessera@math.bgu.ac.il
Department of Mathematics,
Ben-Gurion University of the
Negev, P.O.B. 653, Be’er-Sheva
84105, Israel

Abstract

We give a unified, and somewhat simplified, account of the regulator formulas
appearing in papers of Bertolini, Darmon and Rotger, describing the syntomic regulator
on the first, second and third self-products of modular curves in terms of p-adic
modular forms.

1 Introduction
In a recent sequence of papers [2,4,11] Bertolini, Darmon and Rotger relate, in several
different situations, the syntomic regulator applied to some arithmetic object, to special
values of p-adic L-functions. In particular, they use the author’s previous work [6,8,9] to
find certain formulas for this regulator, which are later related to p-adic L-values. In this
short note, we attempt to provide what is hopefully a simpler proof of these regulator
formulas. We hope this will prove beneficial for future work in this subject, extending
the results to bad reduction situations. We have also attempted to make the presentation
fairly self-contained.
Let us briefly summarize the difference between our techniques and those of the above-

mentioned papers. In the above triad, the essential computation is done in the case of
diagonal cycles on the triple product of modular curves in [11]. The fundamental trick
is to eliminate the choice of a lift in finite polynomial cohomology of a certain class in
de Rham cohomology by applying a certain correspondence. This idea might have other
applications in the theory. In the 3 cases discussed here, the cohomology is sufficiently
simple though that one can compute the lift directly, avoiding the need for a correspon-
dence and in practice simplifying the argument. It also makes the 3 proofs very similar in
structure, rather than making one proof dependent on the others. We have also made use
of properties of the cup product in finite polynomial cohomology to further simplify the
argument in [11].
I would like to thank Andreas Langer for a most enjoyable visit in Exeter and for the

discussionon [11]which resulted in thepresentpaper, aswell as for reading themanuscript
and carefully correcting some, but no doubt not all, of my errors. I would also like to thank
Rob de Jeu, whose insistence encouraged me to figure out some of the results in Sect. 5.
I would also like to thank the referee for finding at least some of my many errors in the
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previous version of this text and formakingmany comments that improved the readability
of the paper. The bulk of the research described here was done when I was visiting the
Mathematical Institute at the university of Oxford. I would like to thank the Institute and
especially Alan Lauder and Minhyong Kim for the supporting my visit. This work was
partially supported by ERC Grant Number 204083.
This paper is dedicated to the memory of Robert Coleman. The influence of Robert’s

ideas onmywork is obvious. In particular, the theory of fp-cohomology is just an extension
of Robert’s idea of using polynomials in Frobenius to kill off cohomology on the way to
obtaining his integrals. His presence will be greatly missed.

2 The setup
Let K be a finite extension ofQp with ring of integersOK and residue field κ of size q.
We briefly recall some facts about finite polynomial cohomology as defined in [6].

This theory assigns to any smoothOK -scheme X a “cohomology group”Hi
fp(X , n). More

generally, for a finite set of weights R ⊂ Z≥0 it gives a groupHi
fp,R(X , n) in such a way that

Hi
fp(X , n) = Hi

fp,{2i}(X , n). A basic property of this theory is that if R contains none of the
weights on Hi−1

rig (Xκ/K ), where Hrig denotes Berthelot’s rigid cohomology [5] and where
Xκ is the special fiber of X , this sits in a short exact sequence

0 → Hi−1
rig (Xκ/K )/FnHi−1

dR (X/K ) i−→ Hi
fp,R(X , n)

p−→ FnHi
dR(X/K )R → 0

where X denotes the generic fiber of X , Fn refers to the n-th step in the Hodge filtration
on the de Rham cohomology group HdR and the superscript R indicates the part of de
Rham cohomology mapping in rigid cohomology to the part having weights in R. This is
true in particular when X is proper and R = {2i}, so that the sequence above reads (as
also in this case HdR = Hrig)

0 → Hi−1
dR (X/K )/FnHi−1

dR (X/K ) i−→ Hi
fp(X , n)

p−→ FnHi
dR(X/K ) → 0, (2.1)

and it is also true when X has relative dimension 1 and R = {1, 2} and i = 1. When X is
proper and of relative dimension 1, and the generic fiber is irreducible, we specialize the
above sequence in the following two cases

0 → K i−→ H1
fp(X , 1)

p−→ F1H1
dR(X/K ) → 0 (2.2)

p : H1
fp(X , 0) ∼−→ H1

dR(X/K ). (2.3)

There is a functorial cup product

Hi1
fp,R1 (X , n1) × Hi2

fp,R2 (X , n2) → Hi1+i2
fp,R1+R2 (X , n1 + n2),

which is compatible with cup products on de Rham and rigid cohomology [6, Proposi-
tion 2.5]. Here R1 + R2 means the sum of the sets of weights. In the proper case, the
compatibility means that we have

p(x ∪ y) = p(x) ∪ p(y), x ∈ Hi
fp(X , n), y ∈ Hj

fp(X , m) (2.4)

and
i(x) ∪ y = i(x ∪ p(y)), x ∈ Hi−1

dR (X/K )/Fn, y ∈ Hj
fp(X , m), (2.5)
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where∪dR is the usual cup product in de Rham cohomology.We can record the following
consequences of this.

Proposition 2.1 SupposeX is proper of relative dimension1. Let ω̃i ∈ H1
fp(X , 1) for i = i, 2

and η ∈ H1
dR(X/K ). Set pω̃i = ωi ∈ �1(X/K ) and identify η with an element in H1

fp(X , 0)
via the isomorphism p of (2.3).

(1) We have ω̃1 ∪ ω̃2 ∈ iH1
dR(X/K ) and

η ∪ ω̃1 ∪ ω̃2 = i(η ∪dR i−1(ω̃1 ∪ ω̃2)).

(2) For α ∈ K, we have

η ∪ i(α) ∪ ω̃1 = −η ∪ ω̃1 ∪ i(α) = i(αη ∪dR ω1).

