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Abstract

We completely characterize sections of the cones of nonnegative polynomials, convex
polynomials and sums of squares with polynomials supported on circuits, a genuine
class of sparse polynomials. In particular, nonnegativity is characterized by an invariant,
which can be immediately derived from the initial polynomial. Furthermore,
nonnegativity of such polynomials f coincides with solidness of the amoeba of f , i.e.,
the Log-absolute-value image of the algebraic variety V (f ) ⊂ (C∗)n of f . These results
generalize earlier works both in amoeba theory and real algebraic geometry by Fidalgo,
Kovacec, Reznick, Theobald and de Wolff and solve an open problem by Reznick. They
establish the first direct connection between amoeba theory and nonnegativity of real
polynomials. Additionally, these statements yield a completely new class of
nonnegativity certificates independent from sums of squares certificates.
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1 Background
Forcing additional structure on polynomials often simplifies certain problems in theory
and practice. One of the most prominent examples is given by sparse polynomials, which
arise in different areas in mathematics. Exploiting sparsity in problems can reduce the
complexity of solving hard problems.An important example is, given by sparse polynomial
optimization problems, see [20]. In this paper, we consider sparse polynomials having a
special structure in terms of their Newton polytopes and supports. More precisely, we
look at polynomials f ∈ R[x] = R[x1, . . . , xn], whose Newton polytopes are simplices
and the supports are given by all the vertices of the simplices and one additional interior
lattice point in the simplices. Such polynomials have exactly n + 2 monomials and can
be regarded as supported on a circuit. Note that A ⊂ Nn is called a circuit, if A is affinely
dependent, but any proper subset of A is affinely independent, see [11]. We write these
polynomials as

f =
n∑

j=0
bjxα(j) + cxy (1)

where theNewtonpolytope� = New(f ) = conv{α(0), . . . ,α(n)} ⊂ Rn is a lattice simplex,
y ∈ int(�), bj ∈ R>0 and c ∈ R∗. We denote this class of polynomials as Py

�. In this
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setting, the goal of this paper is to connect and establish new results in two different areas
of mathematics. Namely, we link amoeba theory with nonnegative polynomials and sums
of squares. The theory of amoebas deals with images of varieties V(f ) ⊂ (C∗)n under the
Log-absolute-value map

Log | · | : (C∗)n → R
n, (z1, . . . , zn) �→ (log |z1|, . . . , log |zn|), (2)

having their nature in complex algebraic geometry with applications in various mathe-
matical subjects including complex analysis [10,11], the topology of real algebraic curves
[24], dynamical systems [8], dimers/crystal shapes [18], and in particular with strong con-
nections to tropical geometry, see [25,28]. The cones of nonnegative polynomials and
sums of squares arise as central objects in convex algebraic geometry and polynomial
optimization, see [3,21].
For both amoebas and nonnegative polynomials/sums of squares, work has been done

for special configurations in the above setting. In [37], the authors give a characterization
of the corresponding amoebas of such polynomials and in [9,31], the authors characterize
questions of nonnegativity and sums of squares for very special coefficients and simplices
in the above sparse setting. We aim to extend results in all of these papers and establish
connections between them for polynomials f ∈ Py

�.
We call a lattice point α ∈ Zn even if every entry αj is even, i.e., α ∈ (2Z)n. We call

an integral polytope even if all its vertices are even. Finally, we call a polynomial a sum of
monomial squares if all monomials bαxα satisfy bα > 0 and α even.
For the remainder of this article, we assume that every polytope is even unless it is

explicitly stated otherwise. However, we will reemphasize this fact in key statements.
For f ∈ Py

�, we define the circuit number �f as

�f =
n∏

j=0

(bj
λj

)λj

, (3)

where the λj ’s are uniquely given by the convex combination
∑n

j=0 λjα(j) = y, λj ≥
0,
∑n

j=0 λj = 1. We show that every polynomial f ∈ Py
� is, up to an isomorphism on Rn,

completely characterized by the λj and its circuit number �f .
Remember that we always have c ∈ R∗ by definition of Py

�. The case c = 0 implies that
the polynomial f is a sum of monomial squares and hence always is nonnegative. This
should be kept in mind when with slight abuse of notation c = 0 is a possible choice in
some statements. We now formulate our main theorems. The first theorem stated here is
a composition of Theorem 3.8 and the Corollaries 3.9, 3.11 and 4.3 in the article.

Theorem 1.1 Let f ∈ Py
� and � be an even simplex, i.e., α(j) ∈ (2N)n for all 0 ≤ j ≤ n.

Then, the following statements are equivalent.

(1) c ∈ [−�f ,�f ] and y /∈ (2N)n or c ≥ −�f and y ∈ (2N)n.
(2) f is nonnegative.

Furthermore, f is located on the boundary of the cone of nonnegative polynomials if and
only if |c| = �f for y /∈ (2N)n and c = −�f for y ∈ (2N)n. In these cases, f has at most 2n

real zeros all of which only differ in their signs.
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Assume that furthermore n ≥ 2 and f is not a sum of monomial squares with c > 0.
Then, the following are equivalent.

(1) f is nonnegative, i.e., c ∈ [−�f ,�f ] and y /∈ (2N)n or c ∈ [−�f , 0] and y ∈ (2N)n

(2) The amoebaA(f ) is solid.

Note in this context that an amoebaA(f ) of f ∈ Py
� is solid if and only if its complement

has no bounded components. Note furthermore that since� is an even simplex, f is a sum
of monomial squares (and hence trivially nonnegative) if and only if c ≥ 0 and y ∈ (2N)n.
Theorem 1.1 yields a very interesting relation between the structure of the amoebas of

f ∈ Py
� and nonnegative polynomials f ∈ Py

�, which are both completely characterized by
the circuit number. Furthermore, it generalizes amoeba theoretic results from [37].
A crucial observation for f ∈ Py

� is that nonnegativity of such f does not imply that f is
a sum of squares. It is particularly interesting that the question whether f ∈ Py

� is a sum
of squares or not depends on the lattice point configuration of the Newton polytope of f
alone.We give a precise characterization of the nonnegative f ∈ Py

� which are additionally
a sumof squares in Sect. 5, Theorem5.2.Here,wepresent a rough version of the statement.

Informal Statement 1.2 Let f ∈ Py
� and � be an even simplex. Let f be nonnegative.

Then, f is a sum of squares if and only if y is the midpoint of two even distinct lattice points
contained in a particular subset of lattice points in �. In particular, this is independent of
the choice of the coefficients bj, c.

Note that Theorems 1.1 and 1.2 generalize the main results in [9] and [31] and yield
them as special instances. In Sect. 5, we will explain this relationship in more detail.
Based on these characterizations, we define a new convex cone Cn,2d :

Definition 1.3 We define the set of sums of nonnegative circuit polynomials (SONC) as

Cn,2d =
⎧
⎨

⎩f ∈ R[x]2d : f =
k∑

i=1
λigi, λi ≥ 0, gi ∈ Py

�i
∩ Pn,2d

⎫
⎬

⎭

for some even lattice simplices �i ⊂ Rn.

It follows by construction that membership in the Cn,2d cone serves as a nonnegativity
certificate, see also Proposition 7.2.

Corollary 1.4 Let f ∈ R[x]. Then, f is nonnegative if there exist μi ≥ 0, gi ∈ Cn,2d for
1 ≤ i ≤ k such that

f =
k∑

i=1
μigi.

In Sect. 7, we discuss the SONC cone in further detail. In Proposition 7.2, we show that
the SONC cone and the SOS cone are not contained in each other for general n and d.
Particularly, we also prove that the existence of a SONC decomposition is equivalent to
nonnegativity of f if New(f ) is a simplex and there exists an orthant where all terms of f
except for those corresponding to vertices have a negative sign (Corollary 7.5).
Finally, we prove the following result about convexity, see also Theorem 6.4.

Theorem 1.5 Let n ≥ 2 and f ∈ Py
� where � is an even simplex. Then, f is not convex.
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Recently, there is much interest in understanding the cone of convex polynomials, The-
orem 1.5 serves as an indication that sparsity is a structure that can prevent polynomials
from being convex.
Further contributions

1. Gale duality is a standard concept for (convex) polytopes, matroids and sparse poly-
nomial systems, see [2,11,14,35]. We show that a polynomial f ∈ Py

� has a global
normminimizer es∗ ∈ Rn, see Sect. 3.2. f at es∗ together with the circuit number �f
equals the Gale dual vector of the support matrix up to a scalar multiple (Corollary
11). Furthermore, it is an immediate consequence of our results that the circuit num-
ber is strongly related to the A-discriminant of f . Particularly, f ∈ Pn,2d ∩ Py

� is con-
tained in the topological boundary of the nonnegativity cone, i.e., f ∈ ∂(Pn,2d ∩ Py

�),
if and only if the A-discriminant vanishes at f (Corollary 3.11). These facts about the
A-discriminant were first shown in [26] and [37].

2. We consider the case of multiple interior lattice points in the support of f . We prove
for the case that all coefficients of the interior monomials are negative that all such
nonnegative polynomials are inCn,2d . Furthermore, we showwhen such polynomials
are sums of squares, again generalizing results in [9].

3. Since the condition of being a sum of squares depends on the combinatorial struc-
ture of the simplex �, using techniques from toric geometry, we provide sufficient
conditions for simplices � such that every nonnegative polynomial in Py

� is a sum of
squares, independent from the position of y ∈ int(�). This will prove that for n = 2
almost every nonnegative polynomial in Py

� is a sum of squares and this also yields
large sections on which nonnegative polynomials and sums of squares coincide.

4. We answer a question of Reznick stated in [31] whether a certain lattice point cri-
terion on a class of sparse support sets (more general than circuits) of nonnegative
polynomials is equivalent to these polynomials being sums of squares.

This article is organized as follows. In Sect. 2, we introduce somenotations and recall some
results that are essential for the upcoming sections and proofs of the main theorems. In
Sect. 3, we characterize nonnegativity of polynomials f ∈ Py

�. This is done via a norm
relaxation method, which is outlined in the beginning of the section. Furthermore, Sect. 3
deals with invariants and properties of such polynomials and sets them in relation to Gale
duals andA-discriminants. In Sect. 4, we discuss amoebas of polynomials f ∈ Py

� and how
they are related to nonnegativity, respectively, the circuit number. In Sect. 5, we com-
pletely characterize the section of the cone of sums of squares with Py

�. Furthermore, we
generalize results regarding nonnegativity and sums of squares to non-sparse polynomials
with simplexNewton polytope. In Sect. 6, we completely characterize convex polynomials
in Py

�. In Sect. 7, we provide and discuss a new class of nonnegativity certificate given by
SONC. In Sect. 8, we prove that for non-simplex Newton polytopes Q the lattice point
criterion from the simplex case does not suffice to characterize sums of squares. We show
that a necessary and sufficient criterion can be given by additionally taking into account
the set of possible triangulations of Q. This solves an open problem stated by Reznick in
[31]. Finally, in Sect. 9, we provide an outlook for future research possibilities.



Iliman and de Wolff ResMath Sci (2016) 3:9 Page 5 of 35

2 Preliminaries
2.1 Nonnegative polynomials and sums of squares

Let R[x]d = R[x1, . . . , xn]d be the vector space of polynomials in n variables of degree d.
Denote the convex cone of nonnegative polynomials as

Pn,2d = {p ∈ R[x]2d : p(x) ≥ 0 for all x ∈ R
n},

and the convex cone of sums of squares as

�n,2d =
⎧
⎨

⎩p ∈ Pn,2d : p =
k∑

i=1
q2i for qi ∈ R[x]d

⎫
⎬

⎭ .

For an introduction of nonnegative polynomials and sums of squares, see [3,21,22].
Since we are interested in nonnegative polynomials and sums of squares in the class Py

�,
we consider the sections

Py
n,2d = Pn,2d ∩ Py

� and �
y
n,2d = �n,2d ∩ Py

�.

2.2 Amoebas

For a given Laurent polynomial f ∈ C[z1, . . . , zn] on a support set A ⊂ Zn with variety
V(f ) ⊂ (C∗)n, the amoeba A(f ) is defined as the image of V(f ) under the log-absolute
map Log | · | defined in (2). Amoebas were first introduced by Gelfand, Kapranov and
Zelevinsky in [11]. For an example, see Fig. 1. For an overview, see [7,25,28,33].
Amoebas are closed sets [10]. Their complements consists of finitely many convex

components [11]. Each component of the complement of A(f ) corresponds to a unique
lattice point in conv(A) ∩ Zn via an order map [10].
Components of the complement which correspond to vertices of conv(A) via the order

map do always exist. For all other components of the complement of an amoebaA(f ), the
existence depends non-trivially on the choice of the coefficients of f , see [11,25,28]. We

Fig. 1 The amoeba of the polynomial f = x21x2 + x1x22 − 4x1x2 + 1 ∈ P(1,1)� with � = {(0, 0), (2, 1), (1, 2)}



Iliman and de Wolff ResMath Sci (2016) 3:9 Page 6 of 35

denote the component of the complement ofA(f ) of all pointswith orderα ∈ conv(A)∩Zn

as Eα(f ).
The fiber Fw of each point w ∈ Rn with respect to the Log | · |-map is given by

Fw = {z ∈ (C∗)n : Log |z| = w}.
It is easy to see that Fw is homeomorphic to a real n-torus (S1)n. For f = ∑

α∈A bαzα and
v ∈ (C∗)n, we define the fiber function

f |v| : (S1)n → C, φ �→ f (eLog |v|+iφ) =
∑

α∈A
bα · |v|α · ei〈α,φ〉.

