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Abstract

LetM be a compact hyperkähler manifold with maximal holonomy (IHS). The group
H2(M,R) is equipped with a quadratic form of signature (3, b2 − 3), called
Bogomolov–Beauville–Fujiki form. This form restricted to the rational Hodge lattice
H1,1(M,Q) has signature (1, k). This gives a hyperbolic Riemannian metric on the
projectivization H of the positive cone in H1,1(M,Q). Torelli theorem implies that the
Hodge monodromy group Γ acts on H with finite covolume, giving a hyperbolic
orbifold X = H/Γ . We show that there are finitely many geodesic hypersurfaces, which
cut X into finitely many polyhedral pieces in such a way that each of these pieces is
isometric to a quotient P(M′)/Aut(M′), where P(M′) is the projectivization of the ample
cone of a birational modelM′ ofM, and Aut(M′) the group of its holomorphic
automorphisms. This is used to prove the existence of nef isotropic line bundles on a
hyperkähler birational model of a simple hyperkähler manifold of Picard number at
least 5 and also illustrates the fact that an IHS manifold has only finitely many birational
models up to isomorphism (cf. Markman and Yoshioka in Int. Math. Res. Not. 2015(24),
13563–13574, 2015).
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1 Background
Let M be an irreducible holomorphic symplectic manifold, that is, a simply connected
compact Kähler manifold with H2,0(M) = C where is nowhere degenerate. In dimension
two, such manifolds are K3 surfaces; in higher dimension 2n, n > 1, one knows, up to
deformation, two infinite series of suchmanifolds, namely the punctualHilbert schemes of
© 2016 Amerik and Verbitsky. This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

0123456789().,–: vol

http://crossmark.crossref.org/dialog/?doi=10.1186/s40687-016-0059-8&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Amerik and Verbitsky Res Math Sci (2016) 3:7 Page 2 of 9

K3 surfaces and the generalizedKummer varieties, and two sporadic examples constructed
byO’Grady. Though considerable effort has beenmade to construct other examples, none
is known at present, and the classification problem for irreducible holomorphic symplectic
manifolds (IHSM) looks equally out of reach.
Oneof themain features of an IHSMM is the existenceof an integral quadratic formq on

the second cohomologyH2(M,Z), theBeauville–Bogomolov–Fujiki form (BBF) form. It
generalizes the intersection form on a surface; in particular, its signature is (3, b2 −3), and
the signature of its restriction to H1,1

R
(M) is (1, b2 − 3). The cone {x ∈ H1,1

R
(M)|q(x) > 0}

thus has two connected components; we call the positive cone Pos(X) the one which
contains the Kähler classes. The BBF form is in fact of topological origin: by a formula due
to Fujiki, q(α)n is proportional to α2n with a positive coefficient depending only onM.
To understand better the geometry of an IHSM, it can be useful to fiber it, whenever

possible, over a lower-dimensional variety. Note that by a result of Matsushita, the fibers
are always Lagrangian (in particular,n-dimensional, where 2n = dimC M), and the general
fiber is a torus. Such fibrations are important for the classification-related problems, and
one can also hope to get some interesting geometry from their degenerate fibers (for
instance, use them to construct rational curves onM).
Note that a fibration of M is necessarily given by a linear system |L|, where |L| is a nef

line bundle with q(L) = 0. Conjecturally, any such bundle is semiample, that is, for large
m the linear system |L⊗m| is base-point-free and thus gives a desired fibration.
It is therefore important to understand which irreducible holomorphic symplectic vari-

eties carry nef line bundles of square zero. By Meyer’s theorem (see for example [20]),
M has an integral (1, 1)-class of square zero as soon as the Picard number ρ(M) is at
least five. By definition, such a class is nef when it is in the closure of the Kähler cone
Kah(M) ⊂ Pos(M). The question is thus to understand whether one can find an isotropic
integral (1, 1)-class in the closure of the Kähler cone.
For projective K3 surfaces, this is easy and has been done in [18]. Indeed, Kah(M) ⊂