Proof We have p(ω̃1 ∪ ω̃2) = ω1 ∪ ω2 = 0 by (2.4), as both ωi are in �1, hence ω̃1 ∪ ω̃2
is in the image of i by the exact sequence (2.1). As, in our identification p(η) = η, we can
apply (2.5) to obtain the first formula. The second formula follows again from (2.5). �	

We will need to recall some more details about fp-cohomology theory in the case that
X is affine and of relative dimension 1 (some things here hold in greater generality but we
attempt to make things as concrete as possible). We may associate with the special fiber
Xκ a certain “overconvergent space W over K .” The de Rham cohomology of this space
computes theMonsky–Washnitzer cohomology ofXκ .Wemay further equipW with aK -
morphism φ lifting the relative Frobenius morphism of Xκ/κ . Under these assumptions,
the finite polynomial cohomology associated with a fixed polynomial P(t) is

Hi
f,P(X , n) = Hi(MF(Fn�•

log(X)
P(φ∗)−−−→ �•(W))),

where �•
log(X) is the complex of differential forms on X with logarithmic singularities

at infinity (relative to some compactification) and the map corresponds to restricting
differential forms toW and then applying the map P(φ∗). The restriction map only exists
in the derived category so this is somewhat imprecise but we do not say muchmore about
this as we will not be using this directly. The notation MF refers to the mapping fiber of a
map,which is the cone shifted by−1. To get the finite polynomial cohomologyHi

fp,R(X , n),
one takes the limit of the above groups over all polynomials P whose roots have weights
in R relative to some transition maps defined in [6, Definition 2.3].
For the actual computations, we will use a modified version, where algebraic forms are

replaced by rigid forms,

H̃ i
f,P(X , n) = Hi(MF(Fn�•(W) P(φ∗)−−−→ �•(W))),

where Fn�•(W) is just the stupid filtration. We again take the limit over all P of the given
weights R to obtain H̃ i

fp,R(X , n). Because the modified finite polynomial cohomology does
not use forms with log singularities, there would be situations where it is infinite dimen-
sional for open schemes, and it will certainly differ from the non-modified version. How-
ever, when our ultimate goal is a computation in a proper scheme, or in other situations
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when the cohomologies do not differ (see below), it can be used for these computations
and in some cases, as we will see, offers some benefits over the original.
An element of H̃ i

f,P(X , n) is given explicitly by a pair

ω̃ = (ω, f ), ω ∈ Fn�i(W) closed, f ∈ �i−1(W), df = P(φ∗)ω. (2.6)

Pairs of the form (dg, P(φ∗)g) with g ∈ Fn�i−1(W) and (0, dh) with h ∈ �i−2(W) are
identified with 0.
We have obvious mapsHi

f,P(X , n) → H̃ i
f,P(X , n), and, taking the limit over P,Hi

fp,R(X , n)
→ H̃ i

fp,R(X , n), hence also Hi
fp(X , n) → H̃ i

fp(X , n) (Recalling that this means R = {2i}).
These are compatible with cup products. Considering nowH2 for our affineX of relative
dimension 1 we find, as F2 = 0 on both H1

rig and H1
dR,

H2
fp(X , 2) = H̃2

fp(X , 2) = H1
rig(Xκ/K ) = H1

dR(W)

Thus, to compute the cup product

H1
fp(X , 1) × H1

fp(X , 1) → H2
fp(X , 2),

we may pass to H̃1
fp(X , 1) and compute the cup product there.

It is important to note that the natural isomorphism i : H1
dR(W) → H̃2

fp(X , 2) is not the
obvious one but is rather given by the limit of the isomorphisms, which we abuse notation
to denote again by i,

H1
dR(W) i−→ H̃2

fp,P(X , 2), [ω] �→ P(φ∗)[ω], (2.7)

where [ ] denoted the cohomology class of a form. This is necessary because of the tran-
sitions maps between different polynomials.
The cup product in fp-cohomology is described in [6, Remark 4.3]. Specializing the

construction there to our case we find it is given as the limit of unnormalized cup products

∪̃ : H̃1
f,P(X , 1) × H̃1

f,Q(X , 1) → H̃2
f,P∗Q(X , 2) = H1

dR(W),

where by definition
∏
(1 − αit) ∗ ∏

(1 − βjt) = ∏
(1 − αiβjt), then twisted back by (2.7).

The following proposition describes the cup product in the case that we will require.

Proposition 2.2 For i = 1, 2 let Pi(t) = (1 − αit) and suppose that ω̃i = (ωi, G
(p)
i ) ∈

H̃1
f,Pi (X , 1) so that (1 − αiφ∗)ωi = dG(p)

i . Then,

ω̃1∪̃ω̃2 = (0, G(p)
1 ω2 − α1G

(p)
2 φ∗ω1) ∈ H̃2

f,P1∗P2 (X , 2).

In other words, it is identified with the cohomology class of the form G(p)
1 ω2 − α1G

(p)
2 φ∗ω1

in H1
dR(W) in the non-normalized identification.

Proof This follows directly from the description of the cup product in [6, Remark 4.3] and
from the fact that in the polynomial ring in two variables K [t1, t2] we have

1 − α1α2t1t2 = (1 − α1)t1 + α1t1(1 − α2t2).

�	
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By [6] (see also [9] Definition 2.13, Remark 2.14 and the preceding discussion), classes
in finite polynomial cohomology can be interpreted as Coleman functions. In particular,
the class ω̃ = (ω, g) ∈ H̃1

f,P(X , 1) corresponds to the primitive Fω of ω (a locally analytic
function with dFω = ω) satisfying the relation P(φ∗)Fω = g . The value Fω(x) at an OK -
section x is just the pullback of ω̃ to Spec(OK ) via x,

Fω(x) = x∗ω̃, (2.8)

via a natural identification of H̃1
f,P(Spec(OK ), 1) with K . We also note that

H̃1
f,P(Spec(OK ), 0) = 0 (2.9)

since H0
dR(K/K )/F0 = 0.

We next discuss yet another simple modification of fp-cohomology (this is a new con-
struction).

