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Abstract

It is well known that time-dependent Hamilton–Jacobi–Isaacs partial differential
equations (HJ PDEs) play an important role in analyzing continuous dynamic games
and control theory problems. An important tool for such problems when they involve
geometric motion is the level set method (Osher and Sethian in J Comput Phys
79(1):12–49, 1988). This was first used for reachability problems in Mitchell et al. (IEEE
Trans Autom Control 50(171):947–957, 2005) and Mitchell and Tomlin (J Sci Comput
19(1–3):323–346, 2003). The cost of these algorithms and, in fact, all PDE numerical
approximations is exponential in the space dimension and time. In Darbon (SIAM J
Imaging Sci 8(4):2268–2293, 2015), some connections between HJ PDE and convex
optimization in many dimensions are presented. In this work, we propose and test
methods for solving a large class of the HJ PDE relevant to optimal control problems
without the use of grids or numerical approximations. Rather we use the classical Hopf
formulas for solving initial value problems for HJ PDE (Hopf in J Math Mech 14:951–973,
1965). We have noticed that if the Hamiltonian is convex and positively homogeneous
of degree one (which the latter is for all geometrically based level set motion and
control and differential game problems) that very fast methods exist to solve the
resulting optimization problem. This is very much related to fast methods for solving
problems in compressive sensing, based on �1 optimization (Goldstein and Osher in
SIAM J Imaging Sci 2(2):323–343, 2009; Yin et al. in SIAM J Imaging Sci 1(1):143–168,
2008). We seem to obtain methods which are polynomial in the dimension. Our
algorithm is very fast, requires very low memory and is totally parallelizable. We can
evaluate the solution and its gradient in very high dimensions at 10−4–10−8 s per
evaluation on a laptop. We carefully explain how to compute numerically the optimal
control from the numerical solution of the associated initial valued HJ PDE for a class of
optimal control problems. We show that our algorithms compute all the quantities we
need to obtain easily the controller. In addition, as a step often needed in this
procedure, we have developed a new and equally fast way to find, in very high
dimensions, the closest point y lying in the union of a finite number of compact convex
sets � to any point x exterior to the �. We can also compute the distance to these sets
much faster than Dijkstra type “fast methods,” e.g., Dijkstra (Numer Math 1:269–271,
1959). The term “curse of dimensionality” was coined by Bellman (Adaptive control
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processes, a guided tour. Princeton University Press, Princeton, 1961; Dynamic
programming. Princeton University Press, Princeton, 1957), when considering problems
in dynamic optimization.

1 Introduction to Hopf formulas, HJ PDEs and level set evolutions
We briefly introduce Hamilton–Jacobi equations with initial data and the Hopf formulas
to represent the solution. We give some examples to show the potential of our approach,
including examples to perform level set evolutions.
Given a continuous function H : Rn → R bounded from below by an affine function,

we consider the HJ PDE
∂ϕ

∂t
(x, t) + H (∇xϕ(x, t)) = 0 in R

n × (0,+∞), (1)

where ∂ϕ
∂t and ∇xϕ respectively denote the partial derivative with respect to t and the

gradient vector with respect to x of the function ϕ. We are also given some initial data

ϕ(x, 0) = J (x) ∀ x ∈ R
n, (2)

where J : Rn → R is convex. For the sake of simplicity, we only consider functions ϕ

and J that are finite everywhere. Results presented in this paper can be generalized for
H : Rn → R ∪ {+∞} and J : Rn → R ∪ {+∞} under suitable assumptions. We also
extend our results to an interesting class of nonconvex initial data in Sect. 2.2.
We wish to compute the viscosity solution [11,12] for a given x ∈ R

n and t > 0.
Using numerical approximations is essentially impossible for n ≥ 4. The complexity of

a finite difference equation is exponential in n because the number of grid points is also
exponential in n. This has been found to be impossible, even with the use of sophisticated,
e.g., ENO,WENO, DG, methods [31,42,52]. High-order accuracy is no cure for this curse
of dimensionality [3,4].
We propose and test a new approach, borrowing ideas from convex optimization, which

arise in the �1 regularization convex optimization [25,51] used in compressive sensing
[6,17]. It has been shown experimentally that these �1-based methods converge quickly
whenwe use Bregman and split Bregman iterativemethods. These are essentially the same
as Augmented Lagrangianmethods [26] and Alternating DirectionMethod ofMultipliers
methods [24]. These and related first-order and splitting techniques have enjoyed a renais-
sance since they were recently used very successfully for these �1 and related problems
[25,51]. One explanation for their rapid convergence is the “error forgetting” property
discovered and analyzed in [43] for �1 regularization.
We will solve the initial value problem (1)–(2) without discretization, using the Hopf

formula [30]

ϕ(x, t) = (
J∗ + tH

)∗ (x) (3)

= −min
v∈Rn

{
J∗(v) + tH (v) − 〈x, v〉} (4)

where the Fenchel–Legendre transform f ∗ : Rn → R ∪ {+∞} of a convex, proper, lower
semicontinuous function f : Rn → R ∪ {+∞} is defined by [19,29,44]

J∗(v) = sup
x∈Rn

{〈v, x〉 − J (x)
}
, (5)

where 〈·, ·〉 denotes the �2(Rn) inner product. We also define for any v ∈ R
n, ‖v‖p =

(∑n
i=1 |vi|p

) 1
p for 1 ≤ p < +∞ and ‖v‖∞ = maxi=1,...,n |vi|. Note that since J : Rn → R is
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convex we have that J∗ is 1-coercive [29, Prop. 1.3.9, p. 46], i.e., lim‖x‖→+∞ J∗(x)
‖x‖2 = +∞.

When the gradient ∇xϕ(x, t) exists, then it is precisely the unique minimizer of (4); in
addition, the gradient will also provide the optimal control considered in this paper (see
Sect. 2) For instance, this holds for any x ∈ R

n and t > 0 when H : Rn → R is convex,
J : Rn → R is strictly convex, differentiable and 1-coercive. The Hopf formula only
requires the convexity of J and the continuity ofH , but we will often require thatH in (1)
is also convex.
We note that the case H = ‖ · ‖1 corresponds to H (∇xϕ(x, t)) = ∑n

i=1

∣∣∣ ∂
∂xi ϕ(x, t)

∣∣∣,
used, e.g., to compute the Manhattan distance to the zero level set of x �→ J (x), [15]. This
optimization is closely related to the �1 type minimization [6,17],

min
v∈Rn

{
‖v‖1 + λ

2
‖Av − b‖22

}
,

where A is an m × n matrix with real entries, m < n, and λ > 0 arising in compressive
sensing. Let � ⊂ R

n be a closed convex set. We denote by int � the interior of �. If
J (x) < 0 for x ∈ int �, J (x) > 0 for x ∈ (Rn\�) and J (x) = 0 for x ∈ (�\int �), then the
solution ϕ of (1)–(2) has the property that for any t > 0 the set {x ∈ R

n | ϕ(x, t) = 0}
is precisely the set of points in R

n\� for which the Manhattan distance to � is equal to
t > 0. This is an example of the use of the level set method [41].
Similarly, if we takeH = ‖·‖2 then for any t > 0 the resulting zero level set of x �→ ϕ(x, t)

will be the points in R
n\� whose Euclidean distance to � is equal to t. This fact will be

useful later when we find the projection from a point x ∈ R
n to a compact, convex set �.

We present here two somewhat simple but illustrative examples to show the potential
power of our approach. Time results are presented in Sect. 4 and show that we can
compute solution of some HJ PDEs in fairly high dimensions at a rate below a millisecond
per evaluation on a standard laptop.

Let H = ‖ · ‖1 and J (x) = 1
2

(
∑n

i=1
x2i
a2i

− 1
)
with ai > 0 for i = 1, . . . , n. Then, for a

given t > 0, the set {x ∈ R
n | ϕ(x, t) = 0} will be precisely the set of points at Manhattan

distance t outside of the ellipsoid determined by {x ∈ R
n | J (x) ≤ 0}. Following [29,

Prop. 1.3.1, p. 42] it is easy to see that J∗(x) = 1
2

∑n
i=1 a2i xi + 1

2 . So:

ϕ(x, t) = −1
2

− min
v∈Rn

{
1
2

n∑

i=1
a2i v

2
i + t

n∑

i=1
|vi| − 〈x, v〉

}

= −1
2

− min
v∈Rn

⎧
⎨

⎩
1
2

n∑

i=1
a2i

(

vi − xi
a2i

)2

+ t
n∑

i=1
|vi|

⎫
⎬

⎭
+ 1

2

n∑

i=1

x2i
a2i

.

