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Abstract

The purpose of the present paper is to expose, in substantial detail, certain
remarkable similarities between inter-universal Teichmüller theory and the
theory surrounding Bogomolov’s proof of the geometric version of the Szpiro
Conjecture. These similarities are, in some sense, consequences of the fact that both
theories are closely related to the hyperbolic geometry of the classical upper
half-plane. We also discuss various differences between the theories, which are closely
related to the conspicuous absence in Bogomolov’s proof of Gaussian distributions
and theta functions, i.e., which play a central role in inter-universal Teichmüller theory.
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1 Background
Certain aspects of the inter-universal Teichmüller theory developed in [6–9]—namely

(IU1) the geometry of �±ellNF-Hodge theaters (cf. [6, Definition 6.13]; [6, Remark
6.12.3]),

(IU2) the precise relationship between arithmetic degrees—i.e., of q-pilot and �-pilot
objects—given by the �

×μ
LGP-link (cf. [8, Definition 3.8, (i), (ii)]; [8, Remark 3.10.1,

(ii)]), and
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(IU3) the estimates of log-volumes of certain subsets of log-shells that give rise to
diophantine inequalities (cf. [9, §1, §2]; [8, Remark 3.10.1, (iii)]) such as theSzpiro
Conjecture

—are substantially reminiscent of the theory surrounding Bogomolov’s proof of the
geometric version of theSzpiroConjecture, as discussed in [1,10]. Put anotherway, these
aspects of inter-universal Teichmüller theory may be thought of as arithmetic analogues
of the geometric theory surroundingBogomolov’s proof. Alternatively, Bogomolov’s proof
may be thought of as a sort of useful elementary guide, or blueprint [perhaps even a sort
of Rosetta stone!], for understanding substantial portions of inter-universal Teichmüller
theory. The author would like to express his gratitude to Ivan Fesenko for bringing to his
attention, via numerous discussions in person, e-mails, and skype conversations between
December 2014 and January 2015, the possibility of the existence of such fascinating
connections between Bogomolov’s proof and inter-universal Teichmüller theory.
After reviewing, in Sects. 2–4, the theory surrounding Bogomolov’s proof from a point

of view that is somewhat closer to inter-universal Teichmüller theory than the point of
view of [1,10], we then proceed, in Sects. 5 and 6, to compare, by highlighting various
similarities and differences, Bogomolov’s proof with inter-universal Teichmüller theory.
In aword, the similarities between the two theories revolve around the relationship of both
theories to the classical elementary geometry of theupperhalf-plane, while the differences
between the two theories are closely related to the conspicuous absence in Bogomolov’s
proof of Gaussian distributions and theta functions, i.e., which play a central role in
inter-universal Teichmüller theory.

2 The geometry surrounding Bogomolov’s proof
First, we begin by reviewing the geometry surrounding Bogomolov’s proof, albeit from a
point of view that is somewhat more abstract and conceptual than that of [1,10].
We denote by M the complex analytic moduli stack of elliptic curves (i.e., one-

dimensional complex tori). Let
˜M → M

be a universal covering ofM. Thus, ˜M is non-canonically isomorphic to the upper half-
planeH. In the following, we shall denote by a subscript ˜M the result of restricting to ˜M
objects overM that are denoted by a subscriptM.
Write

ωM → M
for the [geometric!] line bundle determined by the cotangent space at the origin of the
tautological family of elliptic curves over M; ω×

M ⊆ ωM for the complement of the
zero section in ωM; EM for the local system over M determined by the first singular
cohomology modules with coefficients in R of the fibers overM of the tautological family
of elliptic curves overM; E×

M ⊆ EM for the complement of the zero section in EM. Thus,
if we think of bundles as geometric spaces/stacks, then there is a natural embedding

ωM ↪→ EM ⊗R C

(cf. the inclusion “ω ↪→ E” of [6, Remark 4.3.3, (ii)]). Moreover, this natural embedding,
together with the natural symplectic form

〈 - , - 〉E
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on EM [i.e., determined by the cup product on the singular cohomology of fibers over
M, together with the orientation that arises from the complex holomorphic structure on
these fibers], gives rise to a natural metric (cf. the discussion of [6, Remark 4.3.3, (ii)]) on
ωM. Write

(

ωM ⊇ ω×
M ⊇)

ω�
M → M

for the S
1-bundle overM determined by the points of ωM of modulus one with respect

to this natural metric.
Next, observe that the natural section 1

2 · tr(−) : C → R (i.e., one-half the trace map
of the Galois extension C/R) of the natural inclusion R ↪→ C determines a section
EM ⊗R C → EM of the natural inclusion EM ↪→ EM ⊗R C whose restriction to ωM
determines bijections

ωM
∼→ EM, ω×

M
∼→ E×

M

(i.e., of geometric bundles overM). Thus, at the level of fibers, the bijection ωM
∼→ EM

may be thought of as a (non-canonical) copy of the natural bijection C
∼→ R

2.
Next, let us write E for the fiber (which is non-canonically isomorphic toR

2) of the local
system EM relative to some basepoint corresponding to a cusp

“∞”

of ˜M, EC

def= E ⊗R C, SL(E) for the group of R-linear automorphisms of E that preserve
the natural symplectic form 〈 - , - 〉E def= 〈 - , - 〉E |E on E [so SL(E) is non-canonically
isomorphic to SL2(R)]. Now since ˜M is contractible, the local systems E

˜M, E×
˜M over ˜M

are trivial. In particular, we obtain natural projection maps
E

˜M � E, E×
˜M � E× � E 
 � E|
 |

—where we write

E× def= E\{(0, 0}, E 
 def= E×/R>0

[soE×,E 
 are non-canonically isomorphic toR
2× def= R

2\{(0, 0)},R2
 def= R
2×/R>0 ∼= S

1,
respectively] and

E 
 � E|
 | def= E 

/{±1}

for the finite étale covering of degree 2 determined by forming the quotient by the action
of ±1∈ SL(E).
Next, let us observe that over each point ˜M, the composite

ω�
˜M ⊆ ω×

˜M
∼→ E×

˜M � E× � E 


induces a homeomorphism between the fiber of ω�
˜M [over the given point of ˜M] and E 
 .

In particular, for each point of ˜M, the metric on this fiber of ω�
˜M determines ametric on

E 
 (i.e., which depends on the point of ˜M under consideration!). On the other hand, one
verifies immediately that such metrics on E 
 always satisfy the following property: Let

D

 ⊆ E 


be a fundamental domain for the action of±1 onE 
 , i.e., the closure of some open subset
D 
 ⊆ E 
 such thatD 
 maps injectively to E|
 |, whileD



maps surjectively to E|
 |. Thus,

±D


(i.e., the {±1}-orbit ofD 


) is equal to E 
 . Then the volume ofD 

relative tometrics
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on E 
 of the sort just discussed is always equal to π , while the volume of ±D


(i.e., E 
 )

relative to such a metric is always equal to 2π .
Over each point of ˜M, the compositeω×

˜M
∼→ E×

˜M � E× corresponds (non-canonically)
to a copy of the natural bijection C

× ∼→ R
2× that arises from the complex structure on

E determined by the point of ˜M. Moreover, this assignment of complex structures, or,
alternatively, points of the one-dimensional complex projective space P(EC), to points of
˜M determines a natural embedding

