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To Robert, forever quelling the rebellious provinces

Let p be a prime number. The subject of p-adic Hodge theory concerns the interplay 
between different objects arising from the cohomology of algebraic varieties over p-adic 
fields. A good introduction to the subject circa 2010 can be found in the notes of Brinon 
and Conrad [4]; however, in the subsequent years the subject has been radically altered 
by the introduction of some new ideas and techniques. While these ideas have their ori-
gins in work of this author on relative p-adic Hodge theory [15, 16] and were further 
developed in joint work with Liu [18, 19], they are most widely known through Scholze’s 
work on the theory and applications of perfectoid algebras [21, 22, 23, 24, 25].

The purpose of this paper is to reinterpret and reprove two classic results of p-adic 
Hodge theory through the optic of perfectoid algebras (but in a self-contained manner). 
The first of these results is a theorem of Fontaine and Wintenberger [10] on the relation-
ship between Galois theory in characteristic 0 and characteristic p.

Theorem  0.0.1  (Fontaine–Wintenberger) For µp∞ the group of all p-power roots of 
unity in an algebraic closure of Qp, the absolute Galois groups of the fields Fp((π)) and 
Qp(µp∞) are isomorphic (and even homeomorphic as profinite topological groups).

The original proof of Theorem 0.0.1 depends in a crucial way on higher ramification 
theory of local fields, as developed for instance in the book of Serre [27]. This causes 
difficulties when trying to generalize Theorem 0.0.1, e.g., to local fields with imperfect 
residue fields. We expose here a new approach to Theorem 0.0.1 in which ramification 
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theory plays no role; one instead makes a careful analysis of rings of Witt vectors over 
valuation rings. In the process, we obtain a far more general result, in which Qp(µp∞) 
can be replaced by any sufficiently ramified p-adic field; more precisely, we obtain a 
functorial (and hence compatible with Galois theory) correspondence between perfec-
toid fields and perfect fields of characteristic p. This is the tilting correspondence in the 
sense of [21], which is proved using almost ring theory; our proof here is the somewhat 
more elementary argument found in [18] (see Remark 1.5.7 for further discussion). As 
a historical note, we remark that we learned the key ideas from this proof from attend-
ing Coleman’s 1997 Berkeley course “Fontaine’s theory of the mysterious functor,” whose 
principal content appears in [6].

Our second topic is the description of continuous representations of p-adic Galois 
groups on Qp-vector spaces (such as might arise from étale cohomology with p-adic 
coefficients) in terms of (ϕ,Ŵ)-modules. The original description of this form was given 
by Fontaine [9] in terms of a Cohen ring for a field of formal power series, and is an easy 
consequence of Theorem  0.0.1. Our main focus is the refinement of Fontaine’s result 
by Cherbonnier and Colmez [5], in which the Cohen ring is replaced with a somewhat 
smaller ring of convergent power series (see Theorem 2.6.2 for the precise statement). 
This refinement is critical to a number of applications of p-adic Hodge theory, notably 
Colmez’s construction of the p-adic Langlands correspondence for GL2(Qp) [7].

Existing proofs of the Cherbonnier–Colmez theorem, including a generalization to 
families of representations by Berger and Colmez [3], rely on some calculations involv-
ing a formalism for decompletion in continuous Galois cohomology, inspired by results 
of Tate and Sen and later axiomatized by Colmez. However, one can express the proof in 
such a way that one makes essentially the same calculations on (ϕ,Ŵ)-modules as in [5], 
but without any need to introduce the Tate-Sen formalism. Besides making the proof 
more transparent, this approach gives rise to analogous results for representations of the 
étale fundamental groups of some rigid analytic spaces; for instance, the theory of over-
convergent relative (ϕ,Ŵ)-modules introduced by Andreatta and Brinon [1] is general-
ized in [19] using this approach. (It should similarly be possible to recover the results of 
[3] in this fashion, and even to obtain a common generalization with [19].)

1 � Comparison of Galois groups
1.1 � Preliminaries on strict p‑rings

We begin by recalling some basic properties of strict p-rings underlying the construc-
tions made later, following the derivations in [27, §5]. (All rings considered will be com-
mutative and unital.)

Lemma 1.1.1  For any ring R and any nonnegative integer n, the map x �→ xp
n induces a 

well-defined multiplicative monoid map θn : R/(p) → R/(pn+1).

Proof  If x ≡ y (mod pm) for some positive integer m, then 
xp − yp = (x − y)(xp−1 + · · · + yp−1) and the latter factor is congruent to pxp−1 modulo 
pm; hence xp ≡ yp (mod pm+1). This proves that θn is well-defined; it is clear that it is 
multiplicative. � �
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Definition 1.1.2  A ring R of characteristic p is perfect if the Frobenius homomorphism 
x �→ xp is a bijection; this forces R to be reduced. (If R is a field, then R is perfect if and 
only if every finite extension of R is separable.) A strict p-ring is a p-torsion-free, p-adi-
cally complete ring R for which R/(p) is perfect, regarded as a topological ring using the 
p-adic topology.

Example 1.1.3  The ring Zp is a strict p-ring with Zp/(p) ∼= Fp. Similarly, for any (pos-
sibly infinite) set X, if we write Z[X] for the polynomial ring over Z generated by X and 
put Z[Xp−∞

] = ∪∞
n=0Z[X

p−n
], then the p-adic completion R of Z[Xp−∞

] is a strict p-ring 
with R/(p) ∼= Fp[X

p−∞
].

Lemma 1.1.4  Let R be a perfect ring of characteristic p, let S be a p-adically complete 
ring, and let π : S → S/(p) be the natural projection. Let t : R → S/(p) be a ring homo-
morphism. Then there exists a unique multiplicative map t : R → S with π ◦ t = t. In 
fact, t(x) ≡ x

pn

n (mod pn+1) for any nonnegative integer n and any xn ∈ S lifting t(xp
−n
).

