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Abstract

The adèles of a scheme have local components—these are topological higher local
fields. The topology plays a large role since Yekutieli showed in 1992 that there can be
an abundance of inequivalent topologies on a higher local field and no canonical way
to pick one. Using the datum of a topology, one can isolate a special class of
continuous endomorphisms. Quite differently, one can bypass topology entirely and
single out special endomorphisms (global Beilinson–Tate operators) from the
geometry of the scheme. Yekutieli’s “Conjecture 0.12” proposes that these two notions
agree. We prove this.

The adèles of a scheme X [3] generalize the classical adèles of Chevalley and Weil. The
counterpart of a prime/finite place is a saturated flag of scheme points

� := (η0 > · · · > ηn) ηi ∈ X

with ηi+1 a codimension one point of {ηi}. The counterpart of the local field at a prime
becomes a higher local field K , see Theorem 0.2 below. Suppose X is of finite type over a
field k . In dimension one, the classical case, a local field has a canonical topology and thus
comes with a canonical algebra of continuous k-linear endomorphisms, call it EK . Sadly,
this collapses dramatically for dim(X) ≥ 2: The adèles induce a topology on the higher
local fieldsK . But as was discovered by Yekutieli [51] in 1992, this topology is an additional
datum. It cannot be recovered from knowingK solely as a field. However, even if we know
this topology, K is no longer a topological field or ring. So it becomes quite unclear
how to define the continuous endomorphism algebra EK for dim(X) ≥ 2. Approaches
are:

(1) (“Global BT operators”) Beilinson defines EBeil� using a flag � in the scheme.
(2) (“Local BT operators”) Yekutieli defines EYek

K for a topological higher local field K .
(3) ( “n-Tate objects”) Adèles can be viewed as an n-Tate object [5], and let ETate� be its

endomorphism algebra in this category.

Yekutieli has shown that if k is perfect, a flag� as in (1) also induces a topological higher
local field structure, as in (2). So while a priori different, this suggests the following
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Conjecture (A. Yekutieli) 1Let k be a perfect field. Suppose X/k is a finite type k-scheme
of pure dimension n and � := (η0 > · · · > ηn) a saturated flag of points. Then there is a
canonical isomorphism

EYek ∼= EBeil.

Theorem 0.1 If X is reduced, the Conjecture is true. Even better,

EYek ∼= EBeil ∼= ETate,

i.e. all three constructions of the endomorphismalgebra give canonically isomorphic results.

SeeTheorem4.17 for the precise result—the above statement is simplified since a careful
formulation requires some preparations which we cannot supply in the introduction.
The theorem establishes a key merit of the n-Tate categories of [7], namely that EYek

and EBeil become “representable” in the sense that despite the original hand-made con-
structions of these algebras, they are nothing but genuine End(−)-algebras of an exact
category.
Our principal technical ingredient elaborates on the well-known structure theorem for

the adèles. The original version is due to Parshin [45] (in dimension ≤2), Beilinson [3]
(proof unpublished), and the first published proof due to Yekutieli [51]. The following
version extends his result with regard to the ind–pro structure of the adèles [7]. We write
AX (�,−) to denote the adèles of the scheme X for a flag �. Notation is as in [3]. In
particular, we write�′ to denote removing the initial entry from a flag �.

Theorem 0.2 Suppose X is a Noetherian reduced excellent scheme of pure dimension n
and� = {(η0 > · · · > ηn)} a saturated flag.

(1) Then AX (�,OX ) is a finite direct product of n-local fields
∏

Ki such that each last
residue field is a finite field extension of κ(ηn). Moreover,

AX (�′,OX )
(∗)⊆ ∏

Oi ⊆ ∏
Ki = AX (�,OX ),

whereOi denotes the first ring of integers of Ki and (∗) is a finite ring extension.
(2) These sit in a canonical staircase-shaped diagram

(3) If X is finite type over a field k, each field factor K := Ki in (1) is (non-canonically)
isomorphic as rings2 to Laurent series,

K ∼−→ κ((t1))((t2)) · · · ((tn))
1“Conjecture 0.12” of [53].
2But not necessarily k-algebras!
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for κ/k a finite field extension. This isomorphism can be chosen such that it is simul-
taneously an isomorphism

(a) of n-local fields,
(b) of n-Tate objects with values in abelian groups,
(c) (if k is perfect) of k-algebras,
(d) (if k is perfect) of n-Tate objects with values in finite-dimensional k-vector spaces,
(e) (if k is perfect) of topological n-local fields in the sense of Yekutieli.

(4) Still assume that X is finite type over a field k. After replacing each ring in (2),
except the initial upper-left one, by a canonically defined finite ring extension, it splits
canonically as a direct product of staircase-shaped diagrams of rings: Each factor has
the shape

under any isomorphism as produced by (3).

(a) The upward arrows are going to the field of fractions,
(b) The rightward arrows correspond to passing to the residue field.3

These are continuous/admissible epics resp. monics in both Yekutieli’s category of ST
modules, as well as n-Tate objects.

(5) If X is finite type over a perfect field k, then for each field factor K , the notions of
lattices (à la Beilinson, resp. Yekutieli, resp. Tate) need not agree, but are pairwise
final and cofinal (“Sandwich property”).

We refer to the main body of the text for notation and definitions. The reader will find
these results in Sect. 4, partially in greater generality than stated here. See [51, 3.3.2–3.3.6]
for Yekutieli’s result inspiring the above. Parts (3)–(5) appear to be new results.
These results focus on the case of schemes over a field, and as we shall explain below, are

truly complicated only in the case of characteristic zero. Note also that, since we mostly
work over a base field, our considerations are of a geometric/analytic nature, rather than
an arithmetic one. Also, no thoughts on infinite places will appear here. See [19] for adèles
directed towards arithmetic considerations.
Let us explain the relevance of (3): Yekutieli has already shown in [51] via an explicit

example that in characteristic zero a random field automorphism of an n-local field K
is frequently not continuous. Using Yekutieli’s technique in our context leads us to the
following variation of his idea:

3Moreover, these maps are induced from the corresponding upward and rightward arrows in (2), but due to the finite
ring extensions interfering here, the precise nature of this is a little too subtle to make precise in the introduction.
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Theorem 0.3 Suppose an n-local field K is equipped with an n-Tate object structure in
k-vector spaces. If char(k) = 0 and n ≥ 2, then not every field automorphism of K will
preserve the n-Tate object structure.

See Example 1.30. Jointly with Yekutieli’s original example, this shows that in (3), the
validity of property (a) does not imply (b)–(e) being true as well.
The definitions of the endomorphism algebras ETate� , EYek

K , EBeil� all hinge on notions of
lattices, whose definitions we shall address later in the paper. We shall show that the
different notions of lattices used by Beilinson, Yekutieli or coming from Tate objects are
all pairwise distinct. One might state the comparison as:

Beilinson lattices � Yekutieli lattices � Tate lattices,

modulo a slight abuse of language since these types of lattices live in different objects.
See Sect. 5 for an example demonstrating this. If these notions all agreed, this would have
resulted in a particularly easy proof of Theorem 0.1.
Let us survey the relation among the central players of this paper: Let us assume the

base field k is perfect.

(0.1)

The solid arrows refer to a canonical construction. Each dashed arrow expresses that a
structure can non-canonically be enrichedwith additional structure. By an “n-Tate object”
we mean an n-Tate object in finite-dimensional k-vector spaces. By an “n-local field” we
refer to an equicharacteristic n-local field with last residue field finite over k . By “flag in
scheme” we refer to the adèles A(�,OX ), for a saturated flag � in a suitable scheme X of
finite type over k . By “TLF” we refer to a topological n-local field in the sense of Yekutieli.
By “Laurent series” we refer to k ′((t1)) · · · ((tn)) with k ′/k a finite field extension.
Arrow (1) refers to a certain construction �σ , established in Theorem 3.11. Arrow (2)

refers to the canonical n-Tate object structure of the adèles from [7]. The downward solid
arrows on the right, in particular Arrow (3), just refer to forgetting additional structure.
Arrow (4) refers to Yekutieli’s construction of the TLF structure on the adèles [51].

Dangerous Bend It is a priori not clear that a TLF can be equipped with a system of
liftings inverting Arrow (3) such that we would get a commutative diagram.
However, a different way to state the innovation in Theorem 0.2 is that it is possible

to pick an isomorphism of A(�,OX ) with a Laurent series field such that we arrive at
the same objects, no matter which path through Figure 0.1 we choose. That is, no matter
through which arrows we produce an n-Tate object (resp. TLF), we get the same object.
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The objects in Figure 0.1 come with three (a priori different) endomorphism algebras:

• EBeil of the flag of the scheme, global Beilinson–Tate operators.
• EYek

σ of a TLF with a system of liftings σ , local Beilinson–Tate operators.
• ETate the genuine endomorphisms in the category of n-Tate objects, i.e. really just a

plain Hom-group. This, by the way, shows the conceptual advantage of working with
n-Tate categories.

A deep result of Yekutieli, quoted below as Theorem 2.8, shows that EYek
σ does not

depend on σ , so we can speak of EYek of a TLF. Our paper [5] shows that Arrow (2)
induces an isomorphism EBeil ∼= ETate. Yekutieli’s Conjecture asks whether Arrow (4)
induces an isomorphism EBeil ∼= EYek. We prove this in Theorem 4.17.
In Sect. 3, we prove that Arrow (1) induces an isomorphism EYek ∼= ETate. This is a result

of independent interest. It touches a slightly different aspect than Yekutieli’s Conjecture
since it refers to the n-Tate structure produced by Arrow (1), while the conjecture is about
the n-Tate structure of Arrow (2). By Theorem 0.2 we know that we can find a system
of liftings such that both n-Tate structures match, and this yields a proof of Yekutieli’s
Conjecture.

1 The topology problem for local fields
In this sectionwe shall introduce themainplayers of the story.Wewill use this opportunity
to give a survey over many (not even all) of the approaches to give higher local fields a
topology or at least a structure replacing a topology. This issue is surprisingly subtle, and
many results are scattered over the literature.

1.1 Naïve topology

Acomplete discrete valuationfieldK with the valuation v comeswith a canonical topology,
which we shall call the naïve topology, namely: Take the sets Ui := {x ∈ K | v(x) ≥ i}
as an open neighbourhood basis of the identity. This topology is highly intrinsic to the
algebraic structure.
We recall the crucial fact that a field cannot be a complete discrete valuation field with

respect to several valuations:

Lemma 1.1 (F. K. Schmidt) If a field K is complete with respect to a discrete valuation v,

(1) then every discrete valuation on K is equivalent to v;
(2) any isomorphism of such fields stems from a unique isomorphism of their rings of

integers;
(3) and is automatically continuous (in the naïve topology).

SeeMorrow [39, §1], who has very clearly emphasized the importance of this uniqueness
statement. A thorough study of such and related questions can be found in the original
paper of Schmidt [49].

Proof For the sake of completeness, we give an argument, an alternative to the one in [39]:
(1) Let w be a further discrete valuation, not equivalent to v, and πw a uniformizer for it.
By the Approximation Theorem [24, Ch. I, (3.7) Prop.] one can pick an element x ∈ K so
that
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w(x − πw) ≥ 1 and v(x − 1) ≥ 1.

By the first property, w(x) ≥ 1. By the latter x = 1 + a for some a ∈ mOK and if l ≥ 2
is any integer (such that l � char(OK /m) in case OK /m has positive characteristic), the
series (1 + a)1/ln := ∑∞

r=0
(1/ln

r
)
ar converges, showing that x is l-divisible. So w(x) ∈ Z

is l-divisible, forcing w(x) = 0. This is a contradiction. (2) follows since the valuation
determines the ring of integers, and (3) follows since the naïve topology is defined solely
in terms of the valuation. �

Definition 1.2 (Parshin [44,46] and Kato [31]) For n ≥ 1, an n-local field with last
residue field k is a complete discrete valuation field K such that if (O1,m) denotes its ring
of integers,O1/m is an (n− 1)-local field with last residue field k . A 0-local field with last
residue field k is just k itself.

Inductively unravelling this definition, every n-local field K gives rise to the following
staircase-shaped diagram

(1.1)

where theOi denote the respective rings of integers, and the ki the residue fields. We call
the integers (charK, chark1, . . . , charkn) the characteristic of K .

Corollary 1.3 Fix n ≥ 0.

(1) If a field K possesses the structure of an n-local field at all, it is unique.
(2) If K ∼−→ K ′ is a field isomorphism of n-local fields, it is automatically continuous in

the naïve topology and induces isomorphisms of its residue fields,

ki
∼−→ k ′i ,

each also continuous in the naïve topology, as well as an isomorphism of last residue
fields k ∼−→ k ′.

Proof This follows by induction from Lemma 1.1. �

Note that the number n is not uniquely determined. An n-local field is always also an
r-local field for all 0 ≤ r ≤ n.

Example 1.4 If k is any field, themultiple Laurent series field k((t1)) · · · ((tn)) is an example
of an n-local field with last residue field k . It has characteristic (0, . . . , 0) or (p, . . . , p)
depending on char(k) = 0 or p. The field Qp((t1)) · · · ((tn)) is an example of an (n + 1)-
local field with last residue field Fp. It has characteristic (0, . . . , 0, p). See [21] for many
more examples.

Let (R,m) be a complete Noetherian local domain andm its maximal ideal. A coefficient
field is a sub-field F so that the composition F ↪→ R � R/m is an isomorphism of fields.
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Proposition 1.5 (Cohen’s structure theorem) Let (R,m) be a complete Noetherian local
domain and m its maximal ideal.

(1) If R contains a field (at all), a coefficient field exists.
(2) If char(R) = char(R/m), a coefficient field exists.
(3) If F is any coefficient field and x1, . . . , xr ∈ m a system of parameters,

F [[t1, . . . , tr]] ↪→ R

ti �→ xi

is injective and R is a finite module over its image. If R is regular, one can find
x1, . . . , xr ∈ m such that the corresponding injection becomes an isomorphism of rings

F [[t1, . . . , tr]]
∼−→ R.

(4) ([53, Theorem 1.1]) Suppose k is a perfect field and R a k-algebra. Then one can find
a coefficient field F containing k and such that F ↪→ R is a k-algebra morphism.
If the residue field R/m is finite over k, there is only one coefficient field having this
additional property.

This stems from Cohen’s famous paper [12]. Many more modern references exist, e.g.
[26, Thm. 4.3.3] for an overview, [37, Ch. 11] or [38, §29 and §30] for the entire story. See
Yekutieli’s paper [53, §1] for (4).
An immediate consequence, modulo an easy induction, is the following (simple) excerpt

of the classification theory for higher local fields:

Proposition 1.6 (Classification)Let K be an n-local fieldwith last residue field k such that
all fields K, ki have the same characteristic. Then there exists a non-canonical isomorphism
of fields

K � k((t1)) · · · ((tn)).

If the characteristic is allowed to change, the classification of n-local fields is significantly
richer. We refer the reader to [24, Ch. II, §5] for the structure theory of complete discrete
valuation fields, going well beyond the amount needed here. For the n-local field case, see
[43,54], [40, §0, Theorem] or [39]. For our purposes here, the above version is sufficient.

1.2 Systems of liftings

Suppose K is a complete discrete valuation field with ring of integersO and residue field
κ := O/m. By Cohen’s Structure Theorem, if char(K ) = char(κ), there exists a coefficient
field F ↪→ O, in other words, the quotient map to the residue field

O � κ

admits a section in the category of rings.

Example 1.7 Such a section is usually very far from unique. Consider K = k(s)((t)), a 1-
local fieldwith last residue field k(s). Take any element in themaximal idealα ∈ t ·k(s)[[t]].
Then

k(s)→ k(s)((t)), s �→ s + α
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defines a coefficient field. These are different whenever different α are chosen. Yekutieli
has a much more elaborate version of this construction, producing an enormous amount
of coefficient fields for the 2-local field k((s))((t)) with char(k) = 0. See Example 1.29 or
[51, Ex. 2.1.22].

Example 1.8 Suppose K is an equicharacteristic complete discrete valuation field. If and
only if the residue field is either (1) an algebraic extension of Q, or (2) a perfect field of
positive characteristic, then there is only one possible choice for the coefficient field [24,
Ch. II §5.2–§5.4]. In all other cases there will be a multitude of coefficient fields.

There is a straightforward extension of the concept of a coefficient field to n-local fields.

Definition 1.9 Let K be an n-local field. An algebraic system of liftings (σ1, . . . , σn) is a
collection of ring homomorphisms

σi : ki → Oi

which are sections to the residue field quotient mapsOi � ki.

This concept appears, for example, in [32, §1, p. 112], [40,53].

Example 1.10 (Madunts, Zhukov) By Example 1.7, an n-local field will surely have many
systems of liftings if n ≥ 2, and possibly as well if n = 1, depending on the last residue field.
Still, if the last residue field is a finite field, and we choose uniformizers t1, . . . , tn for the
rings of integersO1, . . . ,On, Madunts and Zhukov [40, §1] isolate a distinguished, canon-
ical, system of liftings ht1 ,...,tn for all n-local fields which are either (1) equicharacteristic
(p, . . . , p) with p > 0 some prime, or (2) mixed characteristic (0, p, . . . , p) for some prime.
This construction does not work, for example, for k((t1)) · · · ((tn)) with char(k) = 0, or
the 2-local fieldQp((t)) of characteristic (0, 0, p). See [54, §1.3] for a survey. These liftings
depend on the choice of t1, . . . , tn.

1.3 Minimal higher topology

The naïve topology comes with a major drawback: Already for the multiple Laurent series
field k((t1)) · · · ((tn)) the formal series notation

∑
ai1...in t

i1
1 t

i2
2 · · · tinn

of an arbitrary element is usually not convergent in the topology once n ≥ 2. The problem
is that the topology is only made from the top valuation, sensitive to the exponent of tn,
but gives the first residue field—when viewed as a sub-field—the discrete topology. Also,
the algebraic quotient maps Oi � ki are not topological quotient maps, i.e. they do not
induce the quotient topology on ki. The Laurent polynomials k[t±11 , . . . , t±n ] are not dense
for n ≥ 2. This is a new phenomenon and complication in the case n ≥ 2, which cannot
be seen in the classical theory for n = 1. Dealing with this type of behaviour required
some new ideas, and Parshin proposed to equip n-local fields with a different topology
[47, p. 145, bottom].