Definition 2.3 SupposeK ′ is a finite extension ofK and letX ′ := X ⊗OK OK ′ .We define
fp-cohomology of X ′ over K to be the cohomology of the fp-complex of X but tensored
overK withK ′. This construction applies to all versions of fp-cohomology.Wewill denote
this cohomology by Hi

fp(X ′, n)K .

Because de Rham and rigid complexes behave well under finite base change, this con-
struction is equivalent to writing down the fp-complex of X ′ but using the polynomials
and the lift of Frobenius forX based changed toX ′, instead of the polynomials and the lift
of Frobenius onX ′. One easily sees that we are in effect taking the limit over a larger class
of morphisms, but with the old class being cofinal in them. We therefore have a natural
isomorphism

Hi
fp(X ′, n)K ∼= Hi

fp(X ′, n). (2.10)

All of what we said about fp-cohomology extends immediately to this setting.
Suppose now that X is the localization of a smooth complete OK -scheme C of rel-

ative dimension 1 with generic fiber C at a finite number of sections. There is then a
unique Frobenius equivariant splitting 	 to the restriction map in de Rham cohomology
H1
dR(C/K ) → H1

dR(W/K ) [8, Proposition 4.8]. Composing with the cup product pairing
on H1

dR(C/K ), we obtain a pairing

〈•, •〉 : H1
dR(C/K ) × H1

dR(W/K ) → K, (2.11)

which is Frobenius equivariant in the sense that
〈
φ∗η,φ∗ω

〉 = p〈η,ω〉 (2.12)

and compatible with the cup product in the sense that

〈η,ω|W 〉 = tr(η ∪dR ω), ω, η ∈ H1
dR(C/K ). (2.13)

The pairing above is also compatible with restriction in the sense that for a smaller over-
convergent spaceW ′ we have

〈η,ω|W ′ 〉W ′ = 〈η,ω〉W . (2.14)
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3 Modular forms
Keeping the notations of the previous section, suppose now that N is an integer prime to
p. Let K be some finite extension of Qp. We let X1(N ) be a model for the modular curve
X1(N ) over Zp, base changed toOK , and letX be the affine scheme obtained by removing
from X1(N ) sections at lifting the supersingular points (we want to do it carefully, to
get something base changed from Zp), and X ′ the one obtained by further removing the
sections at the cusps.
When doing computations with the fp-cohomology ofX , we can use the following rela-

tions with the theory of (p-adic) modular forms. The space W is obtained by throwing
away from X1(N ) “infinitesimally less” then the supersingular disks (the space W ′ corre-
sponding to X ′ is obtained by further throwing away disks around the cusps). The ring
O(W) (respectively, the module of differentials �1(W)) is naturally identified with the
spaceM0(N ) (respectively, S2(N )) of overconvergent p-adic modular forms (respectively,
cusp forms) of weight 0 (respectively, 2). In terms of q-expansions, weight 0 overcon-
vergent modular forms are by definition functions on W , while the weight 2 form with
expansion f (q) is identified with the differential one form ωf with expansion

ωf = f (q)dq/q. (3.1)

In particular, one finds that differentiation translates to the θ operator on p-adic modular
forms given on q-expansions by

θ
(∑

anqn
)

=
∑

nanqn (3.2)

so that

df = ωθ (f ), f ∈ M0(N ). (3.3)

The space W carries the canonical lift of Frobenius φ defined in terms of moduli by
quotienting out by the canonical subgroup (note that this would be the base change of
the linear Frobenius over Qp, so is appropriate for doing fp-cohomology “over Qp” as in
Definition 2.3).
Its action on the parameter q at∞ is φ∗q = qp. Its action on one form is therefore given

by

φ∗ωf = pωVf , (3.4)

where the operator V on p-adic modular forms is given on q-expansions by

V
(∑

anqn
)

=
∑

anqpn. (3.5)

The U operator on p-adic modular forms is given on q-expansions by U (
∑

anqn) =
∑

anpqn. We clearly have UV = Id and

g − VUg = g [p], (3.6)
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where g [p] is the p-depletion of g , which has, if g has q-expansion
∑

anqn, a q-expansion
∑

p�n anqn. It is a fact that there exists an overconvergent modular form θ−1g [p] with

g [p] = θ (θ−1g [p]). (3.7)

We normalize θ−1g [p] to have expansion
∑

p�n
an
n qn. In particular, note that

Uθ−1g [p] = 0. (3.8)

We remark that Bertolini, Darmon and Rotger denote θ−1g [p] by d−1g [p].
The relation between the U and V operators, and the Hecke operator Tp on the space

S2(N,χ ) of weight 2 cusp forms on �1(N ) with Nebentypus character χ is given as fol-
lows [14, 8.2.2],

Tp = U + χ (p)pk−1V. (3.9)

We will need the following result (this is given in [11] subsection 2.6).

Proposition 3.1 Suppose that g ∈ S2(N,χ ) is an eigenvector for Tp with eigenvalue ap.
Then

ωg − app−1φ∗ωg + p−1χ (p)(φ∗)2ωg = ωg [p] = dθ−1g [p].

Proof By (3.9), we have

apg = Tpg = Ug + χ (p)pVg.

Multiplying by V we have

apVg = VUg + χ (p)pV 2g.

Adding g − VUg − apVg to both sides gives, using (3.6)

g [p] = g − VUg = g − apVg + χ (p)pV 2g.

Rewriting in terms of pV gives

g [p] = g − app−1(pV )g + χ (p)p−1(pV )2g.

Using (3.3) and (3.4) gives the result. �	

Hida defined the ordinary projection

eord = limUn! (3.10)

on the space of weight k overconvergent modular forms. Its image is the space of ordinary
forms. We will in particular import its action to the space �1(W) via the identification
above. We list the following properties of eord which may be found in [11].

Proposition 3.2 The projection eord satisfies the following properties.
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(1) It vanishes on Gφ∗ω whenever G ∈ O(W) and UG = 0.
(2) If η ∈ H1

dR(X1(N )/K ) is in the unit root part (i.e., an eigenvector forφ whose eigenvalue
is a p-adic unit), then 〈η,ω〉 = 〈η, eordω〉.