Proof  This is immediate from Lemma 1.1.1.�  �

Definition 1.1.5  Let R be a strict p-ring. By the case S = R of Lemma 1.1.4, the projec-
tion R → R/(p) admits a unique multiplicative section [•] : R/(p) → R, called the Teich-
müller map. (For example, the image of [•] : Fp → Zp consists of 0 together with the 
(p− 1)-st roots of unity in Zp.) Each x ∈ R admits a unique representation as a p-adically 
convergent sum 

∑∞
n=0 p

n[xn] for some elements xn ∈ R/(p), called the Teichmüller coor-
dinates of x.

Lemma 1.1.6  Let R be a strict p-ring, let S be a p-adically complete ring, and let 
π : S → S/(p) be the natural projection. Let t : R/(p) → S be a multiplicative map such 
that t = π ◦ t is a ring homomorphism. Then the formula

defines a (necessarily unique) p-adically continuous homomorphism T : R → S such that 
T ◦ [•] = t.

Proof  We check by induction that for each positive integer n, T induces an additive 
map R/(pn) → S/(pn). This holds for n = 1 because π ◦ t is a homomorphism. Suppose 
the claim holds for some n ≥ 1. For x = [x] + px1, y = [y] + py1, z = [z] + pz1 ∈ R with 
x + y = z,

by Lemma 1.1.4. In particular,

(1.1.6.1)
T

(

∞
∑

n=0

pn[xn]

)

=

∞
∑

n=0

pnt(xn) (x0, x1, . . . ∈ R/(p))

[z] ≡ ([xp
−n
] + [yp

−n
])p

n
(mod pn+1)

t(z) ≡ (t(xp
−n
)+ t(yp

−n
))p

n
(mod pn+1)
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On the other hand, since 1p

(

pn

i

)

∈ Z for i = 1, . . . , pn − 1, we may write

apply T, invoke the induction hypothesis on both sides, and multiply by p to obtain

Since T (x) = T ([x])+ pT (x1) and so on, we may add (1.1.6.2) and (1.1.6.3) to deduce 
that T (z)− T (x)− T (y) ≡ 0 (mod pn+1), completing the induction. Hence T is addi-
tive; it is also clear that T is p-adically continuous. From this it follows formally that T is 
multiplicative: for x =

∑∞
n=0 p

n[xn], y =
∑∞

n=0 p
n[yn],

We conclude that T is a ring homomorphism as claimed.�  �

Remark 1.1.7  Take R as in Example 1.1.3 with X = {x, y}. By Lemma 1.1.4, we have

for some Pn(x, y) in the ideal (xp
−∞

, yp
−∞

) ⊂ Fp[x
p−∞

, yp
−∞

] and homogeneous of degree 
1. By Lemma 1.1.6, (1.1.7.1) is also valid for any strict p-ring R and any x, y ∈ R/(p). One 
can similarly derive formulas for arithmetic in a strict p-ring in terms of Teichmüller 
coordinates; these can also be obtained using Witt vectors (Definition 1.1.9).

Theorem 1.1.8  The functor R � R/(p) from strict p-rings to perfect rings of characteris-
tic p is an equivalence of categories.

Proof  Full faithfulness follows from Lemma 1.1.6. To prove essential surjectivity, let R be 
a perfect ring of characteristic p, choose a surjection ψ : Fp[X

p−∞
] → R for some set X, 

and put I = ker(ψ). Let R0 be the p-adic completion of Z[Xp−∞
]; as in Example 1.1.3, this is 

a strict p-ring with R0/(p) ∼= Fp[X
p−∞

]. Put I = {
∑∞

n=0 p
n[xn] ∈ R0 : x0, x1, . . . ∈ I}; this 

forms an ideal in R0 by Remark 1.1.7. Then R = R0/I is a strict p-ring with R/(p) ∼= R.�  �

(1.1.6.2)T ([z])− T ([x])− T ([y]) ≡

pn−1
∑

i=1

(

pn

i

)

t(xip
−n
y1−ip−n

) (mod pn+1).

z1 − x1 − y1 =
[x] + [y] − [z]

p
≡ −

pn−1
∑

i=1

1

p

(

pn

i

)

[xip
−n
y1−ip−n

] (mod pn),

(1.1.6.3)pT (z1)− pT (x1)− pT (y1) ≡ −

pn−1
∑

i=1

(

pn

i

)

t(xip
−n
y1−ip−n

) (mod pn+1).

T (x)T (y) =

∞
�

m,n=0

pm+nt(xm)t(yn) =

∞
�

m,n=0

pm+nt(xmyn)

= T





∞
�

m,n=0

pm+n[xmyn]



 = T (xy).

(1.1.7.1)
[x] − [y] =

∞
∑

n=0

pn[Pn(x, y)]
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Definition 1.1.9  For R a perfect ring of characteristic p, we write W (R) for the unique 
(by Theorem 1.1.8) strict p-ring with W (R)/(p) ∼= R. This is meant as a reminder that 
W (R) also occurs as the ring of p-typical Witt vectors over R; that construction obtains 
the formulas for arithmetic in Teichmüller coordinates in an elegant manner linked to 
symmetric functions.

Remark 1.1.10  Let R be a strict p-ring. Since R is p-adically complete, the Jacobson rad-
ical of R contains p. In particular, if R is local, then so is R.

1.2 � Perfect norm fields

Theorem  0.0.1 is obtained by matching up the Galois correspondences of the fields 
Fp((π)) and Qp(µp∞). The approach taken by Fontaine and Wintenberger is to pass from 
characteristic 0 to characteristic p by looking at certain sequences of elements of finite 
extensions of Qp in which each term is obtained from the succeeding term by taking 
a certain norm between fields; the resulting functor is thus commonly called the func-
tor of norm fields. It is here that some careful analysis of higher ramification theory is 
needed in order to make the construction work.

While the Fontaine–Wintenberger construction gives rise directly to finite extensions 
of Fp((π)), it was later observed that a simpler construction (used repeatedly by Fon-
taine in his further study of p-adic Hodge theory) could be used to obtain the perfect 
closures of these finite extensions. Originally the construction of these perfect norm 
fields depended crucially on the prior construction of the imperfect norm fields of Fon-
taine–Wintenberger (as in the exposition in [4]), but we will instead work directly with 
the perfect norm fields.