We note that the function to be minimized decouples into scalar minimizations of the
form

min
y∈Rn

(
1
2
‖y − x‖22 + α‖y‖1

)
, α > 0.

The unique minimizer is the classical soft thresholding operator [14,22,33] defined for
any component i = 1, . . . , n by
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(shrink1(x,α))i =

⎧
⎪⎨

⎪⎩

xi − α if xi > α,
0 if |xi| ≤ α,
xi + α if xi < −α.

(6)

Therefore, for any x ∈ R
n, any t > 0 and any i = 1, . . . , n we have

∂ϕ

∂xi
(x, t) = 1

(ai)2
(shrink1(x, t))i ,

and

ϕ(x, t) = −1
2

+
∑

i∈{0,...,n}\B(t)

1
2

( |xi| − t
ai

)2
.

Here B(t) ⊆ {0, . . . , n} consists of indices for which |xi| ≤ t, and thus {0, . . . , n}\B(t)
corresponds to indices for which |xi| > t, and the zero level set moves outwards in this
elegant fashion.
We note that in the above case we were able to compute the solution analytically and

the dimension n played no significant role. Of course this is rather a special problem, but
this gives us some idea of what to expect in more complicated cases, discussed in Sect. 3.
Wewill oftenneed another shrinkoperator, i.e., whenwe solve theoptimizationproblem

with α > 0 and x ∈ R
n

min
v∈Rn

{
1
2
‖v − x‖22 + α‖v‖2

}
.

Its unique minimizer is given by

shrink2(x,α) =
⎧
⎨

⎩

x
‖x‖2 max(‖x‖2 − α, 0) if x �= 0,

0 if x = 0.
(7)

and thus its optimal value corresponds to the Huber function (see [50] for instance)

min
v∈Rn

{
1
2
‖v − x‖22 + α‖v‖2

}
=

⎧
⎨

⎩

1
2‖x‖2 if ‖x‖2 ≤ α,

α‖x‖2 − α2

2 if ‖x‖2 > α.

To move the unit sphere outwards with normal velocity 1, we use the following formula

ϕ(x, t) = −min
v∈Rn

(
‖v‖22
2

− t‖v‖2 − 〈x, v〉
)

− 1
2

= −min
v∈Rn

{
1
2
‖v − x‖22 + t‖v‖2

}
+ 1

2
(‖x‖22 − 1

)

=
⎧
⎨

⎩

1
2 (‖x‖2 − t)2 − 1

2 if ‖x‖2 > t

− 1
2 if ‖x‖2 ≤ t,

(8)

and, unsurprisingly, the zero level set of x �→ ϕ(x, t) is the set x satisfying ‖x‖2 = t + 1,
for t > 0.
These two examples will be generalized below so that we can, with extreme speed,

compute the signed distance, either Euclidean, Manhattan or various generalizations, to
the boundary of the union of a finite collection of compact convex sets.
The remainder of this paper is organized as follows: Sect. 2 contains an introduction to

optimal control and its connection to HJ PDE. Section 3 gives the details of our numerical
methods. Section 4 presents numerical results with some details. We draw some conclud-
ing remarks and give future plans in Sect. 5. The “Appendix” links our approach to the
concepts of gauge and support functions in convex analysis.
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2 Introduction to optimal control
First, we give a short introduction to optimal control and its connection to HJ PDE which
is given in (11). We also introduce positively homogeneous of degree one Hamiltonians
and describe their relationship to optimal control problems. We explain how to recover
the optimal control from the solution of the HJ PDE. An “Appendix” describes further
connectionsbetween theseHamiltonians andgauge in convex analysis. Second,wepresent
some extensions of our work.

2.1 Optimal control and HJ PDE

We are largely following the discussion in [16], see also [20], about optimal control and
its link with HJ PDE. We briefly present it formally, and we specialize it to the cases
considered in this paper.
Suppose we are given a fixed terminal time T ∈ R, an initial time t < T along with

an initial x ∈ R
n. We consider the Lipschitz solution x : [t, T ] → R

n of the following
ordinary differential equation

⎧
⎨

⎩

dx
ds (s) = f (β(s)) in (t, T ),

x(t) = x,
(9)

where f : C → R
n is a given bounded Lipschitz function and C some given compact set

ofRn. The solution of (9) is affected by the measurable function β : (−∞, T ] → C which
is called a control. We note A = {β : (−∞, T ] → C | β is measurable}. We consider the
functional for given initial time t < T , x ∈ R

n and control β

K (x, t;β) =
∫ T

t
L(β(s))ds + J (x(T )),

where x is the solution of (9).We assume that the terminal cost J : Rn → R is convex.We
also assume that the running cost L : Rn → R ∪ {+∞} is proper, lower semicontinuous,
convex, 1-coercive and dom L ⊆ C , where dom L denotes the domain of L defined by
dom L = {x ∈ R

n | L(x) < +∞}. The minimization of K among all possible controls
defines the value function v : Rn × (−∞, T ] → R given for any x ∈ R

n and any t < T by

v(x, t) = inf
β∈AK (x, t;β). (10)

The value function (10) satisfies the dynamic programming principle for any x ∈ R
n, any

t ≥ T and any τ ∈ (t, T )

v(x, t) = inf
β∈A

{∫ τ

t
L(β(s)) ds + v (x (τ ) , τ )

}
.

The value function v also satisfies the following Hamilton–Jacobi–Bellman equation with
terminal value

{
∂v
∂t (x, t) + minc∈C{〈∇xv(x, t), c〉 + L(c)} = 0 in R

n × (−∞, T ),
v(x, T ) = J (x) ∀x ∈ R

n.

Note that the control β(t) at time t ∈ (−∞, T ) in (9) satisfies 〈∇xv(x, t),β(t)〉 + L(β(t)) =
minc∈C{∇xv(x, t), c〉 + L(c)} whenever v(·, t) is differentiable.
Consider the function ϕ : Rn × [0,+∞) → R defined by ϕ (x, t) = v(x, T − t). We have

that ϕ is the viscosity solution of
{

∂ϕ
∂t (x, t) + H (∇xϕ(x, t)) = 0 in R

n × (0,+∞),
ϕ(x, 0) = J (x) ∀x ∈ R

n.
(11)
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where the Hamiltonian H : Rn → R ∪ {+∞} is defined by

H (p) = max
c∈C

{〈−f (c), p〉 − L(c)
}
. (12)

We note that the above HJ PDE is the same as the one we consider throughout this
paper. In this paper, we use the Hopf formula (3) to solve (11). We wish the Hamiltonian
H : Rn → R to be not only convex but also positively 1-homogeneous, i.e., for any p ∈ R

n

and any α > 0

H (α p) = αH (p).

We proceed as follows. Let us first introduce the characteristic function I� : Rn →
R ∪ {+∞} of the set � which is defined by

I�(x) =
⎧
⎨

⎩
0 if x ∈ �,

+∞ otherwise.
(13)

We recall that C is a compact convex set of Rn. We take f (c) = −c for any c ∈ C in (9)
and

L = IC .
Then, (12) gives the Hamiltonian H : Rn → R defined by

H (p) = max
c ∈C

〈c, p〉. (14)

Note that the right-hand side of (14) is called the support function of the closed non-
empty convex set C in convex analysis (see, e.g., [28, Def. 2.1.1, p. 208]). We check that
H defined by (14) satisfies our requirement. Since C is bounded, we can invoke [28,
Prop. 2.1.3, p. 208] which yields that the Hamiltonian is indeed finite everywhere. Com-
bining [28, Def. 1.1.1, p. 197] and [28, Prop. 2.1.2, p. 208], we obtain that H is positively
1-homogeneous and convex. Of course, the Hamiltonian can also be expressed in terms
of Fenchel–Legendre transform; we have for any p ∈ R

n

H (p) = max
c ∈C

〈c, p〉 = (IC )∗ (p),
where we recall that the Fenchel–Legendre is defined by (5). The nonnegativity of the
Hamiltonian is related to the fact that C contains the origin, i.e., 0 ∈ C , and gauges. This
connection is described in the “Appendix.”
Note that the controller β(t) for t ∈ (−∞, T ) in (9) is recovered for the solution ϕ of