This means that f |v| is the pullback ϕ∗|v|(f ) of f under the homeomorphism ϕ|v| : (S1)n →
FLog |v| ⊂ (C∗)n. The crucial fact about the fiber function is that for its zero set V(f |v|) it
holds that

V(f |v|) ∼= V(f ) ∩ FLog |v|, (4)

and hence we have for the amoebaA(f ) that

Log |v| ∈ A(f ) ⇔ V(f |v|) �= ∅. (5)

For more details on the fiber function, see [7,25,34,37].

2.3 Agiforms

Asking for nonnegativity of polynomials supported on a circuit is closely related objects
called an agiform in [31]. Given a even lattice simplex� ⊂ Rn and an interior lattice point
y ∈ int(�), the corresponding agiform to � and y is given by

f (�, λ, y) =
n∑

i=0
λixα(i) − xy

where y = ∑n
i=0 λiα(i) ∈ Nn with

∑n
i=0 λi = 1 and λi ≥ 0. The term agiform is implied by

the fact that the polynomial f (�, λ, y) = ∑n
i=0 λixα(i)−xy is nonnegative by thearithmetic-

geometric mean inequality. Note that an agiform has a zero at the all ones vector 1. This
implies that agiforms lie on the boundary of the cone of nonnegative polynomials. A
natural question is to characterize those agiforms that can be written as sums of squares.
In [31], it is shown that this depends non-trivially and exclusively on the combinatorial
structure of the simplex � and the location of y in the interior. We need some definitions
and results adapted from [31].

Definition 2.1 Let �̂ = {0,α(1), . . . ,α(n)} ⊂ (2N)n be such that conv(�̂) is a simplex
and let L ⊆ conv(�̂) ∩ Zn.

(1) Define A(L) = { 12 (s + t) ∈ Zn : s, t ∈ L ∩ (2Z)n} and A(L) = { 12 (s + t) ∈ Zn : s �=
t, s, t ∈ L ∩ (2Z)n} as the set of averages of even, respectively, distinct even points in
conv(L) ∩ Zn.

(2) We say that L is �̂-mediated, if

�̂ ⊆ L ⊆ A(L) ∪ �̂,

i.e., every β ∈ L\�̂ is an average of two distinct even points in L.

Theorem 2.2 (Reznick [31]) There exists a �̂-mediated set �∗ satisfying A(�̂) ⊆ �∗ ⊆
(� ∩ Zn), which contains every �̂-mediated set.
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If A(�̂) = �∗, then we say, motivated by the following example by Reznick, that � is an
M-simplex. Similarly, if �∗ = (� ∩ Zn), then we call � an H-simplex.

Example 2.3 The standard (Hurwitz-)simplex given by conv{0, 2d · e1, . . . , 2d · en} ⊂ Rn

ford ∈ N is anH-simplex.TheNewtonpolytope conv{0, (2, 4), (4, 2)} ⊂ R2 of theMotzkin
polynomial f = 1 + x4y2 + x2y4 − 3x2y2 is anM-simplex, see Fig. 2.

The main result in [31] concerning the question under which conditions agiforms are
sums of squares is given by the following theorem.

Theorem 2.4 (Reznick [31]) Let f (�, λ, y) be an agiform. Then, f (�, λ, y) ∈ �n,2d if and
only if y ∈ �∗.

3 Invariants and nonnegativity of polynomials supported on circuits
The main contribution of this section is the characterization of Py

n,2d , i.e., the set of
nonnegative polynomials supported on a circuit (Theorem3.8). Along theway, we provide
standard forms and invariants, which reflect the nice structural properties of the class Py

�.
In Sect. 3.1, we outline the norm relaxation method, which is the proof method used

for the characterization of nonnegativity. In Sect. 3.2, we introduce standard forms for
polynomials in Py

� and, in particular, prove the existence of a particular norm mini-
mizer for polynomials, where the coefficient c equals the negative circuit number �f
(Proposition 3.4). In Sect. 3.3, we put all pieces together and characterize nonnegativity of
polynomials in Py

� (Theorem 3.8). In Sect. 3.4, we discuss connections to Gale duals and
A-discriminants.

3.1 Nonnegativity via norm relaxation

We start with a short outline of the proof method, which we introduce and apply here
to tackle the problem of nonnegativity of polynomials. Let f = ∑

α∈A bαxα ∈ R[x] be a
polynomial with A ⊂ Nn finite, 0 ∈ A and α ∈ (2N)n as well as bα > 0 if α is contained
in the vertex set vert(A) of conv(A). Instead of trying to answer the question whether
f (x) ≥ 0 for all x ∈ Rn, we investigate the relaxed problem

Fig. 2 On the left: The H-simplex conv{(0, 0), (6, 0), (0, 6)} ⊂ R
2. On the right : TheM-simplex

conv{0, (2, 4), (4, 2)} ⊂ R
2. The red (light) points are the lattice points contained in the corresponding sets �∗
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Is f (|x|) =
∑

α∈vert(A)
bα · |xα| −

∑

α∈A\ vert(A)
|bα| · |xα| ≥ 0 for all x ∈ R

n≥0 ? (6)

Since bα · |xα| = bα · xα for α ∈ V (A) and−bα · |xα| ≤ bα · xα for α ∈ A\ vert(A), we have
f (|x|) ≤ f (x).
Since the strict positive orthantR

n
>0 is an open dense set inR

n≥0 and the componentwise
exponential functionExp : Rn → R

n
>0, (x1, . . . , xn) �→ (exp(x1), . . . , exp(xn)) is a bijection,

Problem (6) is equivalent to the question

Is f (ew) =
∑

α∈vert(A)
bα · e〈w,α〉 −

∑

α∈A\ vert(A)
|bα| · e〈w,α〉 ≥ 0 for all w ∈ R

n ? (7)

Hence, an affirmative answer of (7) implies nonnegativity of f . The motivation for the
relaxation is that, on the one hand, Question (7) is eventually easier to answer, since we
have linear operations on the exponents and, on the other hand, the gap between (7)
and nonnegativity hopefully is not too big, in particular for sparse polynomials. We show
that for polynomials supported on a circuit (and some more general classes of sparse
polynomials) both is true: in fact, for circuit polynomials, the question of nonnegativity
and (7) is equivalent and can be characterized exactly, explicitly, and easily in terms of the
coefficients of f and the combinatorial structure of A.
An interesting side effect of the described relaxation is that (7) is strongly related to the

amoeba of f as we point out (for circuit polynomials) in the following Sect. 4. Thus, it will
serve us as a bridge between real algebraic geometry and amoeba theory.

3.2 Standard forms and normminimizers of polynomials supported on circuits

Let f be a polynomial of the Form (1) defined on a circuit A = {α(0), . . . ,α(n), y} ⊂ Zn.
Observe that there exists a unique convex combination

∑n
j=0 λjα(j) = y. In the following,

we assume without loss of generality that α(0) = 0, which is possible, since we can factor
out a monomial xα(0) with α(0) ∈ (2N)n if necessary. We define the support matrix MA by

MA =

⎛

⎜⎜⎜⎜⎝

1 1 · · · 1 1
0 α(1)1 · · · α(n)1 y1
...

...
. . .

...
...

0 α(1)n · · · α(n)n yn

⎞

⎟⎟⎟⎟⎠
∈ Mat(Z, (n + 1) × (n + 2)),

and MA
j as the matrix obtained by deleting the j-th column of MA, where we start to

count at 0. Furthermore, we always assume that b0 = λ0, which is always possible, since
multiplication with a positive scalar does not affect if a polynomial is nonnegative. We
denote the canonical basis of Rn with e1, . . . , en.

Proposition 3.1 Let f be of the Form (1) supported on a circuit A = {α(0), . . . ,α(n), y}
⊂ Zn and y = ∑n

j=0 λjα(j) with
∑n

j=0 λj = 1, 0 < λj < 1 for all j. Let μ ∈ N>0 denote the
least commonmultiple of the denominators of theλj . Then, there exists a unique polynomial
g of the Form (1) with supp(g) = A′ = {0,α(1)′, . . . ,α(n)′, y′} ⊂ Zn such that the following
properties hold.

(1) MA =
(
1 0
0 T

)
MA′ for some T ∈ GLn(Q),

(2) f and g have the same coefficients,
(3) α(j)′ = μ · ej for every 1 ≤ j ≤ n,
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(4) y′ = ∑n
j=1 λjα(j)′,

(5) f (ew) = g(eTtw) for all w ∈ Rn.

For every f of the Form (1), we call the polynomial g , which satisfies all the conditions
of the proposition, the standard form of f . Note that f (ew) is defined in the sense of (7)
and the support matrixMA′ of the standard form of f is of the shape

MA′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · · · · 1 1
0 μ 0 · · · 0 μλ1
... 0

. . .
...

...
...
...

. . . 0
...

0 0 · · · 0 μ μλn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

∈ Mat(Z, (n + 1) × (n + 2)). (8)

Proof We assume without loss of generality that α(0) = 0. LetMA
n+1 be the submatrix of

MA
n+1 obtained by deleting the first row and column; analogously forMA′

n+1. By definition,
we have α(j) = MA

n+1ej and α(j)′ = MA′
n+1ej for 1 ≤ j ≤ n. We construct the polynomial

g . We choose the same coefficients for g as for f . Since 0,α(1), . . . ,α(n) form a simplex,
there exists a unique matrix T ∈ GLn(Q) such that

MA
n+1 =

(
1 0
0 T

)
MA′

n+1

withMA′ of the Form (8) given byμT = (MA
n+1)−1. Since y = ∑n

j=0 λjα(j), it follows that,
in affine coordinates, we have y′

jej = T−1λj(M
A
n+1ej), i.e., y′ = μ(λ0, . . . , λn). Thus, (1) –

(4) holds.
We show that f (ew) = g(eTtw) for every w ∈ Rn. We investigate the monomial xα(j):

bje〈α(j),w〉 = bje〈M
A
n+1ej ,w〉 = bje〈TMA′

n+1ej ,w〉 = bje〈α(j)
′,T tw〉

For the inner monomials y and y′, we know that y = Ty′ and thus for y′ = ∑n
j=0 λjα(j)′ we

have y = T (
∑n

j=0 λjα(j)′) = ∑n
j=0 λjTα(j)′ = ∑n

j=0 λjα(j). Therefore, (5) follows from

ce〈y,w〉 = ce〈
∑n

j=0 λjα(j),w〉 = ce
∑n

j=0 λj〈α(j),w〉 = ce
∑n

j=0 λj〈α(j)′,T tw〉 = ce〈y′ ,T tw〉.

��

Proposition 3.1 can easily be generalized to polynomials

f = b0 +
n∑

j=1
bjxα(j) +

∑

y(i)∈I
aixy(i) ∈ R[x], (9)

with New(f ) = � = conv{0,α(1), . . . ,α(n)} being a simplex and I ⊂ (int(�) ∩ Zn). Every
y(i) has a unique convex combination y(i) = λ

(i)
0 +∑n

j=1 λ
(i)
j α(j) with λ

(i)
j > 0 for all i, j.

Corollary 3.2 Let f be defined as in (9). Then, Proposition 3.1 holds literally if we apply
(4) for every y(i) and define μ as the least common multiple of the denominators of all λ(i)j .

Proof By definition of μ, the support matrix MA′ is integral again. Since in the proof of
Proposition 3.1 neither uniqueness of y is used nor special assumptions about y were
made, the statement follows. ��
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Now, we return to the case of circuit polynomials.

Proposition 3.3 Let f = λ0 + ∑n
j=1 bjxα(j) + cxy ∈ Py

� be such that c < 0 and y =∑n
j=1 λjα(j) with

∑n
j=0 λj = 1, λj ≥ 0. Then, f (ew) with w ∈ Rn has a unique extremal

point, which is always a minimum.

This proposition was used in [37] (see Lemma 4.2 and Theorem 5.4). For convenience,
we give an own, easier proof here.

Proof We investigate the standard form g of f . For the partial derivative xj∂g/∂xj (we can
multiply with xj , since ew ≥ 0), we have

xj
∂g
∂xj

= bjμxμ−1
j + cλjμx

λjμ−1
j

n∏

k=2
xλkμ
k .

Hence, the partial derivative vanishes for some ew if and only if

exp
(
wjμ −

n∑

k=1
λkμwk

)
= −cλj

bj
.

Since the right-hand side is strictly positive, we can apply log | · | on both sides for every
partial derivative and obtain the following linear system of equations

⎛

⎜⎜⎝En −

⎛

⎜⎜⎝

λ1 · · · λn
...

. . .
...

λ1 · · · λn

⎞

⎟⎟⎠

⎞

⎟⎟⎠ ·

⎛

⎜⎜⎝

w1
...
wn

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1/μ(log(λ1) + log(−c) − log(b1))
...

1/μ(log(λn) + log(−c) − log(bn))

⎞

⎟⎟⎠ .