Definition 1.2.1  By an analytic field, we will mean a field K which is complete 
with respect to a multiplicative nonarchimedean norm |•|. For K an analytic field, put 
oK = {x ∈ K : |x| ≤ 1}; this is a local ring with maximal ideal mK = {x ∈ K : |x| < 1}. 
We say K has mixed characteristics if |p| = p−1 (so K has characteristic 0) and the residue 
field κK = oK /mK  of K has characteristic p.

Remark 1.2.2  Any finite extension L of an analytic field K is itself an analytic field; that 
is, the norm extends uniquely to a multiplicative norm on the extension field. A key fact 
about this extension is Krasner’s lemma: if P(T ) ∈ K [T ] splits over L as 

∏n
i=1(T − αi) 

and β ∈ K  satisfies |α1 − β| < |α1 − αi| for i = 2, . . . , n, then α1 ∈ K .

A crucial consequence of Krasner’s lemma is that an infinite algebraic extension of K 
is separably closed if and only if its completion is algebraically closed. More precisely, 
Krasner’s lemma is only needed for the “if” implication; the “only if ” implication follows 
from the fact that the roots of a polynomial vary continuously in the coefficients. This 
principle also appears in the proof of Lemma 1.5.4.

Remark 1.2.3  Using Krasner’s lemma, one may show that Qp(µp∞) and its completion 
have the same Galois group. Similarly, Fp((π)), its perfect closure, and the completion of 
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the perfect closure all have the same Galois group. Consequently, from the point of view 
of proving Theorem 0.0.1, there is no harm in considering only analytic fields.

Definition 1.2.4  Let K be an analytic field of mixed characteristics. Let oK ′ be the 
inverse limit lim

←−
oK /(p) under Frobenius. In symbols,

By construction, this is a perfect ring of characteristic p: the inverse of Frobenius is the 
shift map (xn)∞n=0 �→ (xn+1)

∞
n=0. By applying Lemmas 1.1.4 and 1.1.6 to the homomor-

phism θ : oK ′ → oK /(p), we obtain a multiplicative map θ : oK ′ → oK  and a homomor-
phism � : W (oK ′) → oK .

For x = (x0, x1, . . .) ∈ oK ′, define |x|′ = |θ(x)|. If we lift xn ∈ oK /(p) to xn ∈ oK , then 
|x|′ = |xn|

pn whenever |xn| > |p|. Consequently, |•|′ is a multiplicative nonarchimedean 
norm on oK ′ under which oK ′ is complete (given any Cauchy sequence, the terms in any 
particular position eventually stabilize).

Lemma 1.2.5  With notation as in Definition  1.2.4, for x, y ∈ oK ′, x is divisible by y if 
and only if  |x|′ ≤

∣

∣y
∣

∣

′.

Proof  If x is divisible by y, then |x|′ ≤
∣

∣y
∣

∣

′∣
∣x/y

∣

∣

′
≤

∣

∣y
∣

∣

′. Conversely, suppose |x|′ ≤
∣

∣y
∣

∣

′.  
If y = 0, then x = 0 also and there is nothing more to check. Otherwise, write 
x = (x0, x1, . . .), y = (y0, y1, . . .), and choose lifts xn, yn of xn, yn to oK . Since y �= 0, we can 
find an integer n0 ≥ 0 such that 

∣

∣yn
∣

∣ ≥ p−1+1/p for n = n0, and hence also for n ≥ n0. Then 
for n ≥ n0, the elements zn = xn/yn ∈ oK  have the property that 

∣

∣z
p
n+1 − zn

∣

∣ ≤ p−1/p. By 
writing zp

2

n+2 = (zn+1 + (z
p
n+2 − zn+1))

p, we deduce that 
∣

∣

∣z
p2

n+2 − z
p
n+1

∣

∣

∣ ≤ p−1. We thus 
produce an element z = (z0, z1, . . .) with x = yz by taking zn to be the reduction of zpn+1 
for n ≥ n0 + 1. � �

Definition 1.2.6  Keep notation as in Definition 1.2.4. By Lemma 1.2.5, oK ′ is the valua-
tion ring in an analytic field K ′ which is perfect of characteristic p. We call K ′ the perfect 
norm field associated to K. (Scholze [21] calls K ′ the tilt of K and denotes it by K ♭.)

Exercise 1.2.7  The formula x �→ (θ(xp
−n
))∞n=0 defines a multiplicative bijection from 

oK ′ to the inverse limit of multiplicative monoids (but not of rings)

This map extends to a multiplicative bijection from K ′ to the inverse limit of multiplica-
tive monoids

oK ′ =

{

(xn) ∈

∞
∏

n=0

oK /(p) : x
p
n+1 = xn

}

.

{

(xn) ∈

∞
∏

n=0

oK : x
p
n+1 = xn

}

.

{

(xn) ∈

∞
∏

n=0

K : x
p
n+1 = xn

}

.
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1.3 � Perfectoid fields

In general, the perfect norm field functor is far from being faithful.

Exercise 1.3.1  Let K be a discretely valued analytic field of mixed characteristics. Then 
K ′ is isomorphic to the maximal perfect subfield of κK .

To get around this problem, we restrict attention to analytic fields with a great deal of 
ramification. (The term perfectoid is due to Scholze [21].)

Definition 1.3.2  An analytic field K is perfectoid if K is of mixed characteristics, 
K is not discretely valued, and the p-th power Frobenius endomorphism on oK /(p) is 
surjective.

The following statements imply that taking the perfect norm field of a perfectoid ana-
lytic field does not concede too much information.

Lemma 1.3.3   Let K be a perfectoid analytic field.

(a)		� We have 
∣

∣K×
∣

∣ =
∣

∣(K ′)×
∣

∣.
(b)		� The projection oK ′ → lim

←−
oK /(p) → oK /(p)  is surjective and induces an isomor-

phism oK ′/(z) ∼= oK /(p) for any z ∈ oK ′  with |z|′ = p−1 (which exists by (a)). In par-
ticular, we obtain a natural isomorphism κK ′ ∼= κK  .