Pos(M) is cut out by the orthogonal hyperplanes to (−2)-classes, since a positive (1, 1)-
class is Kähler if and only if it restricts positively on all (−2)-curves, and (−2)-classes on
a K3 surface are ±-effective by Riemann–Roch. Let x be an isotropic integral (1, 1)-class
and suppose that x /∈ Kah(M), that is, there is a (−2)-curve pwith 〈x, p〉 < 0. Fix an ample
integral (1, 1)-class h. Then, the image of x under the reflection in p⊥, x′ = x + 〈x, p〉p,
satisfies 〈x′, h〉 < 〈x, h〉. Therefore, the image of x under successive reflexions in such p’s
becomes nef after finitely many steps. The non-projective case is even easier, since an
isotropic line bundle must then be in the kernel of the Neron–Severi lattice and so has
zero intersection with every curve, in particular, it is nef.
Trying to apply the same argument to higher-dimensional IHSM, we see that the exis-

tence of an isotropic line bundle yields an isotropic element in the closure of the bira-
tional Kähler cone BK(M). By definition, BK(M) is the union of inverse images of the
Kähler cone on all IHSM birational models of M, and its closure is cut out in Pos(X) by
the Beauville–Bogomolov orthogonals to the classes of the prime uniruled exceptional
divisors [8]. One knows that the reflections in those hyperplanes are integral [15]; in par-
ticular, the divisors have bounded squares and the “reflections argument” above applies
with obvious modifications.
A priori, the closure of BK(M) may strictly contain the union of the closures of the

inverse images of the Kähler cones of all birational models, so an additional argument is
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required to conclude that there is an isotropic nef class on some birational model of M.
One way to deal with this is explained in the paper [17]: the termination of flops on an
IHSM implies that any element of the closure of BK(M) does indeed become nef on some
birational model. These observations, though, require the use of rather heavy machinery
of the minimal model program (MMP), which is in principle valid on all varieties (though
the termination of flops itself remains unproven in general).
The purpose of the present note is to give another proof of the existence of nef isotropic

classes, which does not rely on theMMP. Instead, it relies on the “cone conjecture” which
was established in [1] using completely different methods, namely ergodic theory and
hyperbolic geometry.We find the hyperbolic geometry picture which appears in our proof
particularly appealing and believe that it might provide an alternative, perhaps sometimes
more efficient, approach to birational geometry in the particular case of the irreducible
holomorphic symplectic manifolds.
The main advantage of the present construction is its geometric interpretation. The

BBF quadratic form, restricted to the rational Hodge lattice H1,1(M,Q), has signature
(1, k) (unless M is non-algebraic, in which case our results are tautologies). This gives a
hyperbolicRiemannianmetric on theprojectivizationH of thepositive cone inH1,1(M,Q).
Torelli theorem implies that the group Γ Hdg of Hodge monodromy acts on H with finite
covolume, giving a hyperbolic orbifold X = H/Γ Hdg. Using Selberg’s lemma, one easily
reduces to the case when X is a manifold. We prove that X is cut into finitely many poly-
hedral pieces by finitely many geodesic hypersurfaces in such a way that each of these
pieces is isometric to a quotient Amp(M′)/Aut(M′), where Amp(M′) is the projectiviza-
tion of the ample cone of a birational model ofM, and Aut(M′) the group of holomorphic
automorphisms.
In this interpretation, equivalence classes of birational models are in bijective corre-

spondence with these polyhedral piecesHi, and the isotropic nef line bundles correspond
to the cusp points of these Hi. Existence of cusp points is implied by Meyer’s theorem,
and finiteness of Hi by our results on the cone conjecture from [1] (Sect. 3). Finally, the
geometric finiteness results fromhyperbolic geometry imply the finiteness of the isotropic
nef line bundles up to automorphisms.
This article is dedicated with admiration to Fedya Bogomolov, for his 70th birthday.