Since the matrix on the left-hand side has full rank, we have a unique solution.
For arbitrary f , we have f (ew) = g(eTtw) by Proposition 3.1 and, hence, if w∗ is the

unique extremal point for g(ew), then (Tt )−1w∗ is the unique extremal point for f (ew).
For every w ∈ Rn with ||w|| → ∞, the polynomial f converges against the terms with

exponents which are contained in a particular proper face of New(f ). Since all these terms
are strictly positive, f (ew) converges against a number in R>0 ∪ {∞}. Thus, the unique
extremal point has to be a global minimum. ��
For f ∈ Py

�, we define s
∗
f ∈ Rn as the unique vector satisfying

n∏

k=1
(es

∗
k,f )α(j)k = e〈s

∗
f ,α(j)〉 = λj

bj
for all 1 ≤ j ≤ n.

s∗f indeed is well defined, since application of log | · | on both sides yields a linear system
of equations with variables s∗k,f and the rank of this system has to be n, since conv(A) is
a simplex. If the context is clear, then we simply write s∗ instead of s∗f and es∗ instead

of es
∗
f . We recall that the circuit number associated to a polynomial f ∈ Py

� is given by

�f = ∏n
j=0

( bj
λj

)λj = ∏n
j=1

( bj
λj

)λj
.

Proposition 3.4 For f ∈ Py
� and c = −�f , the point s∗ ∈ Rn is a root and the unique

global minimizer of f (ew).

Due to this proposition, we call the point s∗ the norm minimizer of f . We remark that
this proposition was already shown for polynomials in Py

� in standard form in [9] and for
arbitrary simplices but in a more complicated way in [37].
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Proof For f (es∗ ), we have

f
(
es

∗) = λ0 +
n∑

j=1
bje〈s

∗ ,α(j)〉 − �f e〈s
∗ ,y〉 =

n∑

j=0
λj − �f ·

n∏

j=1

(
λj

bj

)λj

= 1 − 1 = 0.

For the minimizer statement, we investigate the partial derivatives xj∂f /∂xj (we can
multiply with xj , since ew > 0). Since yj = ∑n

k=1 λjαj(k), we obtain

xj
∂f
∂xj

=
n∑

k=1
bkαj(k)xα(k) − �f ·

( n∑

k=1
λjαj(k)

)
xy.

Evaluation of the partial derivative at es∗ yields

xj
∂f
∂xj

(es
∗
) =

n∑

k=1
bkαj(k)

(
λk
bk

)
− �f

( n∑

k=1
λjαj(k)

)
·

n∏

j=1

(
λj

bj

)λj

=
n∑

k=1
λjαj(k) −

n∑

k=1
λjαj(k) = 0.

Finally, by Proposition 3.3, es∗ is the unique global minimizer of f (ew). ��
In some contexts, it is more convenient to work with a Laurent polynomial supported

on a circuit where the interior point y equals the origin. With the same argumentation as
before, we find a suitable standard form.

Corollary 3.5 Let f and all notations be as in Proposition 3.1. Then, there exists a unique
Laurent polynomial g of the Form (1) with supp(g) = A′′ = {α(0)′′, . . . ,α(n)′′, 0} ⊂ Zn

such that the following properties hold:

(1) MA =
(
1 0
0 T

)
MA′′ for some T ∈ GLn(Q),

(2) f and g have the same coefficients,
(3) α(j)′′ = μ · ej for every 1 ≤ j ≤ n,
(4)

∑n
j=0 λjα(j)′′ = 0,

(5) f (ew) = g(eTtw) for all w ∈ Rn.

For every polynomial f of the Form (1), we call the polynomial g , which satisfies all
conditions in Corollary 3.5, the zero standard form of f . Note that the support matrix
MA′′ of the zero standard form of f is of the shape

MA′′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · · · · 1 1
−λ1μ

λ0
μ 0 · · · 0 0

... 0
. . .

...
...

...
...

. . . 0
...

−λnμ
λ0

0 · · · 0 μ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Mat(Z, (n + 1) × (n + 2)). (10)

Proof We divide f by xy, which is always possible, since ew > 0. We apply literally the
proof of Proposition 3.1 with the exception of using the matrix MA

0 instead of MA
n+1 and

the convex combination −λ0α(0) = ∑n
j=1 λjα(j) instead of y = ∑n

j=0 λjα(j). ��
An advantage of the zero standard form is that the global minimizer does not longer

depend on the choice of c.



Iliman and de Wolff ResMath Sci (2016) 3:9 Page 12 of 35

Corollary 3.6 For f ∈ Py
�, the point es

∗ is a global minimizer for (f /xy)(ew) independent
of the choice of c.

Proof By Corollary 3.5, we can transform f into zero standard form with y = 0. Then, the
proof of Proposition 3.4 can be literally applied again with the exception of (f /xy)(ew) = 0
if and only if c = −�f . ��

3.3 Nonnegativity of polynomials supported on a circuit

In this section, we characterize nonnegativity of polynomials in Py
�. The following lemma

allows us to reduce the case of y ∈ ∂� to the case y ∈ int(�).

Lemma 3.7 Let f = b0 +∑n
j=1 bjxα(j) + c · xy be such that the Newton polytope is given

by � = New(f ) = conv{0,α(1), . . . ,α(n)} and y ∈ ∂�. Furthermore, let F be the face of
� containing y. Then, f is nonnegative if and only if the restriction of f to the face F is
nonnegative.

Proof For the necessity of nonnegativity of the restricted polynomial, see [31]. Otherwise,
the restriction to the face F contains the monomial xy and this restriction is nonnegative.
Since all other terms in f correspond to the (even) vertices of � and have nonnegative
coefficients, the claim follows. ��

Now, we show the first part of our main Theorem 1.1 by characterizing nonnegative
polynomials f ∈ Py

� supported on a circuit. Recall that we denote such polynomials of
degree 2d in in n variables as Py

n,2d . Note that this theorem covers the known special cases
of agiforms [31] and circuit polynomials in standard form [9].

Theorem 3.8 Let f = λ0+∑n
j=1 bjxα(j)+c ·xy ∈ Py

� be of the Form (1)with α(j) ∈ (2N)n.
Then, the following are equivalent.

(1) f ∈ Py
n,2d, i.e., f is nonnegative.

(2) |c| ≤ �f and y /∈ (2N)n or c ≥ −�f and y ∈ (2N)n.

Proof First, observe that f ≥ 0 is trivial for c ≥ 0 and y ∈ (2N)n, since in this case f is a
sum of monomial squares.
We apply the norm relaxation strategy introduced in Sect. 3.1. Initially, we show that

f (x) ≥ 0 if and only if f (ew) ≥ 0 for all f ∈ Py
�. Let without loss of generality y1, . . . , yk

be the odd entries of the exponent vector y. Thus, for every 1 ≤ j ≤ k replacing xj
by −xj changes the sign of the term c · xy. Since all other terms of f are nonnegative
for every choice of x ∈ Rn, we have f (x) ≥ 0 if sgn(c) · sgn(x1) · · · sgn(xk ) = 1. Since
furthermore, for sgn(c) · sgn(x1) · · · sgn(xk ) = −1 we have c · xy = −|c| · |x1|y1 · · · |xn|yn ,
we can assume c ≤ 0 and x ≥ 0 without loss of generality. Then, λ0+∑n

j=0 bjxα(j)−|c||x|y
is nonnegative for all x ∈ Rn if and only if this is the case for all x ∈ R

n≥0. And since R
n
>0

is an open, dense set in R
n≥0, we can restrict ourselves to the strict positive orthant. With

the componentwise bijection between R
n
>0 and Rn given by the Exp-map, it follows that

f (x) ≥ 0 for all x ∈ Rn if and only if f (ew) ≥ 0 for all w ∈ Rn. Hence, the theorem is
shown if we prove thatf (ew) ≥ 0 for all w ∈ Rn if and only if c ∈ [−�f , 0].
We fix some arbitrary b1, . . . , bn ∈ R>0 and denote by (fc)c∈R be the corresponding

family of polynomials in Py
�. By Proposition 3.4, fc(ew) has a unique global minimum
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for c = −�f attained at s∗ ∈ Rn satisfying f−�f (es
∗ ) = 0. Since es∗ is a global (norm)

minimum, this implies, in particular, fc(ew) ≥ 0 for all w ∈ Rn if c = −�f .
But this fact also completes the proof for general c < 0: Since c · e〈w,y〉 is the unique

negative term in fc(ew) for all w ∈ Rn, a term by term inspection yields that fc(ew) <

f−�f (ew) if and only if c < −�f . Hence, fc(ew) < 0 for some w ∈ Rn if and only if
c < −�f . ��
An immediate consequence of the theorem is an upper bound for the number of zeros

of polynomials f ∈ ∂Py
n,2d .

Corollary 3.9 Let f ∈ ∂Py
n,2d. Then, f has at most 2n affine real zeros v ∈ Rn, which all

satisfy |xj| = es
∗
j for all 1 ≤ j ≤ n.

Proof Assume f ∈ ∂Py
n,2d and f (x) = 0 for some x ∈ Rn. Then, we know by the proof of

Theorem 3.8 that |xj| = es
∗
j . Thus, x = (±es∗1 , . . . ,±es∗n ). ��

Thebound inCorollary 3.9 is sharp as demonstratedby thewell-knownMotzkinpolyno-
mial f = 1+x21x

4
2+x41x

2
2−3x21x

2
2 ∈ Py

2,6. The zeros are given by x = (±1,±1). Furthermore,
it is important to note that the maximum number of zeros does not depend on the degree
of the polynomials, which is in sharp contrast to previously known results concerning the
maximum number of zeros of nonnegative polynomials and sums of squares, [6].
To illustrate the results of this section, we give an example. Let f = 1 + x21x

4
2 + x41x

2
2 −

3x21x
2
2 be the Motzkin polynomial. f is supported on a circuit A with y = ∑2

j=0
1
3α(j). We

apply Proposition 3.1 and compute the standard form g of 1/3·f . Then, g is the polynomial,

which is supported on a circuitA′ = {0,α(1)′,α(2)′} satisfyingMA =
(
1 0
0 T

)
MA′ for some

T ∈ GLn(Q) with α(1)′ = (μ, 0)t , α(2)′ = (0,μ)t and y′ = 1/3α(1)′ + 1/3α(2)′, where
μ = lcm{1/λ0, 1/λ1, 1/λ2} = lcm{3, 3, 3} = 3. Additionally, g has the same coefficients as
f . It is easy to see that

T =
(
4/3 2/3
2/3 4/3

)

and thus

g = 1/3 + 1/3x31 + 1/3x32 − x1x2

and, by Proposition 3.1 we have f (ew) = g(eTtw).
Since the circuit number �f only depends on the coefficients of f and the convex

combination of y, it is invariant with respect to transformation to the standard form.
Thus, we have

�f = �g =
2∏

j=0

(
λj

bj

)λj

=
(
1/3
1/3

)1/3
·
(
1/3
1/3

)1/3
·
(
1/3
1/3

)1/3
= 1.

Since y = (2, 2) ∈ (2N)2, by Theorem 3.8, f ≥ 0 if and only if the inner coefficient c of f
satisfies c ≥ −�f = −1. But the inner coefficient c of the Motzkin polynomial equals its
negative circuit number. Hence, the Motzkin polynomial is contained in the boundary of
the cone of nonnegative polynomials.
If c = −�f , then we know by Proposition 3.4 that f (ew) = 0 at the unique point s∗ with

1/3 · e4s∗1+2s∗2 = 1/3 and 1/3 · e2s∗1+4s∗2 = 1/3.
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Thus, s∗ = (0, 0). Since, by the proof of Theorem 3.8, f (x) = 0 only if f (|x1|, |x2|) = 0, we
can conclude that every affine root v ∈ Rn of the Motzkin polynomial satisfies |vj| = 1.
We give a second example where nonnegativity is not a priori known. Let f = 1/4 + 2 ·

x21x
4
2 + x41x

4
2 − 2.5 · x21x32. Again, it is easy to see that λ1 = 1/2 and λ2 = 1/4. Hence,

�f =
(
b1
λ1

)λ1

·
(
b2
λ2

)λ2

= (2 · 2)1/2 · (1 · 4)1/4 = 2 · √
2 ≈ 2.828.

And since |c| < �f , we can conclude that f is a strictly positive polynomial.

3.4 A-discriminants and Gale duals

For a given (n+1)×m supportmatrixMAwithA ⊂ Zn and conv(A) being full dimensional,
a Gale dual or Gale transformation is an integral m × (m − n − 1) matrix MB such that
its rows span the Z-kernel of MA. In other words, for every integral vector v ∈ Zm with
MAv = 0, it holds that v is an integral linear combination of the rows ofMB, see [11,28].
If A is a circuit, then MB is a vector with n + 2 entries. It turns out that this vector is

closely related to the global minimum es∗ ∈ Rn and the circuit number �f .

Corollary 3.10 Let f = ∑n
j=0 bjxα(j) + cxy be a polynomial supported on a circuit A of

the Form (1). Let es∗ ∈ Rn denote the global minimizer and �f the circuit number. Then,
the Gale dual MB of the support matrix MA is an integral multiple of the vector

(
b0e〈s

∗ ,α(0)〉, . . . , bne〈s
∗ ,α(n)〉,−�f e〈s

∗,y〉) ∈ R
n+2.