Proof For (1), we notice that the conditions imply that in G the coefficients of qnp are 0
for all n. On the other hand, by (3.4) and (3.5), in the q-expansion of φ∗ω, an �= 0 only if
p|n. This implies that in the q-expansion ofGφ∗ω the coefficients of qnp are 0 for all n and
so U (Gφ∗ω) = 0, from which it clearly follows that eord(Gφ∗ω) = 0 by (3.10). For (2), we
observe that U and V are inverses of each other on H1

dR(W) and as φ∗ = pV we have

〈η, Uω〉 = 〈
η, p(φ∗)−1[ω]

〉 = p−1〈φ∗η, pω
〉 = 〈

φ∗η,ω
〉
.

Thus, if φ∗η = βη we have

〈
η, Unω

〉 = βn〈η,ω〉

and if |β| = 1, taking the limit (and noting that 〈•, •〉 is continuous, as can be observed by
writing it in terms of residues as in [8, Proposition 4.10]), we get

〈η, eordω〉 = lim
n
(βn!)〈η,ω〉 = 〈η,ω〉

as required. �	

Theorem 3.3 Suppose that for ω1,ω2 ∈ �1(W) and G1, G2 ∈ O(W) we have ωi −
αiφ∗ωi = dGi for i = 1, 2with UGi = 0 and let ω̃i = (ωi, Gi) ∈ H̃1

f,1−αit (X , 1)Qp as in (2.6),
in the version of Definition 2.3. Let P(t) = 1−α1α2t. Consider ω̃1∪ ω̃2 ∈ H̃2

fp,P(X , 2)Qp and
its image i−1(ω̃1 ∪ ω̃2) ∈ H1

dR(W) under the inverse of the normalized identification (2.7).
If η ∈ H1

dR(X1(N )/K ) is an eigenvector for φ∗ with eigenvalue α and |α| = 1, then

〈
η, i−1(ω̃1 ∪ ω̃2)

〉 = (1 − βα1α2)−1 〈
η, eord(G1ω2)

〉

with β = p/α. The conditions may be relaxed to allow (one, or both) ωi to have logarithmic
poles at the cusps if αi = 1/p when considering ω̃1 ∪ ω̃2 ∈ H̃2

fp,P(X ′, 2)Qp
∼= H1

dR(W ′).

Proof By Proposition 2.2, we have

ω̃1∪̃ω̃2 = (0, G1ω2 − α1G2φ
∗ω1).

We have, by the assumption that UG2 = 0 and by (1) of Proposition 3.2

eord(G2φ
∗ω1) = 0.

Since η is in the unit root subspace, it follows from (2) of Proposition 3.2 that, identifying
ω̃1∪̃ω̃2 with its image in H1

dR(W),

〈
η, ω̃1∪̃ω̃2

〉 = 〈
η, eord(G1ω2 − α1G2φ

∗ω1)
〉 = 〈

η, eord(G1ω2)
〉
.
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The normalization (2.7) means that the cohomology class i−1(ω̃1 ∪ ω̃2) satisfies (1 −
α1α2φ∗)i−1(ω̃1∪ ω̃2) = ω̃1∪̃ω̃2. Pairing with η and using the property (2.12) of the pairing,
we obtain

〈
η, eord(G2ω1)

〉 = 〈
η, ω̃1∪̃ω̃2

〉

= 〈
η, (1 − α1α2φ

∗)i−1(ω̃1 ∪ ω̃2)
〉

= 〈
η, i−1(ω̃1 ∪ ω̃2

〉
) − α1α2

〈
α−1φ∗η,φ∗i−1(ω̃1 ∪ ω̃2)

〉

=
(
1 − pα1α2

α

) 〈
η, i−1(ω̃1 ∪ ω̃2)

〉
,

which gives the result. To see that we may allow logarithmic poles at the cusps when
αi = 1/p, note that ωi − φ∗ωi/p is holomorphic at the cusps. Thus, the same argument
can be carried through. �	

As a corollary, we give a formula for a similar product where the forms are associated
with weight two eigenforms. For the case where the forms are Eisenstein series, we will
need to recall the notion of a constant term of a Coleman function [3, Definition 7.7].
When a form ω has a logarithmic singularity at x with residue a, its Coleman integral is
given, with respect to a local parameter z at x, by Fω = a log(z)+∑∞

n=0 anzn. The constant
term of Fω with respect to the parameter z is a0.

Corollary 3.4 Let g = ∑
an(g)qn and h = ∑

an(h)qn be cusp forms for �1(N ), with
characters χg and χh, respectively, which are eigenforms for the p-th Hecke operator Tp
and let ωg and ωh be the associated one forms on X1(N ). Let ω̃g , ω̃h ∈ H1

fp(X1(N ), 1) be lifts
of ωg and ωh, respectively, as in (2.2), such that the associated Coleman functions vanish
at ∞. Let αg ,αh,βg ,βh be determined (up to switching the α’s by the β ’s) by the formulas

1 − ap(g)p−1t + p−1χg (p)t2 = (1 − αg t)(1 − βg t),

1 − ap(h)p−1t + p−1χh(p)t2 = (1 − αht)(1 − βht).

Let η ∈ H1
dR(X1(N )/K ) be an eigenvector forφ∗ with eigenvalueα and |α| = 1. Letβ = p/α.

Then we have

〈
η, i−1(ω̃g ∪ ω̃h)|W

〉 = (1 − β2αgαhβgβh)

× (
(1 − βαgαh)(1 − ββgαh)(1 − βαgβh)(1 − ββgβh)

)−1

×
〈
η, eord(θ−1g [p]ωh)

〉
,

where θ−1g [p] is defined in (3.7). The same conclusion holds when g or h are replaced by
Eisenstein series, provided that W is replaced by W ′ and the value at ∞ is taken in the
sense of the constant term with respect to the standard parameter q.