˜M ↪→ P(EC)

—i.e., a copy of the usual embedding of the upper half-plane into the complex projective
line—hence also natural actions of SL(E) on ˜M and E

˜M that are uniquely determined by
the property that they be compatible, relative to this natural embedding and the projection
E

˜M � E, with the natural actions of SL(E) on P(EC) and E. One verifies immediately
that these natural actions also determine compatible natural actions of SL(E) on ω�

˜M ⊆
ω×

˜M
∼→ E×

˜M and that the natural action of SL(E) on ω�
˜M determines a structure of SL(E)-

torsor on ω�
˜M. Also, we observe that the natural embedding of the above display allows

one to regard E|
 | as the “boundary” ∂ ˜M of ˜M, i.e., the boundary of the upper half-plane.
Let ˜SL(E), (ω�

M)∼, (ω×
M)∼, (E×

M)∼, (E×)∼, (E 
 )∼ be compatible universal coverings
of SL(E), ω�

˜M, ω×
˜M, E×

˜M, E×, E 
 , respectively. Thus, ˜SL(E) admits a natural Lie group
structure, together with a natural surjection of Lie groups ˜SL(E) � SL(E), whose kernel
admits a natural generator

τ̃� ∈ Ker
(

˜SL(E) � SL(E)
)

determined by the clockwise orientation that arises from the complex structure on
the fibers of ω×

M over M]. This natural generator determines a natural isomorphism
Z

∼→ Ker(˜SL(E) � SL(E)).
Next, observe that the natural actions of SL(E) on ω�

˜M, ω×
˜M, E×

˜M, E×, E 
 lift uniquely to
compatible natural actions of ˜SL(E) on the respective universal coverings (ω�

M)∼, (ω×
M)∼,

(E×
M)∼, (E×)∼, (E 
 )∼. In particular, the natural generator τ̃� of Z = Ker(˜SL(E) � SL(E))

determines a natural generator τ̃

 of the group Aut((E 
 )∼/E 
 ) of covering trans-

formations of (E 
 )∼ � E 
 and hence, taking into account the composite covering
(E 
 )∼ � E 
 � E|
 |, a natural Autπ (R)-orbit of homeomorphisms [i.e., a “home-
omorphism that is well defined up to composition with an element of Autπ (R)”]

(

E 
 )∼ ∼→ R (� Autπ (R))

—where we write Autπ (R) for the group of self-homeomorphisms R
∼→ R that com-

mute with translation by π . Here, the group of covering transformations of the covering
(E 
 )∼ � E 
 is generated by the transformation τ̃


 , which corresponds to translation by
2π ; the group of covering transformations of the composite covering (E 
 )∼ � E 
 � E|
 |

admits a generator τ̃ |
 | that satisfies the relation
(

τ̃ |
 |)2 = τ̃

 ∈ Aut

((

E 
 )∼/

E 

)

and corresponds to translation by π (cf. the transformation “z(−)” of [10, Lemma 3.5]).
Moreover, τ̃ |
 | arises from an element τ̃ |�| ∈ ˜SL(E) that lifts −1∈ SL(E) and satisfies the
relation (̃τ |�|)2 = τ̃�. The geometry discussed so far is summarized in the commutative
diagram of Fig. 1.
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Fig. 1 The geometry surrounding Bogomolov’s proof

3 Fundamental groups in Bogomolov’s proof
Next, we discuss the various fundamental groups that appear in Bogomolov’s proof.
Recall that the 12th tensor power ω⊗12

M of the line bundle ωM admits a natural section;
namely, the so-called discriminant modular form, which is nonzero over M, hence
determines a section of ω×⊗12

M (i.e., the complement of the zero section of ω⊗12
M ). Thus, by

raising sections of ω×
M to the 12th power and then applying the trivialization determined

by the discriminant modular form, we obtain natural holomorphic surjections
ω×
M � ω×⊗12

M � C
×

—where we note that the first surjection ω×
M � ω×⊗12

M , as well as the pull-back ω×
˜M �

ω×⊗12
˜M of this surjection to ˜M, is in fact a finite étale covering of complex analytic stacks.

Thus, the universal covering (ω×
M)∼ over ω×

M may be regarded as a universal covering
(ω×⊗12

M )∼ def= (ω×
M)∼ of ω×⊗12

M . In particular, if we regard C as a universal covering of C
×

via the exponential map exp : C � C
×, then the surjection ω×⊗12

M � C
× determined by

the discriminant modular form lifts to a surjection
(

ω×
M

)∼ =
(

ω×⊗12
M

)∼
� C

of universal coverings that is well defined up to composition with a covering transforma-
tion of the universal covering exp : C � C

×.
Next, let us recall that the R-vector space E is equipped with a natural Z-lattice

EZ ⊆ E

(i.e., determined by the singular cohomology with coefficients in Z). The set of elements
of SL(E) that stabilize EZ ⊆ E determines a subgroup SL(EZ) ⊆ SL(E) [so SL(EZ) is
non-canonically isomorphic to SL2(Z)], hence also a subgroup ˜SL(EZ)

def= ˜SL(E) ×SL(E)
SL(EZ). Thus, SL(E) ⊇ SL(EZ) admits a natural action on ω×

˜M; ˜SL(E) ⊇ ˜SL(EZ) admits
a natural action on (ω×

M)∼. Moreover, one verifies immediately that the latter natural
action determines a natural isomorphism

˜SL(EZ)
∼→ π1

(

ω×
M

)

with the group of covering transformations of (ω×
M)∼ over ω×

M, i.e., with the fundamental
group [relative to the basepoint corresponding to the universal covering (ω×

M)∼] π1(ω×
M).

In particular, if we use the generator −2π i ∈ C to identify π1(C×) with Z, then one
verifies easily (by considering the complex elliptic curves that admit automorphisms of
order >2) that we obtain a natural surjective homomorphism

χ : ˜SL(EZ) = π1
(

ω×
M

)

� π1
(

C
×) ∼→ Z
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whose restriction to Z
∼→ Ker(˜SL(EZ) � SL(EZ)) is the homomorphism Z → Z given by

multiplication by 12, i.e.,

χ
(

τ̃�) = 12, χ
(

τ̃ |�|) = 6

(cf. the final portion of Sect. 2).
Finally, we recall that in Bogomolov’s proof, one considers a family of elliptic curves (i.e.,

one-dimensional complex tori)

X → S
(⊆ S

)

over a hyperbolic Riemann surface S of finite type (g, r) (so 2g − 2+ r > 0) that has stable
bad reduction at every point at infinity (i.e., point ∈ S\S) of some compact Riemann
surface S that compactifies S. Such a family determines a classifying morphism S → M.
The above discussion is summarized in the commutative diagrams and exact sequences
of Figs. 2 and 3.