Proof The Gale dual MB needs to satisfy MA(MB)t = 0. Since A is a circuit, MB spans
a one-dimensional vector space. From y = ∑n

j=0 λjα(j), it follows by construction of es∗

and �f (see proof of Proposition 3.4) that
(
b0e〈s

∗ ,α(0)〉, . . . , bne〈s
∗ ,α(n)〉,−�f e〈s

∗,y〉) = (λ0, . . . , λn,−1)

and the statement follows by definition ofMA and y. ��

Furthermore, we point out that the circuit number�f and the question of nonnegativity
is closely related to A-discriminants. Let A = {α(1), . . . ,α(d)} ⊂ Zn and let CA denote
the space of all polynomials

∑d
j=1 bjzα(j) with bj ∈ C. Since every (Laurent-) polynomial

in CA is uniquely determined by its coefficients, CA can be identified with a Cd space. Let
∇A be the Zariski closure of the subset of all polynomials f in CA for which there exists a
point z ∈ (C∗)n such that

f (z) = 0 and
∂f
∂zj

(z) = 0 for all 1 ≤ j ≤ n.

It is well known that ∇A is an irreducible Q-variety. If ∇A is of codimension 1, then the
A-discriminant �A is the integral, irreducible monic polynomial in C[b1, . . . , bd], which
has the variety ∇A, see [11].
The following statement is an immediate consequence of Proposition 3.4 and Theorem

3.8. But it was (at least implicitly) already known before and can also be derived from [11],
[37], and [26].

Corollary 3.11 The A-discriminant vanishes at a polynomial f ∈ Py
� if and only if f ∈

∂Py
n,2d or, equivalently, if and only if c ∈ {±�f } and y /∈ (2N)n or c = −�f and y ∈ (2N)n.
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4 Amoebas of real polynomials supported on a circuit
In this section,we investigate amoebas of real polynomials supportedona circuit.We show
that for amoebas of polynomials of the Form (1), which are not a sumofmonomial squares,
a pointw is contained in a bounded component of the complement only if the norm of the
“inner” monomial is greater than the sum of all “outer” monomials at w ∈ Rn (Theorem
4.2). This implies particularly that an amoeba of this type has a bounded component in
the complement if and only if the “inner” coefficient c satisfies |c| > |�f |, which proves
the equivalence of (1) and (2) in Theorem 1.1. Furthermore, this result generalizes some
statements in [37].
In this section, we always assume that fc is a parametric family of a Laurent polynomial

of the Form (1) with real parameter c ∈ R≤0. Furthermore, we always assume that fc is
given in zero standard form (see Sect. 3), i.e.,

fc =
n+1∑

j=1
bjxα(j) + c, (11)

with b1, . . . , bn+1 ∈ R>0. Letw ∈ Rn be an arbitrary point in the underlying space ofA(fc).
As introduced in Sect. 2.2, we denote the fiber with respect to the Log | · |-map as Fw and
the fiber function of fc at the fiber Fw as f | exp(w)|

c . We define the following parameters:

�w =
n+1∑

j=1
|bje〈w,α(j)〉|,

�w = max
1≤j≤n+1

|bje〈w,α(j)〉|.

The following facts about amoebas supported on a circuit are well known.

Theorem 4.1 (Purbhoo, Rullgård, Theobald, deWolff) Let f = λ0 +∑n
j=1 bjzα(j) + czy ∈

C[z±1
1 , . . . , z±1

n ] be a Laurent polynomial with bj ∈ C∗ and c ∈ C such that New(f ) is a
simplex and y ∈ int(New(f )).

(1) The complement of A(f ) has exactly n + 1 unbounded and at most one bounded
component. If the bounded component Ey(f ) exists, then it has order y.

(2) w ∈ Ey(f ) ⊂ Rn only if |c| > �w .
(3) w ∈ Ey(f ) ⊂ Rn if |c| > �w .
(4) The complement ofA(f ) has a bounded component if |c| > �f and the bound is sharp

if there exists a point φ on the unit torus (S1)n ⊂ (C∗)n such that the fiber function f 1

satisfies f 1(φ) = eiψ · (∑n
j=0 |bα(j)| − |c|) for some ψ ∈ [0, 2π ).

Part (1) and (2) are consequences of a Theorem by Rullgård based on tropical geometry,
which was applied to the circuit case by Theobald and the second author, see [37, Lemma
2.1] and also [7, Theorem 4.1]. Part (3) is an immediate consequence of Purbhoo’s lopsid-
edness condition (also referred as generalized Pellet’s Theorem), see [30]. Part (4) is [37,
Theorem 4.4] after investigating f in the standard form introduced in Section 3, which
guarantees that the bound given in [37, Theorem 4.4] coincides with the circuit number
�f . Note that this means �f = minw∈Rn �w . Similarly, we define �f = minw∈Rn �w . We
remark that�f is theminimal choice for |c| such that the tropical hypersurface T (trop(f ))
of the tropical polynomial trop(f ) = ⊕n+1

j=1 log |bj|�xα(j)⊕log |c|has genus one, see [7,37]
for details; for an introduction to tropical geometry see [23].
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Summarized, Theorem 4.1 yields that the complement of an amoeba A(f ) of a real
polynomial f ∈ Py

� has a bounded component for all choices of c < −�f , the complement
of A(f ) has no bounded component for c ∈ [−�f , 0], and the situation is unclear for
c ∈ (−�f ,−�f ), see Fig. 3. Hence, our goal in this section is to show the following
theorem.

Theorem 4.2 Let fc be of the Form (11) such that b1, . . . , bn+1 ∈ R>0 and w ∈ Rn. Then,
w ∈ A(fc) for every real c ∈ [−�w ,−�w].

Note that for real polynomials fc ∈ Py
� we have A(fc) = A(f−c) if and only if y /∈ (2N)n,

since, if yj is odd and some w /∈ A(fc), then fc(z) �= 0 for all z contained in the fiber
torus Fw = {z : Log |z| = w}. On the one hand, this torus is invariant under the variable
transformation zj �→ −zj . On the other hand, this transformation transforms fc to f−c.
Therefore, Theorem 4.2 implies particularly the following corollary, which is literally the
equivalence between Part (1) and (2) in our main Theorem 1.1.

Corollary 4.3 Let fc be a polynomial in Py
� such that f is not a sum of monomial squares.

Then,A(fc) is solid if and only if |c| ∈ [0,�f ].

Proof The corollary follows immediately from Theorem 4.1 (2) and (4), Theorem 4.2
(including its consecutive note) and the fact that �f = �s∗ = minw∈Rn �w by Corollary
3.6. ��

The proof of Theorem 4.2 will be quite a lot of work. We need to show a couple of
technical statements before we can tackle the actual proof. The first lemma which we
need was similarly used in [37, Theorem 4.1].

Lemma 4.4 Let g : S1 → C,φ �→ b1eirφ+b2ei·(η+sφ) for some b1, b2 ∈ C∗ with |b1| ≥ |b2|,
η ∈ [0, 2π ) and r, s ∈ N∗. Then, there exist some φ,φ′ ∈ [0, 2π ) such that g(φ) ∈ R≥0 and
g(φ′) ∈ R≤0.

For convenience, we provide the proof again. It is mainly based on the Rouché theorem.
Recall that the winding number of a closed curve γ in the complex plane around a point
z is given by 1

2π i
∫
γ

dζ
ζ−z .

Proof Assume |b1| > |b2|. Clearly, the function b1 · ei·rφ has a non-zero winding number
around the origin. If g would have a winding number of zero around the origin, then there
would exist some t ∈ (0, 1) such that h(φ) = b1 · ei·rφ + t ·b2 · ei·(η+sφ) has a zero φ outside
the origin. This is a contradiction. Hence, the trajectory of g needs to intersect the real
line in the strict positive part as well as in the strict negative part.

Fig. 3 Existence of a bounded component in the complement in dependence of the choice of the “inner”
coefficient. If c is contained in the left (blue) interval, then the complement ofA(fc ) has a bounded
component. If c is contained in the right (green) interval, thenA(fc ) is solid. But if c is contained in the middle
(red) interval, then it is in general unclear, whether the complement ofA(fc ) has a bounded component or
not
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Since g is continuous in the norms of its coefficients, the statement can be extended to
|b1| = |b2| and intersections of g with the nonnegative part as well as the nonpositive part
of the real axis. ��
Now, we step over to complex functions on the real n-torus (S1)n.

Lemma 4.5 Let g : (S1)n → C,φ �→ ∑n
j=1 bj · eiφj + bn+1 · e−i

∑n
j=1 λjφj with b1 ≥ . . . ≥

bn+1 ∈ R>0 and λj ∈ Q. There exists a path γ : [0, 1] → (S1)n such that g(γ ) ∈ R,
g(γ (0)) = ∑n

j=0 bj and g(γ (1)) ≤ b1 + bn + bn+1 −∑n−1
j=2 bj.

Proof We set γ (0) = 0 ∈ (S1)n. We construct γ : [0, 1] → (S1)n piecewise on intervals
[kj−1, kj] ⊂ [0, 1] for every j ∈ {2, . . . , n − 1} with k1 = 0 and kn−1 = 1. In every interval
[kj−1, kj], we only vary φ1,φj and φn and leave all other φr invariant, i.e., in every interval
[kj−1, kj] we only change the first, j-th, n-th and (n + 1)-st term.
In the interval [kj−1, kj], we continuously increase φj from 0 to π . For every φj ∈ [0,π ],

there exists φ1 ∈ [−π/2, 0] such that Im(b1eiφ1 + bjeiφj ) = 0, since |b1| ≥ |bj|. For every
pair (φ1,φj) ∈ [−π/2, 0] × [0,π ], we find, by Lemma 4.4, a φn such that Im(bneiφn +
bn+1e−i

∑n
j=1 λjφj ) = 0 by setting η = −∑n−1

j=1 λjφj in Lemma 4.4. Hence, for every l ∈
[kj, kj+1] we have g(γ (l)) ∈ R. And since g is a smooth function, we obtain a smooth path
segment in (S1)n with smooth real image under g .
At the endpoint γ (kj) of the path segment [kj−1, kj] ⊂ [0, 1], we are therefore in the

situation g(γ (kj)) ≤ |b1| + |bj+1| + · · · + |bn−1| +Re(bn)+ Re(bn+1)−∑j
l=2 |bl |. We can

glue together different path segments, since for each γ (kj) we have φ1 = 0 by construction
and the value of φn does not matter. Thus, we can subsequently repeat the procedure for
all j until we reach j = n − 1 and obtain a complete path γ ⊂ (S1)n with the desired
properties. ��
For the next step of the proof, we need to recall the definition of a hypotrochoid. A

hypotrochoid with parameters R, r ∈ Q>0, d ∈ R>0 satisfying R ≥ r is the plane algebraic
curve γ in R2 ∼= C given by

γ : [0, 2π ) → C, φ �→ (R − r) · ei·φ + d · ei·
(
r−R
r

)
·φ . (12)

Geometrically, a hypotrochoid is given the following way: let a small circle C1 with
radius r roll along the interior of a larger circle C2 with radius R. Mark a point p at the
end of a segment with length d starting at the center of C1. Then, the hypotrochoid is the
trajectory of p.
We say that a curve γ is a hypotrochoid up to a rotation if there exists some re-

parametrization ρk : [0, 2π ) → [0, 2π ),φ �→ k + φ mod 2π with k ∈ [0, 2π ) such
that γ ◦ρ−1

k is a hypotrochoid. If k = 0 or k = π , then we say that γ is a real hypotrochoid.
Hypotrochoids are closed, continuous curves in the complex plane, which attain values in
the closed annulus with outer radius (R−r)+d and inner radius (R−r)−d for (R−r) ≥ d.
Furthermore, if they are real, then they are symmetric along the real line. For an overview
about hypocycloids and other plane algebraic curves see [4].
To prove the second key lemma, which is needed for the proof of Theorem 4.2, wemake

use of the following special case of [38, Theorem 4.1].

Lemma 4.6 Let g : S1 → C,φ �→ eisφ+qe−itφ+pwithp, q ∈ C∗. Then, g is ahypotrochoid
up to a rotation around the point p with parameters R = (t + s)/t, r = s/t and d = |q|
rotated by arg(q) · s.
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The proof of this lemma is a straightforward computation.

Proof The non-constant part g − p of the function g is given by

(g − p)(φ) = eisφ + |q| · ei·(arg(q)−tφ).

Since, with our choice of parameters, R − r = 1 and (r − R)/r = −t/s, it follows by (12)
after replacing φ by φ′ = sφ that g − p is a hypotrochoid up to a rotation. ��
Lemma 4.6 about hypotrochoids allows us to prove the following technical lemma.

Lemma 4.7 Let g : (S1)2 → C, (φ1,φ2) �→ b1eiφ1 +b2eiφ2 +b3e−i·(λ1φ1+λ2φ2) with b1, b2 ∈
R>0, b3 ∈ R∗, |b1| ≥ |b2| ≥ |b3| and λ1, λ2 ∈ Q. Then, g attains all real values in the
interval [b1, b1 + b2 + b3] ⊂ R>0.

With this Lemma, we have everythingwhat is needed to prove Theorem 4.2.We provide
the quite long and technical proof of Lemma 4.7 after the proof of Theorem 4.2.