Proof By functoriality, we may compute i−1(ω̃g ∪ ω̃h)|W by first restricting ω̃g and ω̃h
to X , taking their cup products and applying i−1, and we may use the explicit formulas
developed in this section and in particular in Theorem 3.3, using the version “overQp” of
Definition 2.3 and the canonical Frobenius lift φ. Set

P(t) = (1 − αg t)(1 − βg t) = 1 − ap(g)p−1t + p−1χg (p)t2 .
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By Proposition 3.1, we have the relation P(φ∗)ωg = dθ−1g [p], fromwhichwe obtain a class
(ωg , θ−1g [p]) ∈ H̃1

f,P(X , 1)Qp ⊂ H̃1
fp(X , 1)Qp . Since θ−1g [p] vanishes at infinity, so does the

associated Coleman function Fg (it satisfies the relation P(φ∗)Fg = θ−1g [p] and φ fixes o).
Consequently, this is the restriction of ω̃g to X .
We let

ωg,α = (1 − βgφ
∗)ωg , ωg,β = (1 − αgφ

∗)ωg ,

ωh,α = (1 − βhφ
∗)ωh, ωh,β = (1 − αhφ

∗)ωh.
(3.11)

These may be lifted to classes

ω̃g,α = (ωg,α , θ−1g [p]) ∈ H̃1
f,1−αg t (X , 1)Qp ⊂ H̃1

fp(X , 1)Qp ,

ω̃g,β = (ωg,β , θ−1g [p]) ∈ H̃1
f,1−βg t (X , 1)Qp ⊂ H̃1

fp(X , 1)Qp ,

and similarly for h in place of g . As Coleman functions, they vanish at ∞ for the same
reason that Fg vanishes there. We clearly have ωg = (αg −βg )−1(αgωg,α −βgωg,β ) and the
vanishing at infinity immediately implies the same relation on Coleman functions, hence

(ω̃g )|X = (αg − βg )−1(αg ω̃g,α − βg ω̃g,β ). (3.12)

We have a similar decomposition with g replaced by h. It remains to compute the right-
hand side of (4.3) using the bilinearity of the cup product, Theorem 3.3 and the decom-
position (3.12) and its h-analog. There will be 4 summands (and a common multiple of
((αg − βg )(αh − βh))−1), and using the relation

eord(θ−1g [p]ωh,α) = eord(θ−1g [p]ωh) = eord(θ−1g [p]ωh,β )

coming from (3.11) and 1 of Proposition 3.2, they will all be constant multiples of
〈
η, eord(θ−1g [p]ωh)

〉
. For example, the first term would be

αgαh
〈
η, i−1(ω̃g,α ∪ ω̃h,α)

〉 = αgαh(1 − βαgαh)−1
〈
η, eord(θ−1g [p]ωh,α)

〉

= αgαh(1 − βαgαh)−1
〈
η, eord(θ−1g [p]ωh).

〉

One is then left with a slightly tedious computation of the sum of the constant multiples
giving

((αg − βg )(αh − βh))−1
(

αgαh
1 − βαgαh

− βgαh
1 − ββgαh

− αgβh
1 − βαgβh

+ βgβh
1 − ββgβh

)

= (1 − β2αgαhβgβh)
(
(1 − βαgαh)(1 − ββgαh)(1 − βαgβh)(1 − ββgβh)

)−1 .

Finally, the argument extends without any difficulty to the case of Eisenstein series. The
only point to note is φ∗ −p kills log(q), so that having constant term 0 for Fωg with respect
to q implies that P(φ∗)Fg vanishes at ∞ as before. �	
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4 Diagonal cycles
In this section, we study the diagonal, or Gross-Kudla-Schoen, cycle, introduced in [12]
and [13] and studied p-adically in [11]. It is a homologically trivial cycle on the triple
product X1(N )3. To define it, we first pick a base section o.

Definition 4.1 Define, for a non-empty subset I ⊂ {1, 2, 3}, the partial diagonal I :
X1(N ) → X1(N )3 by the formula

(I (x))i =
⎧
⎨

⎩

x i ∈ I

o otherwise.

Then, abusing the notation to writeI for the cycle (I )∗X1(N ), we define the cycle by

 = {1,2,3} − {1,2} − {1,3} − {2,3} + {1} + {2} + {3}
= −

∑

∅�=I⊂{1,2,3}
(−1)|I |I ∈ CH2(X1(N )3).

Since  is homologically trivial, one can apply the p-adic Abel-Jacobi map [6] to it and
obtain

AJp() ∈ H3
dR(X1(N )3/Qp)/F2 = Hom(F2H3

dR(X1(N )3/Qp),Qp). (4.1)

Let K be a sufficiently large finite extension ofQp. This should include the coefficients of
the forms in the theorem to follow. Our goal is to deduce the following result of Darmon
and Rotger, essentially [11, Theorem 3.14].

Theorem 4.2 Suppose o is the cusp at infinity. Let g = ∑
an(g)qn and h = ∑

an(h)qn

be cusp forms for �1(N ), with characters χg and χh, respectively, which are eigenforms for
the p-th Hecke operator Tp and let ωg and ωh be the associated one forms on X1(N ). Let
αg ,αh,βg ,βh be determined (up to switching the α’s by the β ’s) by the formulas

1 − ap(g)p−1t + p−1χg (p)t2 = (1 − αg t)(1 − βg t),

1 − ap(h)p−1t + p−1χh(p)t2 = (1 − αht)(1 − βht).

Let η ∈ H1
dR(X1(N )/K ) be an eigenvector forφ∗ with eigenvalueα and |α| = 1. Letβ = p/α.

Then we have

AJp()(η ∪ ωg ∪ ωh) = (1 − β2αgαhβgβh)

× (
(1 − βαgαh)(1 − ββgαh)(1 − βαgβh)(1 − ββgβh)

)−1

×
〈
η, eord(θ−1g [p]ωh)

〉
,

where θ−1g [p] is defined in (3.7).