4 Estimates of displacements subject to indeterminacies
We conclude our review of Bogomolov’s proof by briefly recalling the key points of the
argument applied in this proof. These keypoints revolve around estimates of displacements
that are subject to certain indeterminacies.
Write

Autπ (R≥0)

Fig. 2 Exact sequences related to Bogomolov’s proof

Fig. 3 Fundamental groups related to Bogomolov’s proof
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for the groupof self-homeomorphismsR≥0
∼→ R≥0 that stabilize and restrict to the identity

on the subset π · N ⊆ R≥0 and R|π | for the set of Autπ (R≥0)-orbits of R≥0 [relative to the
natural action of Autπ (R≥0) on R≥0]. Thus, one verifies easily that

R|π | =
(

⋃

n∈N

{[n · π ]}
)

⋃

(

⋃

m∈N

{

[(m · π , (m + 1) · π )]
}

)

—wherewe use the notation “[−]” to denote the element inR|π | determined by an element
or non-empty subset ofR≥0 that lies in a single Autπ (R≥0)-orbit. In particular, we observe
that the natural order relation on R≥0 induces a natural order relation on R|π |.
For˜ζ ∈ ˜SL(E), write

δ
(

˜ζ
) def= {[∣

∣̃ζ (e) − e
∣

∣

]∣

∣ e ∈
(

E 
 )∼}

⊆ R|π |

—where the absolute value of differences of elements of (E 
 )∼ is computed with respect to
some fixed choice of a homeomorphism (E 
 )∼ ∼→ R that belongs to the natural Autπ (R)-
orbit of homeomorphisms discussed in Sect. 2, and we observe that it follows immediately
from the definition of R|π | that the subset δ(˜ζ ) ⊆ R|π | is in fact independent of this fixed
choice of homeomorphism.
Since (one verifies easily, from the connectedness of the Lie group ˜SL(E), that) τ̃ |�|

belongs to the center of the group ˜SL(E), it follows immediately [from the definition of
R|π |, by considering translates of e ∈ (E 
 )∼ by iterates of τ̃ |�|] that the set δ(˜ζ ) is finite,
hence admits a maximal element

δsup
(

˜ζ
) def= sup

(

δ
(

˜ζ
))

(cf. the length �(−) of the discussion preceding [10, Lemma 3.7]). Thus,

δ
((

τ̃ |�|)n) = {[|n| · π ]} , δsup
((

τ̃ |�|)n) = [|n| · π ]

for n ∈ Z (cf. the discussion preceding [10, Lemma 3.7]). We shall say that˜ζ ∈ ˜SL(E) is
minimal if δsup(˜ζ ) determines a minimal element of the set {δsup(˜ζ · (̃τ�)n)}n∈Z.
Next, observe that the cusp “∞” discussed in Sect. 2 may be thought of as a choice of

some rank one submodule E∞ ⊆ EZ for which there exists a rank one submodule E0 ⊆
EZ—which may be thought of as a cusp “0”—such that the resulting natural inclusions
determine an isomorphism

E∞ ⊕ E0
∼→ EZ

of Z-modules. Note that since E∞ and E0 are free Z-modules of rank one, it follows (from
the fact that the automorphism group of the group Z is of order two!) that there exist
natural isomorphisms E⊗2∞

∼→ E⊗2
0

∼→ Z. On the other hand, the natural symplectic form
〈 - , - 〉EZ

def= 〈 - , - 〉E |EZ
on EZ determines an isomorphism of E∞ with the dual of E0,

hence (by applying the natural isomorphism E⊗2
0

∼→ Z) a natural isomorphism E∞
∼→ E0.

This natural isomorphism E∞
∼→ E0 determines a non-trivial unipotent automorphism

τ∞ ∈ SL(EZ) of EZ = E∞ ⊕E0 that fixes E∞ ⊆ EZ—i.e., which may be thought of, relative
to natural isomorphism E∞

∼→ E0, as the matrix ( 1 1
0 1 )—as well as an SL(EZ)-conjugate

unipotent automorphism τ0 ∈ SL(EZ)—i.e., which may be thought of, relative to natural
isomorphism E∞

∼→ E0, as the matrix ( 1 0
−1 1 ). Thus, the product

τ∞ · τ0 =
(

1 1
0 1

)

·
(

1 0
−1 1

)

=
(

0 1
−1 1

)

∈ SL(EZ)
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lifts, relative to a suitable homeomorphism (E 
 )∼ ∼→ R that belongs to the natural
Autπ (R)-orbit of homeomorphisms discussed in Sect. 2, to an element τ̃θ ∈ ˜SL(EZ) that
induces the automorphism of R given by translation by θ for some θ ∈ R such that
|θ | = 1

3π .
The key observations that underlie Bogomolov’s proof may be summarized as follows

(cf. [10, Lemmas 3.6, 3.7]):

(B1) Every unipotent element τ ∈ SL(E) lifts uniquely to an element

τ̃ ∈ ˜SL(E)

that stabilizes and restricts to the identity on some (̃τ |
 |)Z-orbit of (E 
 )∼. Such a τ̃

isminimal and satisfies

δsup (̃τ ) < [π ].

(B2) Every commutator [̃α,˜β] ∈ ˜SL(E) of elements α̃,˜β ∈ ˜SL(E) satisfies

δsup
([

α̃,˜β
])

< [2π ].

(B3) Let τ̃∞, τ̃0 ∈ ˜SL(EZ) be liftings of τ∞, τ0 ∈ SL(EZ) as in (B1). Then

τ̃∞ · τ̃0 = τ̃θ , and θ = 1
3π > 0.

In particular,

(̃τ∞ · τ̃0)3 = τ̃ |�|, χ (̃τ∞) = χ (̃τ0) = 1,χ
(

τ̃�) = 2 · χ (̃τ |�|) = 12.

Observation (B1) follows immediately, in light of the various definitions involved,
together with the fact that τ̃ |�| belongs to the center of the group ˜SL(E), from the fact τ

fixes the [distinct!] images in E 
 of ±v ∈ E for some nonzero v ∈ E.
Next, let us write |SL(E)| def= SL(E)/{±1}. Then observe that since the generator τ̃ |�|

of Ker(˜SL(E) � SL(E) � |SL(E)|) belongs to the center of ˜SL(E), it follows that every
commutator [̃α,˜β] as in observation (B2) is completely determinedby the respective images
|α|, |β| ∈ |SL(E)|of α̃,˜β ∈ ˜SL(E).Nowrecall (cf. the proof of Lemma3.5 [10]) that it follows
immediately from an elementary linear algebra argument—i.e., consideration of a solution
“x” to the equation

det
((

a b
c d

)

−
(

1 x
0 1

))

= 0

associated to an element
(a b
c d

) ∈ SL2(R) such that c 
= 0—that every element of SL(E)
other than −1 ∈ SL(E) may be written as a product of two unipotent elements of SL(E). In
particular, we conclude that every commutator [̃α,˜β] = (̃α ·˜β · α̃−1) ·˜β−1 as in observation
(B2) may be written as a product

τ̃1 · τ̃2 · τ̃ ∗
2 · τ̃ ∗

1

of four minimal liftings “̃τ ” as in (B1) such that τ̃ ∗
1 , τ̃

∗
2 are ˜SL(E)-conjugate to τ̃−1

1 , τ̃−1
2 ,

respectively. On the other hand, it follows immediately from the fact that the action on
E 
 of any non-trivial (i.e., 
= 1) unipotent element of SL(E) has precisely two fixed points
(i.e., precisely one {±1}-orbit of fixed points) that, for i = 1, 2, there exists an element
εi ∈ {±1} such that, relative to the action of ˜SL(E) on (E 
 )∼ ∼→ R, τ̃ εi

i maps every element
x ∈ R to an element R � τ̃

εi
i (x) ≥ x. [Indeed, consider the continuity properties of the
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map R � x �→ τ̃i(x) − x ∈ R, which is invariant with respect to translation by π in
its domain!] Moreover, since any element of ˜SL(E) induces a self-homeomorphism of
(E 
 )∼ ∼→ R that commutes with the action of τ̃ |�|, hence is necessarily strictly monotone
increasing, we conclude that, for i = 1, 2, (̃τ ∗

i )
εi maps every element x ∈ R to an element

R � (̃τ ∗
i )