(11) since we have

max
c∈C 〈c,∇ϕ(x, T − t)〉 = 〈β(t),∇xϕ(x, T − t)〉

whenever ϕ(·, t) is differentiable. For any p ∈ R
n such that ∇H (p) exists we also have

H (p) = 〈p,∇H (p)〉. Thus, we obtain that the control is given by β(t) = ∇H (∇xϕ(x, T−t)).
We present in Sect. 3 our efficient algorithm that computes not only ϕ(x, t) but also

∇xϕ(x, t). We emphasize that we do not need to use some numerical approximations to
compute the spatial gradient. In other words, our algorithm computes all the quantities
we need to get the optimal control without using any approximations.
It is sometimes convenient to use polar coordinates. Let us denote the (n−1)-sphere by

Sn−1 = {x ∈ R
n | ‖x‖2 = 1}. The set C can be described in terms of the Wulff shape [40]

by the functionW : Sn−1 → R. We set

C = {
(R θ ) ∈ R

n | R ≥ 0, θ ∈ Sn−1, R ≤ W (θ )
}
. (15)
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The Hamiltonian H is then naturally defined via γ : Sn−1 → R for any R > 0 and any
θ ∈ Sn−1 by

H (Rθ ) = Rγ (θ ) , (16)

and where γ is defined by

γ (θ ) = sup
{〈W (θ ′) θ ′, θ〉 | θ ′ ∈ Sn−1} . (17)

The main examples are H = ‖ · ‖p for p ∈ [1,+∞) and H = ‖ · ‖∞. Others include the
following two: H = √〈·, A·〉 = ‖ · ‖A with A a symmetric positive definite matrix, and H
defined as follows for any p ∈ R

n

H (p) =
⎧
⎨

⎩

〈p,Ap〉
‖p‖2 for p �= 0

0 otherwise.

In future work, we will also consider Hamiltonians defined as the supremum of linear
forms such as those that arise in linear programming.
We will devise very fast, low memory, totally parallelizable and apparently low time

complexity methods for solving (11) with H given by (14) in the next section.

2.2 Some extensions and future work

In this section we show that we can solve the problem for a much more general class of
Hamiltonians and initial data which arise in optimal control, including an interesting class
of nonconvex initial data.
Let us first consider Hamiltonians that correspond to linear controls. Instead of (9), we

consider the following ordinary differential equation

dx
ds

(s) = M x(s) + N (s)β(s),

where M is a n × n matrices with real entries and N (s) for any s ∈ (−∞, T ] is a n × m
matrices with real entries. We can make a change of variables

z(s) = e−sMx(s),

and we have
dz
ds

(s) = e−sMN (s)β(s).

The resulting Hamiltonian now depends on t and (12) becomes:

H (p, t) = − inf
c ∈C

(〈e−tMN (t)c, p〉 + L(c)
)
.

If C is a closed convex set, and L = IC we have

H (p, t) = −min
c ∈C

〈e−tMN (t)c, p〉,
which leads to a positively 1-homogeneous convex Hamiltonians as a function of p for
any fixed t ≥ 0. If we have convex initial data there is a simple generalization of the Hopf
formulas [34] [32, Section 5.3.2, p. 215]

ϕ(z, t) = − min
u∈Rn

(
J∗(u) +

∫ t

0
H (u, s)ds − 〈z, u〉

)
.

We intend to program and test this in our next paper.
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Wenowreview somewell-known results about the types of convex initial valueproblems
that yield to max/min-plus algebra for optimal control problems (see, e.g., [1,23,35] for
instance). Suppose we have k different initial value problems i = 1, . . . , k

{
∂φi
∂t (x, t) + H (∇xφi(x, t)) = 0 in R

n × (0,+∞),
φi(x, 0) = Ji(x) ∀x ∈ R

n.

where all initial data Ji : Rn → R are convex, the Hamiltonian H : Rn → R is convex and
1-coercive. Then, we may use the Hopf–Lax formula to get, for any x ∈ R

n and any t > 0

φi(x, t) = min
z∈Rn

{
Ji(z) + tH∗

(
x − z
t

)}
,

so

min
i=1,...,k

φi(x, t) = min
z∈Rn

{
min

i=1,...,k

{
Ji(z) + tH∗

(
x − z
t

)}}
.

So we can solve the initial value problem
{

∂φ
∂t (x, t) + H (∇xφ(x, t)) = 0 in R

n × (0,+∞),
ϕi(x, 0) = mini=1,...,k Ji(x) ∀x ∈ R

n.

by simply taking the pointwise minimum over the k solutions φi(x, t), each of which has
convex initial data. See Sect. 4 for numerical results. As an important example, suppose

H = ‖ · ‖2,
and each Ji is a level set function for a convex compact set �i with nonempty interior
and where the interiors of each �i may overlap with each other. We have Ji(x) < 0 inside
�i, Ji(x) > 0 outside �i, and Ji(x) = 0 at the boundary of �i. Then mini=1,...,n Ji is also a
level set function for the union of the �i. Thus, we can solve complicated level set motion
involving merging fronts and compute a closest point and the associated proximal points
to nonconvex sets of this type. See Sect. 3.
For completeness we add the following fact about the minimum of Hamiltonians. Let

Hi : Rn → R, with i = 1, . . . , k , be k continuous Hamiltonians bounded from below by a
common affine function. We consider for i = 1, . . . , k

{
∂φi
∂t (x, t) + Hi(∇xφ(x, t)) = 0 in R

n × (0,+∞),
ϕ(x, 0) = J (x) ∀x ∈ R

n,

where J : Rn → R is convex. Then,

min
i=1,...,k

(−φi(x, t)) = min
i=1,...,k

{
min
u∈Rn

{
J∗(u) + tHi(u) − 〈u, x〉}

}
,

= min
u∈Rn

{
J∗(u) + t min

i=1,...,k

{
Hi(u) − 〈u, x〉}

}
,

that is

max
i=1,...,k

φi(x, t) = − min
u∈Rn

{
J∗(u) + t min

i=1,...,k

{
Hi(u) − 〈u, x〉}

}
. (18)

So we find the solution to
⎧
⎨

⎩

∂φ
∂t (x, t) + min

i=1,...,k
Hi(∇xφ(x, t)) = 0 in R

n × (0,+∞),

ϕ(x, 0) = J (x) ∀ x ∈ R
n.

by solving k different initial value problems and taking the pointwisemaximum. See Sect. 4
for numerical results.
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We end this section by showing that explicit formulas can be obtained for the termi-
nal value x(T ) and the control β(t) for another class of running cost L. Suppose that
C is a convex compact set containing the origin and take f (c) = −c for any c ∈ C .
Assume also that L : Rn → R ∪ {+∞} is strictly convex, differentiable when its sub-
differential is nonempty and that dom L has a nonempty interior with dom L ⊆ C .
Then, the associated Hamiltonian H is defined by H = L∗. Then, using the results of
[13], we have that the (x, t) �→ ϕ(x, t) which solves (11) is given by the Hopf–Lax for-
mula ϕ(x, t) = miny∈Rn

{
J (y) + tH∗( x−y

t )
}
where the minimizer is unique and denoted by

ȳ(x, t). Note that the Hopf–Lax formula corresponds to a convex optimization problem
which allows us to compute ȳ(x, t). In addition, we can compute the gradient with respect
to x since we have∇xϕ(x, t) = ∇H∗

(
x−ȳ(x,t)

t

)
∈ ∂J (y(x, t)) for any given x ∈ R

n and t > 0.
For any t ∈ (−∞, T ) and fixed x ∈ R

n the control is given by β(t) = ∇H (∇xϕ(x, T − xt))
while the terminal value satisfies x(T ) = ȳ(x, T − t) = x − (T − t)∇H (∇ϕ(x, (T − t))).
Note that both the control and the terminal value can be easily computed. More details
about these facts will be given in a forthcoming paper.

3 Overcoming the curse of dimensionality for convex initial data and convex
homogeneous degree one Hamiltonians: optimal control
We first present our approach for evaluating the solution of the HJ PDE and its gradient
using the Hopf formula [30], Moreau’s identity [38] and the split Bregman algorithm [25].
We note that the split Bregman algorithm can be replaced by other algorithms which
converge rapidly for problems of this type. An example might be the primal-dual hybrid
gradient method [8,53]. Then, we show that our approach can be adapted to compute
a closest point on a closed set, which is the union of disjoint closed convex sets with a
nonempty interior, to a given point.