Proof Let πi : X1(N )3 → X1(N ) denote the projection on the i-th component. For any
lifts ω̃g , ω̃h ∈ H1

fp(X1(N ), 1) of ωg and ωh, respectively, as in (2.2), and for η, viewed as an
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element of H1
fp(X1(N ), 0) as in (2.3), The class π∗

1 η ∪ π∗
2 ω̃g ∪ π∗

3 ω̃h is a lift of η ∪ ωg ∪ ωh
to H3

fp(X1(N )3, 2). By [6, Theorem 1.2], we have

AJp()(η ∪ ωg ∪ ωh) = −
∑

∅�=I⊂{1,2,3}
(−1)|I | tr∗

I (π
∗
1 η ∪ π∗

2 ω̃g ∪ π∗
3 ω̃h),

where tr : H3
fp(X1(N ), 2) → K is the trace in fp-cohomology, H3

fp(X1(N ), 2) i−1−−→
H2
dR(X1(N )/K ) tr−→ K (see Proposition 2.1).
Recall from Sect. 2 that fp-cohomology classes correspond to Coleman functions in

such a way that the value of these Coleman functions at a point is obtained by pullback.
Let Fg and Fh be the Coleman functions associated with ω̃g and ω̃h, respectively. Since
πi ◦ I is the identity if i ∈ I and the map o sending every x to o otherwise, we see that
AJp()(η ∪ ωg ∪ ωh) is the trace of

η ∪ ω̃g ∪ ω̃h

− η ∪ ω̃g ∪ o∗ω̃h − η ∪ o∗ω̃g ∪ ω̃h

− o∗η ∪ ω̃g ∪ ω̃h

+ η ∪ o∗(ω̃g ∪ ω̃h)

+ o∗η ∪ ω̃g ∪ o∗ω̃h + o∗η ∪ o∗ω̃g ∪ ω̃h.

In this expression, the third and fifth lines are 0 since o∗η ∈ H̃1
f,P(Spec(OK ), 0), which is 0

by (2.9), and the fourth line is 0 sinceOK has no second fp-cohomology. From this and (1)
of Proposition 2.1, it is now clear that

AJp()(η ∪ ωg ∪ ωh) = tr
(
η ∪dR i−1(ω̃g ∪ ω̃h)

±Fg (o)η ∪dR ωh ± Fh(o)η ∪dR ωg
)
. (4.2)

We will pick ω̃g and ω̃h in such a way that the associated Fg and Fh vanish at o. Thus we
get

AJp()(η ∪ ωg ∪ ωh) = η ∪dR i−1(ω̃g ∪ ω̃h).

By (2.13) we thus find

AJp()(η ∪ ωg ∪ ωh) = 〈
η, i−1(ω̃g ∪ ω̃h)|W

〉
(4.3)

and the result follows immediately from Corollary 3.4. �	

Remark 4.3 From (4.2) one can see that the choice of o is essential. Changing o to o′

changes the left-hand side of (4.1) by± ∫ o′
o ωgη ∪dR ωh ± ∫ o′

o ωhη ∪dR ωg and this does not
seem to be 0 in general. In [11], the assumption that o is the cusp is implicit in formula
(95), as it is easy to see that this only holds under this assumption.

Remark 4.4 To relate our result with that of [11], we note that our reciprocal roots are
related to the ones used there by

αg = p−1αDaRo
g , βg = p−1βDaRo

g , (4.4)
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and similarly for h, as the roots there are determined by the equation

x2 − ap(g)x + χ (p)p = (x − αDaRo
g )(x − βDaRo

g ).

In addition, we have αgαhβgβh = p−2χgχh(p) and the assumption of [11] is that χf χgχh =
1. Finally, our β is their βf = p/αf ∗ . The comparison with their constant E1(f )/E(f, g, h),
where the two expressions are given there in equations (6) and (8), should now be easy.

5 A formula for the syntomic regulator on K2 of curves
In this section, we establish a certain formula for the syntomic regulator for K2 of curves.
Some of the arguments are similar to those in [8], but things need to be redone since
the regulator there is written in terms of Coleman integration and not in terms of cup
products in syntomic cohomology as required here.
Let X be a smooth OK -scheme with generic fiber X and special fiber Y . We recall

from [7,8] that there exists a syntomic regulator regp : K2(X ) → H2
syn(X , 2). We fur-

thermore recall that there exists a (Gros style) modified syntomic cohomology theory
H̃∗
ms(X , ∗) with functorial maps H∗

syn(X , ∗) → H̃∗
ms(X , ∗), compatible with cup products.

Composing with this we get regulators into modified syntomic cohomology. It further
induces an isomorphism H2

syn(X , 2) ∼= H̃2
ms(X , 2). Thus, for our purposes, we may use

these two cohomology theories interchangeably. Modified Gros style syntomic cohomol-
ogy is related to modified fp-cohomology in the following simple form

H̃ i
ms(X , n) = H̃ i

f,Pn (X , n),

where Pn is the polynomial Pn(t) = 1− t/qn (recall that, as in the setup, q is the cardinality
of the residue field and not the coordinate at infinity, as in the modular forms sections).
In particular, elements may be represented as in (2.6). The cup products in modified
syntomic cohomology are the same as for fp-cohomology, noting that Pn ∗ Pm = Pn+m.
They are compatible with products in K-theory.
Suppose now that X is proper and of relative dimension 1 over OK and let η ∈

H1
dR(X/K ). We will define two regulators associated with η, ultimately showing that they

coincide on their common domain.

Definition 5.1 The regulator

reg′
η : K2(K (X))tY =0 → K,

is defined on the kernel of the tame symbol map along the special fiber Y as follows.
The localization sequence in K-theory implies that for each element α in the kernel we
may find some open subscheme Z ⊂ X , surjecting on OK , and a (non-unique) element
β ∈ K2(Z) mapping to α. Let U be the overconvergent space associated with Z . By [8,
Corollary 3.6], the element

regp(β) ∈ H2
syn(Z , 2) ∼= H1

dR(U )

depends only on α and we apply the pairing (2.11) with η to obtain reg′
η(α). The result is

independent of the choice of Z by (2.14).
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We next define the η regulator

regη : K2(K (X)) → K.

We first define it on of a pair of functions as follows:

Definition 5.2 Let X and η be as above and suppose f1, f2 ∈ K (X)×. We define

regη(f1, f2) = 〈
η, (d log f1, γ1) ∪ (d log f2, γ2)

〉
U .