εi (x) ≤ x. In particular, any computation of the displacements ∈ R that occur as
the result of applying the above product τ̃1 · τ̃2 · τ̃ ∗

2 · τ̃ ∗
1 to some element of (E 
 )∼ ∼→ R

yields, in light of the estimates δsup(̃τ1) = δsup(̃τ ∗
1 ) < [π ], δsup(̃τ2) = δsup(̃τ ∗

2 ) < [π ] of
(B1), a sum

(((

a∗
1 + a∗

2
) + a2

) + a1
) = (

a1 + a∗
1
) + (

a2 + a∗
2
) ∈ R

for suitable elements

a1 ∈ ε1 · [0,π ) ⊆ R; a∗
1 ∈ −ε1 · [0,π ) ⊆ R;

a2 ∈ ε2 · [0,π ) ⊆ R; a∗
2 ∈ −ε2 · [0,π ) ⊆ re.

Thus, the estimate δsup([̃α,˜β]) < [2π ] of observation (B2) follows immediately from the
estimates |a1 + a∗

1| < π , |a2 + a∗
2| < π .

Next, observe that since π < 2π − 1
3π , it follows immediately that {[0], [(0,π )]} ∩ δ(̃τθ ·

(̃τ�)n) = ∅ for n 
= 0.On the other hand, (B1) implies that [0] ∈ δ(̃τ0) and δsup(̃τ∞) < [π ],
and hence that {[0], [(0,π )]}∩δ(̃τ∞ · τ̃0) 
= ∅. Thus, the relation τ̃∞ · τ̃0 = τ̃θ of observation
(B3) follows immediately; the positivity of θ follows immediately from the clockwise nature
(cf. the definition “̃τ�” in the final portion of Sect. 2) of the assignments ( 10 ) �→ ( 0

−1 ),

( 01 ) �→ ( 11 ) determined by τ∞ · τ0.
Next, recall thewell-knownpresentation via generatorsαS

1 , . . . ,αS
g ,βS

1 , . . . ,βS
g ,γ S

1 , . . . , γ S
r

(where γ S
1 , . . . , γ S

r generate the respective inertia groups at the points at infinity S\S of S)
subject to the relation

[

αS
1 ,β

S
1

]

· . . . ·
[

αS
g ,β

S
g

]

· γ S
1 · . . . · γ S

r = 1

of the fundamental group �S of the Riemann surface S. These generators map, via the
outer homomorphism �S → �M induced by the classifying morphism of the family of
elliptic curves under consideration, to elements α1, . . . ,αg , β1, . . . ,βg , γ1, . . . , γr subject
to the relation

[α1,β1] · . . . · [

αg ,βg
] · γ1 · . . . · γr = 1

of the fundamental group �M = SL(EZ) (for a suitable choice of basepoint) ofM.
Next, let us choose liftings α̃1, . . . , α̃g , ˜β1, . . . ,˜βg , γ̃1, . . . , γ̃r of α1, . . . ,αg , β1, . . . ,βg ,

γ1, . . . , γr to elements of ˜SL(EZ) such that γ̃1, . . . , γ̃r areminimal liftings as in (B1). Thus,
we obtain a relation

[

α̃1,˜β1
] · . . . · [

α̃g ,˜βg
] · γ̃1 · . . . · γ̃r = (

τ̃�)n� =
(

τ̃ |�|)2n
�

in ˜SL(EZ) for some n� ∈ Z. The situation under consideration is summarized in Fig. 4.
Now it follows from the various definitions involved, together with the well-known

theory of Tate curves, that, for i = 1, . . . , r,

the element γi is an SL(EZ)-conjugate of τ vi∞

for some vi ∈ N. Put another way, vi is the order of the q-parameter of the Tate curve
determined by the given family X → S at the point at infinity corresponding to γ S

i .
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Fig. 4 The setup of Bogomolov’s proof

Thus, by applying χ (−) to the above relation, we conclude (cf. the discussion preceding
[10, Lemma 3.7]) from the equalities in the final portion of (B3) (together with the evident
fact that commutators necessarily lie in the kernel of χ (−)) that

(B4) The “orders of q-parameters” v1, . . . , vr satisfy the equality
r

∑

i=1
vi = 12n�

—where n� ∈ Z is the quantity defined in the above discussion.

On the other hand, by applying δsup(−) to the above relation, we conclude (cf. the
discussion following the proof of [10, Lemma 3.7]) from the estimates of (B1) and (B2),
the equality of (B4), and the equality δsup((̃τ |�|)n) = [ |n| · π ], for n ∈ Z, that

( r
∑

i=1
π

)

+
⎛

⎝

g
∑

j=1
2π

⎞

⎠ > 2π · n� = 1
6

· π ·
r

∑

i=1
vi

—i.e., that

(B5) The “orders of q-parameters” v1, . . . , vr satisfy the estimate

1
6

·
r

∑

i=1
vi < 2g + r

—where (g, r) is the type of the hyperbolic Riemann surface S.

Finally, we conclude (cf. the discussion following the proof of [10, Lemma 3.7]) the
geometric version of the Szpiro inequality

1
6

·
r

∑

i=1
vi ≤ 2g − 2 + r

by applying (B5) (multiplied by a normalization factor 1
d ) to the families obtained from

the given family X → S by base-changing to finite étale Galois coverings of S of degree d
and passing to the limit d → ∞.

5 Similarities between the two theories
We are now in a position to reap the benefits of the formulation of Bogomolov’s proof
given above, which ismuch closer “culturally” to inter-universal Teichmüller theory than
the formulation of [1,10].
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We begin by considering the relationship between Bogomolov’s proof and (IU1), i.e.,
the theory of�±ellNF-Hodge theaters, as developed in [6]. First of all, Bogomolov’s proof
clearly centers around the hyperbolic geometry of the upper half-plane. This aspect of
Bogomolov’s proof is directly reminiscent of the detailed analogy discussed in [6, Remark
6.12.3]; [6, Fig. 6.4], between the structure of �±ellNF-Hodge theaters and the classical
geometry of the upper half-plane—cf., e.g., the discussion of the natural identification of
E|
 | with the boundary ∂ ˜M of ˜M in Sect. 2; the discussion of the boundary of the upper
half-plane in [6], Remark 6.12.3, (iii). In particular, one may think of

the additive F
�±
l -symmetry portion of a �±ellNF-Hodge theater as corresponding

to the unipotent transformations τ∞, τ0, γi

that appear in Bogomolov’s proof and of

themultiplicativeF
�

l -symmetry portionof a�±ellNF-Hodge theater as correspond-
ing to the toral/“typically non-unipotent” transformations τ∞ · τ0, αi, βi

that appear in Bogomolov’s proof, i.e., typically as products of two non-commuting unipo-
tent transformations (cf. the proof of (B2)!). Here, we recall that the notation F

�±
l denotes

the semi-direct product group Fl � {±1} (relative to the natural action of {±1} on the
underlying additive group of Fl), while the notation F

�

l denotes the quotient of the mul-
tiplicative group F

×
l by the action of {±1}.