3.1 Numerical optimization algorithm

We present the steps needed to solve
{

∂ϕ
∂t (x, t) + H (∇xϕ(x, t)) = 0 in R

n × (0,+∞),
ϕ(x, 0) = J (x) ∀ x ∈ R

n.
(19)

We take J : Rn → R convex and positively 1-homogeneous. We recall that solving
(19), i.e., computing the viscosity solution, for a given x ∈ R

n, t > 0 using numerical
approximations, is essentially impossible, for n ≥ 4 due to the memory issue, and the
complexity is exponential in n.
An evaluation of the solution at x ∈ R

n and t > 0 for the examples we consider in this
paper is of the order of 10−8–10−4 s on a standard laptop (see Sect. 4). The apparent time
complexity seems to be polynomial in n with remarkably small constants.
We will use the Hopf formula [30]:

ϕ(x, t) = −min
v

{
J∗(v) + tH (v) − 〈x, v〉} . (20)

Note that the infimum is always finite and attained (i.e., it is a minimum) since we have
assumed that J is finite everywhere on R

n and that H is continuous and bounded from
below by an affine function.
The Hopf formula (20) requires only the continuity of H , but we will also require the

Hamiltonian H be convex as well. We recall that the previous section shows how to relax
this condition.
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We will use the split Bregman iterative approach to solve this [25]

vk+1 = arg min
v∈Rn

{
J∗(v) − 〈x, v〉 + λ

2

∥∥
∥dk − v − bk

∥∥
∥
2

2

}
, (21)

dk+1 = arg min
d∈Rn

{
tH (d) + λ

2

∥∥
∥d − vk+1 − bk

∥∥
∥
2

2

}
(22)

bk+1 = bk + vk+1 − dk+1. (23)

For simplicity we consider λ = 1 and consider v0 = x, d0 = x and b0 = 0 in this
paper. The algorithm still works for any positive λ and any finite values for v0, d0 and
b0. The sequence (vk )k∈N and (dk )k∈N are both converging to the same quantity which
is a minimizer of (20). We recall that when the minimizer of (20) is unique then it is
precisely the ∇xϕ(x, t); in other words, both (vk )k∈N and (dk )k∈N converge to ∇xϕ(x, t)
under this uniqueness assumption. If the minimizer is not unique then the sequences
(vk )k∈N and (vk )k∈N converge to an element of the subdifferential of ∂(y �→ f (y, t))(x) (see
below for the definition of a subdifferential). We need to solve (21) and (22). Note that up
to some changes of variables, both optimization problems can be reformulated as finding
the unique minimizer of

R
n � w �→ αf (w) + 1

2
‖w − z‖22, (24)

where z ∈ R
n, α > 0, and f : Rn → R∪ {+∞} is a convex, proper, lower semicontinuous

function. Its unique minimizer w̄ satisfies the optimal condition

α ∂f (w̄) + w̄ − z � 0,

where ∂f (x) denotes the subdifferential (see, for instance, [28, p. 241], [44, Section 23]) of
f at x ∈ R

n and is defined by ∂f (x) = {s ∈ R
n | ∀y ∈ R

n, f (y) ≥ f (x) + 〈s, y − x〉}. We
have

w̄ = (I + α ∂f )−1 (z) = arg min
w∈Rn

{
αf (w) + 1

2
‖w − z‖22

}
,

where (I + ∂f )−1 denotes the “resolvent” operator of f (see [2, Def. 2, chp. 3, p. 144], [5,
p. 54] for instance). It is also called the proximal map of f following the seminal paper
of Moreau [38] (see also [29, Def. 4.1.2, p. 318], [44, p. 339]). This mapping has been
extensively studied in the context of optimization (see, for instance, [10,18,45,48]).
Closed-form formulas exist for the proximal ofmap for some specific cases. For instance,

we have seen in the introduction that (I + α ∂‖ · ‖i)−1 = shrinki(·,α) for i = 1, 2, where
we recall that shrink1 and shrink2 are defined by (6) and (7), respectively. Another clas-
sical example consists of considering a quadratic form 1

2‖ · ‖2A = 1
2 〈·, A·〉, with A a

symmetric positive definite matrix with real values, which yields
(
I + α ∂

( 1
2‖ · ‖2A

))−1 =
(In + α A)−1, where In denotes the identity matrix of size n.
Assume f is twice differentiable with a bounded Hessian, then the proximal map can

be efficiently computed using Newton’s method. Algorithms based on Newton’s method
require us to solve a linear system that involves an n × n matrix. Note that typical high
dimensions for optimal control problems are about n = 10. For computational purposes,
these order of values for n are small.
We describe an efficient algorithm to compute the proximal map of ‖ · ‖∞ in Sect. 4.2

using parametric programming [46, Chap. 11, Section 11.M]. An algorithm to compute
the proximal map for 1

2‖ · ‖21 is described in Sect. 4.4.
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The proximal maps for f and f ∗ satisfy the celebratedMoreau identity [38] (see also [44,
Thm. 31.5, p. 338]) which reads as follows: For any w ∈ R

n and any α > 0

(I + α ∂f )−1 (w) + α

(
I + 1

α
∂f ∗

)−1 (w
α

)
= w. (25)

This shows that (I + α ∂f )−1 (w) can be easily computed from
(
I + 1

α
∂f ∗)−1 (w

α

)
. In other

words, depending on the nature and properties of the mappings f and f ∗, we choose the
one forwhich the proximal point is “easier” to compute. Section 4.4 describes an algorithm
to compute the proximal map of 1

2‖ · ‖2∞ using only evaluations of
(
I + α

2 ∂‖ · ‖21
)−1 using

Moreau’s identity (25).
We shall see that Moreau’s identity (25) can be very useful to compute the proximal

maps of convex and positively 1-homogeneous functions.
We consider problem (22) that corresponds to compute the proximal of a convex pos-

itively 1-homogeneous function H : Rn → R. (We use H instead f to emphasize that
we are considering positively 1-homogeneous functions and we set α = 1 to alleviate
notations.) We have that H∗ is the characteristic function of a closed convex set C ⊆ R

n,
i.e., the Wulff shape associated to H [40],

H∗ = IC ,
and H corresponds to the support function C , that is for any p ∈ R

n

H (p) = sup
s∈C

〈s, p〉.

Following Moreau [38, Example 3.d], the proximal point of z ∈ R
n relative to H∗ is

(
I + ∂H∗)−1 (z) = min

w∈C

{
1
2
‖w − z‖22

}
.

In other words, (I + ∂H∗)−1 (z) corresponds to the projection of z on the closed convex
set C that we denote by πC (z), that is for any z ∈ R

n

(
I + ∂H∗)−1 (z) = πC (z).

Thus, using the Moreau identity (25), we see that (I + ∂H )−1 can be computed from the
projection on its associated Wulff shape and we have for any z ∈ R

n

(I + ∂H )−1 (z) = z − πC (z). (26)

In other words, computing the proximal map of H can be performed by computing the
projection on its associated Wulff shape C . This formula is not new; see, e.g., [7,39].
Let us consider an example. Consider Hamiltonians of the form H = ‖ · ‖A = √〈·, A·〉

where A is a symmetric positive matrix. Here the Wulff shape is the ellipsoid C =
{
y ∈ R

n | 〈x, A−1x〉 ≤ 1
}
. We describe in Sect. 4.3 an efficient algorithm for comput-

ing the projection on an ellipsoid. Thus, this allows us to compute efficiently the proximal
map of norms of the form ‖ · ‖A using (26).