(c)		� The map � : W (oK ′) → oK  is also surjective. (The kernel of � turns out to be a prin-
cipal ideal; see Corollary 1.4.14.)

Proof  Since K is not discretely valued, we can find r ∈
∣

∣K×
∣

∣ such that p−1rp ∈ (p−1, 1);  
the surjectivity of Frobenius then implies p−1/pr ∈

∣

∣K×
∣

∣. This implies p−1/p ∈
∣

∣K×
∣

∣, so 
p−1/p ∈

∣

∣(K ′)×
∣

∣ and p−1 ∈
∣

∣(K ′)×
∣

∣. Since also 
∣

∣K×
∣

∣ ∩ (p−1, 1) =
∣

∣(K ′)×
∣

∣ ∩ (p−1, 1), we 
obtain (a), and (b) and (c) follow easily. � �

Corollary 1.3.4  The perfect norm field functor on perfectoid analytic fields is faithful.

Example 1.3.5  Take K to be the completion of Qp(µp∞) for the unique extension of the 
p-adic norm, and fix a choice of a sequence {ζpn}∞n=0 in which ζpn is a primitive pn-th root 
of unity and ζ p

pn+1 = ζpn. The field K is perfectoid because

By the same calculation, we identify K ′ with the completed perfect closure of Fp((π)) by 
identifying π  with (ζ 1 − 1, ζ p − 1, . . .). This example underlies the theory of (ϕ,Ŵ)-mod-
ules; see Sect. 2.

Example 1.3.6  Let F be a discretely valued analytic field of mixed characteristics (e.g., a 
finite extension of Qp) and choose a uniformizer π of F. Choose a sequence π0,π1, . . . of 
elements of an algebraic closure of F in which π0 = π and πp

n+1 = πn for n ≥ 0. Take K to 
be the completion of F(π0,π1, . . .); then oK  is the completion of oF [π1,π2, . . .], so

oK /(p) ∼= Fp[ζ p, ζ p2 , . . .]/(1+ ζ p + · · · + ζ
p−1
p , ζ p − ζ

p

p2
, . . .).
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By Exercise  1.3.7 below, K is perfectoid. By the same calculation, we identify K ′ with 
the completed perfect closure of κF ((π)) by identifying π  with (π0,π1, . . .). This exam-
ple underlies the theory of Breuil–Kisin modules, which provide a good replacement for 
(ϕ,Ŵ)-modules for the study of crystalline representations; see [8, §11].

Exercise 1.3.7  Let K be an analytic field of mixed characteristics which is not dis-
cretely valued.

(a)	�	� Assume that there exists ξ ∈ K  with p−1 ≤ |ξ | < 1 such that Frobenius is surjective 
on oK /(ξ) . Then K is perfectoid. (Hint: first imitate the proof of Lemma 1.3.3(a) to 
construct an element of K with norm |ξ |1/p, then construct pth roots modulo suc-
cessively higher powers of ξ.)

(b)	�	� Suppose that there exists an ideal I ⊆ mK  such that the I-adic topology and 
the norm topology on oK  coincide, and Frobenius is surjective on oK /I.  
Then K is perfectoid. (Note that I need not be principal; for instance, take 
I = {x ∈ oK : |x| < p−1/2}. If I is finitely generated, however, it is principal.)

Exercise 1.3.8  An analytic field K of mixed characteristics is perfectoid if and only if 
for every x ∈ K , there exists y ∈ K  with 

∣

∣yp − x
∣

∣ ≤ p−1|x|. As in the previous exercise, 
one can also replace p−1 by any constant value in the range [p−1, 1).

Remark 1.3.9  When developing the theory of norm fields, it is typical to consider the 
class of arithmetically profinite algebraic extensions of Qp, i.e., those for which the Galois 
closure has the property that its higher ramification subgroups are open. One then 
shows using Exercise 1.3.7 that the completions of such extensions are perfectoid. While 
this construction has the useful feature of providing many examples of perfectoid fields, 
we will have no further need for it here. (See however Remark 1.6.5.)

1.4 � Inverting the perfect norm field functor

So far, we have a functor from perfectoid analytic fields to perfect analytic fields of char-
acteristic p. In order to invert this functor, we must also keep track of the kernel of the 
map �; this kernel turns out to contain elements which behave a bit like linear polynomi-
als, in that they admit an analogue of the division algorithm. This exploits an imperfect 
but useful analogy between strict p-rings and rings of formal power series, in which p 
plays the role of a series variable and the Teichmüller coordinates (Definition 1.1.5) play 
the role of coefficients. For a bit more on this analogy, see Remark 1.4.12; for further dis-
cussion, including a form of Weierstrass preparation in strict p-rings, see for instance [8].

Hypothesis 1.4.1  Throughout this section, let F be an analytic field which is perfect of 
characteristic p. We denote the norm on F by |•|′.

Remark 1.4.2  We will use frequently the following consequence of the homogeneity 
aspect of Remark 1.1.7: the function

oK /(π) ∼= Fp[π1,π2, . . .]/(π
p
1,π1 − π

p
2, . . .).
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satisfies the strong triangle inequality, and hence defines a norm on W (oF ). See 
Lemma 1.7.2 for a related observation.

Definition 1.4.3  For z ∈ W (oF ) with reduction z ∈ oF, we say z is primitive if 
|z|′ = p−1 and p−1(z − [z]) ∈ W (oF )

×. (The existence of such an element in particular 
forces the norm on F not to be trivial.) Since W (oF ) is a local ring by Remark 1.1.10, for 
z =

∑∞
n=0 p

n[zn] it is equivalent to require that |z0|′ = p−1 and |z1|′ = 1; in particular, 
whether or not z is primitive depends only on z modulo p2.

Exercise 1.4.4  If z ∈ W (oF ) is primitive, then so is uz for any u ∈ W (oF )
×. (Hint: for 

y = uz, show that 
∣

∣y1 − u0z1
∣

∣ < 1 by working with Witt vectors modulo p2.)

In order to state the division lemma for primitive elements, we need a slightly wider 
class of elements of W (oF ) than the Teichmüller lifts.