Proof (Proof of Theorem 4.2) Let fc = ∑n+1
j=1 bjxα(j) − c with b1 ≥ · · · ≥ bn+1 ∈ R>0 and

w ∈ Rn such that {α(1), . . . ,α(n + 1), 0} ⊂ Zn forms a circuit with 0 in the interior of
conv{α(1), . . . ,α(n+ 1)}. By Corollary 3.5, we can assume that fc is in zero standard form,
i.e., we can assume that α(j) = μej ∈ Nn for 1 ≤ j ≤ n, with λj ∈ Q∗, μ ∈ N∗ denoting
the least common multiple of the denominators of λ0, . . . , λn ∈ Q|(0,1) and ej denoting
the standard basis vector. By construction, we have α(n + 1) = −μ/λ0 · ∑n

j=1 λjej ∈
Zn. Furthermore, we can assume without loss of generality w = 1 after adjusting the
coefficients bj if necessary.
We investigate the fiber function

f |1|
c =

n∑

j=1
bjeiμφj + bn+1e

−i· μ
λ0

·∑n
j=1 λjφj − c.

We have to show that V(f |1|
c ) �= ∅ for all c with �f = �1 = |b1| ≤ c ≤ �1. By applying

Lemma 4.5, f |1|
c attains all real values in the interval [|b1| + |bn| + |bn+1| −∑n−1

j=2 |bj| −
c,�1 − c]. Hence, if |bn| + |bn+1| −∑n−1

j=2 |bj| ≤ 0, then we are done. This is always the
case, if n ≥ 4 or if n = 3 and b2 ≥ b3 + b4.
Let now n ∈ {2, 3}. If n = 3, the we apply Lemma 4.5, fix φ2 = π , and restrict f |1|

c to

g(φ1,φn)c = b1eiφ1 + bneiφn + bn+1e
−i· μ

λ0
·(πλ2+λ1φ1+λnφn) −

∑

1<j<n
bj − c,

which is defined on the sub 2-torus of F|1| given by (φ1,φn). Since (μ ·λ2)/λ0 is an integer,
bn+1 · e−i·μ·λ2/λ0 is real and hence we can apply Lemma 4.7. It yields that g(φ1,φn)c attains
all real values in the interval [b1 −∑

1<j<n bj − c, b1 + bn + bn+1 −∑
1<j<n bj − c]. Thus,

all real values in the interval [|b1| + |bn| + |bn+1| −∑n−1
j=2 |bj| − c,�1 − c] are attained by

f |1|
c and hence we find a root of f |1|

c for every choice of b1 ≤ c ≤ �1. Therefore, 1 ∈ A(fc)
for all c ∈ [−�f ,−�f ]. ��
We close the section with the proof of Lemma 4.7.

Proof (Proof of Lemma 4.7) For every fixed value of φ1 ∈ [0, 2π ), the values of g are given
by a curve of the form

hφ1 : [0, 2π ) → C, φ2 �→ b2eiφ2 + b3e−i(λ1φ1+λ2φ2) + b1eiφ1 .
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By Lemma 4.6, hφ1 is a hypotrochoid up to a rotation around the point b1eiφ1 attaining
absolute values in the annulus Aφ1 with outer radius b2 + b3 and inner radius b2 − b3
around the point b1eiφ1 (Aφ1 degenerates to a disc for b2 = b3). Since |b2| ≥ |b3|, it
follows from Lemma 4.4 that h0 intersects the real coordinate axis in both at least one
point greater or equal than b1 and at least one point less or equal than b1. More specific,
let φ2(1), . . . ,φ2(k) ∈ [0, 2π ) denote the arguments such that μj = g(0,φ2(j)) ∈ R with
μ1 ≥ · · · ≥ μk . Analogously, we denote by φ2(1)′, . . . ,φ′

2(l) ∈ [0, 2π ) the arguments such
that νj = g(π ,φ′

2(j)) ∈ Rwith ν1 ≥ · · · ≥ νl . Note thatμ1 ≥ b1+b2−b3,μk ≤ b1−b2+b3
and ν1 ≤ −b1 + b2 + b3 and therefore

ν1 ≤ μk ≤ b1 ≤ b1 + b2 − b3 ≤ μ1.

The key observation of the proof is the following: hφ1 depends continuously on φ1. But
this means that

H : [0, 1] × [0, 2π ) → C

H (φ1/(2π ), hφ1 (φ2)) = g(φ1,φ2) = b1eiφ1 + b2eiφ2 + b3ei(−λ1φ1−λ2φ2)

is a homotopy of hypotrochoid curves along the circle with radius b1.
Since [b1, b1 + b2 + b3] ⊂ [μk ,μ1] ⊂ R, the proof is completed, if we can show that all

real values in the interval [μk ,μk−1] ∪ · · · ∪ [μ2,μ1] = [μk ,μ1] are attained by g .
Since g(0,φ2) is a real hypotrochoid, i.e., in particular, connected and symmetric along

the real line, for every 1 ≤ j ≤ k −1 there exists a closed connected subset γj of the trajec-
tory of the hypotrochoid g(0,φ2) and its pointwise complex conjugate γj both connecting
μj and μj+1, i.e., ρj = γj ∪ γj forms a topological circle intersecting R exactly in μj and
μj+1 and thus its projection on R covers [μj+1,μj]. Hence,

⋃k−1
j=1 ρj projected on the real

line covers [μk ,μ1].
Now, we restrict the homotopy H of hypotrochoids to a particular circle ρj and to

moving φ1 continuously from 0 to π , i.e., the induced homotopy is Hj : ρj × [0, 1] → C

of the circle ρj moved around the half-circle {b1ei·φ1 : φ1 ∈ [0, 2π )}. Two cases can occur
during the homotopyHj : EitherR intersects the circle ρj transversally in two points during
the whole homotopy, or there exists a point τ ∈ (0, 1) such that the circle and R intersect
non-transversally at Hj(ρj , τ ).
First assume that there exists a point τ ∈ (0, 1) along the homotopy such that Hj(ρj , τ )

intersects the real line non-transversally in a single point s ∈ R. Hence, Hj yields in
particular a new homotopy Ĥj : {μj ,μj+1} × [0, τ ] → R of both the two points μj and
μj+1 to s along the real line. Thus, for all points x ∈ [μj+1,μj], there exists a τ ′ ∈ [0, τ ]
such that x = Ĥj(μj , τ ′) or x = Ĥj(μj+1, τ ′), i.e., all points in [μj+1,μj] are visited during
the homotopy Ĥj and hence every real value in [μj+1,μj] is attained by g (see Fig. 4).
Now assume that Hj(ρj , τ ) intersects the real line in two distinct points for every τ ∈

[0, 1]. Thus, again, there is an induced homotopy of points Ĥj : {μj ,μj+1} × [0, 1] → R

along the real line. Since Hj is a restriction of H , we know that Ĥj({μj ,μj+1}, 1) are real
points of the hypotrochoid H (π , hπ (φ2)), i.e., Ĥj({μj ,μj+1}, 1) ∈ {ν1, . . . , νl}. Since νl ≤
· · · ≤ ν1 and ν1 ≤ μj for all 1 ≤ j ≤ k , again, all points in [μj+1,μj] are visited during the
homotopy Ĥj (see Fig. 5). ��
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Fig. 4 Homotopy of a hypotrochoid where the intersection of the hypotrochoid with the real line becomes
empty during the homotopy
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Fig. 5 Homotopy of a hypotrochoid always intersecting the real line

5 Sums of squares supported on a circuit
In this section, we completely characterize the section �

y
n,2d . It is particularly interesting

that this section depends heavily on the lattice point configuration in �, thereby, yielding
a connection to the theory of lattice polytopes and toric geometry. By investigating this
connection in more detail, we will prove that the sections Py

2,2d and �
y
2,2d almost always

coincide and thatPy
n,2d and�

y
n,2d contain large sections, atwhich nonnegative polynomials

are equal to sums of squares for n > 2, see Corollaries 5.10 and 5.12.
Surprisingly, the sums of squares condition is exactly the same as for the corresponding

agiforms. For this, we briefly review the Gram matrix method for sums of squares poly-
nomials. For d ∈ N let N

n
d = {α ∈ Nn : α1 + · · · + αn ≤ d} and p = ∑r

k=1 h2k where
p(x) = ∑

α∈Nn
2d
a(α)xα and hk (x) = ∑

β∈Nn
d
bk (β)xβ . Let B(β) = (b1(β), . . . , br(β)) and

G(β ,β ′) = B(β) ·B(β ′) = ∑r
k=1 bk (β)bk (β ′) with β ,β ′ ∈ N

n
d . Comparing coefficients, one

has

a(α) =
∑

β+β ′=α

G(β ,β ′) =
∑

β∈Nn
d

G(β ,α − β).

In this case, [B(β) · B(β ′)]β ,β ′∈Nn
d
is a positive semidefinite matrix.

Furthermore, we need the following well-known lemma, see [3].

Lemma 5.1 Let f ∈ �n,2d be a sum of squares and T ∈ GLn(R) be a matrix yielding a
variable transformation x �→ Tx. Then, f (Tx) also is a sum of squares.

Now, we can characterize the sums of squares among nonnegative polynomials in Py
�.



Iliman and de Wolff ResMath Sci (2016) 3:9 Page 21 of 35

Theorem 5.2 Let f = λ0 +∑n
j=1 bjxα(j) + c · xy ∈ Py

n,2d. Then,

f ∈ �
y
n,2d if and only if y ∈ �∗ or c > 0 and y ∈ (2N)n.

Furthermore, if f ∈ �
y
n,2d, then f is a sum of binomial squares.

Note again that for f ∈ Py
� the condition c > 0 and y ∈ (2N)n holds if and only if f is a

sum of monomial squares such that the above theorem holds trivially.

Proof First, assume that f ∈ �
y
n,2d . We can assume that c < 0 by the following argu-

ment: If y ∈ (2N)n, then f is obviously a sum of (monomial) squares for c > 0. If
y /∈ (2N)n and c > 0, then, by Lemma 5.1 and a suitable variable transformation as
in the proof of Theorem 3.8, we can reduce to the case c < 0. Let f = ∑

h2k and define
M = {β : bk (β) �= 0 for some k} with β and bk (β) as in the Gram matrix method. Fol-
lowing [31, Theorem 3.3], we claim that the set L = 2M ∪ �̂ ∪ {y} is �̂-mediated and
hence y ∈ �∗. Here, �̂ is the set of vertices of �. To show the claim, we write every
β ∈ L\�̂ as a sum of two distinct points in M, which implies that β is an average of
two distinct points in 2M ⊆ L. Note that if G(α,α′) < 0, then bk (α)bk (α′) < 0 for some
k and hence α �= α′ and α,α′ ∈ M. Hence, it suffices to show that for β ∈ L\�̂ there
exists an α with G(α,β − α) < 0. We have a(y) = c < 0, so G(α0, y − α0) < 0 for
some α0. If β �= y then β ∈ L\(�̂ ∪ {y}) and a(β) = 0 = ∑

G(α,β − α). But β ∈ 2M, so
G( 12β ,

1
2β) > 0 andhence there has to exist anαwithG(α,β−α) < 0 to let the sumvanish.

Let now y ∈ �∗. We investigate two cases. First, let y /∈ (2N)n. Then, it suffices to prove
the statement for c = ±�f by the following argument: Let f1 = λ0+∑n

j=1 bjxα(j)−c ·xy ∈
Py
n,2d and f2 = λ0 +∑n

j=1 bjxα(j) + c · xy ∈ Py
n,2d . Let c

∗ be such that −c < c∗ < c and f3 =
λ0+∑n

j=1 bjxαj +c∗ ·xy ∈ Py
n,2d . Then, we have f3 = λ1f1+λ2f2 with λ1 = c+c∗

2c , λ2 = c−c∗
2c

and λ1, λ2 > 0, λ1 + λ2 = 1. By the same argument involving the variable transformation
xj �→ −xj for some j ∈ {1, . . . , n} as before (proof of Theorem 3.8, Lemma 5.1), it suffices
to investigate the case c = −�f . Consider the following linear transformation of the
variables x1, . . . , xn.

T : (x1, . . . , xn) �→
(
(es

∗
)1x1, . . . , (es

∗
)nxn

)
,

where (es∗ )j denotes the j-th coordinate of the global minimizer es∗ of f , see Proposition
3.4 and proof of Theorem 3.8. By Lemma 5.1, f ∈ �n,2d if and only if f (T (x)) ∈ �n,2d ,
where

f (T (x)) = λ0 +
n∑

j=1
λjxα(j) − xy. (13)

But f (T (x)) is the dehomogenization of an agiform and, therefore, by Theorem 2.4, f ∈
�

y
n,2d if and only if y ∈ �∗.
If y ∈ (2N)n, then we use the same argument to prove that f is a sum of squares for

c = −�f . For c > −�f , the polynomial f is obviously a sum of squares, since the inner
monomial can be written as −�f xy plus the term (c + �f )xy, which is a square.
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In [31, Theorem 4.4], it is shown that the agiforms in (13) are sums of binomial squares.
Thus, for y ∈ �∗, the nonnegative polynomials f ∈ Py

n,2d are also sumsof binomial squares,
since the binomial structure is preserved under the variable transformation T . ��

Agiforms can be recovered by setting bj = λj and, hence, Theorems 3.8 and 5.2 gener-
alize results for agiforms in [31]. Furthermore, by setting α(j) = 2d · ej for 1 ≤ j ≤ n, we
recover the dehomogenized version of what is called an elementary diagonal minus tail
form in [9], and, again, Theorems 3.8 and 5.2 generalize one of the main results in [9] to
arbitrary simplices.
We remark that in [31] an algorithm is given to compute such a sum of squares repre-

sentation in the case of agiforms in Theorem 5.2, which can be generalized to arbitrary
circuit polynomials. Furthermore, in [31], it is shown that every agiform in �

y
n,2d can be

written as a sum of |L\�̂| binomial squares. Using the variable transformation T in the
proof of Theorem 5.2, we conclude that a general circuit polynomial f ∈ �

y
n,2d also can

be written as a sum of |L\�̂| = |L| − (n + 1) binomial squares.
Theorem 5.2 also comes with two immediate corollaries.