3.2 Projection on closed convex set with the level set method

We now describe an algorithm based on the level set method [41] to compute the projec-
tion π� on a compact convex set� ⊂ R

n with a nonempty interior. This problem appears
to be of great interest for its own sake.
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Let ψ : Rn × [0,+∞) be the viscosity solution of the eikonal equation
{

∂ψ
∂t (y, s) + ‖∇xψ(y, s)‖2 = 0 in R

n × (0,+∞),
ψ(y, 0) = L(y) ∀ y ∈ R

n,
(27)

where we recall that ∂ψ
∂t (y, t) and ∇xψ(y, t) respectively denote the partial derivatives of φ

with respect to the time and space variable at (y, s) and where L : Rn → R satisfies for any
y ∈ R

n
⎧
⎪⎪⎨

⎪⎪⎩

L(y) < 0 for any y ∈ int �,

L(y) > 0 for any y ∈ (Rn\�),

L(y) = 0 for any y ∈ (�\int �),

(28)

where int � denotes the interior of �. Given s > 0, we consider the set

�(s) = {
y ∈ R

n |ψ(y, s) = 0
}
,

which corresponds to all points that are at a (Euclidean) distance s from �(0). Moreover,
for a given point y ∈ �(s), the closest point to y on �(0) is exactly the projection π�(y) of
y on �, and we have

π�(y) = y − s
∇xψ(y, s)

‖∇xψ(y, s)‖2 . (29)

In this paper, we will assume that L is strictly convex, 1-coercive and differentiable so
that ∇xψ(s, y) exists for any y ∈ R

n and s > 0. We note that if � is the finite union of sets
of this type then ∇xψ(s, y) may have isolated jumps. This presents no serious difficulties.
Note that (27) takes the form of (19) with H = ‖ · ‖2 and J = L. We again use split
Bregman to solve the optimization given by the Hopf formula (3). To avoid confusion we
respectively replace J, v, d and b, by L, w, e and c in (21)–(23)

wk+1 = arg min
w∈Rn

{
L∗(w) − 〈z, w〉 + λ

2

∥∥∥ek − w − ck
∥∥∥
2

2

}
, (30)

ek+1 = arg min
e∈Rn

{
s‖e‖2 + λ

2

∥∥∥e − wk+1 − ck
∥∥∥
2

2

}
, (31)

ck+1 = ck + wk+1 − ek . (32)

An important observationhere is that ek+1 can be solved explicitly in (31) using the shrink2
operator defined by (7). Note that the algorithm given by (21)–(23) allows us to evaluate
not only ψ(y, s) but also ∇xψ(y, s). Indeed for any s > 0 ∇xψ(y, s) = arg minv∈Rn{L∗(v) +
sH (v)−〈y, v〉}, theminimizer being unique. Thus, the above algorithm (30)–(32) generates
sequences (wk )k∈N and (ek )k∈N that both converge to ∇xψ(z, s).
The above considerations about the closest point and (29) give us a numerical procedure

for computing π�(y) for any y ∈ (Rn\�). Find the value s̄ so that ψ(y, s̄) = 0 where ψ

solve (27). Then, compute

π�(y) = y − s̄
∇xψ(y, s̄)

‖∇xψ(y, s̄)‖2 , (33)

to obtain the projection π�(z). We compute s̄ using Newton’s method to find the 0 of the
function (0,+∞) � s �→ ψ(z, s). Given an initial s0 > 0 the Newton iteration corresponds
to computing for integers l > 0

sl+1 = sl − ψ(z, sl)
(

∂ψ

∂t
(z, sl)

)−1
. (34)

From (27) we have ∂ψ
∂t (z, s) = −‖∇xψ(z, s)‖2 for any s > 0. We can thus compute (34).
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It remains to choose the initial data L related to the set�. We would like it to be smooth
so that the proximal point in (30) can be computed efficiently using Newton’s method.
(If L lacks differentiability the approach can be easily modified using [46, Chap 11, Sec-
tion 11.M] or using [9].)We consider� asWulff shapes that are expressed, thanks to (15),
with the functionW : Sn−1 → R, that is

� = {
(R θ ) ∈ R

n | R ≥ 0, θ ∈ Sn−1, R ≤ W (θ )
}
.

As a simple example, if W ≡ 1, then we might try L = ‖y‖2 − 1, the signed distance to
�(0). This does not suit our purposes, because its Hessian is singular and its dual is the
indicator function of the l2(Rn) unit ball. Instead, we take

L(y) = 1
2

(‖y‖22 − 1
)
.

Note L∗(y) = 1
2

(‖y‖22 + 1
)
, both of these are convex and C2 functions with nonvanishing

gradients away from the origin, i.e., near �(s). This gives us a hint as how to proceed.
Recall that we need to get initial data which behaves as a level set function should,

i.e., as defined by (28). We also want either L or L∗ to be smooth enough, actually twice
differentiable with Lipschitz continuous Hessian, so that Newton’s method can be used.
We might take

L(R θ ) = 1
2m

((
R

W (θ )

)2m
− 1

)

,

where R ≥ 0, θ ∈ Sn−1 and m a positive integer. If we consider the important case of
W (θ ) = ‖θ‖− 1

2
A = 1√〈θ ,A θ〉 , withA a symmetric positivedefinitematrix,which corresponds

to � = {x ∈ R
n |√〈x, A x〉 ≤ 1}, then m ≥ 2 will have a smooth enough Hessian for L.

In fact, m = 2 will lead us to a linear Hessian. There will be situations where using L∗ is
preferable because L cannot be made smooth enough this way.
We can obtain L∗ using polar coordinates and taking 1 ≥ m > 1

2 , that is for any R ≥ 0
and any θ ∈ Sn−1

L∗(R θ ) = sup
r≥0, v∈Sn−1

{

R r 〈θ , v〉 + 1
2m

− 1
2m

(
r

W (v)

)2m
}

= 1
2m

sup
‖v‖2=1

{
(2m − 1) (R〈θ , v〉W (v))

2m
2m−1 + 1

}

= 1
2m

{
(R γ (θ ))

2m
2m−1 (2m − 1) + 1

}

= 1
2m

{
(H (R θ ))

2m
2m−1 (2m − 1) + 1

}

where we recall that γ is defined by (17). As we shall see, L∗ is often preferable to L yielding
a smooth Hessian for 1 ≥ m > 1

2 withm close to 1
2 .

Let us consider some important examples. If the set� is definedby� = {x ∈ R
n | ‖x‖p ≤

1} for 1 < p < ∞, then we can consider two cases

(a) 2 ≤ p < +∞
(b) 1 < p ≤ 2

For case (a) we need only take

L = 1
2m

(
‖ · ‖2mp − 1

)
.
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If m ≥ 1 it is easy to see that Hessian of L is continuous and bounded for p ≥ 2. So
we can use Newton’s method for the first choice above. For case (b), we construct the
Fenchel–Legendre of the function

L = 1
2m

(
‖ · ‖2mp − 1

)
,

but this time for 1
2 < m ≤ 1. It is easy to see that

L∗ = 1
2m

(
(2m − 1)‖ · ‖

2m
2m−1
q + 1

)
,

where 1
p + 1

q = 1 and if 1
2 < m ≤ 1 the Hessian of L∗ is continuous.

Other interesting examples include the following regions defined by

� = {
x ∈ R

n | 〈x, Ax〉 ≤ ‖x‖2
}
.

For � to be convex we require A to be a positive definite symmetric matrix with real
entries and its maximal eigenvalue is bounded by twice the minimal eigenvalue. We can
take

L(x) =

⎧
⎪⎨

⎪⎩

1
2m

(( 〈x, Ax〉
‖x‖2

)2m − 1
)

if x �= 0,

0 if x = 0.
(35)

form ≥ 2 and see that this has a smooth Hessian.

4 Numerical results
We will consider the following Hamiltonians

• H = ‖ · ‖p for p = 1, 2,∞,
• H = √〈·, A·〉 with A symmetric positive definite matrix,

and the following initial data

• J = 1
2‖ · ‖2p for p = 1, 2,∞,

• J = 1
2 〈·, A·〉 with A a positive definite diagonal matrix.

It will be useful to consider the spectral decomposition of A, i.e., A = PDP†, where D
is a diagonal matrix, P is an orthogonal matrix, and P† denotes the transpose of P. The
identity matrix in R

n is denoted by In.
First, we present the algorithms to compute the proximal points for the above Hamil-

tonians and initial data. We shall describe these algorithms using the following generic
formulation for the proximal map

(I + α ∂f )−1 (w) = arg min
w∈Rn

{
1
2
‖w − z‖22 + αf (w)

}
.

Second, we present the time results on a standard laptop. Some time results are also
provided for a 16 cores computer which shows that our approach scales very well. The
latter is due to our very low memory requirement. Finally, some plots that represent the
solution of some HJ PDE are presented.

4.1 Some explicit formulas for simple specific cases

We are able to obtain explicit formulas for the proximal map for some specific cases of
interest in this paper. For instance, as we have seen, considering f = ‖ · ‖1 gives for any
i = 1, . . . , n

(
(I + α ∂‖ · ‖1)−1 (w)

)
i = sign(wi)max(|wi| − α, 0),
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where sign(β) = 1 if β ≥ 0 and −1 otherwise. The case f = ‖ · ‖2 yields a similar formula

(I + α ∂‖ · ‖2)−1 (w) = μ

α + μ
w,

with

μ = max(‖w‖2 − α, 0).