Example 1.11 (Parshin) There is a strong limitation to the properties a reasonable topol-
ogy on K := k((t1))((t2)) can have, in the shape of the following obstruction: Assume T
is any topology making the additive group (K ;+) a topological group and such that the
quotient topology induced from
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O1 � O1/m, i.e. k((t1))[[t2]] � k((t1)) (1.2)

equips k((t1)) precisely with the naïve topology. Then K is not a topological ring in this
topology [47, Remark 1 on p. 147]: Suppose it were. The map in Eq. 1.2 is continuous
by assumption, so the subsets U + t2k[[t2]] are open in k((t1))[[t2]] if and only if U ⊆
k((t1)) is open. As multiplication with powers of t2 would be continuous, this enforces the
following: For (Ui)i∈Z a sequence of open neighbourhoods of the identity in k((t1)) such
that Ui = k((t1)) for all sufficiently large i, then the sets

V := ∑
iUiti2 ⊆ K (1.3)

must be open. These are finite sums of t2-translates of sets we already knowmust be open.
The following figure illustrates the nature of these open sets; the shaded range symbolizes
those exponents (i1, i2) whose monomials ti11 t

i2
2 are allowed to carry a nonzero coefficient:

This continues ad infinitum to the left; perhaps thinning out but never terminating. The
dotted line marks the index such that Ui = k((t1)) for all larger i. Now we observe
that V · V = K is the entire field (under multiplication the condition Ui = k((t1)) for
large i compensates that the open neighbourhoods may thin out to the left). Thus, if
multiplication K × K → K were continuous, the pre-image of some open U ⊂ K would
have to be open, thus contain some diagonal Cartesian open V × V , but we just saw that
multiplication maps this to all of K . See [16,54] for a further analysis. For example, this
observation extends to show that the multiplicative group K× of an n-local field cannot
be a topological group for n ≥ 3 [33].

It appears that the consensus of the practitioners in the field is that it is better to have
a reasonable topology than insisting on working with topological rings, which carry an
almost meaningless topology. Parshin [47] then developed the theory by taking the open
sets of the shape in Eq. 1.3 as the general definition of a topology for the field F ((t)): If the
additive group (F ;+) is equipped with a topological group structure, generate an additive
group topology on F ((t)) from the sets V(Ui) of the shape

V(Ui) :=
∑

iUiti ⊆ F ((t))

for (Ui)i∈Z open neighbourhoods of the identity in F and Ui = F for i large enough. This
is explained in more detail in [40, §1], [54]. Giving k the discrete topology, this inductively
equips k((t1)) · · · ((tn)) with a canonical topology. We call it Parshin’s natural topology
(there does not appear to be a standard name in the literature; e.g. Abrashkin and his
students call it the “P-topology’ ’[1, §1.2]). For n ≥ 2, the natural topology has quite
different opens than the naïve topology.
IfK is an equicharacteristicn-local fieldwith last residue field k , Proposition 1.6 provides

an isomorphism φ to such a multiple Laurent series field:

K ∼−→
φ

k((t1))((t2)) · · · ((tn)).
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Sadly, as was discovered by Yekutieli in 1992 (see Example 1.29 below), the induced
topology usually depends on the choice of the isomorphism. That means, switching to a
different φ will frequently equip K with a truly different topology. We shall return to this
crucial issue in Sect. 1.6.

Example 1.12 (Madunts, Zhukov) The situation is slightly better if we are in the situation
of Example 1.10. If K is an n-local field, equicharacteristic (p, . . . , p) with p > 0, and the
last residue field is finite, Madunts and Zhukov define a topology (extending Parshin’s
natural topology) based on their canonical lift ht1 ,...,tn , cf. Example 1.10, and in a second
step prove that the topology is independent of the choice of t1, . . . , tn [40, Thm. 1.3]. This
also works for n-local fields of characteristic (0, p, . . . , p) and finite last residue field. Such
a construction is not available, for example, for k((t1)) · · · ((tn)) with char(k) = 0. In fact,
Example 1.29, due to A. Yekutieli, shows that no such generalization can possibly exist.

Before we continue this line of thought, we discuss a further development of the natural
topology:

1.4 Sequential spaces

Working with the natural topology, at least multiplication by a fixed element from the left
or right are continuous, and one has

xn −→ x, yn −→ y =⇒ xn · yn −→ x · y,
i.e. the multiplication is continuous if one only tests it on sequences. Following this lead,
Fesenko modified the natural topology into a new one in which continuity is detected by
sequential continuity alone. We sketch the implications of this:
We recall that a subset Z ⊂ X of a topological space X is called sequentially closed if for

every sequence (xn) with xn ∈ Z, convergent in X , the limit limn xn also lies in Z.

Definition 1.13 (Franklin) A topological space is called sequential if a subset is closed iff
it is sequentially closed.

Franklin shows that equivalently sequential spaces are those spaces which arise as quo-
tients of metric spaces [22, (1.14) Corollary]. The inclusion admits a right adjoint, called
sequential saturation,

Topseq
sat
� Top

between the category Top (resp. Topseq) of all (resp. sequential) topological spaces.

Definition 1.14 (Fesenko) The saturation topology on k((t1)) · · · ((tn)) is the sequential
saturation of the natural topology [16].

This topology has many more open sets than the natural topology in general (see [16,
(2.2) Remark] for an explicit example), but a sequence is convergent in the saturation
topology if and only if it converges in the natural topology. This is no contradiction since
these topologies do not admit countable neighbourhood bases. Example 1.11 implies that
we still cannot have a topological ring. However, we get something like a “sequential topo-
logical ring”. But this really is a completely different notion than a topological ring because
ring objects in sequential spaces are not compatible with ring objects in topological spaces
by the following example:
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Example 1.15 (Dudley, Franklin) The categories Topseq and Top have products, but they
do not agree, i.e.

(Xsat ×Top Ysat) �= (X ×Top Y )sat .

Explicit examples were given independently by Dudley and Franklin. See [22, Exam-
ple 1.11] for the latter. We refer to [22,23] for a detailed study.

Remark 1.16 For n = 1, the naïve, natural and saturation topology on k((t)) all agree.

Remark 1.17 Analogously to the case of higher local fields, the adèles of a scheme can
also be equipped with sequential topologies [19,20].

Remark 1.18 A detailed exposition and elaboration on the notions of sequential groups
and rings was given by A. Cámara [11, §1]. He also studies a further topological approach.
In [9,10] he shows thatn-local fields can also be viewed as locally convex topological vector
spaces if one fixes a suitable embedding of a local field, serving as the “field of scalars”.
The interested reader should consult A. Cámara for further information, much of which
is not available in published form.

1.5 Kato’s ind–pro approach

Kato [32, §1] proposed that the concept of topology might in general not be the right
framework to think about continuity in higher local fields. In the introduction to [33] he
proposes very clearly to abandon the idea of topology entirely, in favour of promoting the
ind–pro structure of higher local fields, e.g. as in

k((t)) = colim−−−→
i

lim←−
j
t−ik[[t]]/tj ,

to the essential datum.We note that this presentation of k((t)) is, in the category of linear
topological vector spaces, inducing the naïve topology. Thus, the ind–pro perspective is
another possible starting point to find a good generalization of continuity to higher local
fields.
Instead of just working with vector spaces, such an ind–pro viewpoint makes sense for

objects in almost any category. Let C be an exact category, e.g. an abelian category. Then
there is a category Indaκ (C) of admissible Ind-objects (of cardinality ≤ κ), e.g. encoding
objects defined by an inductive system

C1 ↪→ C2 ↪→ C3 ↪→ · · ·
with Ci ∈ C and admissible monics as transition morphisms. Additionally, more compli-
cated defining diagrams can be allowed. A precise definition and construction is given in
Keller [34, Appendix B] or in greater generality [7, §3]. Following Keller’s ideas, Indaκ (C)
is again an exact category and an analogous formalism exists for Pro-objects, Proaκ (C). See
also Previdi [48]. We shall frequently drop the cardinality κ from the notation for the sake
of legibility. These categories sit in a commutative square of inclusion functors
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One may now replace IndaProa(C) by the smallest sub-category still containing Inda(C)
and Proa(C), but also being closed under extensions. This is again an exact category, called
the category of elementary Tate objects, Tateel(C) [7,48].

Example 1.19 Let Abfin be the abelian category of finite abelian groups. In the category
of all abelian groups Ab we have

Qp = colim−−−→
i

lim←−
j

1
pi
Z/pjZ, where

1
pi
Z/pjZ ∈ Abfin.

Instead of regarding this colimit/limit inside the category Ab, we could read the inner
limit as a diagram Ji : N → Abfin, j �→ 1

piZ/pjZ, defining an object in Proa(Abfin), and
using the dependency on iwe get a diagram I : N→ Proa(Abfin), i �→ [(Ji)] of Pro-objects.
Considering the object defined by this diagram, we get an object I ∈ IndaProa(Abfin). One
can easily check that it actually lies in Tateel(Abfin), see Definition 1.21 below. One can
also define a functor Tateel(Abfin) → Ab which, using that Ab is complete and cocom-
plete, evaluates the Ind–Pro-object described by these diagrams. This yields Qp ∈ Ab

as before. See [7] for more background. More examples along these lines can be found
in [5].

Kapranov made the justification of Kato’s idea [33] very precise:

Example 1.20 (Kapranov [29,30]) If C := Vectf (Fq) is the abelian category of finite-
dimensional Fq-vector spaces, q = pn, Kapranov proved that there is an equivalence of
categories Tateel(C) ∼→ LT, where LT is the category of linearly locally compact topological
Fq-vector spaces [30,36]. Every equicharacteristic 1-local field with last residue field Fq
and equipped with the naïve topology is an object of LT. One can extend this example
and interpret any 1-local field with last residue field Fq as an object of Tateel(C) for C the
category of finite abelian p-groups, e.g. as in Example 1.19.

The category Tateel(C) can be described as those objects V ∈ IndaProa(C) which admit
an exact sequence

L ↪→ V � V /L (1.4)

so that L ∈ Proa(C) and V /L ∈ Inda(C).

Definition 1.21 Any L appearing in such an exact sequence will be called a (Tate) lattice
in V .

So Tate objects are those Ind–Pro-objects admitting a lattice. A category of this nature
was first defined by Kato [33] in the 1980s (the manuscript was published only much
later), but without an exact category structure, and independently by Beilinson [4] for a
completely different purpose—Previdi proved the equivalence between Beilinson’s and
Kato’s approaches [48].

Remark 1.22 It is shown in [7, Thm. 6.7] that for idempotent complete C, any finite set
of lattices has a common sub-lattice and a common over-lattice. This can vaguely be
interpreted as counterparts of the statement that finite unions and intersections of opens
in a topological space should still be open.
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Following Kato, this suggests to replace the topologically minded category LT (of Exam-
ple 1.20) by Tateel(C), and for example, a 2-local field over Fq should be viewed as some-
thing like

Fq((t1))((t2)) ∈ Tateel
(
Tateel

(
Vectf

))
. (1.5)

Instead of concatenating lengthy expressions, we shall call this a “2-Tate object” andmore
generally define the following:

Definition 1.23 Let C be an arbitrary exact category. Define 1-Tateel(C) := Tateel(C),
and n-Tateel(C) := Tateel( (n− 1)-Tate(C) ) and n-Tate(C) as the idempotent completion
of the category n-Tateel(C) . Objects in n-Tate(C) will be called n-Tate objects. [7, §7]

The slightly complicating presence of idempotent completions in this definition makes
the categories substantially nicer to work with. See [5] for many instances of this effect.

Example 1.24 (Kato) Kato [32, §1] equips an n-local field K along with a fixed algebraic
system of liftings, Definition 1.9, with the structure of an n-Tate object in finite abelian
groups. The definition depends on the system of liftings. See [33, §1.2] for a detailed
exposition. For multiple Laurent series we can use

“k((t1))((t2)) . . . ((tn))” = colim−−−→
in

lim←−
jn

· · · colim−−−→
i1

lim←−
j1

1
ti11 · · · tinn

k[t1, . . . , tn]
/(

tj11 , . . . , t
jn
n

)
.

Example 1.25 (Osipov) In the case of C := Vectf a closely related alternative model for n-
Tate objects are theCn-categories of Denis Osipov [42]. There is also a variant for C := Ab

or including some abelian real Lie groups, the categories Cfin
n or Car

n of [41].

Kato’s approach differs quite radically from the others. Since the concept of a topology
is not used at all, it seems at first sight very unclear how one could even formulate any
sort of “comparison” between the ind–pro versus topological viewpoint.

1.6 Yekutieli’s ST rings

Yekutieli’s approach, first introduced in [51], uses topology again. However, instead of
just looking at fields, he directly formulates an appropriate weakening of the concept of a
topological ring for quite general (even non-commutative) rings.
For the moment, let k be any ring and it will tacitly be understood as a topological

ring with the discrete topology. Yekutieli works with his notion of semi-topological rings
(ST rings): An ST ring is a k-algebra R along with a k-linear topology on its underlying
k-module such that for any given r ∈ R both one-sided multiplication maps

(r · −) : R −→ R and (− · r) : R −→ R

are continuous. We follow his notation and write STRing(k) for this category. Morphisms
are continuous k-algebra homomorphisms. See [53, §1] for a review of the theory. The
material is developed in full detail in [51, Chapter 1].

Example 1.26 (Cámara) The left and right continuity is also a feature of both the natural
and the saturation topology. In particular, k((t1)) · · · ((tn)) with the natural topology lies
in STRing(k). By a result of Cámara, this is no longer true for the saturation topology.
In more detail: The topology on Yekutieli’s ST rings is always linear, i.e. admits an open
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neighbourhood basis made from additive sub-groups/or sub-modules. Cámara’s theorem
[11, Theorem 2.9 and Corollary] shows that the saturation topology from Sect. 1.4 is not a
linear topology. For a 2-local field he shows that if one takes the topology generated only
from those saturation topology opens which are simultaneously sub-groups, one recovers
the natural topology.

Similarly, an ST module M is an R-module along with a linear topology on its additive
group such that for any given r ∈ R andm ∈ M the maps

(r · −) : M −→ M and (− ·m) : R −→ M

are continuous. This additive k-linear category is denoted by STMod(R). Yekutieli already
points out that this category is not abelian. Although he does not phrase it this way, his
results also imply that the situation is not too bad either:

Proposition 1.27 For any ST ring R, the category STMod(R) is quasi-abelian in the sense
of Schneiders [50].

Proof Yekutieli already shows in [51, Chapter 1] that the category is additive and has all
kernels and cokernels. So one only has to check that pushouts preserve strict monics and
pullbacks preserve strict epics. These verifications are immediate. �
We get a functor to ordinary modules by forgetting the topology and Yekutieli shows

[51, §1.2 and Prop. 1.2.4] that it has a left adjoint

STMod(R)
fine
�

forget
Mod(R),

where “fine” equips an R-module M with the so-called fine ST topology, the finest linear
topology such that M is an ST module at all (it exists by [51, Lemma 1.1.1]). Being a left
adjoint, “fine” commutes with colimits.

Example 1.28 (Yekutieli)Yekutieli defines anSTring structureonmultipleLaurent series:

k((t1))((t2)) · · · ((tn)) ∈ STRing(k). (1.6)

His construction is as follows: Write it as

colim−−−→
in

lim←−
jn

· · · colim−−−→
i1

lim←−
j1

1
ti11 · · · tinn

k[t1, . . . , tn]
/(

tj11 , . . . , t
jn
n

)

and (1) equip the inner term with the fine ST k-module topology, (2) for the limits
use that the inverse limit linear topology of ST topologies is again an ST topology [51,
Lemma 1.2.19], (3) the colimits are localizations, equip them with the fine topology over
the ring we are localizing; this makes them ST rings again [51, Prop. 1.2.9]. See [53,
Def. 1.17 and Def. 3.7] for the details.

Semi-topological ringsultimately remainavery subtleworkingground.On theonehand,
they behave very well with respect tomany natural questions (e.g. Yekutieli develops inner
Homs, shows a type ofMatlis duality; see [51,52]). On the other hand, just as for sequential
spaces, Sect. 1.4, harmless looking constructions can fail badly, e.g. [53, Remark 1.29].

Example 1.29 (Yekutieli) In [51, Ex. 2.1.22] Yekutieli exhibited an example greatly clar-
ifying the problem underlying the search for a canonical topology on n-local fields. A
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detailed exposition is given in [53, Ex. 3.13]. We sketch the construction since we shall
need to refer to some of its ingredients later: Suppose char(k) = 0 and let {bi}i∈I be a
transcendence basis for k((t1))/k with bi ∈ k[[t1]]; such exists since if bi /∈ k[[t1]], replace
it by b−1i . The index set I will necessarily be infinite. Then for any choice of elements
ci ∈ k((t1))[[t2]], i ∈ I , Yekutieli constructs a map

σ : k((t1)) −→ k((t1))[[t2]]

bi �−→ bi + cit2, (1.7)

which is a particular choice of a coefficient field (on the purely k-transcendental sub-field

k({bi}i∈I ) −→ k((t1))[[t2]]

the existence of this map is clear right away. Lifting this morphism along the algebraic
extension k((t1))/k({bi}i∈I ) is the subtle point and hinges on char(k) = 0 [53]). We may
assume b0 = t1 and c0 = 0 for some index 0 ∈ I , so that σ maps t1 to itself. Yekutieli
shows that σ lifts to a field automorphism σ̃ of k((t1))((t2)) sending one such coefficient
field to another and t2 to itself. Since the sub-field k(t1, t2) is element-wise fixed by σ̃ , but is
dense in the natural topology, Fesenko’s saturation topology and Yekutieli’s ST topology,
σ̃ will not be continuous unless all ci are zero. It follows that if K is an n-local field and

φ : K � k((t1)) · · · ((tn))
some field isomorphism φ from Proposition 1.6, the topology pulled back from the right-
hand side to K depends on the choice of φ, because we could twist this map with arbitrary
discontinuous automorphisms σ̃ .