Corollary 5.3 Let� be anH-simplex and f ∈ Py
�. Then, f ∈ Py

n,2d if and only if f ∈ �
y
n,2d.

Proof Since � is an H-simplex, it holds that �∗ = (� ∩ Zn) (see Sect. 2.3) and we always
have y ∈ �∗. ��

The second corollary concerns sums of squares relaxations for minimizing polynomial
functions. For this, note that the quantity f ∗

sos = max{λ : f − λ ∈ �n,2d} is a lower bound
for f ∗ = min{f (x) : x ∈ Rn}, see for example [21].

Corollary 5.4 Let f ∈ Py
�. Then, f ∗

sos = f ∗ if and only if y ∈ �∗.

Proof We have f ∗
sos = f ∗ if and only if f − f ∗ ∈ �n,2d . However, subtracting the minimum

of the polynomial f does not affect the question whether y ∈ �∗ or not. Hence, if y ∈ �∗,
this will also hold for the nonnegative polynomial f − f ∗ and vice versa. ��

As an extension, we consider in the following the case of multiple support points, which
are interior lattice points in the simplex � = conv{0,α(1), . . . ,α(n)}. Assume that all
interior monomials come with a negative coefficient. Then, we can write the polynomial
as a sum of nonnegative circuit polynomials if and only if it is nonnegative. Furthermore,
we get an equivalence between nonnegativity and sums of squares if the whole support is
contained in �∗. In the following, let {λ(i)0 , . . . , λ(i)n } be the (unique) convex combination
of y(i) ∈ I ⊆ (int(�) ∩ Nn) and scale such that b0 = ∑|I |

j=1 λ
(j)
0 .

Theorem 5.5 Let f = ∑|I |
j=1 λ

(j)
0 +∑n

j=1 bjxα(j) −∑
y(i)∈I aixy(i) such thatNew(f ) = � =

conv{0,α(1), . . . ,α(n)} is a simplex with α(j) ∈ (2N)n, all ai, bj > 0 and I ⊆ (int(�)∩ Nn).
Then,

f ∈ Pn,2d if and only if f =
|I |∑

i=1
Ey(i),

where all Ey(i) ∈ Py(i)
�(i) are nonnegative with support sets �(i) ⊆ {0,α(1), . . . ,α(n), y(i)}.
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If furthermore I ⊆ �∗, then we have

f ∈ Pn,2d if and only if f ∈ �n,2d

if and only if f is a sum of binomial squares. (14)

Particularly, (14) always holds if � is an H-simplex.

Again, we get an immediate corollary.

Corollary 5.6 Let f be as above with I ⊆ �∗. Then, f ∗
sos = f ∗.

To prove Theorem 5.5, we need the following lemma.

Lemma 5.7 Let f = b0+∑n
j=1 bjxα(j)−∑y(i)∈I aixy(i) benonnegativewith simplexNewton

polytope New(f ) = � = conv{0,α(1), . . . ,α(n)} for some α(j) ∈ (2N)n. Furthermore, let
I ⊆ (int(�) ∩ Nn) and ai, bj > 0. Then, f has a global minimizer v∗ ∈ Rn

>0.

Proof Since all bj > 0 and α(j) ∈ (2N)n, clearly f has a global minimizer on Rn. Assume
that all global minimizers are not contained in Rn≥0. We make a term by term inspection
for a minimizer v in comparison with |v| = (|v1|, . . . , |vn|): For every vertex of �, we
have bjvα(j) = bj|vα(j)|; for every interior point, we have −ai|v|y(i) ≤ −aivy(i) and hence
f (v) ≥ f (|v|). This is a contradiction and therefore at least one global minimizer v∗ is
contained in Rn≥0.
Assume that for at least one component v∗

j of v∗ it holds that v∗
j = 0. We define

g = b0+∑n
j=1 bjxα(j)−aixy(i) for one y(i) ∈ I . By Proposition 3.3, g(ew) has a unique global

minimizer onRn and hence g has a unique global minimizer onRn
>0. But, by construction

of f and g , we have f (x) < g(x) for all x ∈ R
n
>0 and f (x) = g(x) for x ∈ R

n≥0\R
n
>0. Thus,

v∗
j �= 0 for all 1 ≤ j ≤ n. ��

Proof (Proof of Theorem 5.5) Let f = ∑|I |
j=1 λ

(j)
0 +∑n

j=1 bjxα(j) −∑
y(i)∈I aixy(i) be non-

negative and, by Lemma 5.7, let v ∈ R
n
>0 be a global minimizer of f .

First, we investigate the case α(j) = αjej for some αj ∈ 2N∗ and ej denoting the j-th
standard vector. For any 1 ≤ k ≤ n, we have

(
xk

∂f
∂xk

)
(v) = bk · α(k)k · vαk

k −
∑

y(i)∈I
ai · y(i)k · vy(i) = 0. (15)

Let, again, λ(i)0 , . . . , λ(i)n be the coefficients of the unique convex combination of y(i) ∈ I
and λ(i) = (λ(i)1 , . . . , λ(i)n ) ∈ R

n
>0. For y(i) ∈ I , we define

by(i),k = ai · λ
(i)
k · vy(i)
vα(k) . (16)

Since for all i and all k it holds that
∑n

j=1 λ
(i)
k α(j)k = y(i)k and that all α(j)k = 0 unless

j = k , we obtain with (15) that

bk =
∑

y(i)∈I
by(i),k .

By Proposition 3.4 and Theorem 3.8, we conclude that

Ey(i)(x) = λ
(i)
0 +

n∑

k=1
by(i),kx

αk
k − aixy(i)
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is a nonnegative circuit polynomial and has its minimum value at v. We obtain

f (x) =
|I |∑

j=1
λ
(j)
0 +

n∑

k=1
bkx

αk
k −

∑

y(i)∈I
aixy(i)

=
|I |∑

j=1
λ
(j)
0 +

n∑

k=1

⎛

⎝
∑

y(i)∈I
by(i),k

⎞

⎠ xαk
k −

∑

y(i)∈I
aixy(i)

=
∑

y(i)∈I
Ey(i)(x). (17)

Now, we consider the case of arbitrary α(j) ∈ (2N)n. Let v ∈ Rn
>0 be a global minimizer

of f . By Corollary 3.2 (and Proposition 3.1), there exists a unique polynomial g satisfying

f (ew) = g(eT
tw) for all w ∈ R

n (18)

such that T ∈ GLn(R) and g has a support matrix

MA′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · · · · 1 1 · · · 1
0 μ 0 · · · 0 μλ

(1)
1 · · · μλ

(|I |)
1

... 0
. . .

...
... · · · ...

...
...

. . . 0
... · · · ...

0 0 · · · 0 μ μλ
(1)
n · · · μλ

(|I |)
n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Mat(Z, (n + 1) × (n + |I |)),

where μ is the least common multiple of the denominators of all λ(i)j and 2 (since vertices
of New(g) shall be in (2N)n).
Since v ∈ R

n
>0, we can define Log |v′| = Tt Log |v|. By (17) and (18), it follows that v′ is

a global minimizer for g and thus we have

f (v) = f (eLog |v|) = g(eT
t Log |v|) =

|I |∑

i=1
Eμλ(i) (e

Log |v′|),

for some nonnegative circuit polynomials Eμλ(i) with global minimizer v′ ∈ Rn
>0.

Since supp(Eμλ(i) ) ⊆ supp(g) and New(Eμλ(i) ) = New(g), we have, by Proposition 3.4,

Eμλ(i) (e
Log |v′|) = Ey(i)(eLog |v|)

such that each Ey(i)(eLog |v|) is a nonnegative circuit polynomial with global minimizer v
and support set {0,α(1), . . . ,α(n), y(i)} satisfying f = ∑|I |

i=1 Ey(i).
If, additionally, every y(i) ∈ �∗ (for example, if � is an H-simplex), then we know by

Theorem 1.2 that all Ey(i)(x) are sums of (binomial) squares and, hence, f is a sum of
(binomial) squares. ��

Note that Theorem 5.5 generalizes [9, Theorem 2.7], where an analog statement is
shown for the special case of diagonal minus tail forms f , which are given by α(j) = 2d
for 1 ≤ j ≤ n.
We remark that the correct decomposition of the bj in Theorem 5.5 for the case of a

general simplex Newton polytope is also given by (16), since due to

e〈Log |v|,y(i)−α(j)〉 = e〈(Tt )−1 Log |v′|,T t (μ(λ(i)−ej))〉 = e〈Log |v′|,μ(λ(i)−ej)〉

these scalars remain invariant under the transformationT from and to the standard form.
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Example 5.8 The polynomial f = 1 + 1
2x

6 + 1
32y

4 − 1
2xy − 1

2x
2y is nonnegative and has

a zero at v = (1, 2). Using the constructions in Theorem 5.5, we can decompose f as sum
of two polynomials in Py

n,2d with y ∈ {(1, 1), (2, 1)} and vanishing at v. More precisely,

f =
(

7
12

+ 1
6
x6 + 1

64
y4 − 1

2
xy
)

+
(

5
12

+ 1
3
x6 + 1

64
y4 − 1

2
x2y

)
.

Since � is an H-simplex, we have f ∈ �2,6. Using the algorithm in [31] and a suitable
variable transformation (see proof of Theorem 5.2), we get the following representation
for f as a sum of binomial squares:

f = 1
2
(x − x3)2 + 1

2

(
1
2
y − x

)2
+ 1

2

(
1
2
y − x2

)2
+ 1

2
(
1 − x2

)2 + 1
2

(
1 − 1

4
y2
)2

.

5.1 A sufficient condition for H-simplices

By Theorem 5.2, all nonnegative polynomials in Py
� supported on anH-simplex are sums

of squares. Here, we provide a sufficient condition for a lattice simplex � to be an H-
simplex, meaning, that all lattice points in� except the vertices are midpoints of two even
distinct lattice points in �. In the following, we call a full dimensional lattice polytope
P ⊂ Rn k-normal, if every lattice point in kP is a sum of exactly k lattice points in P, i.e.,

k ∈ N, m ∈ kP ∩ Z
n ⇒ m = m1 + . . . + mk, m1, . . . , mk ∈ P ∩ Z

n.

For an introduction to toric ideals, see for example [36].

Theorem 5.9 Let �̂ = {α(0),α(1), . . . ,α(n)} ⊂ (2N)n and � = conv(�̂) be a lattice
simplex. Furthermore, let B = 1

2� ∩ Nn and IB be the corresponding toric ideal of B. If

(1) IB is generated in degree two, i.e., IB = 〈IB,2〉 and
(2) the simplex 1

2� is 2-normal,

then � is an H-simplex.

Proof Let L = (� ∩ Nn)\�̂. Note that for u ∈ L\(2N)n the statement follows from
normality of 1

2�, since we have u = s + t with s, t ∈ B. Therefore, u = 2s+2t
2 . Now, let

{
1
2
α(0), . . . ,

1
2
α(n)

}
= {α(0)′, . . . ,α(n)′}

be the vertices of 1
2 �̂ and consider u ∈ B\ 1

2 �̂. By clearing denominators in the unique
convex combination of u, we get a relation

N · u = λ0α(0)′ + · · · + λnα(n)′, N =
n∑

i=0
λi, λi ≥ 0.

For the corresponding toric ideal IB, this implies that xNu − ∏n
i=0 x

λi
α(i)′ ∈ IB. Since IB is

generated in degree two, we have the following representation:

xNu −
n∏

i=0
xλi
α(i)′ =

∑

m,n∈NB
|m|=|n|=2

fm,n(xm − xn)

for some polynomials fm,n. Matching monomials, it follows that there exists an m such
that xm = x2u (note that fm,n contains xN−2

u ). Since |m| = 2, we have x2u − xvxv′ ∈ IB with
v, v′ ∈ B, yielding the relation 2u = 2v+2v′

2 , i.e., 2u is a convex combination of two even
lattice points 2v and 2v′. ��
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Corollary 5.10 Let � ⊂ R2 be a lattice simplex as in Theorem 5.9 such that 1
2� has at

least four boundary lattice points. Then, � is an H-simplex.

Proof Since every 2-polytope is normal, we only need to prove that the corresponding
toric ideal is generated in degree two. But this is [19, Theorem 2.10]. ��
Hence, in R2, almost every simplex � corresponding to Py

� is an H-simplex, which is
a fact that was announced in [31] without proof. This implies that the sections Py

2,2d and
�

y
2,2d almost always coincide.

Example 5.11 We demonstrate Theorem 5.9 by two interesting examples.

(1) The Newton polytope of the Motzkin polynomial

m = 1 + x4y2 + x2y4 − 3x2y2 ∈ P2,6\�2,6

is anM-simplex� = conv{(0, 0), (4, 2), (2, 4)} such that 1
2� has exactly three bound-

ary lattice points. One can check that the corresponding toric ideal IB is generated
by cubics.