The two above cases are computed in linear time with respect to the dimension n.
Proximal maps for positive definite quadratic forms, i.e., f (w) = 1

2 〈w,Aw〉 are also easy
to compute since for any α > 0 and any z ∈ R

n

(I + α ∂f )−1 (z) = (In + αA)−1(z) = P(In + αD)−1P†z.

where we recall thatA = PDP† withD a diagonal matrix and P an orthogonal matrix. The
time complexity is dominated by the evaluation of the matrix-vector product involving P
and P†.

4.2 The case of ‖ · ‖∞
Let us now consider the case f = ‖ · ‖∞. Since ‖ · ‖∞ is a norm, its Fenchel–Legendre
transform is the indicator function of its dual norm ball, that is (‖ · ‖∞)∗ = IC with
C = {z ∈ R

n | ‖z‖1 ≤ 1}. We use Moreau’s identity (26) to compute (I + α‖ · ‖∞)−1;
that is for any α > 0 and for any z ∈ R

n

(I + α∂ ‖ · ‖∞)−1 (z) = z − απC
( z

α

)
= z − παC (z)

where we recall that παC denotes the projection operator onto the closed convex set αC .
We use a simple variation of parametric approaches that are well known in graph-based
optimization algorithm (see [46, Chap. 11, Section 11.M] for instance).
Let us assume that z /∈ (αC). The projection corresponds to solve

παC (z) =
{
arg minw∈Rn 1

2‖w − z‖22
s.t. ‖w‖1 ≤ α.

Nowweuse Lagrange duality (see [28, chap. VII] for instance). TheLagrange dual function
g : [0,+∞) → R is defined by

g(μ) = min
w∈Rn

{
1
2
‖z − w‖22 + μ‖w‖1 − μα

}
,

that is

g(μ) = ‖shrink1(z,μ)‖1 − μα.

We denote by μ̄ the value that realizes themaximum of g . Then, we obtain for any z /∈ αC
that

παC (z) = shrink1(z, μ̄), (36)

where μ̄ satisfies

‖shrink1(z, μ̄)‖1 = α. (37)

Computing the projection is thus reduced to computing the optimal value of the Lagrange
multiplier μ̄. Consider the function h : [0, ‖z‖1] → R defined by h(μ) = ‖shrink1(z,μ)‖1.
We have that h is continuous, piecewise affine, h(0) = ‖z‖1, h(‖z‖1) = 0 and h is decreas-
ing (recall that we assume z /∈ (αC)). Following [46, Chap. 11, Section 11.M], we call
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breakpoints the values for which h is not differentiable. The set of breakpoints for h is
B = {0}⋃

i=1,...,n {|zi|} . We sort all breakpoints in increasing order, and we denote this
sequence by (li, . . . , lm) ∈ Bm with li < li+1 for i = 1, . . . , (m − 1), where m ≤ n is the
number of breakpoints. This operation takes O(n log n). Then, using a bitonic search, we
can find j such that ‖shrink1(z, lj)‖1 ≤ ‖shrink1(z, μ̄)‖1 < ‖shrink1(z, lj+1)‖1 inO(n log n).
Since h is affine on [‖shrink1(z, lj)‖1, [‖shrink1(z, lj+1)‖1] a simple interpolation computed
in constant time yields μ̄ that satisfies (37). We then use (36) to compute the projection.
The overall time complexity is, therefore, O(n log n).

4.3 The case ‖ · ‖A and projection on a ellipsoid

We follow the same approach as for ‖ · ‖∞. We consider f = ‖ · ‖A = 〈·, A·〉 which is a
norm since A is assumed to be symmetric positive definite. The dual norm is ‖ · ‖ [19,
Prop. 4.2, p. 19] is ‖ · ‖A−1 . Thus, (‖ · ‖A)∗ = IEA with EA defined by

EA = {
y ∈ R

n | 〈y, A−1y〉 ≤ 1
}
.

UsingMoreau’s identity (26), we only need to compute the projectionπEA (w) ofw ∈ R
n on

the ellipsoid EA. Note that we have πEA (w) = P πED (P†w) where we recall that A = PDP†

with D and P a diagonal and orthogonal matrix, respectively. Thus, we only describe the
algorithm for the projection on an ellipsoid involving positive definite diagonal matrices.
To simplify notation we take di = Dii for i = 1, . . . , n. We consider the ellipsoid ED

defined by

ED =
{

x ∈ R
n |

n∑

i=1

(
xi
di

)2
≤ 1

}

.

Letw /∈ ED. We can easily show (see [27, Exercise III.8] for instance) that�ED (w) satisfies
for any i = 1. . . . , n

(
�ED (w)

)
i = d2i wi

d2i + μ̄
, (38)

where the Lagrange multiplier μ̄ > 0 is the unique solution of
∑n

i=1
d2i w

2
i

(d2i +μ)2 = 1. We

find such μ̄ by minimizing the function [0,+∞) � μ �→ ∑n
i=1 d2i w

2
i (d

2
i + μ)−1 + μ

using Newton’s method which generates a sequence (μk )k∈N converging to μ̄. We set the
initial value to μ0 = 0, and we stop Newton’s iterations for the first k which statisfies
|μk+1 − μk | ≤ 10−8. Once we have the value for μ̄ we use (38) to obtain the approximate
projection.

4.4 The cases 1
2‖ · ‖21 and 1

2‖ · ‖2∞
First, we consider the case of 1

2‖ · ‖21. We have for any α > 0 and any z ∈ R
n

(
I + α

2
∂‖ · ‖21

)−1
(z) = (I + α‖ · ‖1 ∂‖ · ‖1)−1 (z).

Thus, assuming there exists β̄ ≥ 0 such that
β̄ = α

∥
∥shrink1(z, β̄)

∥
∥
1 , (39)

we have for any α > 0 and any z ∈ R
n

(
I + α

2
∂‖ · ‖21

)−1
(z) = shrink1(z, β̄). (40)

The existence of β̄ and an algorithm to compute it follow. Let us assume that z �= 0
(otherwise, β̄ = 0 works and the solution is of course 0). Then, consider the function
g : [0, ‖z‖1] → R defined by
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g(β) = α‖shrink1(z,β)‖1 − β .

It is continuous, and g(0) = α‖z‖1 while g (‖z‖1) = −‖z‖1. The intermediate value
theorem tells us that there exists β̄ such that g(β̄) = 0, that is, satisfying (39).
The function g is decreasing, piecewise affine and the breakpoints of g (i.e., the points

where g is not differentiable) are B = {0} ∪i=1,...,n {|zi|}. We now proceed similarly as for
the case ‖ · ‖∞. We note (li, . . . , lm) ∈ Bm the breakpoints sorted in increasing order, i.e.,
such that li < li+1 for i = 1, . . . , (m − 1), where m ≤ n is the number of breakpoints.
We use a bitonic search to find the two consecutive breakpoints li and li+1, such that
g(li) ≥ 0 > g(li+1). Since g is affine on [li, li+1] a simple interpolation yields the value
β̄ . We then compute

(
I + α

2 ∂‖ · ‖21
)−1 (z) using (40).

We now consider the case 1
2‖ · ‖2∞. We have (for instance [19, Prop. 4.2, p. 19])

(
1
2
‖ · ‖2∞

)∗
= 1

2
‖ · ‖21

Then, Moreau’s identity (25) yields for any α > 0 and for any z ∈ R
n

(
I + α

2
∂‖ · ‖2∞

)−1
(z) = z −

(
I + α

2
∂‖ · ‖21

)−1
(z),

whichcanbeeasily computedusing the above algorithmfor evaluating
(
I + α

2 ∂‖·‖21
)−1 (z).

4.5 Time results and illustrations

We now give numerical results for several Hamiltonians and initial data. We present time
results on a standard laptop using a single core which show that our approach allows us to
evaluate very rapidly HJ PDE solutions. We also present some time results on a 16 cores
computer to show that our approach scales very well. We also present some plots that
depict the solution of some HJ PDEs.
We recall that we consider the following Hamiltonians

• H = ‖ · ‖p for p = 1, 2,∞,
• H = √〈·, D·〉 with D a diagonal positive definite matrix,
• H = √〈·, A·〉 with A symmetric positive definite matrix,

and the following initial data

• J = 1
2‖ · ‖2p for p = 1, 2,∞.