Definition 1.4.5  An element x =
∑∞

n=0 p
n[xn] ∈ W (oF ) is stable if |xn|′ ≤ |x0|

′ for all 
n > 0. Note that 0 is stable under this definition.

Lemma 1.4.6  An element of W (oF ) is stable if and only if it equals a unit times a Teich-
müller lift.

Proof  This is immediate from the fact that [x]
∑∞

n=0 p
n[yn] =

∑∞
n=0 p

n[xyn].�  �

Here is the desired analogue of the division lemma, taken from [16, Lemma 5.5].

Lemma 1.4.7  For any primitive z ∈ W (oF ), every class in W (oF )/(z) is represented by a 
stable element of W (oF ).

Proof  Write z = [z] + pz1 with z1 ∈ W (oF )
×. Given x ∈ W (oF ), put x0 = x. 

Given xl =
∑∞

n=0 p
n[xl,n] congruent to x modulo z, put xl,1 =

∑∞
n=0 p

n[xl,n+1] and 
xl+1 = xl − xl,1z

−1
1 z, so that xl+1 is also congruent to x modulo z.

Suppose that for some l, we have 
∣

∣xl,n
∣

∣

′
< p

∣

∣xl,0
∣

∣

′ for all n > 0. By Remark 1.4.2 and 
the equality xl+1 = [xl,0] − xl,1z

−1
1 [z], we have 

∣

∣xl+1,n

∣

∣

′
≤

∣

∣xl,0
∣

∣

′ for all n ≥ 0. Also, xl+1,0 
equals xl,0 plus something of lesser norm (namely zxl,1 times the reduction of z−1

1 ), so 
∣

∣xl+1,0

∣

∣

′
=

∣

∣xl,0
∣

∣

′. Hence xl+1 is a stable representative of the congruence class of x.
We may thus suppose that no such l exists. By Remark  1.4.2 again, 

supn{
∣

∣xl+1,n

∣

∣} ≤ p−1 supn{
∣

∣xl,n
∣

∣} for all l. The sum y =
∑∞

l=0 xl,1z
−1
1  thus converges for 

the (p, [z])-adic topology on W (oF ) and satisfies x = yz; that is, 0 is a stable representa-
tive of the congruence class of x.�  �

Remark 1.4.8  One might hope that one can always take the stable representative in 
Lemma 1.4.7 to be a Teichmüller lift, but this is in general impossible unless the field 
F is not only complete but also spherically complete. This condition means that any 

∞
∑

n=0

pn[xn] �→ sup
n
{|xn|

′}
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decreasing sequence of balls in F has nonempty intersection; completeness only imposes 
this condition when the radii of the balls tend to 0. For example, a completed algebraic 
closure of Qp, or of a power series field in characteristic p, is not spherically complete.

Lemma 1.4.9  Any stable element of W (oF ) divisible by a primitive element must equal 
0.

Proof  Suppose x ∈ W (oF ) is stable and is divisible by a primitive element z. Put y = x/z 
and write x =

∑∞
n=0 p

n[xn], y =
∑∞

n=0 p
n[yn]. Also write z = [z] + pz1 with z1 ∈ W (oF )

×.  
Then on one hand, x = y0z, so 

∣

∣y0
∣

∣

′
= p|x0|

′. On the other hand, by writing

and using Remark 1.4.2, we see that (because the term pz1y dominates)

Since x is stable, this gives a contradiction unless x = 0, as desired. �

Corollary 1.4.10  Suppose that z ∈ W (oF ) is primitive and that x, y ∈ W (oF ) are stable 
and congruent modulo z. Then the reductions of x, y modulo p have the same norm.

Proof  Put w = x − y and write w =
∑∞

n=0 p
n[wn], x =

∑∞
n=0 p

n[xn], y =
∑∞

n=0 p
n[yn].  

By Remark  1.4.2, |wn|
′ ≤ max{|x0|

′,
∣

∣y0
∣

∣

′
} for all n ≥ 0. However, if |x0|′ �=

∣

∣y0
∣

∣

′, then 
|w0|

′ = max{|x0|
′,
∣

∣y0
∣

∣

′
} > 0, so w is a nonzero stable element of W (oF ) divisible by z. 

This contradicts Lemma 1.4.9, so we must have |x0|′ =
∣

∣y0
∣

∣

′ as desired.�  �

Exercise 1.4.11  Give another proof of Lemma 1.4.9 by formulating a theory of New-
ton polygons for elements of W (oF ).

Remark 1.4.12  A good way to understand the preceding discussion is to compare it to 
the theory of Weierstrass preparation for power series over a complete discrete valuation 
ring. For a concrete example, consider the ideal (T − p) in the ring Zp[[T ]]. There is a nat-
ural map Zp → Zp[[T ]]/(T − p); one may see that this map is injective by observing that 
no nonzero element of Zp can be divisible by T − p (by analogy with Lemma 1.4.9), and 
that it is surjective by observing that one can perform the division algorithm on power 
series to reduce them modulo T − p to elements of Zp (by analogy with Lemma 1.4.7).

In the situation considered here, however, we do not start with a candidate for the 
quotient ring W (oF )/(z). Instead, we must be a bit more careful in order to read off the 
properties of the quotient directly from the division algorithm.

We are now ready to invert the perfect norm field functor.

Theorem 1.4.13  Choose any primitive z ∈ W (oF ) and put oK = W (oF )/(z). For x ∈ oK ,  
apply Lemma  1.4.7 to find a stable element y =

∑∞
n=0 p

n[yn] ∈ W (oF ) lifting x, then 
define |x| =

∣

∣y0
∣

∣

′. This is independent of the choice of y thanks to Lemma 1.4.9.

x = pz1y+ [z]y

sup
n
{|xn|} = sup

n
{
∣

∣yn
∣

∣}.
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(a)		 The function |•| is a multiplicative norm on oK  under which oK  is complete.
(b)		 There is a natural (in F) isomorphism oK /(p) ∼= oF/(z).
(c)		 The ring oK  is the valuation ring of an analytic field K of mixed characteristics.
(d)		 The field K is perfectoid and there is a natural isomorphism K ′ ∼= F .
(e)		 The kernel of � : W (oF ) → oK  is generated by z.