One central aspect of the theory of �±ellNF-Hodge theaters developed in [6] lies in the
goal of somehow “simulating” a situation in which the module of l-torsion points of the
given elliptic curve over a number field admits a “globalmultiplicative subspace” (cf. the
discussion of [6, §I1]; [6, Remark 4.3.1]). One way to understand this sort of “simulated”
situation is in terms of the one-dimensional additive geometry associated to a non-
trivial unipotent transformation. That is to say, whereas, from an a priori point of view,
the one-dimensional additive geometries associated to conjugate, non-commuting unipo-
tent transformations aredistinct and incompatible, the “simulation” under consideration
may be understood as consisting of the establishment of some sort of geometry in which
these distinct, incompatible one-dimensional additive geometries are somehow “identi-
fied” with one another as a single, unified one-dimensional additive geometry. This
fundamental aspect of the theory of �±ellNF-Hodge theaters in [6] is thus reminiscent of
the

single, unified one-dimensional objects E 
 ( ∼→ S
1
)

,
(

E 
 )∼ ( ∼→ R

)

in Bogomolov’s proofwhich admit natural actions by conjugate, non-commuting unipotent
transformations ∈ SL(E) (i.e., such as τ∞, τ0) and theirminimal liftings to ˜SL(E) [i.e., such
as τ̃∞, τ̃0—cf. (B1)].
The issue of simulation of a “global multiplicative subspace” as discussed in [6, Remark

4.3.1] is closely related to the application of absolute anabelian geometry as developed
in [5], i.e., to the issue of establishing global arithmetic analogues for number fields of the
classical theories of analytic continuation and Kähler metrics, constructed via the use
of logarithms, on hyperbolic Riemann surfaces (cf. [6, Remarks 4.3.2, 4.3.3, 5.1.4]). These
aspects of inter-universal Teichmüller theory are, in turn, closely related (cf. the discussion
of [6, Remark 4.3.3]) to the application in [8] of the theory of log-shells [cf. (IU3)] as
developed in [5] to the task of constructing multiradial mono-analytic containers, as
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discussed in the Introductions to [8,9]. These multiradial mono-analytic containers play
the crucial role of furnishing containers for the various objects of interest—i.e., the theta
value and global number field portions of �-pilot objects—that, although subject to
various indeterminacies (cf. the discussion of the indeterminacies (Ind1), (Ind2), (Ind3)
in the Introduction to [8]), allow one to obtain the estimates (cf. [8, Remark 3.10.1, (iii)])
of these objects of interest as discussed in detail in [9, §1, §2] (cf., especially, the proof of
[9, Theorem 1.10]). These aspects of inter-universal Teichmüller theory may be thought
of as corresponding to the essential use of (E 
 )∼ ( ∼→ R) in Bogomolov’s proof, i.e., which
is reminiscent of the log-shells that appear in inter-universal Teichmüller theory inmany
respects:

(L1) The object (ω�
M)∼ that appears in Bogomolov’s proof may be thought of as corre-

sponding to the holomorphic log-shells of inter-universal Teichmüller theory, i.e.,
in the sense that it may be thought of as a sort of “logarithm” of the “holomorphic
family of copies of the group of units S

1” constituted by ω�
˜M—cf. the discussion

of variation of complex structure in Sect. 2.
(L2) Each fiber over ˜M of the “holomorphic log-shell” (ω�

M)∼ maps isomorphically (cf.
Fig. 1) to (E 
 )∼, an essentially real analyticobject that is independent of the varying
complex structures discussed in (L1), hence may be thought of as corresponding to
themono-analytic log-shells of inter-universal Teichmüller theory.

(L3) Just as in the case of the mono-analytic log-shells of inter-universal Teichmüller
theory (cf., especially, the proof of [9, Theorem 1.10]), (E 
 )∼ serves as a container
for estimating the various objects of interest in Bogomolov’s proof, as discussed
in (B1), (B2), objects which are subject to the indeterminacies constituted by the
action ofAutπ (R), Autπ (R≥0) [cf. the indeterminacies (Ind1), (Ind2), (Ind3) in inter-
universal Teichmüller theory].

(L4) In the context of the estimates of (L3), the estimates of unipotent transformations
given in (B1) may be thought of as corresponding to the estimates involving theta
values in inter-universal Teichmüller theory, while the estimates of “typically non-
unipotent” transformations given in (B2) may be thought of as corresponding to
the estimates involving global number field portions of �-pilot objects in inter-
universal Teichmüller theory.

(L5) As discussed in the [6, §I1], the Kummer theory surrounding the theta values is
closely related to the additive symmetry portion of a �±ellNF-Hodge theater, i.e.,
inwhich global synchronization of±-indeterminacies (cf. [6, Remark 6.12.4, (iii)])
plays a fundamental role.Moreover, as discussed in [8, Remark 2.3.3, (vi), (vii), (viii)],
the essentially local nature of the cyclotomic rigidity isomorphisms that appear
in the Kummer theory surrounding the theta values renders them free of any ±-
indeterminacies. These phenomena of rigidity with respect to ±-indeterminacies
in inter-universal Teichmüller theory are highly reminiscent of the crucial estimate
of (B1) involving

the volume π of a fundamental domain D



for the action of {±1} on E 
 (i.e., as opposed to the volume 2π of the {±1-orbit
±D



of D



!), as well as of the uniqueness of the minimal liftings of (B1). In this

context, we also recall that the additive symmetry portion of a �±ellNF-Hodge
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theater, which depends, in an essential way, on the global synchronization of ±-
indeterminacies (cf. [6, Remark 6.12.4, (iii)]), is used in inter-universal Teichmüller
theory to establish conjugate synchronization, which plays an indispensable role
in the construction of bi-coric mono-analytic log-shells (cf. [8, Remark 1.5.1]).
This state of affairs is highly reminiscent of the important role played by E 
 , as
opposed to E|
 | = E 


/{±1}, in Bogomolov’s proof.
(L6) As discussed in the [6, §I1], the Kummer theory surrounding the number fields

under consideration is closely related to the multiplicative symmetry portion of
a �±ellNF-Hodge theater, i.e., in which one always works with quotients via the
action of ±1. Moreover, as discussed in [8, Remark 2.3.3, (vi), (vii), (viii)] (cf. also [7,
Remark 4.7.3, (i)]), the essentially global nature—which necessarily involves at least
two localizations, corresponding to a valuation [say, “0”] and the corresponding
inverse valuation [i.e., “∞”] of a function field—of the cyclotomic rigidity iso-
morphisms that appear in the Kummer theory surrounding number fields causes
them to be subject to ±-indeterminacies. These ±-indeterminacy phenomena in
inter-universal Teichmüller theory are highly reminiscent of the crucial estimate of
(B2)—which arises from considering products of two non-commuting unipotent
transformations, i.e., corresponding to “two distinct localizations”—involving

the volume 2π of the {±1}-orbit ± D


of a fundamental domain D




for the action of {±1} on E 
 (i.e., as opposed to the volume π of D


!).