• J = 1
2 〈·, D−1·〉 with D a positive definite diagonal matrix,

where the matrixD and A are defined follows:D is a diagonal matrix of size n× n defined
by Dii = 1 + i−1

n−1 for i = 1, . . . , n. The symmetric positive definite matrix A of size n × n
is defined by Aii = 2 for i = 1, . . . , n and Aij = 1 for i, j = 1, . . . , n with i �= j.
All computations are performed using IEEE double-precision floating points where

denormalizednumbermodehasbeendisabled.Thequantities (x, t) aredrawnuniformly in
[−10, 10]n× [0, 10].We present the average time to evaluate a solution for 1,000,000 runs.
We set λ = 1 in the split Bregman algorithm (21)–(23). We stop the iterations when

the following stopping criteria is met: ‖vk − vk−1‖22 ≤ 10−8 and ‖dk − dk−1‖22 ≤ 10−8

and ‖dk − vk‖22 ≤ 10−8.
We first carry out the numerical experiments on an Intel LaptopCore i5-5300U running

at 2.3GHz. The implementation here is single threaded, i.e., only one core is used. Tables
1, 2, 3 and 4 present time results for several dimensions n = 4, 8, 12, 16 and with initial
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Table 1 Time results in seconds for the average time per call for evaluating the solution of
the HJ PDEwith the initial data J = 1

2‖ · ‖22, several Hamiltonians and various dimensions n

n ‖y‖1 ‖y‖2 ‖y‖∞ ‖y‖D ‖y‖A
4 6.36e−08 1.20e−07 2.69e−07 7.00e−07 8.83e−07

8 6.98e−08 1.28e−07 4.89e−07 1.07e−06 1.57e−06

12 8.72e−08 1.56e−07 7.09e−07 1.59e−06 2.23e−06

16 9.24e−08 1.50e−07 9.92e−07 2.04e−06 2.95e−06

Table 2 Time results in seconds for the average time per call for evaluating the solution of
the HJ PDE with the initial data J = 1

2‖ · ‖2∞, several Hamiltonians and various
dimensions n

n ‖y‖1 ‖y‖2 ‖y‖∞ ‖y‖D ‖y‖A
4 1.79e−06 1.53e−06 1.84e−06 4.88e−06 7.77e−06

8 3.77e−06 2.31e−06 3.50e−06 9.73e−06 1.92e−05

12 6.31e−06 3.14e−06 5.54e−06 1.44e−05 2.91e−05

16 9.61e−06 3.88e−06 8.22e−06 1.80e−05 4.04e−05

Table 3 Time results in seconds for the average time per call for evaluating the solution of
the HJ PDEwith the initial data J = 1

2‖ · ‖21, several Hamiltonians and various dimensions n

n ‖y‖1 ‖y‖2 ‖y‖∞ ‖y‖D ‖y‖A
4 2.86e−06 4.42e−06 9.17e−06 1.79e−05 1.97e−05

8 9.85e−06 1.63e−05 4.38e−05 9.37e−05 1.09e−04

12 2.35e−05 3.84−05 1.19e−04 2.63e−04 3.24e−04

16 4.35e−05 7.03e−05 2.46e−04 5.19e−04 6.92e−04

Table 4 Time results in seconds for the average time per call for evaluating the solution of
the HJ PDE with the initial data J = 1

2 〈·, D−1·〉, several Hamiltonians and various
dimensions n

n ‖y‖1 ‖y‖2 ‖y‖∞ ‖y‖D ‖y‖A
4 3.62e−07 5.19e−07 9.35e−07 2.79e−06 3.50e−06

8 3.83e−07 5.25e−07 1.42e−06 4.40e−06 5.75e−06

12 4.97e−07 6.62e−07 1.73e−06 5.70e−06 7.98−06

16 5.92e−07 6.88e−07 2.27e−06 6.64e−06 1.04e−05

data J = 1
2‖ · ‖22, J = 1

2‖ · ‖2∞, J = 1
2‖ · ‖21 and J = 1

2 〈·, D〉, respectively. We see that it takes
about 10−8 to 10−4 s per evaluation of the solution.
We now consider experiments that are carried out on a computer with 2 Intel Xeon

E5-2690 processors running at 2.90GHz. Each processor has 8 cores. Table 5 presents
the average time to compute the solution with Hamiltonian H = ‖ · ‖∞ and initial data
J = ‖ · ‖21 for several dimensions and various number of used cores. We see that our
approach scales very well. This is due to the fact that our algorithm requires little memory
which easily fits in the L1 cache of each processor. Therefore, cores are not competing for
resources. This suggests that our approach is suitable for low-energy embedded systems.
We now consider solutions of HJ PDEs in dimension n = 8 on a two-dimensional grid.

We evaluate φ(x1, x2, 0, 0, 0, 0, 0, 0) with xi ∈ ∪k=0,...,99{−20 + k 40
99 } for i = 1, 2. Figures 1,

2 and 3 depict the solutions with initial data J = 1
2‖ · ‖2∞, J = 1

2‖ · ‖21 and J = 1
2‖ · ‖21, and

withHamiltoniansH = ‖·‖2,H = ‖·‖1. andH = √〈·, D·〉 for various times, respectively.
Figures 4 and 5 illustrate the max/min-plus algebra results described in Sect. 2.2. Figure 4
depicts the HJ solution for the initial data J = J = min

( 1
2‖ · ‖22 − 〈b, ·〉, 12‖ · ‖22 + 〈b, ·〉)
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Table 5 Time results in seconds for the average time per call for evaluating the solution of
the HJ PDE with the initial data J = 1

2‖ · ‖21, and the Hamiltonian H = ‖ · ‖∞, for various
dimensions, and several cores

n 1 core 4 cores 8 cores 16 cores

4 1.11e−05 2.81e−06 1.56e−06 8.36e−07

8 4.77e−05 1.33e−05 6.81e−06 3.48e−06

12 1.35e−04 3.90e−05 1.94e−05 9.90e−06

16 3.24e−04 8.76e−05 4.40e−05 2.22e−05
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Fig. 1 Evaluation of the solution φ((x1 , x2 , 0, 0, 0, 0, 0, 0)† , t) of the HJ PDE with initial data J = 1
2‖ · ‖2∞ and

Hamiltonian H = ‖ · ‖2 for (x1 , x2) ∈ [−20, 20]2 for different times t . Plots for t = 0, 5, 10, 15 and respectively
depicted in a–d. The level linesmultiple of 5 are superimposed on the plots

with b = (1, 1, 1, 1, 1, 1, 1, 1)†, and H = ‖ · ‖1 for various times. Figure 5 depicts the HJ

solution for various time with J = 1
‖ · ‖22 and H = min

(
‖ · ‖1,

√
〈·, 43D·〉

)
.

5 Conclusion
Wehave designed algorithmswhich enable us to solve certainHamilton–Jacobi equations
very rapidly. Our algorithms not only evaluate the solution but also compute the gradient
of the solution. These include equations arising in control theory leading to Hamiltonians
which are convex and positively homogeneous of degree 1. We were motivated by ideas
coming from compressed sensing; we borrowed algorithms devised to solve �1 regular-
ized problems which are known to rapidly converge. We apparently extended this fast
convergence to include convex positively 1-homogeneous regularized problems.
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Fig. 2 Evaluation of the solution φ((x1 , x2 , 0, 0, 0, 0, 0, 0)† , t) of the HJ PDE with initial data J = 1
2‖ · ‖21 and

Hamiltonian H = ‖ · ‖1 for (x1 , x2) ∈ [−20, 20]2 for different times t . Plots for t = 0, 5, 10, 15 are respectively
depicted in a–d. The level linesmultiple of 20 are superimposed on the plots

There are no grids involved. Instead of complexitywhich is exponential in the dimension
of the problems, which is typical of grid based methods, ours appears to be polynomial
in the dimension with very small constants. We can evaluate the solution on a laptop
at about 10−4−10−8 s per evaluation for fairly high dimensions. Our algorithm requires
very low memory and is totally parallelizable which suggest that it is suitable for low-
energy embedded systems. We have chosen to restrict the presentation of the numerical
experiments to norm-based Hamiltonians, and we emphasize that our approach naturally
extends to more elaborate positively 1-homogeneous Hamiltonians (using the min/max
algebra results as we did for instance).
As an important step in this procedure, we have also derived an equally fast method

to find a closest point lying on �, a finite union of compact convex sets �i, such that
� = ∪k

i �i has a nonempty interior, to a given point.
We can also solve certain so-called fast marching [49] and fast sweeping [47] problems

equally rapidly in high dimensions. If we wish to find ψ : Rn → R with, say ψ = 0 on the
boundary of a set � defined above, satisfying