Here the cup product is done in H̃∗
ms(Z , ∗), where Z is an open subscheme, surjecting on

OK as before, such that both f1 and f2 are invertible on the generic fiber Z and the class
(d log fi, γi) ∈ H̃1

ms(Z , 1) in the representation (2.6) can be any classwhose first component
is d log fi (notice that, implicitly, we are also making a choice of a lift of Frobenius φ). The
pairing is again with respect to the overconvergent space U corresponding to Z .

Lemma 5.3 The η-regulator gives a well-defined map regη :
∧2 K (X)× → K.

Proof The map is clearly bilinear if well defined, and antisymmetric as the cup product in
syntomic cohomology is. The choice of Z does not change anything, by (2.14). Thus, we
are free to choose it at our convenience. To show that the regulator is well defined, we
need to prove that for any f there exists a Z such that d log f can be completed to a class
(d log f, γ ) ∈ H̃1

ms(Z , 1). Suppose first that the divisor of f does not contain the special
fiber. In this case, for an appropriately chosen Z we will have f ∈ O(Z)× and the pair
(d log f, log(f0)), where f0 = f q/φ∗f , is indeed in H̃1

ms(Z , 1) [7]. A general f can be written
in the form πnf̃ , for some integer n, where f̃ is as above, and since d log f = d log f̃ the
existence of γ is now clear. To complete the proof, we have to show that the expression
for regη(f1, f2) is independent of the choices of γ1 and γ2. This is because, by (2.5), for a
constant c, we have (0, c) ∪ d log f, γ ) = cd log f and

〈
η, d log f

〉 = 0 by [8, Lemma 4.9].
Note, finally, that since the choices of γ1 and γ2 do not matter, the expression is also
independent of the choice of the lift of Frobenius φ. �	

As a side effect of the above proof, we obtain the fact that

regη(c, f ) = 0 for a constant function c. (5.1)

Proposition 5.4 The maps regη induces a well-defined map regη : K2(K (X)) → K.

Proof We need to prove that regη(f, 1 − f ) = 0 for any rational function f . This is true if
the divisors of both f and 1 − f do not contain the special fiber. Indeed, taking an open
Z on which both f and 1− f are invertible, the expression (d log f1, γ1)∪ (d log f2, γ2), for
appropriate γi, is nothing but the syntomic regulator of the element (f )∪ (1− f ) ∈ K2(Z).
This element maps to 0 in K2(K (X)); hence, the above regulator is 0 by [8, Corollary 3.6].
The η-regulator is then 0 as well.
It remains to check the case f = π±ng , with n positive and where the divisor of g does

not contain the special fiber (when the divisor of f contains Y we switch the roles of f and
1 − f ). Consider first regη(πng, 1 − πng). We will need the following.
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Lemma 5.5 Suppose X is P1 localized at 0,π−n and ∞ with standard coordinate t and
consider the element α = (t) ∪ (1 − πnt) ∈ K2(X ). Then, regp(α) = 0 ∈ H̃2

ms(X , 2).

Proof Wehave H̃2
ms(X , 2) = H1

rig(P1−{0,∞}). AsHrig(P1) = 0 it suffices to show that the
residues of regp(α) at 0 and ∞ are 0. These residues are in turn the logs of the products
of the tame symbols inside the corresponding residue disks [1]. The tame symbols are 1
at 0,πn at ∞ and π−n at π−n. The result is thus clear. �	

Going back to the proof of the Proposition, it follows immediately from the lemma by
pullback that regη(g, 1 − πng) = 0. Bilinearity and (5.1) finish the proof of this first case.
Similarly, we have, using (5.1),

regη(π
−ng, 1 − π−ng) = regη(g, 1 − π−ng) = regη(g,π

n − g)

= regη(g, g) + regη(g,π
ng−1 − 1) = regη(g,π

ng−1 − 1)

where we have used the antisymmetry of the regulator

= regη(g, 1 − πng−1)

= − regη(g
−1, 1 − πng−1)

= − regη(π
ng−1, 1 − πng−1) = 0

by the previous case. �	

Proposition 5.6 The two η-regulators coincide on K2(K (X))tY =0.

Proof This follows because by the proof of Theorem 3 in [8] an element of K2(K (X))tY =0

may be written as a sum of symbols {f, g}, where f, g ∈ O(Z)×. For some Z and for these,
the equality of the two regulators follows essentially by definition. �	

Corollary 5.7 The diagram

K2(X ) ⊗ Q
∼ ��

regp
��

K2(X) ⊗ Q

��
H1
dR(X/K )

η∪•
��

K2(K (X)) ⊗ Q

regη

����������������

K

commutes

Proof Indeed, elements of K2(X ) map to the kernel of tY in K2(K (X)) and, essentially by
definition, the composed down arrow is just reg′

η. �	

6 Other formulas
In this section, we establish the formulas in [2] and [4]. The proofs are now given by
roughly the same computations as before, slightly simplified.
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We begin with [2]. They consider modular units u1 and u2 related to certain weight 2
Eisenstein series,

d log u1 = E2,χ (q)
dq
q

:= ω1, d log u2 = E2(χ1,χ2)(q)
dq
q

:= ω2, (6.1)

with χ−1 = χ1χ2. Note that the forms associated with the Eisenstein series have loga-
rithmic poles at the cusps. The Steinberg symbol {u1, u2}, apriorilly in K2 of the function
field of X1(N ), in fact extends to K2(X1(N )). We will let K be a sufficiently large extension
of Qp so that the symbols are defined over K . The following theorem appears as formula
(60) in [2].

Theorem 6.1 Let η,β andα be as in Theorem3.3. For any lift ũ ∈ K2(X1(N )) of the symbol
{u1, u2} the image of ũ under

K2(X1(N )) ⊗ Q ∼= K2(X1(N )) ⊗ Q
regp−−→ H1

dR(X1(N )/K ) η∪•−−→ K

equals

(1 − β2p−2)

× (1 − βp−1χ1(p)χ (p))(1 − βχ2(p)χ (p))(1 − βp−2χ1(p))(1 − βχ2(p)p−1)

×
〈
η, eord(θ−1E[p]

2,χω2)
〉
.