2 Hyperkähler manifolds: basic results
In this section, we recall the definitions and basic properties of hyperkähler manifolds and
MBM classes.

2.1 Hyperkähler manifolds

Definition 2.1 A hyperkählermanifoldM, that is, a compact Kähler holomorphic sym-
plecticmanifold, is called simple (alternatively, irreducible holomorphically symplectic
(IHSM)), if π1(M) = 0 and H2,0(M) = C.

This definition is motivated by the following theorem of Bogomolov.

Theorem 2.2 ([5]) Any hyperkähler manifold admits a finite covering which is a product
of a torus and several simple hyperkähler manifolds.
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The second cohomology H2(M,Z) of a simple hyperkähler manifoldM carries a prim-
itive integral quadratic form q, called the Bogomolov–Beauville–Fujiki form. It gener-
alizes the intersection product on a K3 surface: its signature is (3, b2 − 3) on H2(M,R)
and (1, b2 − 3) on H1,1

R
(M). It was first defined in [6] and [4], but it is easiest to describe it

using the Fujiki theorem, proved in [9].

Theorem 2.3 (Fujiki) Let M be a simple hyperkähler manifold, η ∈ H2(M), and
n = 1

2 dimM. Then
∫
M η2n = cq(η, η)n, where q is a primitive integer quadratic form

on H2(M,Z), and c > 0 is a rational number.

Definition 2.4 Let M be a hyperkähler manifold. The monodromy group of M is a
subgroup ofGL(H2(M,Z)) generated by themonodromy transforms for all Gauss–Manin
local systems.

It is often enlightening to consider this group in terms of themapping class group action.
We briefly recall this description.
The Teichmüller space Teich is the quotient Comp(M)/Diff0(M), where Comp(M)

denotes the space of all complex structures of Kähler type onM and Diff0(M) is the group
of isotopies. It follows from a result of Huybrechts (see [11]) that for an IHSMM, Teich has
only finitelymany connected components. Let TeichM denote the one containingour given
complex structure. Consider the subgroup of the mapping class group Diff(M)/Diff0(M)
fixing TeichM .

Definition 2.5 ThemonodromygroupΓ is the imageof this subgroup inO(H2(M,Z), q).
TheHodgemonodromy group Γ Hdg is the subgroup of Γ preserving the Hodge decom-
position.

Theorem 2.6 ([22], Theorem 3.5) The monodromy group is a finite index subgroup in
O(H2(M,Z), q) (and the Hodge monodromy is therefore an arithmetic subgroup of the
orthogonal group of the Picard lattice).

2.2 MBM classes

Definition 2.7 A cohomology class η ∈ H2(M,R) is called positive if q(η, η) > 0, and
negative if q(η, η) < 0. The positive cone Pos(M) ∈ H1,1

R
(M) is that one of the two

connected components of the set of positive classes on M which contains the Kähler
classes.

Recall, e.g., from [14] that the positive cone is decomposed into the union of bira-
tional Kähler chambers, which are monodromy transforms of the birational Kähler
cone BK(M). The birational Kähler cone is, by definition, the union of pullbacks of the
Kähler cones Kah(M′) whereM′ denote a hyperkähler birational model ofM (the “Kähler
chambers”). The faces1 of these chambers are supported on the hyperplanes orthogonal
to the classes of prime uniruled divisors of negative square onM (see [8]).
The MBM classes are defined as those classes whose orthogonal hyperplanes support

faces of the Kähler chambers.

1A face of a convex cone in a vector space V is the intersection of its boundary and a hyperplane which has non-empty
interior in the hyperplane.
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Definition 2.8 Anegative integral cohomology class z of type (1, 1) is calledmonodromy
birationally minimal (MBM) if for some isometry γ ∈ O(H2(M,Z)) belonging to the
monodromy group, γ (z)⊥ ⊂ H1,1

R
(M) contains a face of the Kähler cone of one of the

birational modelsM′ ofM.