⎧
⎨

⎩
‖∇xψ(x)‖2 = 1 in R

n,

ψ(x) = 0 for any x ∈ (�\int �),

then, we can solve for u : Rn × [0,+∞) → R

∂u
∂t

(x, t) + ‖∇xu(x)‖2 = 0 in R
n × (0,+∞),
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Fig. 3 Evaluation of the solution φ((x1 , x2 , 0, 0, 0, 0, 0, 0)† , t) of the HJ PDE with initial data J = 1
2‖ · ‖21 and

Hamiltonian H = ‖ · ‖D , for (x1 , x2) ∈ [−20, 20]2 for different times t . Plots for t = 0, 5, 10, 15 are respectively
depicted in a–d. The level linesmultiple of 20 are superimposed on the plots

with initial data
⎧
⎪⎪⎨

⎪⎪⎩

u(x, 0) < 0 for any x ∈ int �,

u(x, 0) > 0 for any x ∈ (Rn\�),

u(x, 0) = 0 for any x ∈ (�\int �),

and locate the zero level set of u(·, t) = 0 for any given t > 0. Indeed, any x ∈ {y ∈
R
n | u(y, t) = 0} satisfies ψ(x) = t.
Of course the same approach could be used for any convex, positively 1-homogeneous

Hamiltonian H (instead of ‖ · ‖2), e.g., H = ‖ · ‖1. This will give us results related to
computing the Manhattan distance.
We expect to extend our work as follows:

1. We will do experiments involving linear controls, allowing x and t > 0 depen-
dence while the Hamiltonian (p, x, t) �→ H (p, x, t) is still convex and positively 1-
homogeneous in p. The procedure was described in Sect. 2.

2. We will extend our fast computation of the projection in several ways. We will
consider in detail the case of polyhedral regions defined by the intersection of sets
�i = {x ∈ R

n | 〈ai, x〉 − bi ≤ 0}, ai, bi ∈ R
n, ‖ai‖2 = 1, for i = 1, . . . , k . This is

of interest in linear programming (LP) and related problems. We expect to develop
alternate approaches to several issues arising in LP, including rapidly finding the
existence and location of a feasible point.
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Fig. 4 Evaluation of the solution φ((x1 , x2 , 0, 0, 0, 0, 0, 0)† , t) of the HJ PDE with initial data

J = min
(
1
2‖ · ‖22 − 〈b, ·〉, 12‖ · ‖22 + 〈b, ·〉

)
with b = (1, 1, 1, 1, 1, 1, 1, 1)† and Hamiltonian H = ‖ · ‖1, for

(x1 , x2) ∈ [−20, 20]2 for different times t . Plots for t = 0, 5, 10, 15 are respectively depicted in a–d. The level
linesmultiple of 15 are superimposed on the plots

3. We will consider nonconvex but positively 1-homogeneous Hamiltonians. These
arise in: differential games as well as in the problem of finding a closest point on the
boundary of a given compact convex set �, to an arbitrary point in the interior of �.

4. As an example of a nonconvex Hamiltonians we consider the following problems
arising indifferential games [21,36,37].Weneed to solve the following scalar problem
for any z ∈ R

n and any α > 0

min
y

{
1
2
‖y − x‖22 − α‖y‖1

}
.

It is easy to see that the minimizer is the stretch 1 operator which we define for any
i = 1, . . . , n as:

(stretch1(x,α))i =

⎧
⎪⎪⎨

⎪⎪⎩

xi + α if xi > 0,

0 if xi = 0,

xi − α if xi < 0.

(41)

We note that the discontinuity in theminimizer will lead to a jump in the derivatives
(x, t) �→ ∂ϕ

∂xi (x, t), which is no surprise, given that this interface associated with the
equation

∂ϕ

∂t
(x, t) −

n∑

i=1

∣∣
∣∣
∂ϕ

∂xi
(x, t)

∣∣
∣∣ = 0,
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Fig. 5 Evaluation of the solution φ((x1 , x2 , 0, 0, 0, 0, 0, 0)† , t) of the HJ PDE with initial data J = 1
2‖ · ‖21 and

Hamiltonian H = min
(

‖ · ‖1 ,
√

〈·, 43D·〉
)
, for (x1 , x2) ∈ [−20, 20]2 for different times t . Plots for t = 2, 5, 9, 12

are respectively depicted in a–d. The level linesmultiple of 15 are superimposed on the plots

and the previous initial data, will move inwards, and characteristics will intersect.
The solution ϕ(x, t) will remain locally Lipschitz continuous, even though a point
inside the ellipsoidmay be equally close to two points on the boundary of the original
ellipsoid in the Manhattan metric. So we are solving

ϕ(x, t) = −1
2

− min
v∈Rn

{
1
2

n∑

i=1
a2i v

2
i − t

n∑

i=1
|vi| + 〈x, v〉

}

= −1
2

+ 1
2

n∑

i=1

x2i
a2i

− min
v∈Rn

{
1
2

n∑

i
a2i

(
vi − xi

a2
)2 − t

n∑

i=1
|vi|

}

= −1
2

+ 1
2

n∑

i=1

(|xi| + t)2

a2i

The zero level set disappears when t ≥ maxi ai as it should.
For completeness, we also consider the nonconvex optimization problem

min
v∈Rn

{
1
2
‖v − x‖22 − α ‖v‖2

}
.

Its minimizer is given by the stretch2 operator formally defined by

stretch2(x,α) =
⎧
⎨

⎩
x + α x

‖x‖2 if x �= 0,

αθ with ‖θ‖2 = 1 if x = 0.
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This formula, althoughmultivalued at x = 0, is useful to solve the following problem:
Move the unit sphere inwards with normal velocity 1. The solution comes from
finding the zero level set of

ϕ(x, t) = −min
v∈Rn

{
|v|22
2

− t‖v‖2 − 〈x, v〉
}

− 1
2

= −min
v∈Rn

{
1
2
‖v − x‖22 − t‖v‖2

}
+ 1

2
(‖x‖22 − 1

)

= −1
2
t2 + t‖x‖2

(
1 + t

‖x‖2
)

+ 1
2

(‖x‖22 − 1
)

= 1
2
(‖x‖2 + t)2 − 1

2
and, of course, the zero level set is the set of x satisfying ‖x‖2 = t − 1 if t ≤ 1 and
the zero level set vanishes for t > 1.
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Appendix: Gauge
Now suppose furthermore that we wish H to be nonnegative, i.e., H (p) ≥ 0 for any
p ∈ R

n. Under this additional assumption, we shall see that the HamiltonianH is not only
the support function of C but also the gauge of convex set that we will characterize. Let
us define the gauge γ� : Rn → R

n ∪ {+∞} of a closed convex set D containing the origin
[28, Def. 1.2.4, p. 202]

γD(x) = inf {λ > 0 | x ∈ λD} ,

where γD(x) = +∞ if x /∈ λD for all λ > 0. Using [28, Thm. 1.2.5 (i), p 203], γD is lower
semicontinous, convex and positively 1-homogeneous. If 0 ∈ int D then [28, Thm. 1.2.5
(ii), p. 203] the gauge γD is finite everywhere, i.e., γD : Rn → R, we recall that int D
denotes the interior of the set D. Thus, taking H = γD satisfies our requirements. Note
that if we further assume that D is symmetric (i.e., for any d ∈ D then −d ∈ D) then γD
is a seminorm. If in addition we wish H (p) > 0 for any p ∈ R

n\{0}, then D has to be a
compact set [28, Corollary. 1.2.6, p. 204]. For the latter case, a symmetric D implies that
γD is actually a norm.
We now describe the connections between the sets D and C , the gauge γD, the support

function of C and nonnegative, convex, positively 1-homogeneous Hamiltonians H :
R
n → R. Given a closed convex set � of Rn containing the origin, we denote by �◦ the

polar set of � defined by

�◦ = {
s ∈ R

n | 〈s, x〉 ≤ 1 for all x ∈ �}} .
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We have that (�◦)◦ = �. Using [28, Prop. 3.2.4, p. 223] we have that the gauge γD is the
support function of D◦. In addition, [28, Corollary 3.2.5, p. 233] states that the support
function of C is the gauge of C◦. We can take D = C◦ and see that H can be expressed as
a gauge. Also, using [28, Thm. 1.2.5(iii), p. 203] we have that C◦ = {p ∈ R

n |H (p) ≤ 1}.
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