Proof By Corollary 5.7 this boils down to the computation of regη({u1, u2}). By Defini-
tion 5.2 we need to lift ω1 and ω2 to classes in fp-cohomology, in any way we choose,
compute their cup product and cup with η. Note that E2,χ is an eigenvector for Tp with
eigenvalue 1 + χ (p)p so that we get the equation

(1 − χ (p)φ∗)(1 − p−1φ∗)ω1 = dθ−1E[p]
2,χ ,

so the roots of the characteristic equation are χ (p) and p−1. Similarly, for E2(χ1,χ2) the
roots are χ2(p)) and χ1(p)p−1. The result therefore follows from the Eisenstein series case
of Corollary 3.4. �	

Remark 6.2 For the comparison with the results of [2] we note that they assume that
χf = 1 and that χχ1χ2 = 1. The relevant constants appear in Proposition 3.2 and the
formula immediately following it with k = � = 2. However, we get the formula with their
E(f ) rather than E∗(f )!!

Next, consider [4]. This paper concerns the syntomic regulator

regsyn : CH2(S, 1) → H2
dR(S/K )/F2 ∼= Hom(F1H2

dR(S/K ), K ),

where S is the self-product of X1(N ) and the field of coefficients extended to some p-adic
field K . Recall that an element of CH2(S, 1) for the surface S consists of a formal sum
∑

(Ci, fi) where the Ci are curves on S and fi is a rational functions on Ci such that the
sum of the divisors of the fi vanishes on S. This regulator was treated in detail in [9]. The
paper [4] does not use the final formulas of [9] but one can derive the required results
from the proofs there.
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The case considered in [4] is the following: the surface is S = X1(N ) × X1(N ), with
projections πi, i = 1, 2, onX1(N ), and the element is� = (, u)+∑

(Ci, fi). Here, is the
diagonal and u is defined in [4, Definition 2.4] to be themodular unit with d log(u) = E2,χ ,
normalized so that its value at the cusp ∞ is 1 in the sense of Brunault [10, Section 5].
This means that the coefficient of lowest power of q in its q-expansion is 1 (note that
unlike the K2 case, the precise normalization of the unit is important). Finally, the Ci are
either horizontal or vertical curves with functions fi arranged in such a way as to make �

an element of CH2(S, 1). We will not need to know these terms, called negligible in [4],
precisely, as their contribution to the regulator will vanish. We will prove the following
result of [4], which is equation (4.2) there.

Theorem 6.3 Let η,α,β , g,αg and βg be as in Corollary 3.4. Then regsyn(�), viewed as an
element of Hom(F1H2

dR(S/K ), K ), evaluates on π∗
1 (ωg ) ∪ π∗

2 (η) to give

(1 − β2αgβgχ (p)p−1)

× (
(1 − βαgχ (p))(1 − ββgχ (p))(1 − βαgp−1)(1 − ββgp−1)

)−1

×
〈
η, eord(θ−1E[p]

2,χωg )
〉
.

Proof According to [9, Theorem 1.1], in order to compute the regulator one first picks up
Coleman integrals Fωg and Fη, which yield via pullbacks, integralsπ∗

1 Fωg andπ∗
2 Fη toπ∗

1ωg
and π∗

2 η, respectively. As the integrality assumption 1 of the theorem is satisfied, as noted
in [4, p. 371], the regulator is a sum of terms corresponding to the summands in �. We
consider the term corresponding to (, u) separately. The other terms are computed using
“global triple indices”:

〈
Fη|Ci , log(fi); Fω|Ci

〉
gl,Xi

. We do not need to get into the definitions
here other than to point out that because the curves Ci are either vertical or horizontal in
all the terms either the first or last coordinate will be constant, and they therefore vanish
using [3, Lemma 8.3 and Proposition 8.4]. �	
It remains to compute the term corresponding to (, u). The formula we are after is

hidden in the proof of [9, Theorem 1.1]. We make it explicit as follows:

Lemma 6.4 Let S/K be a surface and let � = ∑
(Zi, fi) ∈ CH2(S, 1). Let gi : Xi → S be

the normalizations of the Zi. Let ω ∈ F1H1
dR(S/K ) and [η] ∈ H1

dR(S/K ) represented by the
form of the second kind η. Pick a Coleman integral Fω to ω. Then, under the integrality
assumption, regsyn(�) evaluated on ω ∪ [η] is a sum of terms. The term corresponding to
(Zi, fi) can be computed as follows: Let ω̃ be the class in H1

fp,{2}(X , 1) corresponding to g∗
i Fω

and abuse notation to let η be g∗
i η. Then, the relevant term is

〈
η, reg(f ) ∪ ω̃

〉
,

where reg(f )∪ω̃ is computed in fp-cohomology of some open subscheme ofXi , then identified
with the first de Rham cohomology of some wide open in Xi.

Proof This expression is derived along the proof of Theorem 1.1 in [9]. The relevant
computation is done on page 62, with the key formula being the last displayed formula on
that page. The expression obtained there is then reformulated in equation (6.5) there, and
the proof is complete by noting that

〈
Fη , Fω

〉
gl = 〈η,ω〉, for the pairing defined in (2.11).

This last fact is proved in [8, Proposition 4.10]. �	
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Going back to the proof of the theorem, sinceπi◦ = Id, the above Lemma immediately
gives the following expression for the remaining term:

〈
η, reg(u) ∪ ω̃g

〉
.

Using Corollary 3.4 finishes the proof. One only needs to note, since we are dealing with
an Eisenstein series, that the Brunault normalization implies that log(u) has constant term
0 at ∞ with respect to the parameter q.

Remark 6.5 For the comparison with [4], the relevant constants are given in Proposi-
tion 2.7 there, with k = m = 2 and t = −1. For the comparison note that they assume
χ = χ−1

f χ−1
g (following (2.2) there) and that αgβg = p−1χg (p). Also recall (4.4) and the

relation β = βf as before.
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