Proof  Part (a) follows from the fact that the product of stable elements is stable 
(thanks to Remark  1.4.2). Part (b) follows by comparing both sides to W (oF )/(p, [z]). 
Part (c) follows from the fact (a consequence of Lemma 1.4.6) that if x =

∑∞
n=0 p

n[xn],  
y =

∑∞
n=0 p

n[yn] are stable and |x0|′ ≤
∣

∣y0
∣

∣

′ , then x is divisible by y in W (oF ). Part (d) fol-
lows from (b) plus Theorem 1.3.3. Part (e) follows from the construction of |•|, or more 
precisely from the fact that every nonzero class in W (oF )/(z) has a nonzero stable repre-
sentative. � �

Corollary 1.4.14   Let K be a perfectoid analytic field. Then there exists a primitive 
element z in the kernel of � : W (oK ′) → oK , so ker(�) is principal generated by z by 
Theorem  1.4.13. (Exercise  1.4.4 then implies that conversely, any generator of ker(�) is 
primitive.)

Proof  Since K and K ′ have the same norm group by Lemma 1.3.3, we can find z ∈ oK ′ 
with |z|′ = p−1. Then θ(z) is divisible by p in oK ; since � is surjective, we can find 
z1 ∈ W (oK ′) with �(z1) = −θ(z)/p. This forces z1 ∈ W (oK ′)×, as otherwise we would 
have |�(z1)| < 1. Now z = [z] + pz1 is a primitive element of ker(�), as desired.�  �

Example 1.4.15  In Example 1.3.5, note that |π |′ = p−p/(p−1). One may then check that

is a primitive element of W (oK ′) belonging to ker(�). Hence z generates the kernel by 
Theorem 1.4.13.

Example 1.4.16  One can also write down explicit primitive elements in some cases of 
Example 1.3.6. A simple example is when π = p (this forces the field F to be absolutely 
unramified). In this case,

is a primitive element of W (oK ′) belonging to (and hence generating) ker(�).

1.5 � Compatibility with finite extensions

At this point, using Theorem 1.4.13 and Corollary 1.4.14, we obtain the following state-
ment, which one might call the perfectoid correspondence (or the tilting correspondence 
in the terminology of [21]).

z = ([1+ π ] − 1)/([1+ π ]1/p − 1) =

p−1
∑

i=0

[1+ π ]i/p

z = p− [π ]
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Theorem 1.5.1  (Perfectoid correspondence) The operations

define an equivalence of categories between perfectoid analytic fields K and pairs (F, I) in 
which F is a perfect analytic field of characteristic p and I is an ideal of  W (oF ) generated 
by a primitive element.

Remark 1.5.2  From Examples 1.3.5 and 1.3.6, we see that one cannot drop the ideal I 
in Theorem 1.4.13: one can have nonisomorphic perfectoid analytic fields whose perfect 
norm fields are isomorphic.

We will establish that the perfectoid correspondence is compatible with finite exten-
sions of fields on both sides, where on the right side we replace the ideal I by its exten-
sion to the larger ring. This will give Theorem 0.0.1 by taking K to be the completion of 
Qp(µp∞). However, the more general result for an arbitrary perfectoid K is relevant for 
extending p-adic Hodge theory to a relative setting; see Remark 1.5.8.

The first step is to lift finite extensions from characteristic p; this turns out to be 
straightforward.

Lemma 1.5.3  Let K be a perfectoid analytic field and put I = ker(� : W (oK ′) → oK ).  
Let F be a finite extension of K ′ and put L = W (oF )[p

−1]/IW (oF )[p
−1]. Then 

[L : K ] = [F : K ′]. (Note that by Theorem 1.4.13, L is a perfectoid analytic field and we 
may identify L′ with F.)

Proof  Apply Corollary 1.4.14 to choose a primitive generator z ∈ I. The extension F/K ′ 
is separable because K ′ is perfect; it thus has a Galois closure F̃ . Put L̃ = W (oF̃ )[p

−1]/(z),  
which is a perfectoid analytic field thanks to Theorem  1.4.13. For any subgroup H of 
G = Gal(F̃/K ′), averaging over H defines a projection

so the right side equals the fixed field L̃H.
Put G̃ = Gal(F̃/F). Apply the above analysis with H = G and H = G̃; since F̃G = K ′ 

and F̃ G̃ = F , we obtain L̃G = K  and L̃G̃ = L. The action of G on L̃ is faithful: any non-
trivial g ∈ G moves some x ∈ F̃ , and for n sufficiently large we may write

to see that g also moves θ([xp
−n
]). By Artin’s lemma, L̃ is a finite Galois extension of L̃H 

with Galois group H, so

as desired.�  �

K � (K ′, ker(� : W (oK ′) → oK )), (F , I) � W (oF )[p
−1]/I

L̃ =
W (oF̃ )[p

−1]

zW (oF̃ )[p
−1]

→
W (oF̃H )[p

−1]

zW (oF̃ )[p
−1] ∩W (oF̃H )[p−1]

=
W (oF̃H )[p

−1]

zW (oF̃H )[p−1]
,

∣

∣

∣
θ([xp

−n
])− g(θ([xp

−n
]))− θ([(x − g(x))p

−n
])
∣

∣

∣
≤ p−1|x|p

−n

[L : K ] = [L̃ : K ]/[L̃ : L] = #G/#G̃ = [F̃ : K ′]/[F̃ : F ] = [F : K ′],
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We still need to check that a finite extension of a perfectoid analytic field is again per-
fectoid. It suffices to study the case where the perfect norm field is algebraically closed. It 
is this argument in particular that we learned from the course of Coleman mentioned in 
the introduction, and even wrote down on one previous occasion; see [13, Theorem 7].

Lemma 1.5.4   If K is a perfectoid field and K ′ is algebraically closed, then so is K.