Example 1.30 We use this paper as an opportunity to unravel a variation of Yekutieli’s
example in order to show that Kato’s ind–pro structure, as explained in Example 1.24,
will also not be preserved by a random field automorphism. We assume at least a passing
familiarity with [7]. Recall that Vectf denotes the abelian category of finite-dimensional
k-vector spaces. Again, suppose char(k) = 0. Consider Yekutieli’s map σ , as in Eq. 1.7, and
recall that we can choose the ci quite arbitrarily. We will use this now: Pick any surjective
set-theoretic map Q : I � Z. Such a map exists since the indexing set I is infinite. We
take

ci := tQ(i)
1 ∈ k((t1))[[t2]]. (1.8)

Wewrite either side as a2-Tateobject infinite-dimensional k-vector spaces 2-Tate(Vectf ) ,
as in Example 1.24. If σ̃ is induced from amorphism of 2-Tate objects, it is in particular an
automorphism of a 1-Tate object (namely, a 1-Tate object with values in 1-Tate objects,
see Eq. 1.5), namely of

colim−−−→
i2

lim←−
j2

1
ti22

k((t1))[[t2]]
/(

tj22
)

︸ ︷︷ ︸
=:Vi2 ,j2

.

This in turn is true if and only if for every pair (i2, j′2) there exists a pair (i′2, j2) so that σ̃

restricts to

σ̃ |(i2 ,j2): Vi2 ,j2 −→ Vi′2 ,j′2 . (1.9)
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If this is the case, the converse translation is as follows: These σ̃ |(i2 ,j2), for each i2 fixed and
varying over j2, induce amorphism of Pro-diagrams (see [7, §4.1, Def. 4.1] for a definition),
and then varying over i2 they induce a morphism of Tate diagrams, made from these Pro-
diagrams (see [7, Def. 5.2] for a definition). This in turn gives the desired morphism of
Tate objects. Unravel Eq. 1.9 in the case i2 := 0 and take any j′2 (we may imagine taking
this arbitrarily large, if we want) so that we have the existence of indices i′2 and j2 with

σ̃ |(0,j2): k((t1))[[t2]]
/(

tj22
)
−→ 1

ti
′
2
2

k((t1))[[t2]]
/(

tj
′
2
2

)
,

bi �−→ bi + tQ(i)
1 · t2. (1.10)

The restriction of this morphism in the category Tate(Vectf ) to the lattice k[[t1]] becomes

σ̃ |(0,j2): k[[t1]][[t2]]
/(

tj22
)
−→ 1

ti
′
2
2

k((t1))[[t2]]
/(

tj
′
2
2

)
. (1.11)

But lattices are Pro-objects. Thus, by [7, Prop. 5.8] the morphism σ̃ |(0,j2) factors through
a Pro-subobject L of the right-hand side

Alternatively one could use the following stronger fact: For a morphism of Tate objects,
morphisms originating from a lattice factor through a lattice in the target [6, Prop. 2.7 (1)].
Now, the Pro-system

⎛

⎝m �−→ 1

ti
′
2
2

1
tm1

k[[t1]][[t2]]
/(

tj
′
2
2

)
⎞

⎠ in Proa(Vectf ) (1.12)

is a cofinal system of lattices in the target, so in particular the image of σ̃ |(0,j2)|k[[t1]] as
in Eq. 1.11 would have to factor over some object in this system. As we could assume
bi ∈ k[[t1]] for all i ∈ I in Example 1.29 and Q is surjective, Eq. 1.10

k[[t1]][[t2]]
/(

tj22
)
−→ 1

ti
′
2
2

k((t1))[[t2]]
/(

tj
′
2
2

)

bi �−→ bi + tQ(i)
1 · t2

produces a contradiction since arbitrarily negative powers of t1 lie in the image of thismap,
but each of the lattices in the system in Eq. 1.12 only has t1 powers with an overall lower
bound on the exponent. In other words: Even though σ̃ exists as a field automorphism,
there is no automorphism of 2-Tate objects inducing it.

We summarize: A general field automorphism of the 2-local field k((t1))((t2)) for
char(k) = 0 need not preserve (1) the natural or saturation topologies, (2) Yekutieli’s
ST topology, (3) or Kato’s 2-Tate object structure.
We thankDenisOsipov for pointing out to us that those automorphismswhich preserve

the n-Tate structure of Laurent series k((t1)) · · · ((tn)) are also automatically continuous
in all of the aforementioned topologies [42, Prop. 2.3, (i)]. See also Example 3.9.
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Remark 1.31 (Characteristic p > 0) Contrary to the usual intuition, the situation is much
simpler in positive characteristic p > 0:

(1) (Kato) Kato produces a canonical ind–pro structure. See [33, §1.1, Prop. 2 & Exam-
ple].

(2) (Madunts, Zhukov) The paper [40] constructs a canonical topology, following
Parshin.

(3) (Yekutieli) Yekutieli proves that all field isomorphisms between equicharacteristic
n-local fields of positive characteristic p > 0 must automatically be continuous, i.e.
isomorphisms in STRing(k) [51, Prop. 2.1.21]. This is based on a surprising idea using
differential operators. See [51, Thm. 2.1.14 and Prop. 2.1.21].

Despite these positive results, it still seems reasonable to approach the uniqueness
problem for the topology for arbitrary n-local fields without using this workaround in
positive characteristic.

Examples 1.29 and 1.30 suggest that looking at n-local fields per se, there are too many
automorphisms to make reasonable and especially canonical use of topological concepts.
As a result, Yekutieli proposes to rigidify the category of n-local fields by choosing and
fixing a topology on them. This will be an extra datum. Working in this context, one
can restrict one’s attention to those field automorphisms which are also continuous. This
greatly cuts down the size of the automorphism group: For an n-local field, we define the
ring

O(K ) := O1 ×k1 O2 ×k2 · · · ×kn−1 On ⊂ K.

It consists of those elements inO1 whose residual image lies inO2 such that their residual
image lies inO3 and so forth.

Definition 1.32 (Yekutieli) Let k be a perfect field. A topological n-local field (TLF)
consists of the following data:

(1) an n-local field K as in Definition 1.2,
(2) a topology T on K which makes it an ST ring,
(3) a ring homomorphism k → O(K ) such that the composition k → O(K ) → kn is a

finite extension of fields;

and we assume there exists a (non-canonical, not part of the datum) field isomorphism

φ : k((t1))((t2)) · · · ((tn)) ∼−→ K

which is also an isomorphism in STRing(k), where the left-hand side is equipped with the
standard ST ring structure, as explained in Example 1.28.
Amorphism of TLFs is a field morphism, which is simultaneously an ST ringmorphism

and preserves the k-algebra structure given by (3).

Any such isomorphism φ will be called a parametrization. We wish to stress that the
parametrization is not part of the data. We only demand that an isomorphism exists at
all. See [52] and [53, §3] for a detailed discussion of TLFs.

Dangerous Bend Despite the name, a “topological n-local field” is not a field object (or
even ring object) in the category Top.
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Example 1.33 Since Yekutieli’s Example 1.29 shows that a general field automorphism
φ will not be continuous in the ST ring topology, it implies that it will not be a TLF
automorphism.

Remark 1.34 All of these approaches to topologization not only apply to higher local
fields, but are also natural techniques to equip similar algebraic structures with a topology,
e.g. double loop Lie algebras g((t1))((t2)) [18].

2 Adèles of schemes
In Sect. 1we have introduced higher local fields and their topologies. In the present section
we shall recall one of the most natural sources producing these structures: the adèles of
a scheme. Mimicking the classical one-dimensional theory of Chevalley and Weil, this
construction is due to Parshin in dimension two [45], and then was extended to arbitrary
dimension by Beilinson [3].

2.1 Definition of Parshin–Beilinson adèles

We follow the notation of the original paper by Beilinson [3]. We assume that X is a
Noetherian scheme. For us, any closed subset of X tacitly also denotes the corresponding
closed sub-scheme with the reduced sub-scheme structure, e.g. for a point η ∈ X we write
{η} to denote the reduced closed sub-scheme whose generic point is η. For points η0, η1 ∈
X , we write η0 > η1 if {η0} � η1, η1 �= η0. Denote by S (X)n := {(η0 > · · · > ηn), ηi ∈ X}
the set of non-degenerate chains of length n+ 1. Let Kn ⊆ S (X)n be an arbitrary subset.
We will allow ourselves to denote the ideal sheaf of the reduced closed sub-scheme {η}

by η aswell. This allows a slightlymore lightweight notation and is particularly appropriate
for affine schemes, where the η are essentially just prime ideals.
For any point η ∈ X , define ηK := {(η1 > · · · > ηn) s.t. (η > η1 > · · · > ηn) ∈ Kn}, a

subset of S (X)n−1. Let F be a coherent sheaf on X . For n = 0 and n ≥ 1, respectively, we
define inductively

A(K0,F ) :=
∏

η∈K0

lim←−i F ⊗OX OX,η/η
i,

A(Kn,F ) :=
∏

η∈X
lim←−i A

(

ηKn ,F ⊗OX OX,η/η
i
)
. (2.1)

For a quasi-coherent sheaf F , we define

A(Kn,F ) := colim−−−→FjA(Kn,Fj), (2.2)

where Fj runs through all coherent sub-sheaves of F . As it is built successively from
ind-limits and countable Mittag-Leffler pro-limits, A(Kn,−) is an exact functor from the
category of quasi-coherent sheaves to the category of OX -module sheaves. We state the
following fact in order to provide some background, but it will not play a big role in this
paper:

Theorem 2.1 (Beilinson [3, §2]) For a Noetherian scheme X, and a quasi-coherent sheaf
F on X, there is a functorial resolution

0 −→ F −→ A0 −→ A1 −→ A2 −→ · · · (2.3)

in the category ofOX-module sheaves, made from the flasque sheaves defined byAi(U ) :=
A(S (U )i ,F ).
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Wewill not go into further detail. See Huber [27,28] for a detailed proof (the only proof
available in print, as far as we know) as well as further background.

Example 2.2 If X/k is an integral proper curve, the complex 2.3 for F := OX becomes

0 −→ OX −→ k(X)⊕ ∏

x∈U0

Ôx −→ ∏′
x∈U0

K̂x −→ 0,

where k(X) is the sheaf of rational functions, U0 is the set of closed points in any open
U (read these terms as sheaves in U ), K̂x := FracÔx. In particular, we obtain Hi(X,OX )
as the cohomology of the global sections of this flasque resolution. Note that the global
sections of the right-most term just correspond to the classical adèles of the curve. Hence,
the Parshin–Beilinson adèles really extend the classical framework. As discussed in Sect.
1 the fields K̂x have a well-defined intrinsic topology, just because they are 1-local fields.
For dimX ≥ 2, we would get higher local fields and the question of a topology begins to
play a significant role.

Remark 2.3 (Other adèle theories) In this paper, whenever we speak of “adèles”, we will
refer to the Parshin–Beilinson adèles as described in this section, or the papers [3,28].
There are other notions of adèles as well: First of all, the Parshin–Beilinson adèles truly
generalize the classical adèles only in the function field case: The adèles of a number field
feature the infinite places as a very important ingredient, and these are not covered by
the Parshin–Beilinson formalism. In a different direction, for us a higher local field has a
ring of integers in each of its residue fields, corresponding to a valuation taking values in
the integers. However, one can also look at this story from the perspective of higher-rank
valuations, i.e. taking values in Zr with a lexicographic ordering. This yields further, more
complicated, rings of integers, along with corresponding notions of adèles. See Fesenko
[17,19]. Finally, instead of allowing just quasi-coherent sheaves as coefficients, one may
also allow other sheaves as coefficients. See, for example, [13,25].

2.2 Local endomorphism algebras

We axiomatize the basic algebraic structure describing well-behaved endomorphisms, for
example of n-local fields, or vector spaces over n-local fields. In particular, this will apply
to n-local fields built from the adèles.

Definition 2.4 A Beilinson n-fold cubical algebra is

(1) an associative unital4 k-algebra A;
(2) two-sided ideals I+i , I−i such that we have I+i + I−i = A for i = 1, . . . , n.

This structure appears in [3], but does not carry a name in loc. cit. In all examples of
relevance to us, A will be non-commutative. The rest of this section will be devoted to
three rather different ways to produce examples of this type of algebra.

2.3 Tate categories/ind–pro approach

Theorem 2.5 ([5, Theorem 1]) Let C be an idempotent complete and split exact category.
For every object X ∈ n-Tateelℵ0 (C) , its endomorphism algebra carries the structure of a
Beilinson n-fold cubical algebra, we call it

4For some applications it can be sensible to allow non-unital A as well, but we would not have a use for this level of
generality here.
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ETate(X) := Endn-Tateelℵ0 (C)
(X) .

In particular, we can look at finite-dimensional k-vector spaces, i.e. C := Vectf , and
then the Tate objects à la k((t1)) · · · ((tn)) in Sect. 1.5 automatically carry a cubical endo-
morphism algebra. See [5] for the construction of the algebra structure and for further
background. The above result is not given in the broadest possible formulation, e.g. even
if C is not split exact, the ideals I+i , I−i can be defined. Moreover, they even make sense
in arbitrary Hom-groups and not just endomorphisms. Without split exactness, one then
has to be careful with the property I+1 + I−1 = A however, which may fail in general.
The introduction of [5] provides a reasonably short survey to what extent the above

theorem can be stretched, and which seemingly plausible generalizations turn out to be
problematic.

2.4 Yekutieli’s TLF approach

Yekutieli also constructs such an algebra, but taking a topological local field as its input.

Theorem 2.6 (A. Yekutieli) Let k be a perfect field. Let K be an n-dimensional TLF over
k. Then there is a canonically defined Beilinson n-fold cubical k-algebra

EYek(K ) ⊆ Endk (K ),

contained in the algebra of all k-linear endomorphisms.

This is [53, Theorem 0.4]. We briefly summarize what lies behind this: Firstly, Yekutieli
introduces the notion of topological systems of liftings σ for TLFs [53, Def. 3.17] (actually
it is easy to define: This is an algebraic system of liftings, as in our Definition 1.9, where
the sections σi have to be ST morphisms. We have already seen in Example 1.29 that
this truly cuts down the possible choices). Then he gives a very explicit definition of a
Beilinson n-fold cubical algebra called EK

σ in loc. cit., depending on this choice of liftings.
The precise definition is [53, Def. 4.5 and 4.14], and we refer the reader to this paper for a
less dense presentation and many more details:

Definition 2.7 (Yekutieli) Let k be a perfect field and K an n-dimensional TLF over k .

(1) If M is a finite K -module, a Yekutieli lattice L is a finite O1-submodule of M such
that K · L = M.

(2) Fix any system of liftings σ = (σ1, . . . , σn) in the sense of Yekutieli [53, Def. 3.17].
For finite K -modulesM1,M2, define

EYek
σ (M1,M2) ⊆ Homk (M1,M2)

to be those k-linear maps such that

(a) for n = 0 there is no further restriction, all k-linear maps are allowed;
(b) for n ≥ 1 and all Yekutieli lattices L1 ⊂ M1, L2 ⊂ M2, there have to exist

Yekutieli lattices L′1 ⊂M1, L′2 ⊂ M2 such that

L′1 ⊆ L1, L2 ⊆ L′2, f (L′1) ⊆ L2, f (L1) ⊆ L′2

and for all such choices L1, L′1, L2, L′2 the induced k-linear homomorphism
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f : L1/L′1 → L′2/L2 (♦)

must lie in EYek
(σ2 ,...,σn)(L1/L

′
1, L

′
2/L2). For this read L1/L

′
1 and L

′
2/L2 as k1-modules

via the liftingσ1 : k1 ↪→ O1. Yekutieli calls any suchpair (L′1, L′2) an f -refinement
of (L1, L2).

(3) Define I+1,σ (M1,M2) to be those f ∈ EYek
σ (M1,M2) such that there exists a Yekutieli

lattice L ⊂ M2 with f (M1) ⊆ L. Dually, I−1,σ (M1,M2) is made of those such that there
exists a lattice L ⊂ M1 with the property f (L) = 0.

(4) For i = 2, . . . , n, and both “+/−”, we let I±i,σ (M1,M2) consist of those f ∈
EYek

σ (M1,M2) such that for all lattices L1, L′1, L2, L′2 as in part (2), Eq. ♦, the con-
dition

f ∈ I±(i−1),(σ2 ,...,σn)(L1/L
′
1, L

′
2/L2)

holds.
(5) For any finite K -module M, these ideals equip (EYek

σ (M,M), I±i,σ (M,M)) with the
structure of a Beilinson n-fold cubical algebra. Yekutieli calls elements of EYek

σ a
local Beilinson–Tate operator.

The verification that this is indeed a cubical algebra is essentially
[53, Lemma 4.17 and 4.19].

Dangerous Bend Something is very important to stress in this context: The system of
liftings plays an absolutely crucial role here. The quotients

L1/L′1 and L′2/L2

in Eq. ♦ carry a canonical structure as torsionO1-modules. There is no canonical way to
turn them into modules over the residue field k1; the residue map

O1 � k1

goes in the wrong direction. So we really need a section to thismap, i.e. a system of liftings.
As we have seen in Example 1.29 (due to Yekutieli), there can be very different sections,
so a priori there is a critical dependence of EYek

σ on σ .
The key technical input then becomes a rather surprising observation originating from

Yekutieli [51]: Every change between Yekutieli’s systems of liftings must essentially come
from a continuous differential operator, see [53, §2, especially Theorem 2.8 forM1 = M2]
for a precise statement, and these in turn lie in EK

σ regardless of the σ . This establishes
the independence of the system of liftings chosen.

Theorem 2.8 (Yekutieli [53]) The sub-algebra EYek
σ (M1,M2) ⊆ Homk (M1,M2) is inde-

pendent of the choice of σ , and a choice of σ always exists.

In order to distinguish his algebra, called “EK ” in loc. cit., from the other variants
appearing in this paper, we shall call itEYek in this paper. By the above theorem, a reference
to σ is no longer needed at all.

Remark 2.9 If one looks at the n-dimensional TLF K := k((t1)) · · · ((tn)) over k , then a
precursor of Yekutieli’s algebra is Osipov’s algebra “EndK ” of his 2007 paper [42, §2.3].
As an associative algebra, it agrees with EYek

σ (K, K ) and σ the standard lifting. However,
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Osipov’s definition really uses the concrete presentation of K as Laurent series, so (a
priori) it does not suffice to know K as a plain TLF or n-local field.