(L7) The analytic continuation aspect (say, from “∞” to “0”) of inter-universal Teich-
müller theory–i.e., via the technique of Belyi cuspidalization as discussed in [6,
Remarks 4.3.2, 5.1.4]—may be thought of as corresponding to the “analytic con-
tinuation” inherent in the holomorphic structure of the “holomorphic log-shell
(ω�

M)∼,” which relates, in particular, the localizations at the cusps “∞” and “0.”

Here, we note in passing that one way to understand certain aspects of the phenom-
ena discussed in (L4)–(L6) is in terms of the following “general principle” : Let k be an
algebraically closed field. Write k× for the multiplicative group of nonzero elements of k ,
PGL2(k)

def= GL2(k)/k×. Thus, by thinking in terms of fractional linear transformations,
one may regard PGL2(k) as the group of k-automorphisms of the projective line P def= P

1
k

over k . We shall say that an element of PGL2(k) is unipotent if it arises from a unipotent
element of GL2(k). Let ξ ∈ PGL2(k) be a non-trivial element. Write Pξ for the set of
k-rational points of P that are fixed by ξ . Then observe that

ξ is unipotent ⇐⇒ Pξ is of cardinality one;
ξ is non-unipotent ⇐⇒ Pξ is of cardinality two.

That is to say,
General principle:

• A non-trivial unipotent element ξ ∈ PGL2(k) may be regarded as expressing a local
geometry, i.e., the geometry in theneighborhoodof a singlepoint [namely theunique
fixed point of ξ ]. Such a “local geometry”—that is to say, more precisely, the set Pξ of
cardinality one—does not admit a reflection, or ±-, symmetry.

• By contrast, a non-trivial non-unipotent element ξ ∈ PGL2(k) may be regarded as
expressing a global geometry, i.e., the “toral” geometry corresponding to a pair of
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points “0” and “∞” [namely the twofixedpoints of ξ ]. Such a “global toral geometry”—
that is to say, more precisely, the set Pξ of cardinality two—typically does admit a
“reflection, or ±-, symmetry” (i.e., which permutes the two points of Pξ ).

Next, we recall that the suitability of themultiradial mono-analytic containers furnished
by log-shells for explicit estimates (cf. [8, Remark 3.10.1, (iii)]) lies in sharp contrast to
the precise, albeit somewhat tautological, nature of the correspondence [cf. (IU2)] con-
cerning arithmetic degrees of objects of interest (i.e., q-pilot and �-pilot objects) given
by the �

×μ
LGP-link (cf. [8, Definition 3.8, (i), (ii)]; [8, Remark 3.10.1, (ii)]). This precise

correspondence is reminiscent of the precise, but relatively “superficial” [i.e., by com-
parison with the estimates (B1), (B2)], relationships concerning degrees [cf. (B4)] that
arise from the homomorphism χ [i.e., which is denoted “deg” in [10]!]. On the other hand,
the final estimate (B5) requires one to apply both the precise computation of (B4) and
the non-trivial estimates of (B1), (B2). This state of affairs is highly reminiscent of the
discussion surrounding [8, Fig. I.8], of two equivalent ways to compute log-volumes, i.e.,
the precise correspondence furnished by the �

×μ
LGP-link and the non-trivial estimates via

the multiradial mono-analytic containers furnished by the log-shells.
Finally, we observe that the complicated interplay between “Frobenius-like” and

“étale-like” objects in inter-universal Teichmüller theory may be thought of as corre-
sponding to the complicated interplay in Bogomolov’s proof between

complex holomorphic objects such as the holomorphic line bundle ωM and the
natural surjections ω×

M � ω×⊗12
M � C

× arising from the discriminant modular
form

—i.e., which correspond to Frobenius-like objects in inter-universal Teichmüller theory–
and

the local system EM and the various fundamental groups [andmorphisms between
such fundamental groups such as χ ] that appear in Fig. 3

—i.e., which correspond to étale-like objects in inter-universal Teichmüller theory.
The analogies discussed above are summarized in Table 1.

6 Differences between the two theories
In a word, the most essential difference between inter-universal Teichmüller theory and
Bogomolov’s proof appears to lie in the

absence in Bogomolov’s proof of

Gaussian distributions and theta functions,

i.e., which play a central role in inter-universal Teichmüller theory.
In some sense, Bogomolov’s proof may be regarded as arising from the geometry sur-

rounding the natural symplectic form

〈 - , - 〉E def= 〈 - , - 〉E |E
on the two-dimensional R-vector space E. The natural arithmetic analogue of this sym-
plectic form is theWeil pairing on the torsion points—i.e., such as the l-torsion points
that appear in inter-universal Teichmüller theory–of an elliptic curve over a number field.
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Table 1 Similarities between the two theories

Inter-universal Teichmüller Theory Bogomolov’s proof

F
�±
l -, F�

l -symmetries of�±ellNF-Hodge
theaters

Unipotent, toral/non-unipotent symmetries of

upper half-plane

Simulation of global multiplicative subspace ˜SL(E) � SL(E) � (R
∼→ )(E 
 )∼ � E


 (
∼→ S

1)

Holomorphic log-shells, analytic continuation

“∞ � 0”

“Holomorphic family” of fibers of (ω�
M )∼ → ˜M,

e.g., at “∞,” “0”

Multiradial mono-analytic containers via

log-shells subject to indeterminacies (Ind1),
(Ind2), (Ind3)

Real analytic ˜SL(E) � (E � )∼ (
∼→ R) subject to

indeterminacies via actions ofAutπ(R),Autπ(R≥0)

±-Rigidity of “local” Kummer theory, cyclotomic

rigidity surrounding theta values, conjugate

synchronization

Estimate (B1) via π of unique minimal liftings of

unipotent transformations, E � (as opposed to

E|� |!)

±-Indeterminacy of “global” Kummer theory,

cyclotomic rigidity surrounding number fields

Estimate (B2) via 2π of commutators of products of

two non-commuting unipotent transformations

Arithmetic degree computations via precise

�
×μ
LGP-link versus log-shell estimates

Degree computations via precise homomorphism χ

(B4) versus δsup estimates (B1), (B2)

Frobenius-like versus étale-like objects Complex holomorphic objects such as line bundles

versus local systems, fundamental groups

On the other hand, one fundamental difference between this Weil pairing on torsion
points and the symplectic form 〈 - , - 〉E is the following:

Whereas the field R over which the symplectic form 〈 - , - 〉E is defined may be
regarded as a subfield—i.e.,

∃ R ↪→ C

—of the field of definitionC of the algebraic schemes (or stacks) under consideration,
the field Fl over which the Weil pairing on l-torsion points is defined cannot be
regarded as a subfield—i.e.,

� Fl ↪→ Q

—of the number field over which the (algebraic) elliptic curve under consideration is
defined.