Geometrically, theMBMclasses are characterized among negative integral (1, 1)-classes
as those which are, up to a scalar multiple, represented by minimal rational curves on
deformations ofM under the identification of H2(M,Q) with H2(M,Q) given by the BBF
form [2,3,13].
The following theorems summarize the main results about MBM classes from [2].

Theorem 2.9 ([2], Corollary 5.13) An MBM class z ∈ H1,1(M) is also MBM on any
deformation M′ of M where z remains of type (1, 1).

Theorem 2.10 ([2], Theorem 6.2) The Kähler cone of M is a connected component of
Pos(M)\ ∪z∈S z⊥, where S is the set of MBM classes on M.

In what follows, we shall also consider the positive cone in the algebraic partNS(M)⊗R

ofH1,1
R

(M), denoted by PosQ(M). Here and further on,NS(M) stands for theNéron-Severi
group ofM.

Definition 2.11 The ample chambers are the connected components of PosQ(M)\∪z∈S
z⊥ where S is the set of MBM classes onM.

One of the ample chambers is, obviously, the ample cone ofM, hence the name.
In the sameway, one definesbirationally ample ormovable chambers as the connected

components of the complement to the union of orthogonals to the classes of uniruled
divisors and their monodromy transforms, cf. [14], section 6. These are also described as
intersections of the biratonal Kähler chambers with NS(M) ⊗ R.

Remark 2.12 Because of the deformation invariance property ofMBMclasses, it is natural
to introduce this notion on H2(M,Z) rather than on (1, 1)-classes: we call z ∈ H2(M,Z)
an MBM class as soon as it is MBM in those complex structures for which it is of type
(1, 1).

2.3 Morrison–Kawamata cone conjecture

The following theorem has been proved in [1].

Theorem 2.13 ([1]) Suppose that the Picard number ρ(M) > 3. Then, the Hodge mon-
odromy group has only finitely many orbits on the set of MBM classes of type (1, 1) on
M.

Since the Hodge monodromy group acts by isometries, it follows that the primitive
MBM classes of type (1, 1) have bounded square (using the deformation argument, one
extends this last statement from the case of ρ(M) > 3 to that of b2(M) 
= 5, the case
b2(M) < 5 being easy, but we shall not need this here). In [2] we have seen that this
implies some a priori stronger statements on the Hodge monodromy action.

Corollary 2.14 The Hodge monodromy group has only finitely many orbits on the set of
faces of the Kähler chambers, as well as on the set of the Kähler chambers themselves.
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For reader’s convenience, let us briefly sketch theproof (for details, see sections 3 and6of
[2]). It consists in remarking that a face of a chamber is givenby aflagPs ⊃ Ps−1 ⊃ · · · ⊃ P1
where Ps is the supporting hyperplane (of dimension s = h1,1 − 1), Ps−1 supports a face
of our face, etc., and for each Pi an orientation (“pointing inwards the chamber”) is fixed.
One deduces from the boundedness of the square of primitive MBM classes that possible
Ps−1 are as well given inside Ps by orthogonals to integral vectors of bounded square, and
it follows that the stabilizer of Ps in Γ Hdg acts with finitely many orbits on those vectors;
continuing in this way one eventually gets the statement.
By Markman’s version of the Torelli theorem [14], an element of Γ Hdg preserving the

Kähler cone actually comes from an automorphism of M. Thus, an immediate conse-
quence is the following Kähler version of the Morrison–Kawamata cone conjecture.

Corollary 2.15 ([1]) Aut(M) has only finitely many orbits on the set of faces of the Kähler
cone.

Remark 2.16 As the faces of the ample cone are likewise given by the orthogonals toMBM
classes, but in PosQ(M) rather than in Pos(M), one concludes that the same must be true
for the ample cone.