2.5 Beilinson’s global approach

Now suppose X/k is a reduced scheme of finite type and pure dimension n. We use the
notation of Sect. 2.1.

Definition 2.10 Let � = {(η0 > · · · > ηi)} ⊆ S (X)i (for some i) be a singleton set with
codimX {ηr} = r.

(1) Define�′ := {(η1 > · · · > ηn)} ⊆ S (X)i−1, removing the initial entry.
(2) Write F� := A(�,F ) for F a quasi-coherent sheaf on X .

The notation M� also makes sense if M is an Oη0 -module since any such defines a
quasi-coherent sheaf.

Definition 2.11 (Beilinson [3]) Suppose� = {(η0 > · · · > ηi)} is given.
(1) IfM is a finitely generatedOη0 -module, a Beilinson lattice inM is a finitely generated

Oη1 -module L ⊆ M such thatOη0 · L = M.
(2) Let M1 and M2 both be finitely generated Oη0 -modules. Define Hom∅(M1,M2) :=

Homk (M1,M2) as all k-linear maps. Define Hom�(M1,M2) to be the k-submodule
of all those maps f ∈ Homk (M1�,M2�) such that for all Beilinson lattices L1 ⊂
M1, L2 ⊂M2 there exist lattices L′1 ⊂M1, L′2 ⊂ M2 such that

L′1 ⊆ L1, L2 ⊆ L′2, f (L′1�′ ) ⊆ L2�′ , f (L1�′ ) ⊆ L′2�′

and for all such choices L1, L′1, L2, L′2 the induced k-linear homomorphism

f : (L1/L′1)�′ → (L′2/L2)�′

lies in Hom�′ (L1/L′1, L′2/L2).
(3) Define I+1�(M1,M2) to be those f ∈ Hom�(M1,M2) such that there exists a lattice

L ⊂ M2 with f (M1�) ⊆ L�′ . Dually, I−1�(M1,M2) is made of those such that there
exists a lattice L ⊂ M1 with the property f (L�′ ) = 0.

(4) For i = 2, . . . , n, and both “+/−”, we let I±i�(M1,M2) consist of those f ∈
Hom�(M1,M2) such that for all lattices L1, L′1, L2, L′2 as in part (3) the condition

f ∈ I±(i−1)�′ (L1/L
′
1, L

′
2/L2)

holds.

With these definitions in place we are ready to formulate another principal source of
algebras as in Definition 2.4:

Theorem 2.12 (Beilinson, [3, §3]) Suppose X/k is a reduced finite type scheme of pure
dimension n. Let η0 > · · · > ηn ∈ S (X)n be a flag with codimX {ηi} = i. Then

EBeil� := Hom�(Oη0 ,Oη0 )

is an associative sub-algebra of all k-linear maps from OX� to itself. For i = 1, 2, . . . , n,
define I±i� ⊆ EBeil� by I±i�(Oη0 ,Oη0 ). Then (EBeil� , (I±i�)) is a Beilinson n-fold cubical algebra.
We shall call its elements global Beilinson–Tate operators.
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The structure of this definition is very close to the variant of Yekutieli. However, some
essential ingredients differ significantly: On the one hand, no system of liftings is used, so
there is no counterpart of the Dangerous Bend in Sect. 1.6 and no need for a result like
Yekutieli’s Theorem 2.8. On the other hand, we pay the price of using the r-dimensional
local rings Oηr of X . Thus, we really use some data of the scheme X which a stand-alone
TLF cannot provide.

3 Stand-alone higher local fields
Let k be a perfect field and K an n-dimensional TLF over k . Then for finite K -modules
V1, V2 we have Yekutieli’s cubical algebra, Definition 2.7, EYek(V1, V2). However, we could
try to interpret K as an n-Tate object in finite-dimensional k-vector spaces (in some way
still to discuss) so that we also have the corresponding cubical algebra as n-Tate objects,
Theorem 2.5. We will establish a comparison result.
There will be two variations: (1) We consider the multiple Laurent series field

K = k((t1))((t2)) · · · ((tn)).
This is canonically a TLF, Example 1.28, and simultaneously canonically an n-Tate

object, Example 1.24. In this case both cubical algebras are defined and we shall show that
they are canonically isomorphic.
(2) We shall consider a general TLF. In this case one has to choose a presentation as an

n-Tate object. This makes the comparison a little more involved, but thanks to the results
of Yekutieli’s paper [53], one still arrives at an isomorphism.

3.1 Variant 1: Multiple Laurent series fields

Let k be a field. Recall the following:

(1) k[[t]] is a principal ideal domain,
(2) every nonzero ideal is of the form (tn) for n ≥ 0,
(3) every finitely generated module is (non-canonically) of the form

k[[t]]⊕r0 ⊕
m⊕

i=1
k[[t]]/tni ,

(4) the forgetful functorModf (k[[t]])→ Vect(k) is exact and canonically factors through
an exact functor

Modf (k[[t]])→ Proaℵ0 (k),

(5) the forgetful functorVectf (k((t)))→ Vect(k) is exact and canonically factors through
an exact functor

T : Vectf (k((t)))→ Tateelℵ0 (k).

Define K := k((t1)) · · · ((tn)).
Lemma 3.1 The forgetful functor

Vectf (K )→ Vect(k)

is exact and factors through an exact functor

T : Vectf (K )→ n-Tateelℵ0 (k).
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Proof This follows from property 5, and induction on n. �
We abbreviate Vk (n) := k((t1)) · · · ((tn)) and regard this simultaneously as a TLF as

well as an n-Tate object with the structure provided in Example 1.24. Similarly, write
tink((t1)) · · · ((tn−1))[[tn]] for the standard Yekutieli lattices in it, regarding both as a Yeku-
tieli lattice as well as the Pro-object in (n − 1)-Tate objects defined by it. Recall from
Definition 2.7 that a Yekutieli lattice inVk (n) is a finitely generated k((t1)) · · · ((tn−1))[[tn]]-
submodule L ⊂ Vk (n) such that k((t1)) · · · ((tn)) · L = Vk (n).

Lemma 3.2 Every Yekutieli lattice of Vk (n) is of the form tink((t1)) · · · ((tn−1))[[tn]]. In
particular, it is a free k((t1)) · · · ((tn−1))[[tn]]-module of rank 1.

Proof It suffices to assume n = 1. For the general case, just replace the field k by the
field k((t1)) · · · ((tn−1)) and replace the k-algebra k[[t]], by the k((t1)) · · · ((tn−1))-algebra
k((t1)) · · · ((tn−1))[[tn]]. Now, letM ⊂ k((t)) be a finitely generated k[[t]]-sub-module such
that k((t)) ·M = k((t)). Let {f1, . . . , fm} be a set of generators forM over k[[t]]. Reordering
as necessary, we can assume that ordt=0fi ≤ ordt=0fi+1 for all i. Define 
 := ordt=0f1. By
definition, we have M ⊂ t
k[[t]] ⊂ k((t)). Conversely, because k is a field, there exists a
unit in g ∈ k[[t]]× such that f1g = t
. Because t
k[[t]] is a cyclic k[[t]]-module generated
by t
, we conclude thatM ⊃ t
k[[t]] as well. �
Lemma 3.3 Denote by GrYek(K ) the partially ordered set of Yekutieli lattices. There is a
final and cofinal inclusion of partially ordered sets GrYek(K ) ⊂ Gr(Vk (n)), where the latter
denotes the Grassmannian of Tate lattices (i.e. the Sato Grassmannian as defined in [7]).

Proof The n-Tate object Vk (n) is represented by the admissible Ind-diagram

· · · ↪→ tinVk (n− 1)[[tn]] ↪→ ti−1n Vk (n− 1)[[tn]] ↪→ · · · .
We see that every Yekutieli lattice arises in this diagram. Therefore, every Yekutieli lattice
is a Tate lattice of Vk (n), i.e. GrYek(K ) ⊂ Gr(Vk (n)). Further, by the definition of Hom-
sets in n-Tateelℵ0 (k) (which implies that the sub-category Proa((n − 1)-Tateelℵ0 (k)) is left
filtering), we see that every Tate lattice in Vk (n) factors through a Yekutieli lattice in
the above diagram. Therefore the sub-poset of Yekutieli lattices is final. It remains to
show that every Tate lattice L of Vk (n) contains a Yekutieli lattice. This will follow from
the same argument by which one shows that Inda(C) is right filtering in Tateel(C) (cf. [7,
Proposition 5.10]). Denote byO1(0) the Yekutieli latticeVk (n−1)[[tn]] ⊂ Vk (n). Consider
the map

O1(0) ↪→ Vk (n) � Vk (n)/L.

Because Proa((n− 1)-Tateelℵ0 (k)) is left filtering in n-Tateelℵ0 (k), there exists an (n− 1)-Tate
object P such that the above map factors as

O1(0)→ P ↪→ Vk (n)/L.

Further,O1(0) is represented by the admissible Pro-diagram

· · ·O1(0)/tin � O1(0)/ti−1n � · · · � Vk (n− 1).

Therefore, by the definition of Hom-sets in Proa((n − 1)-Tateelℵ0 (k)) (which implies that
the sub-category (n − 1)-Tateelℵ0 (k) is right filtering), we see that there exists i such that
the mapO1(0)→ P factors as
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O1(0) � O1(0)/tin → P.

By the universal property of kernels, we conclude that the Yekutieli lattice tinO1(0) is a
common Tate sub-lattice ofO1(0) and L. �
Lemma 3.4 For any V1, V2 ∈ Vectf (K ), there is an equality of subsets of Homk (V1, V2)

EYek(V1, V2) = Homn-Tateelℵ0 (k)
(T (V1), T (V2)),

where T denotes the functor of Lemma 3.1.

Remark 3.5 Akey fact used in the statement and proof of this theorem is that the forgetful
functor n-Tateelℵ0 (k) → Vect(k) is injective on Hom-sets. This is immediate for n = 1,
and for n > 1, it follows by induction.

Proof We prove this by induction on n. For n = 0, there is nothing to show. For the
induction step, by the universal properties of direct sums, it suffices to show the equality
for V := V1 = V2 = k((t1)) · · · ((tn)).
Proof of sub-claim The compatibility of EYek

σ (−,−) with direct sums in both variables is a
straightforward induction on n: For n = 0, this is immediate (since we are just considering
homomorphisms of finite-dimensional vector spaces). For the induction step, we first
observe that the definition of Yekutieli lattices implies that every lattice L ⊂ V1⊕V2 is of
the form L1⊕L2, where Li ⊂ Vi is a Yekutieli (the splitting on L is induced by the splitting
on V ). This, plus the induction hypothesis, shows that

EYek
σ (W,V1 ⊕ V2) ⊂ EYek

σ (W,V1)× EYek
σ (W,V2)

and vice versa, and similarly with W and V1 ⊕ V2 interchanged). This finishes the proof
of the sub-claim.
Note that for theseV ,T (V ) := Vk (n).We begin by showing that Endn-Tateelℵ0 (k)

(Vk (n)) ⊂
EYek(V ). Let ϕ be an endomorphism of Vk (n). Let L1 = ti1n Vk (n − 1)[[tn]] and L2 =
ti2n Vk (n − 1)[[tn]] be a pair of Yekutieli lattices of k((t1)) · · · ((tn)). We begin by showing
that this pair admits a ϕ-refinement (see Definition 2.7). By the standard Ind-diagram for
Vk (n), and the definition of Hom-sets in n-Tateelℵ0 (k), there exists a Yekutieli lattice N =
tjnVk (n−1)[[tn]] such thatϕ(L1) ⊂ N . Let i′2 = min(j, i2), anddefineL′2;= ti

′
2
n Vk (n−1)[[tn]].

Next, consider the map L1
ϕ→ L′2/L2. The quotient L′2/L2 ∼= Vk (n− 1)[[tn]]/(t

i2−i′2
n ) is an

elementary (n − 1)-Tate space. By the definition of Hom-sets in Proa((n − 1)-Tateelℵ0 (k))
(which implies that the sub-category of (n − 1)-Tate spaces is right filtering), the map
above factors through an admissible epic in Proa((n− 1)-Tateelℵ0 (k))

L1 � L1/t
nL1
ϕ→ L′2/L2.

We define L′1 = ti1+

n Vk (n− 1)[[tn]], and observe that (L′1, L′2) ϕ-refines (L1, L2). Further-

more, because (n− 1)-Tateelℵ0 (k) is a full sub-category of Pro
a((n− 1)-Tateelℵ0 (k)), the map

ϕ is a map of (n− 1)-Tate spaces. By the inductive hypothesis, this map is an element in
EYek(L1/t
nL1, L′2/L2). We conclude that

Endn-Tateelℵ0 (k)
(Vk (n)) ⊂ EYek(k((t1)) · · · ((tn))).

To complete the induction step, it remains to show the reverse inclusion. Let ϕ ∈ EYek(K ).
We begin by showing that, given any two Yekutieli lattices L1 and L2 such that ϕ(L1) ⊂ L2,
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then the map L1
ϕ→ L2 is a map of admissible Pro-objects (in (n − 1)-Tate spaces). By

Lemma 3.2, La ∼= tian Vk (n − 1)[[tn]] for a = 1, 2. By the definition of Yekutieli’s EYek,
Definition 2.7, for each 
 > 0, there exists a ϕ-refinement (L


1, L


2) of the pair (L1, t
nL2).

Without loss of generality, we can take L

2 = L2, and we therefore obtain a square

L1 L2ϕ
��

L

1

L1
��

L

1 t
nL2

ϕ
�� t
nL2

L2
��

By the definition of local BT -operators, for all 
 ≥ 0, the induced map L1/L

1 → L2/t
nL2

is a local BT -operator, and thus, by induction hypothesis, a map of (n − 1)-Tate spaces.
Because an inclusion of Yekutieli lattices is an admissible monic of admissible Pro-objects
(e.g. by Lemma 3.2), for all 
 ≥ 0, the map

L1 � L1/L

1 → L2/t
nL2

is a map of admissible Pro-objects. Taking the limit over all 
 (in Proa((n− 1)-Tateelℵ0 (k))),
we obtain amap of admissible Pro-objects L1 → lim
 L2/t
nL2 ∼= L2. The forgetful functor

Proa((n− 1)-Tateelℵ0 (k))→ Vect(k)

preserves limits (by construction, see Remark 3.6). Therefore, we conclude that the map
of k-vector spaces underlying the map of admissible Pro-objects is equal to the limit of
the maps

L1 � L1/L

1 → L2/t
nL2

but this is just ϕ. We have shown that ϕ restricts to a map of admissible Pro-objects on
any pair of lattices L1 and L2 such that ϕ(L1) ⊂ L2. It remains to show that ϕ is a map
of n-Tate spaces. Let L
 = t
nVk (n − 1)[[tn]]. Then 
 �→ L
 is an admissible Ind-diagram
(in Proa((n − 1)-Tateelℵ0 (k))) representing Vk (n). By inducting on 
, we now construct a
second admissible Ind-diagram 
 �→ L′
 representing Vk (n) such that ϕ lifts to a map of
these diagrams. For the base case, by the definition of local BT -operators, there exists a
pair of Yekutieli lattices (L−1, L′0) which ϕ-refine (L0, L0). In particular, ϕ(L0) ⊂ L′0. For the
induction step, suppose we have constructed an ascending chain of inclusions of Yekutieli
lattices

L′0 ↪→ · · · ↪→ L′n
such that ϕ(Li), Li ⊂ L′i for i ≤ n. Consider the pair of Yekutieli lattices (Ln+1, L′n). Then
there exists a pair of Yekutieli lattices (La, Lb) which ϕ-refines this pair. Further (e.g. by
Lemma 3.2), there exists a Yekutieli lattice L′n+1 which contains both Lb and Ln+1. This
completes the induction step. Above we have shown that the maps L


ϕ→ L′
 are maps of
admissible Pro-objects (in (n− 1)-Tate spaces) for each 
. Therefore, we conclude that ϕ

lifts to a map of admissible Ind-diagrams. By construction, the ascending chain of lattices

L′0 ↪→ · · · ↪→ L′
 ↪→ · · ·
is final in the Grassmannian of Tate lattices Gr(Vk (n)) (because the chain L0 ↪→ · · · ↪→
L
 ↪→ · · · is). We conclude that Vk (n) is the colimit of this ascending chain, and that the
map of colimits

Vk (n) ∼= colim−−−→



L
 → colim−−−→



L′
 ∼= Vk (n)



Braunling et al. Res Math Sci (2016) 3:22 Page 27 of 56

is a map of n-Tate spaces. But, this map is equal to ϕ (e.g. because the forgetful map
n-Tateelℵ0 (k)→ Vect(k) preserves colimits, by construction, cf. Remark 3.6). We conclude
that

EYek(k((t1)) · · · ((tn))) ⊂ Endn-Tateelℵ0 (k)
(Vk (n)).

This finishes the proof. �

Remark 3.6 Let us provide some details on the preservation of (co-)limits: Suppose D
is a complete and cocomplete category. For any exact category C, ProaC is a full sub-
category of the category of right-exact cosheaves on C [7]. As such, any functor C → D
extends uniquely to a limit-preserving functor ProaC → D. We emphasize that this limit
preservation refers to the category of Pro-objects, i.e. it makes no statements about limits
taken inside of C (taking limits in C or ProaC usually yields different outcomes). Similarly,
any functor C → D extends uniquely to a colimit-preserving functor IndaC → D. By the
evaluation of limits and colimits, we have functors

(n− 1)-Tate(k) → Vect(k),

and these canonically induce limit-preserving functors

Proa( (n− 1)-Tate(k) )→ Vect(k)

and colimit-preserving functors

n-Tate(k) → IndaProa( (n− 1)-Tate(k) )→ Vect(k).

Lemma 3.7 For any V1, V2 ∈ Vectf (K ), the equality

EYek(V1, V2) = Homn-Tateelℵ0 (k)
(T (V1), T (V2))

of Lemma 3.4 restricts to an equality of two-sided ideals

I±i,Yek(V1, V2) = I±i,Tate(T (V1), T (V2)).

for 1 ≤ i ≤ n.