This phenomenon of compatibility/incompatibility of fields of definition is reminiscent
of the “mysterious tensor products” that occur in p-adic Hodge theory, i.e., in which the
“Zp” that acts on a p-adic Tate module is identified (despite its somewhat alien nature!)
with the “Zp” that includes as a subring of the structure sheaf of the p-adic scheme
under consideration (cf. the discussion of [3, Remark 3.7]; the final portion of [4, Remark
2.16.2]; [6, Remarks 4.3.1, 4.3.2]; [6, Remark 6.12.3, (i), (ii)]; [9, Remark 3.3.2]). Here, we
observe further that the former “Zp,” as well as the fields of definition of the symplectic
form 〈 - , - 〉E and the Weil pairing on torsion points, are, from the point of view of
inter-universal Teichmüller theory, étale -like objects, whereas the latter “Zp,” as well as
other instances of subrings of the structure sheaf of the scheme under consideration, are
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Frobenius-like objects. That is to say, the point of view of inter-universal Teichmüller
theory may be summarized as follows:

Certain geometric aspects—i.e., aspects that, in effect, correspond to the geometry
of the classical upper half-plane (cf. [6, Remark 6.12.3])—of the a priori incompat-
ibility of fields of definition in the case of elliptic curves over number fields are,
in some sense, overcome in inter-universal Teichmüller theory by applying various
absolute anabelian algorithms to pass from étale-like to Frobenius-like objects, as
well as various cyclotomic rigidity algorithms to pass, via Kummer theory, from
Frobenius-like to étale-like objects.

Indeed, as discussed in [6, Remarks 4.3.1, 4.3.2], it is precisely this circle of ideas that forms
the starting point for the construction of �±ellNF-Hodge theaters given in [6], by applying
the absolute anabelian geometry of [5].
One way to understand the gap between fields of definition of first cohomologymodules

or modules of torsion points, on the one hand, and the field of definition of the given base
scheme, on the other, is to think of elements of fields/rings of the former sort as objects
that occur as exponents of regular functions on the base scheme, i.e., elements of rings
that naturally contain fields/rings of the latter sort. For instance, this sort of situation
may be seen at a very explicit level by consider the powers of the q-parameter that occur
in the theory of Tate curves over p-adic fields (cf. the discussion of the final portion of
[4, Remark 2.16.2]). From this point of view, the approach of inter-universal Teichmüller
theory may be summarized as follows:

Certain function-theoretic aspects of theapriori incompatibility of fields of definition
in the case of elliptic curves over number fields are, in some sense, overcome
in inter-universal Teichmüller theory by working with Gaussian distributions and
theta functions, i.e., which may be regarded, in effect, as exponentiations of the
symplectic form 〈 - , - 〉E that appears in Bogomolov’s proof.

Indeed, it is precisely as a result of such exponentiation operations that one is obliged
to work, in inter-universal Teichmüller theory, with arbitrary iterates of the log-link
(cf. the theory of [5,8]; the discussion of [8, Remark 1.2.2]) in order to relate and indeed
identify, in effect, the function theory of exponentiated objects with the function theory of
non-exponentiated objects. This situation differs somewhat from the single application of
the logarithm constituted by the covering (E 
 )∼ � E 
 in Bogomolov’s proof.
So far in the present Sect. 6, our discussion has centered around

• the geometry of �±ellNF-Hodge theaters (as discussed in [6, §4–§6]) and
• themultiradial representation via mono-analytic log-shells (cf. [8, Theorem 3.11,

(i), (ii)])

of inter-universal Teichmüller theory, which correspond, respectively, to the symplectic
geometry of the upper half-plane (cf. §1) and the δsup estimates (cf. (B1), (B2)) of
Bogomolov’s proof.
On the other hand, the degree computations via the homomorphism χ , which arises,

in essence, by considering the discriminant modular form, also play a key role [cf. (B4)]
in Bogomolov’s proof. One may think of this aspect of Bogomolov’s proof as consist-
ing of the application of the discriminant modular form to relate the symplectic geom-
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etry discussed in Sect. 2—cf., especially, the natural SL(E)-torsor structure on ω�
˜M—

to the conventional algebraic theory of line bundles and divisors on the algebraic
stack M. In particular, this aspect of Bogomolov’s proof is reminiscent of the �

×μ
LGP-

link, i.e., which serves to relate the Gaussian distributions (that is to say, exponenti-
ated symplectic forms) that appear in the multiradial representation via mono-analytic
log-shells to the conventional theory of arithmetic line bundles on the number field
under consideration. We remark in passing that this state of affairs is reminiscent of
the point of view discussed in [2, §1.2, §1.3.2], to the effect that the constructions
of scheme-theoretic Hodge–Arakelov theory (i.e., which may be regarded as a sort of
scheme-theoretic precursor of inter-universal Teichmüller theory) may be thought of
as a sort of function-theoretic vector bundle version of the discriminant modular form.
The �

×μ
LGP-link is not compatible with the various ring/scheme structures—i.e., the

“arithmetic holomorphic structures”—in its domain and codomain. In order to sur-
mount this incompatibility, one must avail oneself of the theory of multiradiality devel-
oped in [7,8]. The non-ring-theoretic nature of the resulting multiradial representa-
tion via mono-analytic log-shells—cf. [8, Theorem 3.11, (i), (ii)]; the discussion of inter-
universality in [9, Remark 3.6.3, (i)]—of inter-universal Teichmüller theory may then
be thought of as corresponding to the real analytic (i.e., non-holomorphic) nature of
the symplectic geometry that appears in Bogomolov’s proof. In this context, we recall
that

(E1) one central feature of Bogomolov’s proof is the following fundamental difference
between the crucial estimate (B1), which arises from the (non-holomorphic) sym-
plectic geometry portion of Bogomolov’s proof, on the one hand, and the homo-
morphism χ , on the other: whereas, for integers N ≥ 1, the homomorphism χ

maps N th powers of elements τ̃ as in (B1) to multiples by N of elements ∈ Z, the
estimate δsup(−) < [π ] of (B1) is unaffected when one replaces an element τ̃ by
such an N th power of τ̃ .

This central feature of Bogomolov’s proof is highly reminiscent of the situation in inter-
universal Teichmüller theory in which

(E2) although themultiradial representation of �-pilot objects via mono-analytic log-
shells in the domain of the�

×μ
LGP-link is related, via the�

×μ
LGP-link, to q-pilot objects

in the codomain of the�
×μ
LGP-link, the samemultiradial representation of the same

�-pilot objectsmay related, in precisely the same fashion, to arbitraryN -thpowers
of q-pilot objects, for integers N ≥ 2

(cf. the discussion of [8, Remark 3.12.1, (ii)]).
Thus, in summary, if, relative to the point of view of Bogomolov’s proof, one

• substitutes Gaussian distributions/theta functions, i.e., in essence, exponentia-
tions of the natural symplectic form 〈 - , - 〉E , for 〈 - , - 〉E , and, moreover,

• allows for arbitrary iterates of the log-link, which, in effect, allow one to “disguise”
the effects of such exponentiation operations,

then inter-universal Teichmüller theory bearsnumerous striking resemblances to Bogo-
molov’s proof. Put another way, the bridge furnished by inter-universal Teichmüller the-
ory between the analogy discussed in detail at the beginning of Sect. 5
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(A1) between the geometry surrounding E 
 in Bogomolov’s proof and the combinatorics
involving l-torsion points that underlie the structure of �±ellNF-Hodge theaters
in inter-universal Teichmüller theory, on the one hand,

and the analogy discussed extensively in (L1–L7)

(A2) between the geometry surrounding E 
 in Bogomolov’s proof and the holomorphic/
mono-analytic log-shells—i.e., in essence, the local unit groups associated to vari-
ous completions of a number field—that occur in inter-universal Teichmüller the-
ory, on the other

—i.e., the bridge between l-torsion points and log-shells—may be understood as consisting
of the following apparatus of inter-universal Teichmüller theory:

(GE) l-torsion points [cf. (A1)] are, as discussed above, closely related to exponents of
functions, such as theta functions or algebraic rational functions (cf. the discus-
sion of [8, Remark 2.3.3, (vi), (vii), (viii)]; [8, Figs. 2.5, 2.6, 2.7]); such functions give
rise, via the operation of Galois evaluation (cf. [8, Remark 2.3.3, (i), (ii), (iii)]), to
theta values and elements of number fields, which one regards as acting on log-
shells [cf. (A2)] that are constructed in a situation in which one considers arbitrary
iterates of the log-link (cf. [8, Fig. I.6]).