3 Hyperbolic geometry and the Kähler cone
3.1 Kleinian groups and hyperbolic manifolds

Definition 3.1 A Kleinian group is a discrete subgroup of isometries of the hyperbolic
spaceHn.

One way to view H
n is as a projectivization of the positive cone PV+ of a quadratic

form q of signature (1, n) on a real vector space V . The Kleinian groups are thus discrete
subgroups of SO(1, n). One calls such a subgroup a lattice if its covolume is finite.

Definition 3.2 Anarithmetic subgroupof an algebraic groupG definedover the integers
is a subgroup commensurable with GZ.

Remark 3.3 From the Borel and Harish-Chandra theorem (see [7], Theorem 7.8), it fol-
lows that when q is integral, any arithmetic subgroup of SO(1, n) is a lattice for n � 2. In
the same paper (section 6), it is shown that arithmetic subgroups of reductive algebraic
groups are finitely generated.

Definition 3.4 A complete hyperbolic orbifold is a quotient of the hyperbolic space by
a Kleinian group. A complete hyperbolic manifold is a quotient of the hyperbolic space
by a Kleinian group acting freely.

Remark 3.5 One defines a hyperbolic manifold as a manifold of constant negative bisec-
tional curvature. When complete, such a manifold is uniformized by the hyperbolic space
[21].

The following proposition is well known.

Proposition 3.6 Any complete hyperbolic orbifold with finitely generated fundamental
group has a finite covering which is a complete hyperbolic manifold (in other words, any
Kleinian group has a finite index subgroup acting freely).
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Proof Let Γ be a finitely generated Kleinian group. Notice first that all stabilizers for
the action of Γ on PV+ are finite, since these are identified with discrete subgroups of
a compact group SO(n). Now by Selberg’s lemma [19], Γ has a finite index subgroup
without torsion which must therefore act freely.

Remark 3.7 IfM is an IHSM, the groupofHodgemonodromyΓ Hdg is an arithmetic lattice
in SO(H1,1(M,Q)) when rkH1,1(M,Q) � 3. The hyperbolic manifold P(H1,1(M,Q) ⊗Q

R)+/Γ Hdg has finite volume by the Borel and Harish-Chandra theorem.

3.2 The cone conjecture and hyperbolic geometry

Recall that the rational positive cone PosQ(M) of a projective hyperkähler manifold M
is one of two connected components of the set of positive vectors in NS(M) ⊗ R.
ReplacingΓ Hdg by a finite index subgroup if necessary, wemay assume that the quotient

PPosQ(M)/Γ Hdg is a complete hyperbolic manifold which we shall denote by H .
By the Borel and Harish-Chandra theorem (see 3.3),H is of finite volume as soon as the

Picard number ofM is at least three.
Let S = {si} be the set of MBM classes of type (1, 1) onM. The following is a translation

of the Morrison–Kawamata cone conjecture into the setting of hyperbolic geometry.

Theorem 3.8 The images of the hyperplanes s⊥i , where si ∈ S, cut the manifold X =
PPosQ(M)/Γ Hdg into finitely many pieces Hi. One of those pieces is the image of the ample
cone (up to a finite covering, this is the quotient of the ample cone by Aut(M)), and the
others are the images of ample cones of birational models of M. The closure of each Hi is a
hyperbolic manifold with boundary consisting of finitely many geodesic pieces.

Proof According to 2.14, up to the action of Γ Hdg there are finitely many faces of ample
chambers. Each face is a connected component of the complement to ∪j 
=is⊥j in s⊥i for
some i. It is clear that the images of the faces do not intersect; hence, being finitely many,
cut X into finitely many pieces which are images of the ample chambers; we denote them
by Hi . We have already mentioned that an element of Γ Hdg preserving the Kähler cone
is induced by an automorphism. Thus, the image of the ample cone is Amp(M)/Aut(M),
up to a finite covering we had to take in order to pass to a manifold from an orbifold.
Finally, the whole X is covered by the birational ample cone (since the other birational
ample chambers are its monodromy transforms), and thus, each part Hi of X obtained in
this way comes from an ample chamber. �

Let us also mention that the same arguments also prove the following result.