Proof Weprove this by induction on n. For n = 0, there is nothing to show. Because every
Yekutieli lattice of V induces a Tate lattice of Vk (n), knowing any conditions defining I±i
for all Tate lattices, implies it for all Yekutieli lattices. Thus, we immediately get

I±i,Yek(V1, V2) ⊇ I±i,Tate(T (V1), T (V2)).

The converse direction is a bit more involved. Not every Tate lattice is a Yekutieli lattice,
but with the help of Lemma 3.3 we shall reduce checking conditions for Tate lattices to
Yekutieli lattices. Suppose we want to check whether ϕ ∈ I±i,Tate(T (V1), T (V2)) holds. For
i = 1, Lemma 3.3 implies that having image contained in a Yekutieli lattice is the same as
having image contained in a Tate lattice, and analogously for kernels. Thus, to deal with
i = 2, . . . , n we only need to confirm that this argument survives refinements: We know
that if L1 ⊂ T (V1), L2 ⊂ T (V2) are Tate lattices and we pick Tate lattices L′1 ⊂ T (V1),
L′2 ⊂ T (V2) such that

L′1 ⊆ L1, L2 ⊆ L′2, f (L′1) ⊆ L2, f (L1) ⊆ L′2,
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we have the f -refinement

f : L1/L′1 → L′2/L2.

We need to show that f ∈ I±i−1,Tate(L1/L′1, L′2/L2), just assuming this holds whenever all of
the above lattices are also Yekutieli lattices. So let L1, L2 be Tate lattices for which we want
to check the defining property. By Lemma 3.3, there exist Yekutieli lattices N2,a ⊂ L2 and
N1,b ⊃ L1. Also, by Lemma 3.3, we can choose a ϕ-refinement (N1,a, L2) of (L′1, N2,a) with
N1,a a Yekutieli lattice, and we can also choose a ϕ-refinement (L1, N2,b) of (N1,b, L′2) with
N2,b a Yekutieli lattice. These refinements define a commuting diagram

By assumption, the top horizontal map is in I±i−1,Yek(N1,b/N1,a, N2,b/N2,a). Further, the
upper vertical arrows are admissiblemonics, while the lower vertical arrows are admissible
epics. In particular, all the vertical maps split, so we have a commuting diagram

N1,b/N1,a �� N2,b/N2,a

��

L1/L′1

��

�� L′2/L2.

in which the top map is in I±i−1,Yek(N1,b/N1,a, N2,b/N2,a). Because this is a categorical ideal
[53, Lemma 4.16 (2)], we conclude that the bottom map is in I±i−1,Tate(L1/L′1, L′2/L2) as
claimed. �

Of course combining Lemma 3.4 with Lemma 3.7 implies:

Theorem 3.8 The functor

T : Vectf (K )→ n-Tateelℵ0 (k)

induces canonical isomorphisms

EYek(V1, V2) ∼= Hom n-Tateelℵ0 (k)
(T (V1), T (V2))

so that for V1 = V2 this becomes an isomorphism of Beilinson cubical algebras.

This finishes the comparison.

Example 3.9 (Osipov, Yekutieli) Yekutieli has shown that elements in EYek(V1, V2) are
morphisms of ST modules, i.e. they are continuous in the ST topology [53, Thm. 4.24].
However, he also proved that EYek(V1, V2) is strictly smaller than the algebra of all ST
module homomorphisms for n ≥ 2 [53, Example 4.12 and following]. This generalizes an
observation due toOsipov, who had established the corresponding statements for Laurent
series with Parshin’s natural topology [42, §2.3].
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3.2 Variant: TLFs

Instead of working with an explicit model like k((t1)) · · · ((tn)) we can also work with a
general TLF. Firstly, recall that this forces us to assume that the base field k is perfect.
Even though we cannot associate an n-Tate vector space over k to a TLF directly, we can
do so using Yekutieli’s concept of a system of liftings:

Definition 3.10 Let k be a perfect field. Moreover, let K be an n-dimensional TLF over
k and σ = (σ1, . . . , σn) a system of liftings in the sense of Yekutieli. Suppose V is a
finite-dimensional K -vector space.

(1) If n = 0, K = k and every finite-dimensional k-vector space is literally a 0-Tate
object over Vectf (k).

(2) If n ≥ 1, the ring of integersO1 := O1(K ) is a (not finitely generated) k1(K )-module.
Let b1, . . . , br be any K -basis of V and O1 ⊗

{
b1, . . . , br

}
its O1-span inside V . We

can partially order all such bases by the inclusion relation among their O1-spans.
Note that each

(
O1 ⊗

{
b1, . . . , br

})
/mm

1

is a finite torsion O1-module and thus a finite-dimensional k1(K )-vector space by
the lifting σ1.

(3) Thus, if we assume that each finite-dimensional vector space V over the (n − 1)-
dimensional TLF k1(K ) along with the system of liftings (σ2, . . . , σn) comes with a
fixed model, denoted V �, as an (n− 1)-Tate object in k-vector spaces,

colim−−−→
b1 ,...,br

lim←−
m

((
O1 ⊗

{
b1, . . . , br

})
/mm

1
)� (3.1)

defines an n-Tate object in k-vector spaces.
(4) Inductively, this associates a canonical n-Tate object to each finite-dimensional K -

vector space (but depending on the chosen system of liftings).

It is easy to check that the colimit over the bases b1, . . . , br is filtering.
The technical result as well as the key idea underlying the proof of the following is

entirely due to Yekutieli:

Theorem 3.11 Let k be a perfect field and K an n-dimensional TLF over k.

(1) For any system of liftings σ , the construction in Definition 3.10 gives rise to a functor
“�σ ”

Vectf (K ) �σ−→ n-Tateel(Vectf (k))
eval−→ Vect(k)

so that the composition agrees with the forgetful functor to k-vector spaces as in
Lemma 3.1.

(2) For any V1, V2 ∈ Vectf (K ), the functor �σ induces an isomorphism

EYek(V1, V2)
∼−→ Homn-Tateel (�σV1, �σV2).

(3) For any two systems of liftings σ , σ ′, there exists an n-Tate automorphism eσ ,σ ′ such
that �σ ′ = eσ ,σ ′ ◦ �σ .
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(4) For any V1, V2, the image of Homn-Tateel (�σV1, �σV2) under “eval” is independent of
the choice of σ , and agrees with EYek(V1, V2).

The interesting aspect of (3) is the existence of a canonical isomorphism. The existence
of an abundance of rather random isomorphisms is clear from the outset.

Proof (1) and (2): The proof is basically a repetition of everything we have done with
k((t1)) · · · ((tn)) in this section. The argument works basically verbatim. Replace each
k((t1)) · · · ((tn)) by K , each (−)[[t]] by the respective ring of integers O, and each power
ti by mi with m the respective maximal ideal. The only slight change is that in Eq. 3.1 we
take the colimit over all bases b1, . . . , br in Lemma 3.3. Part (3) is deep in principle, but
easy for us since we can rely on the theory set up in [53]. In Definition 3.10, part (2), we
can read the finiteO1-module

(
O1 ⊗

{
b1, . . . , br

})
/mm

1

as a k1(K )-vector space either by the lifting σ or σ ′. The assumptions of [53, Theo-
rem 2.8, (2)] are satisfied; the above is a finiteO1-module and it is a precise Artinian local
ring by [53, Lemma 3.14]. By Yekutieli’s theorem, loc. cit., the identity automorphism on
themodule transforms the two k1(K )-vector space structures of σ and σ ′ via GL(−)(Dcont

K/k )
and by [53, Lemma 4.11] this lies in Yekutieli’s EK = EK

σ , i.e. our EYek(K ) (at this point in
Yekutieli’s paper it has not yet been proven that this is independent of σ , but of course we
may already use this here). Finally, by part (2) this is nothing but an automorphism as an
n-Tate object, giving the desired eσ ,σ ′ . Part (4) follows from (3): The images just differ by
an inner automorphism, but that means that they are the same. �

4 Structure theorems
4.1 Structure of the adèles

In order to proceed, we shall need a few structural results about the structure of the local
adèles. The following result

• is classical (and nearly trivial) in dimension one,
• is due to Parshin in dimension two [45],
• is due to Beilinson in general [3], but the proof remained unpublished,
• and the first proof in print is due to Yekutieli [51, §3, 3.3.2–3.3.6].

We shall give a self-contained proof in this paper—needless to say, following similar
ideas than those used by Yekutieli—but a number of steps are done a bit differently and
we strengthen parts of the results, especially in view of Kato’s ind–pro perspective (Sect.
1.5).
The following section relies on a number of standard facts from commutative algebra.

For the convenience of the reader, we will cite them from “Appendix 1”, where we have
collected the relevant material.

Definition 4.1 A saturated flag � in X is a singleton set� = {(η0 > · · · > ηr)} ⊆ S (X)r
such that codimX {ηi} = i.

Whenever we need to relate adèles between different schemes, in order to be sure what
wemean, we writeAX (−,−) to denote adèles of a schemeX . Note that flags η0 > · · · > ηr
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in X also make sense as flags for closed sub-schemes if all their entries are contained in
them.

Theorem 4.2 (Structure Theorem) Suppose X is a Noetherian reduced excellent scheme
of pure dimension n and � = {(η0 > · · · > ηr)} a saturated flag for some r.

(1) Then AX (�,OX ) is a finite direct product of r-local fields
∏

Ki such that each last
residue field is a finite field extension of κ(ηr), the rational function field of {ηr} ⊆ X.
Moreover,

AX (�′,OX )
(∗)⊆ ∏

Oi ⊆ ∏
Ki = AX (�,OX ), (4.1)

where Oi denotes the first ring of integers of Ki and (∗) is the normalization, a finite
ring extension.

(2) If we regard �′ as a flag in the closed sub-scheme {η1} instead, the corresponding
decomposition of Eq. 4.1 exists for A{η1}(�′,O{η1}) as well, say

∏
kj = A{η1}

(
�′,O{η1}

)
(4.2)

(with a possibly different number of factors), and the residue fields of theOi in Eq. 4.1
are finite extensions of these field factors. Here to each kj correspond ≥ 1 factors in
Eq. 4.1.

(3) If X is of finite type over a field k, then each Ki is non-canonically ring isomorphic to
k ′((t1)) · · · ((tr)) for k ′/κ(ηr) a finite field extension. If k is perfect, it can be promoted
to a k-algebra isomorphism.

(4) For a quasi-coherent sheaf F , A(�,F ) ∼= F ⊗OX A(�,OX ).

In claim (2)we state that for eachfield factor kj in Eq. 4.2 theremaybe several field factors
Ki in Eq. 4.1, but at least one, corresponding to it. In a concrete case such a branching
pattern may, for example, look like

(4.3)

where the dots in the bottom row represent the field factors kj , and the dots of the top
row the higher local fields Ki corresponding the them, that is: For each such factor the top
ring of integersOi ⊆ Ki has a finite field extension of kj as its respective residue field.
We devote the entire section to the proof, split up into several pieces.
Unravelling the inductive definition from Eq. 2.1 yields the formula

AX (�,F ) = lim←−
i0

colim−−−→
η0

· · · lim←−
ir

colim−−−→
ηr

F ⊗O〈ηr 〉/ηirr ⊗
OX
· · · ⊗

OX
O〈η0〉/η

i0
0 , (4.4)

where we have allowed ourselves the use of the following viewpoint/shorthands:

• As already the inner-most colimit corresponds to the localization at ηr (i.e. taking the
stalk), we can henceforth work with rings and modules instead of the scheme and its
coherent sheaves. More precisely, we can do this computation inOηr -modules.



Braunling et al. Res Math Sci (2016) 3:22 Page 32 of 56

• We (temporarily) use the notation

Oηa = colim−−−→
ηa

O〈ηa〉

for the system of finitely generatedOηr -submodulesO〈ηa〉 ⊆ Oηa .
• We write ηi not just for the scheme point ηi, but also for its prime ideal—under the

transition to look at the stalk rather than working with sheaves, the ideal sheaf of the
reduced closed sub-scheme {ηi} corresponds to a prime ideal.

Equation 4.4, the commutativity of tensor products with colimits, and Lemma 1 of
Appendix settles Theorem 4.2, (4).
To proceed, let us consider the iterated limit/colimit

lim←−
i0

colim−−−→
η0

· · · lim←−
ij−1

colim−−−→
ηj−1

Aj ⊗Oηj

O〈ηj−1〉/ηir−1j−1 ⊗OX
· · · ⊗

OX
O〈η0〉/η

i0
0 , (4.5)

where Aj is anOηj -module yet to be defined.

Example 4.3 We had just seen that A(�,F ) is of this shape for j := r and Ar := F ⊗ Ôηr .

As colimits commute with tensor products, we may rewrite the above expression as

∼= lim←−
i0

colim−−−→
η0

· · · lim←−
ij−1

Aj ⊗Oηj

(colim−−−→
ηj−1

O〈ηr−1〉)/η
ir−1
j−1 ⊗OX

· · · ⊗
OX

O〈η0〉/η
i0
0

∼= · · · colim−−−→
ηj−2

(lim←−
ij−1

Aj[(Oηj − ηj−1)−1]/η
ij−1
j−1) ⊗OX

· · · ⊗
OX

O〈η0〉/η
i0
0

(as the colimit is just the localizationOηr−1 and then use Lemma 2 of the Appendix). Then
we have recovered the shape of Eq. 4.5 for j−1. Hence, inductively,AX (�,F ) = A0. Thus,
Theorem 4.2 is essentially a result on the structure of A0 for the special case F := OX .

Definition 4.4 For the sake of an induction, we shall give the following auxiliary rings a
name:

Aj−1 := lim←−
ij−1

Aj[(Oηj − ηj−1)−1]/η
ij−1
j−1 . (4.6)

Equivalently, Aj := A(ηj > · · · > ηr ,OX ) for 0 ≤ j ≤ r.

We now argue inductively along j:

Lemma 4.5 Assume for some j we have shown the following:

(1) Aj is a faithfully flat NoetherianOηj -algebra of dimension j.
(2) The maximal ideals of Aj are precisely the primes minimal over ηjAj.
(3) Aj is a finite product of reduced j-dimensional local rings, each complete with respect

to its maximal ideal.

Then the analogous statements for j − 1 are true.

(We apologize to the reader for this slightly redundant formulation, but we also intend
the numbering as a guide along the steps in the proof.)
Beginning with j := r we had set Ar := Ôηr . It is clear that all properties are satisfied

since dim Ôηr = dimOηr = codimXηr = r.
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Proof (Step 1) By construction Aj−1 is an ηj−1Aj−1-adically complete Noetherian ring. Aj
is anOηj -algebra (property 1 for Aj), so by the universal property of localization we have

Aj −→ Aj[(Oηj − ηj−1)−1]
↑ ↑
Oηj −→ (Oηj )ηj−1 ,

but (Oηj )ηj−1 = Oηj−1 . So Aj[(Oηj − ηj−1)−1] and its ηj−1-adic completion are Oηj−1 -
algebras. (Step 2: Maximal ideals under localization) Next, we determine the maximal
ideals mi of Aj−1: By Lemma 3 of the Appendix

ηj−1Aj−1 ⊆ radAj−1 := ⋂
mi,

i.e. they are in bijective correspondence with the maximal ideals of Aj−1/ηj−1Aj−1 ∼=
Aj[(Oηj − ηj−1)−1]/ηj−1. The primes of the localization Aj[(Oηj − ηj−1)−1] correspond
bijectively to those primes P ⊂ Aj such that P∩(Oηj−ηj−1) = ∅. By induction (properties
1 and 2 for Aj) we know that the maximal ideals in Aj are the (finitely many) primes
which are minimal over ηjAj . Moreover, Aj is faithfully flat over Oηj , so by Lemma 10
of the Appendix the primes P minimal over ηjAj are those minimal with the property
P ∩Oηj = ηj . Hence, for them P ∩ (Oηj − ηj−1) = ηj − ηj−1 �= ∅; they all disappear in the
localization. Thus, the maximal ideals of Aj[(Oηj − ηj−1)−1] correspond to primes in Aj
having at least coheight 1. This enforces thatAj[(Oηj −ηj−1)−1]/ηj−1 is zero-dimensional.
Hence, the maximal ideals P of

Aj
[
(Oηj − ηj−1)−1

] /
ηj−1 ∼= Aj−1/ηj−1Aj−1 (4.7)

are exactly the minimal primes of it, i.e. they are primes minimal over ηj−1Aj−1 in Aj−1
(proving property 2 for Aj−1). (Step 3: Faithful flatness) Aj−1 is clearly flat over Oηj−1
since it arises from repeated localization and completion fromOηj−1 and both operations
are flat. Moreover, again by faithful flatness of Aj over Oηj , ηj−1Aj ∩ Oηj = ηj−1, hence
ηj−1Aj ∩ (Oηj − ηj−1) = ηj−1 − ηj−1 = ∅; so the ring in Eq. 4.7 is not the zero ring.
By Lemma 5 of the Appendix this shows that Aj−1 is even a faithfully flat Oηj−1 -algebra
(proving property 1 for Aj−1). (Step 4: Reducedness) Next, we claim that Aj−1 is reduced.
Both localization and completion (with respect to arbitrary ideals) are regular morphisms
by Lemma 14 of the Appendix. Thus, the composition is regular. It is also faithfully flat,
so by faithfully flat ascent, Lemma 15 of the Appendix, Aj−1 is reduced. In completely
the same fashion, Aj−1/ηj−1Aj−1 arises from iterated localizations and completions from

̂Oηr/ηj−1. As ηj−1 is prime, Oηr/ηj−1 is a domain and thus ̂Oηr/ηj−1 is at least reduced.
Hence, the same argument implies that Aj−1/ηj−1Aj−1 is reduced. Since we know now
that Aj−1/ηj−1Aj−1 is reduced and zero-dimensional, Lemma 4 of the Appendix implies
that we have

Aj−1/ηj−1Aj−1 ∼= ∏

m

[
Aj

[
(Oηj − ηj−1)−1

] /
ηj−1

]

m
, (4.8)

wherem runs through the finitelymany (automaticallyminimal) primes inAj−1/ηj−1Aj−1.
The localizations of the right-hand side are reduced zero-dimensional local rings, i.e. by
Lemma 6 of the Appendix they must be fields. We obtain a complete system of pairwise
orthogonal idempotents e1, . . . , e
 ∈ Aj−1/ηj−1Aj−1 giving the decomposition of Eq. 4.8.
Using Lemma 7 of the Appendix these idempotents lift uniquely to a complete system of
pairwise orthogonal idempotents e1, . . . , e
 in Aj−1. Hence,

Aj−1 ∼= ∏

m
eiAj−1.