Proof  Let P(T ) ∈ oK [T ] be an arbitrary monic polynomial of degree d ≥ 1; it suf-
fices to check that P(T) has a root in oK . We will achieve this by exhibiting a sequence 
x0, x1, . . . of elements of oK  such that for all n ≥ 0, |P(xn)| ≤ p−n and |xn+1 − xn| ≤ p−n/d. 
This sequence will then have a limit x ∈ oK  which is a root of P.

To begin, take x0 = 0. Given xn ∈ oK  with |P(xn)| ≤ p−n, write P(T + xn) =
∑

i QiT
i. 

If Q0 = 0, we may take xn+1 = xn, so assume hereafter that Q0 �= 0. Put

by taking j = d, we see that c ≤ |Q0|
1/d. Also, since K has the same norm group as K ′ by 

Theorem 1.4.13, this norm group is divisible; we thus have c = |u| for some u ∈ oK . (Note 
that c is defined so as to equal the smallest norm of a norm of Q in K , but this fact is not 
explicitly used in the proof.)

Apply Corollary  1.4.14 to construct a primitive element z ∈ ker(�). Put R0 = 0.  
For each i > 0, choose Ri ∈ oK ′ whose image in oK ′/(z) ∼= oK /(p) is the same as that 
of Qiu

i/Q0. Define the (not necessarily monic) polynomial R(T ) =
∑

i RiT
i ∈ oK ′ [T ].  

By construction, the largest slope in the Newton polygon of R is 0; by this observa-
tion plus the fact that K ′ is algebraically closed, it follows that R(T ) has a root y′ ∈ o

×
K ′.  

Choose y ∈ o
×
K  whose image in oK /(p) ∼= oK ′/(z) is the same as that of y′, and take 

xn+1 = xn + uy. Then 
∑

i Qiu
iyi/Q0 ≡ 0 (mod p), so |P(xn+1)| ≤ p−1|Q0| ≤ p−n−1 and 

|xn+1 − xn| = |u| ≤ |Q0|
1/d ≤ p−n/d. We thus obtain the desired sequence, proving the 

claim. � �

Remark 1.5.5  The inertia subgroup of the Galois group of a finite extension of analytic 
fields is solvable; see for instance [14, Chapter 3] and references therein. (The discretely 
valued case may be more familiar; for that, see also [27, Chapter IV].) Using this state-
ment, one can give a slightly simpler proof of Lemma 1.5.4 by considering only cyclic 
extensions of prime degree. We chose not to proceed this way so as to make good on our 
promise to keep the proof of Theorem 0.0.1 entirely free of ramification theory.

We are now ready to complete the proof of Theorem 0.0.1.

Theorem 1.5.6   Let K be a perfectoid analytic field. Then every finite extension of K is perfec-
toid, and the operation L � L′  defines a functorial correspondence between the finite exten-
sions of K and K ′. In particular, the absolute Galois groups of K and K ′ are homeomorphic.

Proof  Apply Corollary  1.4.14 to construct a primitive generator z ∈ ker(� :

W (oK ′) → oK ). Let M′ be the completion of an algebraic closure K ′ of K ′; it is again 

c = min{
∣

∣Q0/Qj

∣

∣

1/j
: j > 0,Qj �= 0};
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algebraically closed by Remark 1.2.2. By Theorem 1.5.1, M′ arises as the perfect norm 
field of a perfectoid analytic field M, which by Lemma 1.5.4 is also algebraically closed.

By Lemma 1.5.3, each finite Galois extension L′ of K ′ within M′ is the perfect norm 
field of a finite Galois extension L of K within M which is perfectoid. The union L̃ of 
such fields L is dense in M because the union of the L′ is dense in M′. By Remark 1.2.2, 
L̃ is algebraically closed; that is, every finite extension of K is contained in a finite Galois 
extension which is perfectoid. The rest follows from Theorem 1.5.1. � �

Remark 1.5.7  The proof of Theorem 1.5.6 is a digested version of the one given in [18, 
Theorem 3.5.6]. A different proof has been given by Scholze [21, Theorem 3.7], in which 
the analysis of strict p-rings is supplanted by use of a small amount of almost ring the-
ory, as introduced by Faltings and developed systematically by Gabber and Ramero [11]. 
However, these two approaches resemble each other far more strongly than either one 
resembles the original arguments of Fontaine and Wintenberger.

Remark 1.5.8  In both [18, 21], Theorem 1.5.6 is generalized to a statement relating the 
étale sites of certain nonarchimedean analytic spaces in characteristic 0 and character-
istic p, including an optimally general form of Faltings’s almost purity theorem. (For the 
flavor of this result, see Theorem 1.6.2.) This is used as a basis for relative p-adic Hodge 
theory in [18, 19, 22]. Note that for this application, it is crucial to have Theorem 1.5.6 
and not just Theorem  0.0.1: one must use analytic spaces in the sense of Huber (adic 
spaces) rather than rigid analytic spaces, which forces an encounter with general analytic 
fields. One must also deal with valuations of rank greater than 1 (i.e., whose value groups 
do not fit inside the real numbers), but this adds no essential difficulty.

The following is taken from [18, Proposition 3.5.9].

Exercise 1.5.9  Let L / K be a finite extension of analytic fields such that L is perfectoid. 
Prove that K is also perfectoid. Hint: reduce to the Galois case, then produce a Galois-
invariant primitive element.

1.6 � Some applications

We describe now a couple of applications of Theorem 1.5.6, in which one derives infor-
mation in characteristic 0 by exploiting Frobenius as if one were working in positive 
characteristic.

Definition 1.6.1  An analytic field K is deeply ramified if for any finite extension L of K, 
�oL/oK = 0; that is, the morphism Spec(oL) → Spec(oK ) is formally unramified. (Beware 
that this morphism is usually not of finite type if K is not discretely valued.)

Theorem 1.6.2  Any perfectoid analytic field is deeply ramified.

Proof  Let K be a perfectoid field and let L be a finite extension of K. Choose 
x1, . . . , xn ∈ oL which form a basis of L over K; we can then find t ∈ oK − {0} such 
that toL ⊆ oK x1 + · · · + oK xn. Since L is a finite separable extension of K, �L/K = 0; 
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consequently, we can choose u ∈ oK − {0} so that u dxi vanishes in �oL/oK for each i. For 
any x ∈ oL, t dx = d(tx) is a oK-linear combination of x1, . . . , xn, so tu dx = 0.