In the context of the analogies (A1), (A2), it is also of interest to observe that themultiradial
containers that are ultimately used in inter-universal Teichmüller theory (cf. [8, Fig. I.6];
[8, TheoremA]) consist ofprocessions ofmono-analytic log-shells, i.e., collections ofmono-
analytic log-shells whose labels essentially correspond to the elements of |Fl | [i.e., the
quotient of the set Fl by the natural action of {±1}]. This observation is especially of
interest in light of the following aspects of inter-universal Teichmüller theory:

(P1) in inter-universal Teichmüller theory, the prime l is regarded as being sufficiently
large that the finite field Fl serves as a “good approximation” for Z (cf. [6, Remark
6.12.3, (i)]);

(P2) at each non-archimedean prime atwhich the elliptic curve over a number field under
consideration has stable bad reduction, the copy of “Z” that is approximated by Fl
may be naturally identifiedwith the value group associated to the non-archimedean
prime (cf. [7, Remark 4.7.3, (i)]);

(P3) at each archimedean prime of the number field over which the elliptic curve under
consideration is defined, a mono-analytic log-shell essentially corresponds to a
closed ball of radius π , centered at the origin in a Euclidean space of dimension two
and subject to ±-indeterminacies (cf. [8, Proposition 1.2, (vii)]; [8, Remark 1.2.2,
(ii)]).

That is to say, if one thinks in terms of the correspondences

mono-analytic log-shells ←→ E 
 (∼= S
1) ,

procession labels ∈ |Fl | (� Fl ≈ Z) ←→ Z · π
∼→ Aut

(

(E 
 )∼/E|
 |) ,

then the collection of data constituted by a “procession of mono-analytic log-shells” is
substantially reminiscent of the objects (E 
 )∼ (∼= R), R|π |—i.e., in essence, copies of R,
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R≥0 that are subject to Autπ (R)-, Autπ (R≥0)-indeterminacies—that play a central role
in Bogomolov’s proof.
Before concluding, we observe that, in the context of the above discussion of the tech-

nique of Galois evaluation [cf. (GE)], which plays an important role in inter-universal
Teichmüller theory, it is also perhaps of interest to note the following further correspon-
dences between the two theories:

(GE1) The multiradiality apparatus of inter-universal Teichmüller theory depends, in
an essential way, on the supplementary geometric dimension constituted by the
“geometric containers” (cf. [8, Remark 2.3.3, (i), (ii)]) furnished by theta functions
and algebraic rational functions, which give rise, viaGalois evaluation, to the theta
values and elements of number fields that act directly on processions of mono-
analytic log-shells. That is to say, thismultiradiality apparatuswould collapse if one
attempted to work with these theta values and elements of number fields directly.
This state of affairs is substantially reminiscent of the fact that, in Bogomolov’s
proof, it does not suffice to work directly with actions of (unipotent or toral/non-
unipotent) elements of SL(E) (∼= SL2(R)) on E 
 ; that is to say, it is of essential
importance that one work with liftings to ˜SL(E) of these elements of SL(E), i.e.,
to make use of the supplementary geometric dimension constituted by the bundle
ω×
M → M.

(GE2) The fact that the theory of Galois evaluation surrounding theta values plays a
somewhat more central, prominent role in inter-universal Teichmüller theory (cf.
[7, §1, §2, §3]; [8, §2]) than the theory of Galois evaluation surrounding number
fields is reminiscent of the fact that the original exposition of Bogomolov’s proof
in [1] essentially treats only the case of genus zero, i.e., in effect, only the central

Table 2 Contrasts between corresponding aspects of the two theories

Inter-universal Teichmüller Theory Bogomolov’s proof

Gaussians/theta functions play a central,

motivating role

Gaussians/theta functions entirely absent

Weil pairing on l-torsion points defined over Fl ,

� Fl ↪→ Q

Natural symplectic form 〈 - , - 〉E defined over R,

∃ R ↪→ C

Subtle passage between étale-like, Frobenius-like

objects via absolute anabelian algorithms,

Kummer theory/ cyclotomic rigidity algorithms

Confusion between étale-like, Frobenius-like objects

via R ↪→ C

Geometry of�±ellNF-Hodge theaters Symplectic geometry of classical upper half-plane

Gaussians/theta functions, i.e., exponentiations

of 〈 - , - 〉E
Natural symplectic form 〈 - , - 〉E

Arbitrary iterates of log-link Single application of logarithm, i.e., (E � )∼ � E �

�
×μ
LGP-link relatesmultiradial representation via

mono-analytic log-shells to conventional

theory of arithmetic line bundles on number

fields

Discriminant modular form “χ” relates symplectic

geometry “SL(E) � ω�
˜M ” to conventional

algebraic theory of line bundles/divisors onM

Multiradial representation, inter-universality Non-holomorphic, real analytic nature of symplectic

geometry
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Fig. 5 The real analytic estimation apparatus of Bogomolov’s proof

Fig. 6 The multiradial estimation apparatus of inter-universal Teichmüller theory

estimate of (B1), thus allowing one to ignore the estimates concerning commutators
of (B2). It is only in the later expositionof [10] that one canfind adetailed treatment
of the estimates of (B2).
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Weconclude by observing that the numerous striking resemblances discussed above are
perhapsall themore striking in light of the complete independence of the development of
inter-universal Teichmüller theory from developments surrounding Bogomolov’s proof:
That is to say, the author was completely ignorant of Bogomolov’s proof during the devel-
opment of inter-universal Teichmüller theory. Moreover, inter-universal Teichmüller
theory arose not as a result of efforts to “generalize Bogomolov’s proof by substituting
exponentiations of 〈 - , - 〉E for 〈 - , - 〉E ,” but rather as a result of efforts (cf. the discussion
of [2, §1.5.1, §2.1]; [4, Remarks 1.6.2, 1.6.3]) to overcome obstacles to applying scheme-
theoretic Hodge–Arakelov theory to diophantine geometry by developing some sort of
arithmetic analogue of the classical functional equation of the theta function. That is
to say, despite the fact that the starting point of such efforts, namely the classical func-
tional equation of the theta function, was entirely absent from the theory surrounding
Bogomolov’s proof, the theory, namely inter-universal Teichmüller theory, that ultimately
arose from such efforts turned out, in hindsight, as discussed above, to be remarkably
similar in numerous aspects to the theory surrounding Bogomolov’s proof.
Thecontentof the abovediscussion is summarized inTable 2.Also, certain aspects of our

discussion—which, roughly speaking, concern the respective “estimation apparatuses”
that occur in the two theories—are illustrated in Figs. 5 and 6. Here, we note that the
mathematical content of Fig. 6 is essentially identical to the mathematical content of [8,
Fig. I.6] (cf. also [6, Fig. I1.3]).
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