(2) Note that the conditions in Theorem 5.9 are not equivalent. The lattice simplex
� = conv{(0, 0), (2, 4), (10, 6)} is easily checked tobe anH-simplex, but ∂ 1

2� contains
exactly three lattice points.

In higher dimensions, things get more involved both in checking the conditions in
Theorem 5.9 and in determining the maximal �̂-mediated set �∗. Note that �∗ can lie
strictly between A(�̂) and � ∩ Zn, which correspond to M-simplices and H-simplices.
In [31], an algorithm for the computation of �∗ is given. One expects the existence of
better algorithms, but, to our best knowledge, no more efficient algorithm is known. On
the other hand, checking normality of polytopes and quadratic generation of toric ideals
is an active area of research. It is an open problem to decide, whether every smooth lattice
polytope is normal and the corresponding toric ideal is generated by quadrics, see [15,36].
However, for an arbitrary lattice polytope P, themultiples kP are normal for k ≥ dim P−1
and their toric ideals are generated by quadrics for k ≥ dim P [5]. In light of these results,
we can conclude another interesting corollary from Theorem 5.9.

Corollary 5.12 Let � ⊂ Rn be a lattice simplex as in Theorem 5.9 such that 1
2� = M�′

for a lattice simplex �′ ⊂ Rn and M ≥ n. Then, � is an H-simplex.

Proof The result follows from the previously quoted results together with Theorem 5.9.
��

Note thatCorollaries 5.10 and5.12 yield large sections atwhichnonnegativepolynomials
and sums of squares coincide.

6 Convex polynomials and forms supported on circuits
In this section, we investigate convex polynomials and forms (i.e., homogeneous polyno-
mials) supported on a circuit. Recently, there ismuch interest in understanding the convex
cone of convex polynomials/forms. Since deciding convexity of polynomials is NP-hard
in general [1], but very important in different areas in mathematics, such as convex opti-
mization, the investigation of properties of the cones of convex polynomials and forms is
a genuine problem.
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Definition 6.1 Let f ∈ R[x]. Then, f is convex if the Hessian Hf of f is positive semidef-
inite for all x ∈ Rn, or, equivalently, vtHf (x)v ≥ 0 for all x, v ∈ Rn.

Unlike the property of nonnegativity and sums of squares, convexity of polynomials is
not preserved under homogenization. Therefore, we need to distinguish between convex
polynomials and convex forms. The relationship between convexity on the one side and
nonnegativity and sumsof squares on theother side ariseswhenconsideringhomogeneous
polynomials, since every convex form is nonnegative. However, the relation between
convex forms and sums of squares is not well understood except for the fact that their
corresponding cones are not contained in each other. The problem to find a convex form
that is not a sum of squares is still open. For an overview and proofs of the previous facts,
see [3,32]. Here, we investigate convexity of polynomials and forms in the class Py

�. We
start with the univariate (nonhomogeneous) case.

Proposition 6.2 Let f = 1+ axy + bx2d ∈ Py
� and b > 0. Then, f is convex exactly in the

following cases.

(1) y = 1,
(2) a ≥ 0 and y = 2l for y > 1 and l ∈ N.

Proof Let f = 1 + axy + bx2d . Note that the degree is necessarily even and b > 0. f is
convex if and only if D2(f ) ≥ 0 where D2(f ) = ay(y − 1)xy−2 + 2db(2d − 1)x2d−2. For
y = 1 the polynomial D2(f ) is a square and hence f is convex. Now, consider the case
y > 1. First, suppose that a < 0. Then,D2(f ) is always indefinite, since themonomial xy−2

in D2(f ) corresponds to a vertex of the corresponding Newton polytope of D2(f ) and has
a negative coefficient. Otherwise, if a ≥ 0 and y = 2l for l ∈ N, then D2(f ) ≥ 0 and f is
convex. If y = 2l + 1, then xy−2 has an odd power and hence D2(f ) is indefinite, implying
that f is not convex. ��
The homogeneous version is much more difficult than the affine version. We just prove

the following claims instead of giving a full characterization.

Proposition 6.3 Let f = z2d + axyz2d−y + bx2d ∈ Py
� be a form and b > 0. Then, the

following hold.

(1) For y = 2l − 1, l ∈ N, or a ≤ 0, the form f is not convex.
(2) For y = 2l and 0 ≤ a ≤ (y−1)(2d−y−1)

y(2d−y) the form f is convex.

Proof We have
∂2f
∂z2

= 2d(2d − 1)z2d−2 + (2d − y)(2d − y − 1)axyz2d−y−2.

Evaluating this partial derivative at z = 1, to be nonnegative, it is obvious that y must
be even and a ≥ 0, proving the first claim. For the second claim, we investigate the
principal minors of Hf . We have that ∂2f

∂x2 ≥ 0 if and only if D2(f ) ≥ 0 where D2(f ) is the

dehomogenized polynomial ∂2f
∂x2 (x, 1). This yields y = 1 or a ≥ 0 and y = 2l. From ∂2f

∂z2 ,
we get again that y must be even and a ≥ 0. Finally, one can check that all exponents of
the dehomogenized determinant detHf (x, 1) are even and have positive coefficients for
0 ≤ a ≤ (y−1)(2d−y−1)

y(2d−y) . Hence, for y = 2l and 0 ≤ a ≤ (y−1)(2d−y−1)
y(2d−y) , the form f is convex.

��
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Note that for y = 1 the form f = z2d + axyz2d−y + bx2d ∈ Py
� is never convex, whereas,

by Proposition 6.2, the dehomogenized polynomial is always convex. As a sharp contrast,
we prove the surprising result that for n ≥ 2 there are no convex polynomials in the class
Py

�, implying that there are no convex forms in Py
� for n ≥ 3.

Theorem 6.4 Let n ≥ 2 and f ∈ Py
�. Then, f is not convex.

Proof Let

f = 1 +
n∑

j=1
Ajx

α(j)1
1 · . . . · xα(j)n

n + Bxy11 · . . . · xynn

with Aj > 0 for 1 ≤ j ≤ n and B ∈ R∗. We will prove that the principal minor
[1, 2] × [1, 2] (deleting all rows and columns except the first and second one) of the
Hessian of f is indefinite, implying that the Hessian of f is not positive semidefinite and,
hence, the polynomial f is not convex. We have

∂2f
∂x21

∂2f
∂x22

−
(

∂2f
∂x1x2

)2
=

n∑

j=1

n∑

i=1

(
α(j)1(α(j)1 − 1)Ajx

α(j)1−2
1 xα(j)2

2 · · · · · xα(j)n
n

+ y1(y1 − 1)Bxy1−2
1 xy22 · · · · · xynn

)

×
(
α(i)2(α(i)2 − 1)Aixα(i)1

1 xα(i)2−2
2 · · · · · xα(n)i

n

+By2(y2 − 1)xy11 xy2−2
2 xy33 · . . . · xynn

)

−
( n∑

k=1
α(k)1α(k)2Akx

α(k)1−1
1 xα(k)2−1

2 xα(k)3
3 · · · · · xα(k)n

n

+By1y2x
y1−1
1 xy2−1

2 xy33 · · · · · xynn
)2

.

We claim that there is a point x ∈ Rn at which this minor is negative. For this, note that

all exponents in
(

∂2f
∂x1x2

)2
are captured by those in ∂2f

∂x21
∂2f
∂x22

. Hence, we can restrict to the

latter ones. The
(n+2

2
)
different exponents are of the following type:

(1) (2α(j)1 − 2, 2α(j)2 − 2, 2α(j)3, . . . , 2α(j)n) for 1 ≤ j ≤ n,
(2) (α(i)1 +α(j)1 − 2,α(i)2 +α(j)2 − 2,α(i)3 +α(j)3, . . . ,α(i)n +α(j)n) for 1 ≤ i < j ≤ n,
(3) (α(j)1 + y1 − 2,α(j)2 + y2 − 2,α(j)3 + y3, . . . ,α(j)n + yn) for 1 ≤ j ≤ n,
(4) (2y1 − 2, 2y2 − 2, 2y3, . . . , 2yn).

We claim that the point (2y1 − 2, 2y2 − 2, 2y3, . . . , 2yn) is always a vertex in the convex
hull of the points (1–4), i.e., in the Newton polytope of the investigated minor. The points
in (2) are obviously convex combinations from appropriate points in (1) and the points in
(3) are convex combinations from points in (1) and (4). Hence, it remains to show that (4)
is not a convex combination of the points in (1). Therefore, denote the points in (1) by Pj
and the point in (4) by Q. Let

Q =
n∑

j=1
μjPj with

n∑

j=1
μj = 1 and μj ≥ 0 for all 1 ≤ j ≤ n.
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But since
∑n

j=1 μj(−2) = −2, this equation is equivalent to

y =
n∑

j=1
μjα(j) with

n∑

j=1
μj = 1 and μj ≥ 0 for all 1 ≤ j ≤ n.

But this means that y lies on the boundary of �, the Newton polytope of f . This is a
contradiction, since f ∈ Py

�, i.e., y ∈ int(�). Hence, (4) is a vertex of the Newton polytope
of the investigated minor. Extracting the coefficient of its corresponding monomial in the
minor, we get that this coefficient equals−B2y1y2(y1+y2−1) < 0. Therefore, theNewton
polytope of the minor of the Hessian of f has a vertex coming with a negative coefficient
and, hence, it is indefinite, proving the claim. ��

Note that this already implies that there is also no convex form in Py
� whenever n ≥ 3,

since non-convexity is preserved under homogenization. Since it is mostly unclear which
structures prevent polynomials from being convex, Theorem 6.4 is an indication that
sparsity is among these structures.

7 Sums of nonnegative circuits
Motivated by results in previous sections, we recall Definition 1.3 from the introduction,
where we introduced sums of nonnegative circuit polynomials (SONC’s), a new family of
nonnegativity certificates.

Definition 7.1 We define the set of sums of nonnegative circuit polynomials (SONC) as

Cn,2d =
⎧
⎨

⎩f ∈ R[x]2d : f =
k∑

i=1
λigi, λi ≥ 0, gi ∈ Py

�i
∩ Pn,2d

⎫
⎬

⎭

for some even lattice simplices �i ⊂ Rn.

Remember that membership in Py
n,2d can easily be checked and is completely character-

ized by the circuit numbers�gi (Theorem 3.8). Obviously, for α,β ∈ R>0 and f, g ∈ Cn,2d ,
it holds that αf + βg ∈ Cn,2d , hence, Cn,2d is a convex cone. Then, we have the following
relations.

Proposition 7.2 The following relationships hold between the corresponding cones.

(1) Cn,2d ⊂ Pn,2d for all d, n ∈ N,
(2) Cn,2d ⊂ �n,2d if and only if (n, 2d) ∈ {(1, 2d), (n, 2), (2, 4)},
(3) �1,2 ⊂ C1,2 and �n,2d �⊂ Cn,2d for all (n, 2d) with 2d ≥ 6.
(4) Py

� ∩ Kn,2d = {0} for n ≥ 2, where Kn,2d denotes the cone of convex polynomials.

Proof Since all λigi ∈ Pn,2d , the first inclusion is obvious. For the second part note
that one direction follows from the first inclusion and Hilbert’s Theorem [16] stat-
ing that (n, 2d) ∈ {(1, 2d), (n, 2), (2, 4)} if and only if Pn,2d = �n,2d . Conversely, if
(n, 2d) /∈ {(1, 2d), (n, 2), (2, 4)} then one can use homogenizations of the Motzkin poly-
nomial and the dehomogenized agiform N = 1 + x2y2 + y2z2 + x2z2 − 4xyz ∈ P3,4\�3,4
to obtain polynomials in Cn,2d\�n,2d .
Considering (3) note that if (n, 2d) = (1, 2) then �1,2 = P1,2 = C1,2. In other cases, we

make use of the following observations. By Corollary 3.9, a polynomial f ∈ Cn,2d has at
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most 2n zeros. Additionally, by [6, Proposition 4.1], there exist polynomials in �n,2d with
dn zeros. The only cases, for which the claim does not follow by this argument is the case
(n, 2d) = (n, 4). (4) follows from Theorem 6.4. ��
Hence, the convex cone Cn,2d serves as a nonnegativity certificate, which, by Proposition
7.2, is independent from sums of squares certificates.

Example 7.3 Let f = 3 + 4y4 + 6x8 + x4y4 − 3xy + 5x3y + 2x4y2. The Newton polytope
New(f ) = conv{(0, 0)T , (0, 4)T , (4, 4)T , (8, 0)T )} is not a simplex and f ∈ C2,8. An explicit
representation is given by

f = (1 + 2x8 + 2y4 − 3xy) + (1 + 3x8 + 2y4 + 5x3y) + (1 + x8 + x4y4 + 2x4y2).

We give two further remarks about the Proposition 7.2:

(1) As stated in the proof (n, 4) is the case, which is not covered in Part (3). We believe
that �n,4 �⊂ Cn,4 for all n but we do not have an example.

(2) Let Ĉn,2d be the subset of Cn,2d containing all polynomials with a full dimen-
sional Newton polytope. It is not obvious for which cases next to (n, 2d) ∈
{(1, 2d), (n, 2), (2, 4)} it holds that Ĉn,2d ⊆ �n,2d . However, Ĉn,2d � �n,2d if we require
d ≥ n + 1 as we show in the following example.