Braunling et al. Res Math Sci (2016) 3:22 Page 34 of 56

Hence,Aj−1 is a finite product of reduced (j−1)-dimensional local rings (proving property
3 for Aj−1). �
After this preparation we are ready to establish the rest of Theorem 4.2.

Proof of Thm. 4.2 Recall that AX (�,OX ) = A0. From Lemma 4.5, property 3, for A0 it
follows that AX (�,OX ) is a finite product of fields. We may unwind AX (�′,OX ) entirely
analogously as in Eq. 4.4 and obtain AX (�′,OX ) = A1 and thus (by the very definition of
A0, Eq. 4.6)

AX (�,OX ) = A0 = lim←−i0A1[(Oη1 − η0)−1]/ηi00
= lim←−i0AX (�′,OX )[(Oη1 − η0)−1]/ηi00 .

By Lemma 4.5 the ring A1 is a finite product of one-dimensional reduced complete local
rings. Denote by Qi the minimal primes of A1. Being reduced, the first arrow in

AX (�′,OX ) = A1 ↪→ ∏

i
A1/Qi

↪→ ∏

i
A1/Qi

[
(Oη1 − η0)−1

]

↪→ lim←−i0
∏

i
A1/Qi

[
(Oη1 − η0)−1

]
/η

i0
0 =

∏

i
AX (�,OX )/Qi

is injective. The injectivity of the third follows from being Noetherian. Consider the nor-
malization of AX (�′,OX ) in AX (�,OX ). By Lemma 8 of the Appendix the normalization
arises as the product of the integral closures Ni of each AX (�′,OX )/Qi in the respective
field of fractions AX (�,OX )/Qi. Each of these is a finite extension since complete local
rings are always excellent; in particular, the entire normalization is a finite ring exten-
sion. Moreover, AX (�′,OX )/Qi is complete local and has a unique minimal prime, so by
Lemma 16 of the Appendix there is also just a single maximal ideal in its normalization
Ni, i.e. Ni is local, too. We obtain

AX (�′,OX ) ↪→ ∏

i
A1/Qi ↪→ ∏

i
Ni ↪→ ∏

i
AX (�,OX )/Qi = AX (�,OX ).

Each Ni is a one-dimensional normal complete local ring. Such a local ring is a discrete
valuation ring by Lemma 12 of the Appendix. Hence, AX (�,OX ) is a finite product of
complete discrete valuation fields, Ni are their respective rings of integers. Under the
normalization each local ring of AX (�′,OX ) gets extended to a semi-local ring, leading
to a branching into some g ≥ 1 maximal ideals over it, and thus to a branching like (for
example)

once we look at all local rings together: Dots in the upper row represent maximal
ideals of the normalizations, i.e. factors Ni. Dots in the lower row represent maximal
ideals of AX (�′,OX ), so by Lemma 4.2 equivalently minimal primes of AX (�′,OX )/η1.
The respective residue fields κi := Ni/mi also follow to be finite ring extensions of
(AX (�′,OX )/Qi)/η1. By direct inspection one sees that AX (�′,OX )/η1 can be identified
with A{η1} (�′,O{η1}), i.e. identified with A(�′,OX ), but taking X := {η1} as the scheme
and reading �′ as an element of S({η1})r−1 instead of S(X)r−1. Therefore, by induction
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on the dimension of X , in the figure above the lower row dots equivalently correspond
canonically to the factors kj ; and the upper row dots to the κi. Moreover, again by induc-
tion, the ringAX (�′,OX )/η1 is a finite product of (r−1)-local fields in a canonical fashion,
and the κi finite field extensions thereof. Going all the way down, by induction on r, this
shows that the last residue fields are finite extensions of

A{ηr }
(
{ηr},O{ηr }

)
= lim←−iO{ηr },ηr/η

i
r = κ(ηr).

directly from the definition of the adèles, Eq. 2.1. This establishes part (2) of the claim.
Each κi is (a finite extension of—and thus itself) a complete discrete valuationfieldwhose

residue field is (r−1)-local. Thus, each Fi is an r-local field. This establishes part (1) of the
theorem. Finally, if all the fields in this induction are k-algebras, each complete discrete
valuation ring Ri is equicharacteristic, so by Cohen’s structure theorem, Proposition 1.5,
there is a non-canonical isomorphism � κi[[t]]. Hence, Fi � κi((t)) and inductively this
shows that r-local fields are multiple Laurent series fields, proving part (3) of the theorem.
If k is perfect, pick each coefficient field such that it is additionally a sub-k-algebra. Part
(4) is just the sheaf version of Lemma 1 of the Appendix. �
Wecan easily extract the higher local field structure of the local adèles from the previous

result. Recall that we write AZ(−,−) to denote adèles of a scheme Z.

Theorem 4.6 (Structure Theorem II) Suppose X is a purely n-dimensional reduced
Noetherian excellent scheme and � = {(η0 > · · · > ηr)} a saturated flag. Then we get
a diagram

(4.9)

where

(1) the upward arrows are precisely the inclusions of Theorem 4.2 (part 1), Eq. 4.1;
(2) the rightward arrows are taking the quotient of A{ηi} (�′···′,OX ) by ηi+1;
(3) After replacing each ring in Diagram 4.9, except the initial upper-left one, by a canon-

ically defined finite ring extension, it splits canonically as a direct product of staircase-
shaped diagrams of rings: Each factor has the shape

In particular, each object in it is a direct factor of a finite extension of the corresponding
entry in Diagram 4.9.
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(a) The upward arrows are going to the field of fractions,
(b) The rightward arrows correspond to passing to the residue field.

(4) These factors are indexed uniquely by the field factors of the upper-left entry
AX (�,OX ) = ∏

Ki. Each field factor kj of A{ηi}(�′···′,OX ) in any row of Diagram 4.9
corresponds to ≥1 field factors in the row above, such that the respective residue field
is a finite field extension of the chosen kj.

An elaboration: As we already know, each A{ηi}(�′···′,OX ) decomposes as a finite direct
product of fields. In particular, in Diagram 4.9 we get such a decomposition in every single
row (and of the two terms in each row,we refer to the one following after “�”), and there is
amatching between the field factors of the individual rows. For each field factor kj of a row,
there are≥ 1 field factors in the row above it, such that the respective residue field is finite
over the given kj . If we follow the graphical representation of this branching behaviour as
in Diagram 4.3, we get a simple description of the entire branching behaviour from the
top row all to the bottom row: If we begin with the field factors of the upper-left entry
AX (�,OX ) = ∏

Ki, the matching to the indexing of the field factors of A{ηi} (�′···′,OX ) in
the rows below is obtained by following the downward paths top-to-bottom in the tree
graph obtained by concatenating the branching diagrams (like Diagram 4.3) on each level,
e.g. as in

Proof The first step (both logically as well as visually in the diagram)

is literally just Theorem 4.2 applied to the scheme X := {η0} and the flag �. To continue
to the next step, just inductively apply Theorem 4.2 to X := {ηi} instead and note that the
i-fold truncated flag of sub-schemes can be viewed as a flag of sub-schemes in this smaller
scheme as well. �

Definition 4.7 For a point (or ideal) η, we shall write

colim−−−→
f /∈η

O
〈
f −∞

〉

to denote the colimit over all coherent sub-sheaves (or finitely generated sub-modules) of
the localizationOη.

Lemma 4.8 Suppose X is a purely n-dimensional reduced Noetherian excellent scheme
and � = {(η0 > · · · > ηr)} a saturated flag. Suppose F is a coherent sheaf. Then the
followingOηr -modules are pairwise canonically isomorphic for all j = 1, . . . , r:
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(1) F� =
def

A(η0 > · · · > ηr ,F ). (this intentionally does not depend on j)

(2) colim−−−→
f0 /∈η0

lim←−
i1≥1

· · · colim−−−→
fj−1 /∈ηj−1

lim←−
ij≥1

A
(

ηj+1 > · · · > ηr ,
Fηj⊗O〈

f −∞0
〉⊗···⊗O

〈
f −∞j−1

〉

η
i1
1 +···+η

ij
j

)

,

where the denominator tacitly is to be understood as (ηi11 + · · · + η
ij
j ) · (numerator).

(3) colim−−−→
f0 /∈η0

lim←−
i1≥1

· · · colim−−−→
fj−1 /∈ηj−1

lim←−
ij≥1

colim−−−→
fj /∈ηj

A
(

ηj+1 > · · · > ηr ,
F⊗O〈

f −∞0
〉⊗···⊗O

〈
f −∞j

〉

η
i1
1 +···+η

ij
j

)

,

where the denominator tacitly is to be understood as (ηi11 + · · · + η
ij
j ) · (numerator).

(4) colim−−−→
L1

lim←−
L′1

· · · colim−−−→
Lj

lim←−
L′j

A
(

ηj+1 > · · · > ηr ,
Lj
L′j

)

,

where for all 
 = 1, . . . , j the L
 run through all finitely generatedOη

-submodules of

L
−1
L′
−1

(in case 
 > 1) or Fη0 (in case 
 = 1)

in ascending order; and the L′
 ⊆ L
 run through all full rank finitely generated
Oη


-submodules of L
 in descending order.

Statement (1) intentionally does not depend on the choice of j. We merely use the
numbering of the above statement as a guideline through the steps of the proof. Overall,
we are just collecting a large number of different ways to express the same object.

Proof First of all, recall that

A(η0 > · · · > ηr ,F ) = A(η0 > · · · > ηr ,OX )⊗OX F ,

and we see that it suffices to prove the claim for F := OX . The isomorphy of the objects
in (2) and (3) is clear from the definition since Fηj will generally only be a quasi-coherent
sheaf, see Eq. 2.2. Next, we demonstrate the isomorphism between (2) and (4) for any
fixed j: Suppose we are given 
 ≥ 1. Define for anyO

〈
f −∞
−1

〉
in the 
-th colimit and i
 ≥ 1

in the 
-th limit

L
 := Oη

-span ofO

〈
f −∞0 , . . . , f −∞
−1

〉 ⊆ L
−1
L′
−1

(if 
 > 1) orOη0 ( if 
 = 1),

L′
 := Oη

-span of ηi11 + · · · + η

i


 ⊆ L
−1

L′
−1
( if 
 > 1) orOη0 ( if 
 = 1). (4.10)

AsO
〈
f −∞
−1

〉
is a coherent sheaf by construction, cf. Definition 4.7, L
 is a finitely generated

Oη

-module. The same is true for L′
 and we clearly have L′
 ⊆ L
. This shows that there

is a morphism between the indexing sets of the limits/colimits in (2) to the indexing sets
of the L
, L′
 in (4). Moreover, we unravel by induction

L


L′

= Oη


·O 〈
f −∞0

〉⊗ · · · ⊗O
〈
f −∞
−1

〉

η
i1
1 + · · · + η

i




(a quotient of sub-spaces of
L
−1
L′
−1

for 
 > 1, orOη0 if 
 = 1).

We see that A
(
ηj+1 > · · · > ηr , L
/L′


)
agrees with the A(−,−) appearing in formulation

(2). Summarized, the ind–pro limits of (2) define a sub-system of the ind–pro limits in
(4), running over the same objects as in (2). Next, note that for all finitely generatedOη


-
submodules of L
−1

L′
−1
or L
 we can lift generators from sub-quotients to rational functions,



Braunling et al. Res Math Sci (2016) 3:22 Page 38 of 56

allowing us to form a cofinal system within the ind–pro limits of (2). This implies that
(4) is canonically isomorphic to (2). Now, prove the full claim by induction on j: We
verify (1)∼=(2) in the special case j = 1 by hand. Now assume (3) for any given j. Then by
unwinding the definition ofA(ηj+1 > · · · > ηr ,−) we literally obtain (2) for j+1. Since we
already have proven (3)∼=(2) for all j, this sets up the entire induction along j, establishing
our claim. �

This result has a particularly nice consequence for flags of the maximal possible length:

Corollary 4.9 Suppose X is a purely n-dimensional reduced Noetherian excellent scheme
and� = {(η0 > · · · > ηn)} a saturated flag. Suppose F is a coherent sheaf. Then

A(η0 > · · · > ηn,F ) = colim−−−→
L1

lim←−
L′1

· · · colim−−−→
Ln

lim←−
L′n

Ln
L′n

,

where for all 
 = 1, . . . , n, the L
 run through all Beilinson lattices (for the flag η
−1 >

· · · > ηn) in
L
−1
L′
−1

(in case 
 > 1) or Fη0 (in case 
 = 1)

in ascending order; and the L′
 ⊆ L
 run through all contained Beilinson lattices in descend-
ing order.

Proof Just apply Lemma 4.8 in the special case r = n. �

In the formulation of the following lemma we shall employ the notation (̂−), which
refers to omission here and not to completion or the like.

Lemma 4.10 Suppose X is a purely n-dimensional reduced scheme of finite type over a
field k and� = {(η0 > · · · > ηn)} a saturated flag.

(1) Assume we are given finitely generated Oη0-modules M1,M2. Then a k-vector space
morphism

f ∈ Homk (M1�,M2�)

is an element of Hom�(M1,M2) if and only if

(a) one can provide a final and cofinal collection of Beilinson lattices L′
 ⊆ L
 of M1,
and N
 ⊆ N ′


 of M2 (in either case for 
 = 1, . . . , n) as in Corollary 4.9, such that
(b) there exists a compatible system of k-vector space morphisms

Ln
L′n

→ Nn
N ′
n

inducing the map f in the iterated Ind- and Pro-diagrams

f : M1� → M2�

colim−−−→
L1

lim←−
L′1

· · · colim−−−→
Ln

lim←−
L′n

Ln
L′n

→ colim−−−→
N1

lim←−
N ′
1

· · · colim−−−→
Nn

lim←−
N ′
n

Nn
N ′
n
.

(2) Suppose f ∈ Hom�(M1,M2). Then f ∈ I+i�(M1,M2) if and only if f admits a factor-
ization of the shape
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colim−−−→
L1

lim←−
L′1

· · · colim−−−→
Ln

lim←−
L′n

Ln
L′n

→ colim−−−→
N1

lim←−
N ′
1

· · · ̂colim−−−→
Ni

· · · colim−−−→
Nn

lim←−
N ′
n

Nn
N ′
n
,

i.e. instead of a colimit running over all Ni, it factors through a fixed Ni (depending
only on N1, N ′

1, . . ., Ni−1, N ′
i−1).

(3) Similarly, f ∈ I−i�(M1,M2) holds if and only if f admits a factorization of the shape

colim−−−→
L1

lim←−
L′1

· · · l̂im←−
Li

· · · colim−−−→
Ln

lim←−
L′n

Ln
L′n

→ colim−−−→
N1

lim←−
N ′
1

· · · colim−−−→
Nn

lim←−
N ′
n

Nn
N ′
n
,

i.e. instead of having the limit run over all Li, it vanishes on a fixed Li (depending only
on L1, L′1, . . ., Li−1, L′i−1).

Proof In viewofCorollary 4.9, this follows rather straightforwardly fromBeilinson’sDefin-
ition 2.11. For (1):Once f ∈ Hom�(M1,M2) holds true for a k-linearmap f , Definition 2.11
allows us to produce many such factorizations; firstly over

(
L1
L′1

)

�′
→

(
N1
N ′
1

)

�′
,

(for any prescribed L1 and N ′
1) and then inductively further down the flag �. Conversely,

given such factorizations, they clearly define a k-linear map and the condition of Defini-
tion 2.11 follows from themap being of this shape. (2) and (3) follow just from unravelling
Beilinson’s definition in viewofCorollary 4.9 and the fact that allL
, L′
 (for all 
 = 1, . . . , n)
are Beilinson lattices. �

Proposition 4.11 For� = {(η0 > · · · > ηn)} and F a coherent sheaf, the presentation of
Corollary 4.9,

F� = colim−−−→
L1

lim←−
L′1

· · · colim−−−→
Ln

lim←−
L′n

Ln
L′n

,

also equips F� with a canonical structure as an n-Tate object in ST k-modules (with their
exact structure, Proposition 1.27). Or, executing the colimits and limits, as an ST k-module
itself.

Proof We only need to know that the transition maps of the Ind- and Pro-diagrams are
admissiblemonics and epics. Thiswas already shownbyYekutieli, albeit in a slightly differ-
ent language [53, Lemma 4.3, (2) and (4)]. For the second claim, we only need to know that
the respective limits and colimits exist in ST modules; this is [53, Lemma 4.3, (3) and (6)].

�

Theorem 4.12 (Structure Theorem III) Suppose X is a purely n-dimensional reduced
scheme of finite type over a field k and � = {(η0 > · · · > ηn)} a saturated flag. Then each
direct summand of the upper-left object in Diagram 4.9 of Theorem 4.6 carries a canonical
structure

(1) of n-local fields,
(2) of objects in n-Tate(Ab) , i.e. with values in abelian groups,
(3) of objects in n-Tate(Vectf ) , i.e. with values in finite-dimensional k-vector spaces,
(4) of k-algebras,
(5) (if k is perfect) of topological n-local fields in the sense of Yekutieli,
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and one can find (non-canonically) a simultaneous field and n-Tate(Ab) isomorphism to
a multiple Laurent series field

with its standard field and n-Tate(Ab) structure. Here κ/k is a finite field extension.

If one is happy with plain field isomorphisms without extra structure, this is of course
part of the original results of Parshin andBeilinson.The construction andvery definitionof
the canonical TLF structure/STmodule structure is due to Yekutieli [51,53]. However, we
know from Example 1.29, going back to Yekutieli’s work, that a general field isomorphism
will not preserve this structure, and from its variation Example 1.30 that it would also not
preserve the n-Tate structure.

4.2 Proof of Theorem 4.12

We shall devote this entire sub-section to the proof of Theorem 4.12.