Corollary 3.9 ([16],Corollary 2.5)There are only finitelymanynon-isomorphic birational
models of M.

Proof Indeed, the Kähler (or ample) chambers in the same Γ Hdg-orbit correspond to
isomorphic birational models, since one can view the action of Γ Hdg as the change of the
marking (recall that amarking is a choice of an isometry of H2(M,Z) with a fixed lattice
� and that there exists a coarse moduli space of marked IHSMwhich in many works (e.g.,
[10]) plays the same role as the Teichmüller space in others). �
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4 Cusps and nef parabolic classes
Definition 4.1 A horosphere on a hyperbolic space is a sphere which is everywhere
orthogonal to a pencil of geodesics passing through one point at infinity, and a horoball
is a ball bounded by a horosphere. A cusp point for an n-dimensional hyperbolic man-
ifold H/Γ is a point on the boundary ∂H such that its stabilizer in Γ contains a free
abelian group of rank n− 1. Such subgroups are calledmaximal parabolic. For any point
p ∈ ∂H stabilized by Γ0 ⊂ Γ , and any horosphere S tangent to the boundary in p, Γ0
acts on S by isometries. In such a situation, p is a cusp point if and only if (S\p)/Γ0 is
compact.

A cusp point p yields a cusp in the quotient H/Γ , that is, a geometric end of H/Γ of
the form B/Zn−1, where B ⊂ H is a horoball tangent to the boundary at p.
The following theorem describes the geometry of finite volume complete hyperbolic

manifolds more precisely.

Theorem 4.2 (Thick-thin decomposition)Any n-dimensional complete hyperbolic man-
ifold of finite volume can be represented as a union of a “thick part,” which is a compact
manifold with a boundary, and a “thin part,” which is a finite union of quotients of the form
B/Zn−1, where B is a horoball tangent to the boundary at a cusp point, andZn−1 = StΓ (B).

Proof See [21, Section 5.10] or [12, page 491]). �
Theorem 4.3 Let H/Γ be a hyperbolic manifold, where Γ is an arithmetic subgroup of
SO(1, n). Then the cusps of H/Γ are in one-to-one correspondence with Z/Γ , where Z is
the set of rational lines l such that l2 = 0.

Proof By definition of cusp points, the cusps of H/Γ are in one-to-one correspondence
with Γ -conjugacy classes of maximal parabolic subgroups of Γ (see [12]). Each such
subgroup is uniquely determined by the unique point it fixes on the boundary ofH. �
The main result of this paper is the following theorem.

Theorem 4.4 Let M be a hyperkähler manifold with Picard number at least 5. Then M
has a birational model admitting an integral nef (1, 1)-class η with q(η) = 0. Moreover,
each birational model contains only finitely many such classes up to automorphism.

Proof By Meyer’s theorem (see for example [20]), there exists η ∈ NS(M) with q(η) = 0.
By 4.3, the hyperbolic manifoldX := PPosQ(M)/Γ Hdg then has cusps, and, being of finite
volume, only finitely many of them. Recall from 3.8 that X is decomposed into finitely
many pieces, and each of those pieces is the image of the ample cone of a birational model
of M in PosQ(M). Therefore, a lifting of each cusp to the boundary of PPosQ(M) gives
a BBF-isotropic nef line bundle on a birational model M′ of M (or, more precisely, the
whole line such a bundle generates inNS(M)⊗R). Finally, the number of Aut(M′)-orbits
of such classes is finite, being exactly the number of cusps in the piece of X corresponding
toM′: Indeed, this piece is just the quotient of the ample cone ofM′ by its stabilizer which
is identified with Aut(M′). �
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