Example 7.4 Let f = 1 +∑n
j=1 xα(j) − c · x(2,...,2) with α(j) = (2, . . . , 2) + 2 · ej where ej

denotes the j-th unit vector and n + 1 ≤ c < 0. By Theorem 3.8, we conclude that f is a
nonnegative circuit polynomial inn variables of degree 2n+2.Hence, f ∈ Cn,2d for alln and
d ≥ n+1.Moreover, New(f ) is an n-dimensional polytope by construction. But f /∈ �n,2d .
Namely, it is easy to see that the simplex 1/2 ·New(f ) = conv{0, 1/2 ·α(1), . . . , 1/2 ·α(n)}
only contains the lattice point (1, . . . , 1) in the interior. Therefore, New(f ) has exactly
one even lattice point in the interior, the point (2, . . . , 2). It follows from a statement by
Reznick [31, Theorem 2.5] that New(f ) is an M-simplex. Hence, f /∈ �n,2d by Theorem
1.2.

Of course, a priori it is completely unclear for which type of nonnegative polynomials a
SONCdecomposition exists and how big the gap betweenCn,2d and Pn,2d is. Furthermore,
it is not obvioushow to compute such adecomposition, if it exists.Wediscuss this question
in a follow-up article [17]. In this article, we show in particular that for simplex Newton
polytopes (with arbitrary support) such a decomposition exists if and only if a particular
geometric optimization problem is feasible, which can be checked very efficiently. This
generalizes similar results by Ghasemi andMarshall [12,13]. Here, we deduce as a fruitful
first step the following corollary from Theorem 5.5.

Corollary 7.5 Let f = b0 + ∑n
j=1 bjxα(j) + ∑k

i=1 aixy(i) be nonnegative with bj ∈ R>0
and ai ∈ R∗ such that New(f ) = � = conv{0,α(1), . . . ,α(n)} is a simplex and all
y(i) ∈ (int(�)∩Nn). If there exists a vector v ∈ (R∗)n such that aivy(i) < 0 for all 1 ≤ i ≤ k,
then f is SONC.

Proof Every monomial square is a strictly positive term as well as a 0-simplex circuit
polynomial. Thus, we can ignore these terms. If a particular vector v ∈ (R∗)n with the
desired properties exists, then Theorem 5.5 immediately yields a SONC decomposition
after a variable transformation xj �→ −xj for all j with vj < 0. ��
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8 Extension to arbitrary polytopes and counterexamples
In Sect. 5, we proved for f ∈ Py

� that f ∈ �
y
n,2d if and only if y ∈ �∗ or f is a sum of

monomial squares. One might wonder whether this equivalence also holds for arbitrary
polytopes. More precisely, let Q ⊂ Rn be an arbitrary lattice polytope and denote by
APy

Q the set of all polynomials of the form
∑

α∈vert(Q) bαxα + cxy that are supported
on the vertices vert(Q) of Q and an additional interior lattice point y ∈ int(Q). As a
generalization of our previous notation, we call f ∈ APy

Q an agiform if
∑

α∈vert(Q) bαα = y
and

∑
α∈vert(Q) bα = 1 as well as bα > 0 and c = −1.

In [31, Section 10], it is asked, whether the lattice point criterion y ∈ Q∗ is again an
equivalent condition for a polynomial inAPy

Q to be a sumof squares. And, if not, how sums
of squares can be characterized in this case. Here, we provide a solution to this question
(Theorem 8.2). Let Py

Q, respectively, �
y
Q denote the set of nonnegative, respectively, sums

of squares polynomials in APy
Q. As for a simplex �, for an arbitrary lattice polytope Q, we

use the same definition of anM-polytope, respectively, an H-polytope.
The implication f ∈ �

y
Q ⇒ y ∈ Q∗ does always hold. For agiforms, this is proven already

in [31]. The proof in the case of arbitrary coefficients follows exactly the same line as the
proof of Theorem 5.2.

Proposition 8.1 There exists f ∈ Py
Q\�y

Q and y ∈ Q∗.

Proof We provide an explicit example. Let

Q = conv{v0, v1, v2, v3} = conv{(0, 0), (4, 0), (4, 2), (2, 4)} with y = (2, 2).

It is easy to check thatQ is anH-polytope (indeed, it can actually be proven thatTheorem
5.9 is true for arbitrary polytopes not just for simplices). Since Q is not a simplex, there
are infinitely many convex combinations of y:

y = λ0v1 + λ1v1 + λ2v2 + λ3v3 such that
3∑

i=0
λi = 1 and λi ≥ 0.

The set of convex combinations of y is given by
{
(λ0, λ1, λ2, λ3) =

(
1
2

− 1
2
λ3,−1

2
+ 3

2
λ3, 1 − 2λ3, λ3

)
:
1
3

≤ λ3 ≤ 1
2

}
.

The corresponding agiform f (Q, λ, y) is then given by

f (Q, λ, y) =
(
1
2

− 1
2
λ3

)
+
(

−1
2

+ 3
2
λ3

)
x4 + (1 − 2λ3)x4y2 + λ3x2y4 − x2y2.

For λ3 = 2
5 , the nonnegative polynomial

f = 3
10

+ 1
10

x4 + 1
5
x4y2 + 2

5
x2y4 − x2y2

can easily be checked to be not a sum of squares although y ∈ Q∗ via the corresponding
Gram matrix. ��
Actually, one can prove that the polynomial f (Q, λ, y) in the above proof is a sum of

squares if and only if λ3 = 1
2 . In [31], the author suspects that the condition y ∈ Q∗

is not sufficient by looking at similar examples. However, in all of these examples, the
constructed polynomials that are nonnegative but not a sum of squares are not supported
on the vertices of Q and an additional interior lattice point y ∈ int(Q). We conclude that
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in the non-simplex case the problem of deciding the sums of squares property depends
on the coefficients of the polynomials, a sharp contrast to the simplex case. However,
motivated by a question in [31] for agiforms, we are interested in the following sets: let
C(y) denote the set of convex combinations of the interior lattice point y ∈ int(Q), i.e.,

C(y) =
{

λ = (λ0, . . . , λs) : y =
s∑

i=0
λivi,

s∑

i=0
λi = 1, λi ≥ 0

}

where vi are the s vertices of Q. Note that C(y) is a polytope. Fixing f and y, we define

SOS(f, y) = {λ ∈ C(y) : f (Q, λ, y) is a sum of squares}
whereQ = New(f ).We have already seen in the proof of Proposition 8.1 that the structure
of SOS(f, y) is unclear and highly depends on the convex combinations of y. It is formulated
as an open question in [31], whether one can say something about SOS(f, y) for fixed f and
y. For this, let

Q = Q(i)
1 ∪ · · · ∪ Q(i)

r(i)

be a triangulation of Q for 1 ≤ i ≤ t, where t is the number of triangulations of Q
without using new vertices. We are interested in those simplices Q(i)

j that contain the
point y ∈ int(Q) and their maximal mediated sets (Q(i)

j )∗. Recall that for every lattice
simplex � with vertex set �̂, we denote �∗ as the maximal �̂-mediated set (see Sect. 2.3).

Theorem 8.2 Let Q ⊂ Rn be a lattice n-polytope, y ∈ int(Q) ∩ Nn and f ∈ APy
Q be an

agiform. Then, SOS(f, y) = C(y), i.e., every agiform is a sum of squares, if and only if y ∈ Q(i)
j

implies y ∈ (Q(i)
j )∗ for every 1 ≤ i ≤ t and 1 ≤ j ≤ r(i).

Proof Assume y ∈ Q(i)
j ⇒ y ∈ (Q(i)

j )∗ for every 1 ≤ i ≤ t and 1 ≤ j ≤ r(i). Let λ ∈ C(y)
with f (Q, λ, y) being the corresponding agiform. By [31, Theorem 7.1], every agiform can
be written as a convex combination of simplicial agiforms. In fact, following the proof
in [31, Theorem 7.1], it can be verified that the vertices of the corresponding simplicial
agiforms form a subset of the vertices of Q, since the set C(y) of convex combinations of
y is a polytope with vertices being a subset of vert(Q). Hence, these agiforms come from
triangulating the polytope Q into simplices without using new vertices. Since y ∈ Q(i)

j ⇒
y ∈ (Q(i)

j )∗ for every i, j, by Theorem 2.4, the corresponding simplicial agiforms are always
sums of squares and since f (Q, λ, y) is a sum of them, the claim follows.
For the reverse direction, assume y ∈ Q(i)

j and y /∈ (Q(i)
j )∗ for some i, j. We prove that

this implies SOS(f, y) �= C(y). Suppose vert(Q) = {v1, . . . , vm}. Then, C(y) is a polytope of
dimension d = m − (n + 1). Let

f (Q, λ, y) =
m∑

i=1
λi(μ1, . . . ,μd)xvi − xy

be the corresponding agiforms. Note that the coefficients λi depend on d parameters
μ1, . . . ,μd , since dimC(y) = d. By assumption, there exist a1, . . . , ad ∈ R>0 such that
the corresponding agiform f (Q, λ, y)|(μ1 ,...,μd )=(a1 ,...,ad ) = g is a simplicial agiform with
respect to the simplex Q(i)

j . Since y ∈ Q(i)
j but y /∈ (Q(i)

y,k )
∗, the agiform g is not a sum

of squares. By continuity, we can construct a sequence (μ1, . . . ,μd) converging against
(a1, . . . , ad) with the properties that f (Q, λ, y)|(μ1 ,...,μd )=(a1+ε,...,ad+ε) is an agiform for some
ε > 0 with its support equal to {v1, . . . , vm, y} and not being a sum of squares, since,
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otherwise, if every sequence member is a sum of squares, this will also hold for the limit
agiform g corresponding to (a1, . . . , ad) since the cone of sums of squares is closed. Hence,
SOS(f, y) �= C(y). ��

Example 8.3 Let again

Q = conv{v0, v1, v2, v3} = conv{(0, 0), (4, 0), (4, 2), (2, 4)}
as in the proof of Proposition 8.1. There are six interior lattice points in Q given by

int(Q) ∩ N
n = {(1, 1), (2, 1), (3, 1), (2, 2), (2, 3), (3, 2)}.

Since Q has four vertices, C(y) for y ∈ (int(Q) ∩ Nn) has a free parameter λ3 (see proof of
Proposition 8.1). In the following table, for all y ∈ (int(Q) ∩ Nn), we provide the range of
the free parameter λ3 yielding valid convex combinations for y as well as the set SOS(f, y).
The sets SOS(f, y) are computedwith SOSTOOLS, see [29]. Note thatQ has two different

triangulations in this case (see Fig. 6). The lattice points (2, 1) and (3, 1) are the only lattice
points that satisfy y ∈ Q(i)

j ⇒ y ∈ (Q(i)
j )∗ for all i ∈ {1, 2} and j ∈ {1, . . . , r(i)}. Hence,

exactly for y ∈ {(2, 1), (3, 1)}, every agiform is a sum of squares.

y λ3 SOS(f, y)

(1, 1) 1
6 ≤ λ3 ≤ 1

4 λ3 ∈ [0.191; 14 ]
(2, 1) 0 ≤ λ3 ≤ 1

4 λ3 ∈ [0; 14 ]
(3, 1) 0 ≤ λ3 ≤ 1

4 λ3 ∈ [0; 14 ]
(2, 2) 1

3 ≤ λ3 ≤ 1
2 λ3 ∈ { 12 }

(2, 3) 2
3 ≤ λ3 ≤ 3

4 λ3 ∈ [0.683; 34 ]
(3, 2) 1

6 ≤ λ3 ≤ 1
2 λ3 ∈ [ 14 ;

1
2 ]

9 Outlook
We want to give an outlook for possible future research. Starting with the section �

y
n,2d ,

we renew some open questions already stated in [31]. Is there an algorithm to compute�∗

Fig. 6 The two triangulations of Q
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that is more efficient as the one in [31]? What can be said about the asymptotic behavior
of �∗, in particular, what is the, say, “probability” that a simplex is an H-simplex? This is
settled for R2 in Corollary 5.10, but seems to be completely open for n > 2. Considering
this problem from the viewpoint of toric geometry (see Theorem 5.9), it would be a
breakthrough to characterize simplices that are normal and their corresponding toric
ideals being generated by quadrics. In Sect. 7, we introduced the convex coneCn,2d of sums
of nonnegative circuit polynomials, which serve as nonnegativity certificates different
than sums of squares. From a practical viewpoint, the major problem is to determine the
complexity of checking membership in Cn,2d . In particular, when is every nonnegative
polynomial a sum of nonnegative circuit polynomials? As already mentioned in Section
7, the case of polynomials with simplex Newton polytopes is solved in [17] via geometric
programming generalizing earlier work by Ghasemi in Marshall [12,13].
From the viewpoint of amoeba theory, one evident conjecture is that Theorem4.2 can be

generalized to arbitrary complex polynomials supported on a circuit. Taking into account
the corresponding literature, in particular [27,37], an answer to this conjecture can be
considered as the final piece missing to completely characterize amoebas supported on a
circuit.
In our opinion, the most interesting question is whether similar approaches can be gen-

eralized to more general (sparse) polynomials and, in accordance, how much deeper the
observed connectionbetween the apriori very distinctmathematical topics “amoebas” and
“nonnegativity of real polynomials” is? We believe that exploiting methods from amoeba
theory might eventually yield fundamental progress in understanding nonnegativity of
real polynomials.
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