4.2.1 Step 0: Preamble on our usage of Tate categories

The argument will deal with objects which may simultaneously be regarded as objects in
the category of rings, ST modules and/or Tate objects over a base category. There is a
slight change with regard to what categories we work in precisely, depending on whether
k is perfect or not. We make this case distinction here, and it is valid for the rest of the
section: Specifically,

• if k is perfect, we work in the categories of k-algebras, ST modules and Tate objects
of finite-dimensional k-vector spaces, and as a shorthand write

n-Tate := n-Tate(Vectf ) .

• If k is not perfect, we work in the categories of rings and Tate objects of all abelian
groups. We use the shorthand

n-Tate := n-Tate(Ab) .

In this case, simply ignore all statements about k-algebra structures, k-vector space
structures or ST module structures in the proof below.

4.2.2 Step 1: Definition of auxiliary rings

Suppose we are in the situation of the assumptions of the theorem.

Definition 4.13 For j = 0, 1, . . . , n, we define a ring

Cj := lim←−
ij≥1

colim−−−→
fj /∈ηj

· · · lim←−
in≥1

Oηn ⊗O
〈
f −∞j

〉
⊗O

〈
f −∞j+1

〉
⊗ · · · ⊗O

〈
f −∞n−1

〉

ηj−1 + η
ij
j + · · · + η

in
n

. (4.11)
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We denote by q the quotient map

q : Cj � Cj/ηj .

We can equip Cj and q with a lot more structure than just being a k-algebra and a
k-algebra morphism: They also carry natural structures as

(1) (Tate objects) Reading the limits and colimits in Eq. 4.11 as diagrams, the definition
describes an object in Proa( (n− j)-Tate ). In this category the definition of q also
makes sense, and it is an admissible epic, since it is the natural mapping from a
Pro-diagram to one of its entries.

(2) (as STmodules) Eq. 4.11 also defines an object in Yekutieli’s category of STmodules.
Equip the inner term with the fine ST module structure. (Much like in Example
1.28) each limit is equipped with its limit topology, resulting again in an ST module
[51, Lemma 1.2.19], and equip the colimits, which are localizations, with the fine
topology over the ring we are localizing (or equivalently with the colimit topology
[51, Cor. 1.2.6]); this makes them ST rings again. Then q is an admissible epic in ST
modules and (equivalently) induces the quotient topology by [53, Lemma 4.3].

We return to regarding Cj as a ring, and study its properties:

Lemma 4.14 We have the following ring-theoretic properties:

(1) Cj is a one-dimensional ηj-adically complete semi-local k-algebra with Jacobson rad-
ical ηj .

(2) Cj/ηj is a reduced Artinian ring.
(3) Cj = AX (ηj > · · · > ηn,OX )/ηj−1 = A{ηj−1}(ηj > · · · > ηn,O{ηj−1}).

Proof This is fairly clear: It is visibly an ηj-adically complete semi-local ring with Jacobson
radical ηj and minimal primes all lying over ηj−1. It follows that Cj is one-dimensional.
The identification in (3) follows literally from unwinding the definition. �

Next, consider the normalization of Cj . We denote it by C ′j . This is a finite ring
extension/k-algebra extension (since Cj is excellent). It is a finite product of complete
discrete valuation rings, say indexed by a variable t, i.e.

C ′j =
∏
Oj,t with residue fields κj,t := Oj,t/mj,t (4.12)

and by the finiteness of normalization each κj,t is finite over Cj/ηj .
Consider Quot(Cj+1): It is the total ring of quotients of Cj+1 as a ring and k-algebra.

However, as this is a localization and thus can be written as a colimit over its finitely
generated Cj+1-submodules, it also can be given a natural structure as an (n− j+ 1)-Tate
object, or, respectively, as an ST module.

Lemma 4.15 Cj/ηj = Quot(Cj+1). This is true as rings, as k-algebras, Tate objects, and
ST modules.

Proof The verification is immediate from the definitions, in each category. �
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4.2.3 Step 2: Setting up the auxiliary diagram

The objects which we have just defined, fit into a big commutative diagram

(4.13)

and on the upper left this diagram commences with

Let us quickly go through the various objects and arrows: HereOj,t and κj,t are the discrete
valuation rings/rings of integers resp. residue fields of Eq. 4.12.We have allowed ourselves
the tiny abuse of notation to write “t” to index the factors of the products, even though
for different j, the variable t will run through (in general) different finite indexing sets.
Moreover,

(1) (as rings, k-algebras) the upward dotted arrows are always the inclusion into the total
ring of quotients by Lemma 4.15. These maps are injective. In the case of the unbent
dotted arrow it is additionally a product of the inclusions of the discrete valuation
rings O into their field of fractions. The maps denoted by γ are normalizations; the
integral closure in the total ring of quotients. The dashedupward arrows are products
of finite field extensions. Each quotient C(−)/η(−) is itself a product of fields.

(2) (as Tate objects, STmodules) the upward bent arrows are admissible monics in Tate
objects since they are the inclusion of an entry of an admissible Ind-diagram into the
Ind-object defined by this diagram. Analogously, an admissiblemonic in STmodules
for essentially the same reason, just with the colimit carried out.

Define both κ0,t and κ∗0,t as the field of fractions ofO1,t . Consider the left-most upward
arrow

∏
O1,t → ∏

κ0,t in the above Figure 4.13. This arrow is the product of maps
O1,t ↪→ κ0,t , but these maps will usually not be the inclusion of rings of integers into
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their field of fractions. We now define certain rings, recursively: For j = 1, . . . , n (and run
through these in this order):
Denote by O∗

j,t the integral closure of Oj,t inside κ∗j−1,t . Since the Oj,t are complete
discrete valuation rings, theO∗

j,t are also complete discrete valuation rings, cf. Lemma 11
of the Appendix (there can only be one factor since we are inside a field). We write κ∗1,t for
their residue fields, so that κ∗1,t/κ1,t is a finite field extension. Now proceed to j + 1.
Let us quickly explain how to fit these new objects into Figure 4.13: For j, we get

and going to j + 1, the above definesO∗
j+1,t as in

This finishes the recursive definition along j.

4.2.4 Step 3: A single field factor

If we choose a field factor κ0,t of C0, we get a corresponding idempotent e, and cutting out
the respective field factor from the above figure induces a canonical choice of an index t
in each row and only these factors will remain after applying e. For the rest of the proof,
we work exclusively with this chosen factor and define

Oj := O∗
j,t and kj := κ∗j,t ,
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so that kj is the residue field of the complete discrete valuation ring Oj . Using this new
name, we see that we have finite ring extensions Cj → Oj . We arrive at the diagram

(4.14)

While it is outside the general pattern, it can easily be shown that we also have a finite
ring map C0 → K ; in fact this is the projection on a direct factor of the ring C0. Since K
is an n-local field, the kj are (n− j)-local fields andOi+1 their first rings of integers.

Key Point 4.16 There is more structure:

(1) (as Tate objects) Now k0 := K , as a factor of C0, is an n-Tate object and induc-
tively Oj+1 and its maximal ideal m ⊂ Oj+1 are Tate lattices in kj , and the
quotient Oj+1/m = kj+1 is an (n − 1)-Tate object. So all the Oj are objects in
Proa( (n− j)-Tate ), and by sandwiching

mNOj ⊆ ηjOj ⊆ mOj (4.15)

the morphism Cj → Oj turns out to come from a morphism of Pro-diagrams and
thus the Cj → Oj are all morphisms in Proa( (n− j)-Tate ) as well.

(2) (ST modules) Moreover, if k is perfect, k0 = K , as a factor of C0, is an ST k-module.
This ST module structure on C0 is precisely the one employed by Yekutieli, see [53,
§6] for a survey, or [51, Definition 3.2.1] and [51, Prop. 3.2.4] for details. This renders
all kj and Oj ST modules by the sub-space and quotient topologies. By Eq. 4.15 and
[51, Prop. 1.2.20] the morphism Cj → Oj is a morphism of ST modules.

4.2.5 Step 4: Coordinatization

Next, we work by induction, starting from j = n again and working downward:
Induction Hypothesis: Assume we have constructed and fixed an isomorphism

ξj : kj[[tj]]
∼−→ Oj ,

simultaneously in the categories of rings, k-algebras, Proa( (n− j)-Tate ), ST modules,
along with a commutative square

where the right-hand side arrows are the quotient maps (in all categories in question), and
the upward arrows are

• (in rings resp. k-algebras) finite extensions,
• (in ST modules) morphisms of ST modules,
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• (in Tate objects) on the left, a morphism of Proa( (n− j)-Tate ) objects, on the right in
(n− j)-Tate .

Let us now perform the induction: We start with j := n. The finiteness of the diagonal
ring morphisms in Figure 4.14 yields the lower commutative square in

ByCohen’s structure theorem, we can find an isomorphism ξn such that wemay attach the
upper commutative square to this diagram. The claims about the ST module morphisms,
resp. Proa( 0 -Tate ), resp. 0 -Tate , are all immediate.
Now, we establish the induction step: Suppose the case j+1 has been dealt with, and we

want to prove the inductionhypothesis for j. Thefiniteness of the diagonal ringmorphisms
in Figure 4.14 yields the lower commutative square in

where the upward arrows are finite ring morphisms. They also define morphisms of Pro-
objects as well as ST modules, by the Key Point 4.16. Since Oj is an equicharacteristic
complete discrete valuation ring with residue field kj , Cohen’s structure theorem allows
us to pick a coefficient field isomorphic to kj inOj , write [−]� : kj ↪→ Oj , and thus get an
isomorphism of rings

ξj : kj[[tj]] −→ Oj
∑

s
astsj �−→ evaluate

∑

s
[as]�tsj

with as ∈ kj and tj some (arbitrary) uniformizer ofOj . If k is perfect, we can assume to have
picked the coefficient field as a sub-k-algebra and so that ξj is a k-algebra isomorphism.
Otherwise, we must content ourselves with a ring isomorphism. Rewrite this morphism
as

ξj : lim←−
ij≥1

kj[[tj]]
/(

tijj
)
−→ lim←−

ij≥1
Oj/m

ij
j

∑

s
astsj �−→ evaluate

∑

s
[as]�tsj . (4.16)
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Now, if we can produce an entry-wise isomorphism between the Pro-diagrams defined
by either side of the morphism, and these are objects in a category C, this defines an
isomorphism in Proa(C).
However, via ξj+1 this can be achieved

ξj+1 : kj+1[[tj+1]]
∼−→ Oj+1 and FracOj+1 = kj,

and since by our induction hypothesis ξj+1 is an isomorphism in Proa( (n− j − 1)-Tate ),
via the field of fractions (resp. the corresponding colimit), this induces an isomorphism

kj+1((tj+1))
∼−→ kj in IndaProa( (n− j − 1)-Tate ),

and in fact in ( (n− j)-Tate ). Using this, the evaluation [as]� in Eq. 4.16 becomes entry-
wise an isomorphism of ( (n− j)-Tate )-objects. It follows that ξj , as defined in Eq. 4.16,
is an isomorphism in Proa( (n− j)-Tate ). For ST modules, argue analogously (that is:
carrying out the Pro-limit and equipping it with the limit topology, respectively, the
colimit topology for the colimit, the same argument shows that ξj is an isomorphism of
ST modules).
Finally, once the entire induction is done, we obtain a Tate object and ST module

isomorphism between K and the multiple Laurent series. If K is perfect, this produces a
parametrization of the n-local field and thus gives an alternative proof thatK is a TLF (see
Definition 1.32). Finally, since

C0 = A(�,OX ),

this proves all our claims.

4.3 Consequences

Theorem 4.17 Suppose X is a purely n-dimensional reduced scheme of finite type over a
field k and� = {(η0 > · · · > ηn)} a saturated flag.

(1) ([5, Theorem 5]) There is a canonical isomorphism of n-fold cubical algebras

ETate(OX�)
∼−→ EBeil� .

(2) Suppose k is perfect. Then for each field factor K in OX� = ∏
K, cut out by the

idempotent e ∈ EBeil� , there are canonical isomorphisms of n-fold cubical algebras

eEBeil� e ∼−→ ETate(K ) ∼−→ EYek(K ).

(3) Suppose k is perfect. Define �(i) = (ηi > ηi+1 > · · · > ηn). Then K admits a
presentation

K = colim−−−→
L1

lim←−
L′1

L1
L′1

= colim−−−→
L1

lim←−
L′1

colim−−−→
L2

lim←−
L′2

L2
L′2

...

= colim−−−→
L1

lim←−
L′1

colim−−−→
L2

· · · colim−−−→
Ln

lim←−
L′n

Ln
L′n

(4.17)



Braunling et al. Res Math Sci (2016) 3:22 Page 47 of 56

where, recursively, L′i+1 ↪→ Li+1 are Yekutieli lattices in K (for i = 0) resp. Li/L′i (for
1 ≤ i < n). But presenting K as a direct summand of A(�,OX ), say K = eA(�,OK )
with e the idempotent, there is also such a presentation,

eA(�,OK ) = e colim−−−→
L1

lim←−
L′1

L1
L′1

= e colim−−−→
L1

lim←−
L′1

colim−−−→
L2

lim←−
L′2

L2
L′2

...

= e colim−−−→
L1

lim←−
L′1

colim−−−→
L2

· · · colim−−−→
Ln

lim←−
L′n

Ln
L′n

, (4.18)

where L′i+1 ↪→ Li+1 are Beilinson lattices for the flag�(i) inOη0 (for i = 0) resp. Li/L′i
(for 1 ≤ i < n). Under an isomorphism

K ∼−→ eA(�,OK ),

these presentations sandwich each other, i.e. levelwise (i.e. in each row of Eqs. 4.17
along with the same-numbered row in Eqs. 4.18), the Yekutieli and Beilinson lattices
pairwise sandwich each other. And in fact, so they do with all Tate lattices.

Proof (1) See [5, Theorem 5].
(2) We write

A(�,OX ) =
∏

Kj, (4.19)

whereKj are the n-local field factors. OurK is one of these factors. By Theorem 4.12 there
is an isomorphism

ξ : K −→ k ′((t1))((t2)) · · · ((tn)), (4.20)

simultaneously as k-algebras (since we assume that k is perfect), and n-Tate objects in
finite-dimensional k-vector spaces, and ST modules. By the first part of the theorem,

ETate(OX�)
∼−→ EBeil�

and if e denotes the idempotent cutting out the field factor in question,

ETate(K ) = eETate(OX�)e
∼−→ eEBeil� e.

On the other hand, since ξ is also an isomorphism of n-Tate objects, it clearly preserves
endomorphism algebras, and therefore

ETate(K ) ∼= EYek(K )

by Theorem 3.8.
(3) Beforeweprove this, we should explain that this follows froma very general principle:

If C is any idempotent complete exact category and an object X ∈ Tateel(C) can be
presented as

X := colim−−−→
Li

lim←−
Lj

Li
Lj
,
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where Li ↪→ Lj (for i ≤ j) are Tate lattices in it, then for every Tate lattice L, which need
not be among these in the presentation, there exist indices i∨, i∧ such that

Li∨ ↪→ L ↪→ Li∧ ,

i.e. arbitrary Tate lattices can be sandwiched by the lattices from the collection {Li}i∈I
(Details: The relevant underpinning result is [7, Theorem 6.7]. In fact, we have already
used exactly this kind of argument in the proof of Lemma 3.3 and we refer the reader to
this proof for a complete discussion).
Obviously, as this propertyholds true for arbitrary idempotent complete exact categories

C, it means that we can (inductively) also apply it to objects in n-Tate categories. That is,
if we have an object of the shape

X = colim−−−→
L1

lim←−
L′1

colim−−−→
L2

· · · colim−−−→
Ln

lim←−
L′n

Ln
L′n

︸ ︷︷ ︸
(n−1)-Tate object

in an n-Tate category, where the n-Tate object is presented by quotients L1/L′1, which are
(n− 1)-Tate objects, and each L1/L′1 by quotients L2/L′2, which are (n− 2)-Tate objects,
etc., then levelwise, i.e. for the rightmost colimit/limit pair in each of the following rows

X = colim−−−→
L1

lim←−
L′1

L1
L′1

= colim−−−→
L1

lim←−
L′1

colim−−−→
L2

lim←−
L′2

L2
L′2

...

= colim−−−→
L1

lim←−
L′1

colim−−−→
L2

· · · colim−−−→
Ln

lim←−
L′n

Ln
L′n

,

each Tate lattice in the i-th row is sandwiched among lattices taken from these systems
{Li}. By Corollary 4.9 the left-hand side in Eq. 4.19 has the presentation

A(η0 > · · · > ηn,OX ) = colim−−−→
L1

lim←−
L′1

· · · colim−−−→
Ln

lim←−
L′n

Ln
L′n

, (4.21)

where the lattices {Li, L′i} are Beilinson lattices of the various levels, so these Beilinson
lattices define Tate lattices in A(η0 > · · · > ηn,OX ). The TLF K on the right-hand side in
Eq. 4.19 also has such a presentation as an n-Tate object

K = colim−−−→
L1

lim←−
L′1

· · · colim−−−→
Ln

lim←−
L′n

Ln
L′n

, (4.22)

where the lattices {Li, L′i} are Yekutieli lattices, so these Yekutieli lattices define Tate
lattices in K . Since our isomorphism ξ is an isomorphism of TLFs, these Yekutieli lattices
are precisely the same as those in the TLF factor cut out from the adèles A(η0 > · · · >

ηn,OX ). Now we may run the above argument about levelwise sandwiching lattices in
either way: Either, using the presentation in Eq. 4.21, we deduce that all Tate lattices are
sandwiched by Beilinson lattices, but the Yekutieli lattices are such Tate lattices—or using
the presentation in Eq. 4.22, we deduce that all Tate lattices are sandwiched by Yekutieli
lattices, but Beilinson lattices are such Tate lattices. �
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We can use Theorem 4.12 to obtain a formulation “in coordinates”:

Definition 4.18 Suppose (A, {I±i }i=1,...,n) is a Beilinson n-fold cubical algebra. A system
of good idempotents consists of elements P+i ∈ Awith i = 1, . . . , n such that the following
conditions are met:

• [P+i , P
+
j ] = 0, (pairwise commutativity)

• P+2i = P+i ,
• P+i A ⊆ I+i ,
• P−i A ⊆ I−i (and we define P−i := 1A − P+i ).

This definition originates from [8, Def. 14].

Proposition 4.19 Let X/k be a reduced finite type scheme of pure dimension n over a
perfect field k. If � is a saturated flag of points and K a field factor in

OX� =
∏

m
Km, (4.23)

then an isomorphism

K � κ((tn))((tn−1)) · · · ((t1)) with [κ : k] < ∞ (4.24)

as in Theorem 4.12 can be chosen so that for f ∈ EBeil(K ) we have the following character-
ization of the ideals:

(1) f ∈ I+i holds iff for all choices of e1, . . . , ei−1 ∈ Z there exists some ei ∈ Z such that
instead of needing to run over the i-th colimit in

im(f ) ⊆
⎧
⎨

⎩
colim−−−→

e1
lim←−
j1

· · · ̂colim−−−→
ei

· · · colim−−−→
en

lim←−
jn

j1−1,...,jn−1∑

α1=−e1 ,...,αn=−en
aα1...αn t

α1
1 · · · tαnn

⎫
⎬

⎭
,

it can, as indicated by the omission symbol (̂−), be replaced by this index ei.
(2) f ∈ I−i holds iff for all e1, . . . , ei−1 ∈ Z there exists ei ∈ Z so that the i-th colimit can

be replaced, as in
⎧
⎨

⎩
colim−−−→

e1
lim←−
j1

· · · ̂colim−−−→
ei

· · · colim−−−→
en

lim←−
jn

j1−1,...,jn−1∑

α1=−e1 ,...,αn=−en
aα1...αn t

α1
1 · · · tαnn

⎫
⎬

⎭
⊆ ker(f ),

by the index ei.
(3) Fix such isomorphisms for all field factors Km in Eq. 4.23. Denote by κm the last residue

field of Km. If we define the κm-linear maps

mP+i
∑

aα1...αn t
α1
1 · · · tαnn =

∑

αi≥0
aα1...αn t

α1
1 · · · tαnn (for 1 ≤ i ≤ n)

on the right-hand side in Eq. 4.24 for each field factor Km, then the aforementioned
isomorphisms equipOX� with a system of good idempotents.

P+i : OX� −→ OX�
w∏

m=1
Km −→

w∏

m=1
Km

(x1, . . . , xw) �−→ ( 1P+i x1, . . . , wP+i xw).
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Westress that (3)would not be true for a randomly chosen field isomorphism in Eq. 4.24.

Proof (1) + (2): This is just unravelling properties that we have already established by now.
By Lemma 4.10 we know that f ∈ I+i�(K, K ) holds if and only if f admits a factorization

colim−−−→
L1

lim←−
L′1

· · · colim−−−→
Ln

lim←−
L′n

Ln
L′n

−→ colim−−−→
N1

lim←−
N ′
1

· · · ̂colim−−−→
Ni

· · · colim−−−→
Nn

lim←−
N ′
n

Nn
N ′
n
, (4.25)

where theL(−), L′(−), N(−), N ′
(−) run over suitable Beilinson lattices. Thismeans that instead

of the colimit over Ni, the image factors through a fixed Ni (allowed to depend on
N1, N ′

1, . . . , Ni−1, N ′
i−1). In Theorem 4.12 we can pick the isomorphism in such a way

that it stems from an isomorphism of the underlying n-Tate objects. So this isomorphism
sends these Beilinson lattices to Tate lattices of κ((tn)) · · · ((t1)) with its standard n-Tate
object structure. For this Tate object structure, see Example 1.24, i.e. slightly rewritten

κ((tn))((tn−1)) . . . ((t1))

= colim−−−→
e1

lim←−
j1

· · · colim−−−→
en

lim←−
jn

1
te11 · · · tenn

κ[t1, . . . , tn]
/(

tj11 , . . . , t
jn
n

)

= colim−−−→
e1

lim←−
j1

· · · colim−−−→
en

lim←−
jn

j1−1,...,jn−1∑

α1=−e1 ,...,αn=−en
aα1...αn t

α1
1 · · · tαnn .

Now, as the image factors through some fixedNi in Eq. 4.25, this is equivalent to factoring
over some fixed ei ∈ Z. Stated along with its dependencies on the other indices this
becomes: For all e1, . . . , ei−1 ∈ Z, there exists ei ∈ Z, so that

αi < ei ⇒ aα1...αn = 0.

It is clear that we can run this argument backwards as well. The rest can be done in an
analogous fashion.
(3) For each fixed m, on Km we see that the mPi are pairwise orthogonal, therefore

commuting, idempotents. OnOX� we deduce that all mPi are again pairwise orthogonal
and then use that the sum of pairwise orthogonal idempotents is again an idempotent. To
check P+i A ⊆ I+i and P−i A ⊆ I−i , one can just use ei := 0 in (1) resp. (2).

5 Different types of lattices
Suppose we look at some flag of points� = {(η0 > · · · > ηn)} in a scheme X , say reduced,
pure dimensional, and of finite type over a perfect field k . In Theorem 4.17 we have seen
that a higher local field factor K of the adèlesO� =

def
A(�,OX ) may be presented as

K = colim−−−→
L1

lim←−
L′1

colim−−−→
L2

· · · colim−−−→
Ln

lim←−
L′n

Ln
L′n

(e.g. in the category of n-Tate objects or as STmodules), where onemay either let the Li, L′i
run through Beilinson, Tate or Yekutieli lattices. We had also seen that this implies that
all these three families of lattices sandwich each other, see Theorem 4.17 for the precise
statement. One may ask for a much stronger property: Could it be true that there is an
(order-preserving) bijection between all these sets of lattices?
Indeed, at first sight, this looks promising: Using the presentation where all Li, L′i are

Beilinson lattices, we have
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K = colim−−−→
L1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

lim←−
L′1

· · · colim−−−→
Ln

lim←−
L′n

︸ ︷︷ ︸
(n−1)-Tate(Vectf )

Ln
L′n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.1)

and thus for each Beilinson lattice L1 we get a Pro-subobject of the n-Tate object K . The
quotient by the latter has the shape

colim−−−→
L1

l̂im←−
L′1

colim−−−→
L2

· · · colim−−−→
Ln

lim←−
L′n

︸ ︷︷ ︸
(n−1)-Tate(Vectf )

Ln
L′n

,

where (̂−) denotes omission, and this is visibly an Ind-quotient in the outer-most Tate
category. Thus, rewriting the bracket in Eq. 5.1 as L�′ (recall that this notationwas defined
to mean AX (�′, L) in Definition 2.10), we have

L�′ ⊆ O�

and this defines a Tate lattice in the n-Tate object O�. Hence, there is a mechanism
to associate Tate lattices to Beilinson lattices. Suggestively, albeit somewhat vaguely, we
could write

Beilinson lattices � Tate lattices. (5.2)

Moreover, theOη1 -module structure of the Beilinson lattice induces

Oη1 ⊗ L −→ L

(Oη1 )�′ ⊗ L�′ −→ L�′ . (5.3)

Since the maximal ideals of O�′ lie over η1, we have (Oη1 )�′ = O�′ . This makes L�′
a finitely generated O�′-module. By Theorem 4.2 the normalization (−)′ of O�′ satisfies
(O�′ )′ = ∏

Oi ⊆ ∏
Ki = O�. Let e be the idempotent cutting out Ki fromO�, and then

alsoOi from (O�′ )′. InsideO�, we can takeO�-spans of elements; in particular, e(Oi ·L�′ )
defines a finitely generatedOi-submodule of Ki. As L was a Beilinson lattice, we have

Oη0 · L = Oη0

and as in Eq. 5.3 this implies

(Oη0 )�′ · L�′ = (Oη0 )�′ ,

but the maximal ideals of the (Oη1 )�′-module structure of L�′ all lie over η1, so as the
localization at η0 inverts this, it follows that (Oη0 )�′ = O� and (Oη0 )�′ = O�. Thus,
O� · L�′ = O� and therefore

eO� = e(O� · L�′ ) ⊆ e(Oi · L�′ ) ⊆ eO�.

It follows thatOi · L�′ ⊆ Ki is a Yekutieli lattice. It is not hard to show that such Yekutieli
lattices again define Tate lattices in Ki, using a similar argument as around Eq. 5.1. This
yields a further mechanism to produce Tate lattices, this time yielding

Beilinson lattices � Yekutieli lattices � Tate lattices.

Note that this is a different mechanism as in line 5.2. We ask: Does every Tate lattice arise
this way?
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It does not, and it is indeed very easy to find examples. For example, if L is a Beilinson
lattice, it is by definition anOη1 -module. As a result,

O�′ ⊗ L�′ −→ L�′
defines an O�′-module structure on L�′ . But Tate lattices have no reason to carry any
module structure at all. For example, let x1, . . . , xr an arbitrary family of elements inO�,
some “noise”. Then if L ⊆ O� is a Tate lattice, so is L + k ⊗ {x1, . . . , xr} ⊆ O� (if R is a
ring andM an R-module, we write R⊗ {v1, . . .} to denote the R-submodule ofM which is
spanned by elements v1, . . .). This is true for the simple reason that adding or quotienting
out some finite-dimensional vector space will not affect being a Pro- or Ind-object inside
Tateel(Vectf ). This shows that a general Tate lattice need not come from a Beilinson or
Yekutieli lattice. The rest of this section will be devoted to discussing amore sophisticated
example, where a Tate and Yekutieli lattice does carry (the natural!) module structure,
but still does not come from a Beilinson lattice.
Consider the affine 2-space A2 = Speck[s, t] and the singleton flag � := {((0) >

(s2 − t3) > (s, t))}. For the sake of brevity, we employ the shorthand
Aj := A(ηj > · · · > η2,OA2 ) ∈ Rings,

(we had already used this notation earlier; cf. Definition 4.4) and we regard these only as
commutative rings for the moment. We compute

A2 = k[[s, t]]

A1 = lim←−
j
k[[s, t]]

[(
k[s, t](s,t) − (s2 − t3)

)−1]
/(s2 − t3)j .

To understand A1 as a ring, note that k[[s, t]] is a 2-dimensional regular local
domain. Already inverting only t removes the maximal ideal, so that k[[s, t]][t−1] is a
1-dimensional regular domain—since k[[s, t]] is regular, it is factorial, and so all height
one primes are principal. Therefore, k[[s, t]][t−1] is actually a principal ideal domain.
Hence, k[[s, t]]

[(
k[s, t](s,t) − (s2 − t3)

)−1] is a localization thereof, and thus itself a prin-
cipal ideal domain. The ideal (s2− t3) is then necessarily maximal, thus completing at this
ideal yields a regular complete local ring of dimension one, i.e. a discrete valuation ring.
Hence, by Cohen’s structure theorem (cf. Proposition 1.5) there exists an isomorphism
A1 � �[[w]] with

� := A1/(s2 − t3) = k[[s, t]]/(s2 − t3)
[
(
k[s, t](s,t) − (s2 − t3)

)−1
]

,

where the overline denotes that we refer to the images of these elements after taking the
quotient by (s2 − t3). Thus, � = Frack[[s, t]]/(s2 − t3). Next,

A0 = lim←−
j
A1

[(
k[s, t](s2−t3) − (0)

)−1] /
(0)j ,

so this is just the field of fractions of A1. We therefore could draw a diagram (except for
the k[[u]] entry, which will be constructed only below)

A0
↑
A1 −→ A1/(s2 − t3)

↑
k[[u]]
↑

A2/(s2 − t3) −→ A2/(s, t).
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The upper-right diagonal entries are fields, the lower-left diagonal entries are one-
dimensional local domains, the upward arrows are localizations, and the rightward arrows
quotients by the respective maximal ideals. Note that A2/(s2 − t3) � k[[s, t]]/(s2 − t3) is
the completed local ring of the standard cusp singularity. In particular, it is not a normal
ring. The well-known integral closure inside the field of fractions is k[[u]] via the inclusion
t �→ u2, s �→ u3. In particular, � := A1/(s2 − t3) � k((u)) since s

t = u3
u2 = u and t is

already a unit in A1 as we had discussed above. In particular, after these isomorphisms we
may rephrase the previous diagram in the shape

k((u))((w))
↑

k((u))[[w]] −→ k((u))
↑

k[[u]]
↑

k[[s, t]]/(s2 − t3) −→ k.

If we follow Beilinson’s definition of a lattice, Definition 2.11, the lattices inO(0) = k(s, t)
are finitely generated k[s, t](s2−t3)-submodules L ⊆ k(s, t) so that k(s, t) · L = k(s, t). A
quotient of such, say L′1 ⊆ L1, would be, for example,

L1
L′1
= k[s, t](s2−t3)

(s2 − t3)N · k[s, t](s2−t3)

(
L1
L′1

)

�′
= k((u))[[w]]

wN · k((u))[[w]] ,

where�′ = ((s2− t3) > (s, t)) andN ≥ 0 some integer. Now, the Beilinson lattices inside
L1/L′1 are k[s, t](s,t)-modules, for example,

(
tp · k[s, t](s,t)

)
�′′ ≡ (u2p · k[u2, u3](u))�′′ ≡ u2p · k[[u, w]] ⊂

(
L1
L′1

)

�′
,

(sp · k[s, t](s,t))�′′ ≡ (u3p · k[u2, u3](u))�′′ ≡ u3p · k[[u, w]] ⊂
(
L1
L′1

)

�′
.

Here the symbol “≡” really just means equality, but is chosen to stress that we are
working in the quotient

(
L1/L′1

)
�′ = L1�′/L′1�′ .

Any Beilinson lattice L ⊆ L1/L′1 is generated by polynomials in the variables s, t, and
thus after applying (−)�′ is generated from elements of the shape

∑
i,j≥0 aiju2i+3j only.

So we see that for N = 1, there exists no Beilinson lattice L ⊆ L1/L′1 so that L�′′ ≡
u · k[[u, w]] ≡ u · k[[u]] 〈1, w, . . . , wN−1〉 (these agree in

(
L1/L′1

)
�′ since wN ≡ 0; again

writing “≡” instead of equality is meant to emphasize this notationally). In particular,
u · k[[u, w]] is a Tate lattice, an (OA2 )�′′-module, yet cannot be of the shape L�′′ for a
Beilinson lattice.
In summary, we have inequalities

Beilinson lattices �= Yekutieli lattices �= Tate lattices,

with a slight abuse of language since they each live in different categories and objects.
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Appendix: Results from commutative algebra
For the convenience of the reader, we list various facts from commutative algebra which
we need in various proofs:

Lemma Suppose R is a Noetherian ring.

(1) ([15, Thm. 7.2 (a)]) For an ideal I , and a finitely generated R-module M, M̂I ∼=
M ⊗R R̂I .

(2) ([15, Lemma2.4])For amultiplicative set S andM anR-module, we haveM[S−1] ∼=
M ⊗R R[S−1].

(3) ([2, Prop. 10.15 (iv)]) For an ideal I and R̂I the I-adic completion. Then IR̂I is
contained in the Jacobson radical of R̂I .

(4) ([15, Cor. 2.16]) Every Artinian ring R is isomorphic to
∏

RP (i.e. a product of
Artinian local rings), where P runs through the finitely many maximal primes of R.

(5) ([38, Thm. 7.2(3)]) Let R be a ring and M an R-module. Then M is faithfully flat
over R iff M �= mM for every maximal ideal of R.
([38, Thm. 7.5(ii)]) IfM is a faithfully flat R-algebra and I an ideal of R, IM∩R = I .

(6) A reduced Artinian local ring is a field (for an Artinian ring the maximal ideal is
nilpotent, so if there are no non-trivial nilpotent elements, we must have m = 0).

(7) ([15, Cor. 7.5]) (Lifting of Idempotents) Suppose R is aNoetherian ringwhich is com-
plete with respect to an ideal I . Then any system of pairwise orthogonal idempotents
e1, . . . , er ∈ R/I lifts uniquely to pairwise orthogonal idempotents e1, . . . , er ∈ R.

(8) ([26, Cor. 2.1.13]) Suppose R is a reduced ring, Q1, . . . , Qr its minimal primes, and
R′ the integral closure in its total ring of quotientsQuot(R). Then R′ ∼= ∏r

i=1(R/Qi)′,
where (R/Qi)′ denotes the integral closure in the field of fractions of R/Qi.

(9) ([35, Thm. 21.10]) Let R be a ring and e an idempotent. Then rad(eR) = eradR,
where radR denotes the Jacobson radical of R. Thus, eR/eradR ∼= e(R/radR), where
e denotes the image of e in R/radR.

(10) Suppose R→ S is a faithfully flat morphism. Let P be a prime in R. Then P is of the
shape Q ∩ S for a prime ideal Q in S minimal over PS. Conversely, for every prime
ideal Q minimal over PS we have Q ∩ S = P.

(11) Let (R,m) be a Noetherian complete local ring and R→ S a finite extension. Then S
is semi-local and decomposes as a finite product of complete local rings, S ∼= ∏

Ŝm′ ,
where m′ runs through the finitely many maximal ideals of S.

(12) ([15, Prop. 11.1]) Suppose (R,m) is a 1-dimensional regular local ring. Then it is a
discrete valuation ring.

(13) Let R be a reduced excellent ring and I an ideal. Then R̂I is also reduced.
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(14) ([37, 33.I, Thm. 79]) Let R be an excellent ring, I an ideal. Then the canonical map
R→ R̂I is regular.

(15) ([37, 33.B, Lemma 2]) Let R → S be a regular, faithfully flat ring homomorphism.
Then R is reduced iff S is reduced.

(16) ([14, Thm. 6.5]) Let R be a reduced Noetherian local ring with geometrically regular
formal fibres (e.g. an excellent reduced local ring). Then there is a canonical bijection
between the maximal ideals of the normalization R′ and the minimal primes of the
completion R̂.

Proof All given references also give a full proof. As additional remarks: For 11 we refer to
[26, Prop. 4.3.2]: Use that S/mS has finitely many minimal primesm′ and therefore by the
Chinese Remainder Theorem S/mS ∼= ∏

(S/mS)m′ . Then use lifting of idempotents. For
13 just combine 14 with 15 and the faithful flatness of completion.
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