On the other hand, L is perfectoid by Theorem  1.5.6. Hence for any x ∈ oL, we can 
find y ∈ oL for which x ≡ yp (mod p); this implies that �oL/oK = p�oL/oK. As a result, 
�oL/oK = pn�oL/oK for any positive integer n; by choosing n large enough that tu is divis-
ible by pn, we deduce that �oL/oK = 0. Hence K is deeply ramified.�  �

Remark 1.6.3  Theorem 1.6.2 admits the following converse: any analytic field of mixed 
characteristics which is deeply ramified is also perfectoid. See [11, Proposition 6.6.6].

Theorem 1.6.4   Let K be a perfectoid analytic field and let L be a finite extension of K. 
Then Trace : mL → mK  is surjective.

Proof  By Theorem  1.5.6, L is also perfectoid. Let K ′, L′ be the perfect norm fields 
of K,  L. Since L′ is a finite separable extension of K ′, there exists u ∈ mK ′ such that 
uoK ′ ⊆ Trace(mL′). By applying the inverse of Frobenius, we obtain the same conclu-
sion with u replaced by up−n for each positive integer n. Hence Trace : mL′ → mK ′ is 
surjective.

Since K is not discretely valued, we can find t ∈ mK  with p−1 < |t| < 1. Since 
L is a finite separable extension of K, there exists a nonnegative integer m such 
that (p/t)mmK ⊆ Trace(mL). If m > 0, then for each x ∈ (p/t)m−1

mK , by the pre-
vious paragraph we may write x = Trace(y)+ pz for some y ∈ mL, z ∈ oK ; since 
pz = (p/t)(tz) ∈ (p/t)mmK , it follows that z ∈ Trace(mL) and hence x ∈ Trace(mL). In 
other words, we may replace m by m− 1; this proves the desired result. � �

Remark 1.6.5  Note that Theorem 1.6.4 still holds, with the same proof, if we replace 
the perfectoid field K by a dense subfield as long as the norm extends uniquely to the 
finite extension L of K (i.e., oK  is henselian in the sense of Lemma  1.7.5 below). For 
instance, we may take K to be an infinite algebraic extension of an analytic field F of 
mixed characteristics.

One important case is when F = Qp and K is a Galois extension whose Galois group 
contains Zp (e.g., any p-adic Lie group). In this case, the perfectoid property can be 
checked using a study of higher ramification groups; the technique was introduced by 
Tate and developed further by Sen [26] (see also [16, §13]).

However, no ramification theory is necessary in case K is a field for which the perfec-
toid property can be checked directly (as in Examples 1.3.5 or 1.3.6), or a finite extension 
of such a field (using Theorem 1.5.6).

1.7 � Gauss norms

We conclude this section by appending some more observations about norms on strict 
p-rings, for use in the second half of the paper.

Hypothesis 1.7.1  Throughout Sect. 1.7, again let F be an analytic field which is perfect 
of characteristic p, with norm |•|′.
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The key construction here is an analogue of the Gauss norm, following [16, 
Lemma 4.1].

Lemma 1.7.2  For r > 0, the formula

defines a function |•|r : W (F) → [0,+∞] satisfying the strong triangle inequal-
ity 

∣

∣x + y
∣

∣

r
≤ max{|x|r ,

∣

∣y
∣

∣

r
} and the multiplicativity property 

∣

∣xy
∣

∣

r
= |x|r

∣

∣y
∣

∣

r
 for all 

x, y ∈ W (F) (under the convention 0×+∞ = 0). In particular, the subset Wr−(F)  of  
W (F) on which |•|r is finite forms a ring on which |•|r defines a multiplicative nonarchi-
medean norm.

Proof  From Remark 1.1.7, it follows that 
∣

∣[x] + [y]
∣

∣

r
≤ max{|[x]|r ,

∣

∣[y]
∣

∣

r
} for all x, y ∈ oF 

(as in Remark  1.4.2). It follows easily that for x, y ∈ F , 
∣

∣x + y
∣

∣

r
≤ max{|x|r ,

∣

∣y
∣

∣

r
} and 

∣

∣xy
∣

∣

r
≤ |x|r

∣

∣y
∣

∣

r
. To establish multiplicativity, by continuity it is enough to consider finite 

sums x =
∑M

m=0 p
m[xm], y =

∑N
n=0 p

N [yn]. For all but finitely many r > 0, the quantities

are all distinct; for such r, the fact that |•|r is a nonarchimedean norm (shown above) 
gives

Since |x|r ,
∣

∣y
∣

∣

r
,
∣

∣xy
∣

∣

r
 are all continuous functions of r, we may infer multiplicativity also in 

the exceptional cases.�  �

Remark 1.7.3  For s ∈ (0, r] and x =
∑∞

n=0 p
n[xn],

An even stronger statement is that for x ∈ W (F) fixed, the function 
log(|•|r) : W (F) → R ∪ {+∞} is convex (because it is the supremum of convex func-
tions); this bears a certain formal resemblance to the Hadamard three circles theorem in 
complex analysis. A related observation is that

Lemma 1.7.4  For r > 0, the ring Wr−(F) is complete with respect to |•|r.

Proof  For x =
∑∞

n=0 p
n[xn], y =

∑∞
n=0 p

n[yn] with |x|,
∣

∣y
∣

∣ ≤ c, 
∣

∣x − y
∣

∣ ≤ ǫc for some 
c > 0, ǫ ∈ [0, 1), Remark 1.1.7 implies that

(1.7.2.1)

∣

∣

∣

∣

∣

∞
∑

n=0

pn[xn]

∣

∣

∣

∣

∣

r

= sup
n
{p−n(|xn|

′)r}

p−m−n(
∣

∣xmyn
∣

∣

′
)r (m = 0, . . . ,M; n = 0, . . . ,N )

∣

∣xy
∣

∣

r
= max{p−m−n(

∣

∣xmyn
∣

∣

′
)r : m = 0, . . . ,M; n = 0, . . . ,N } = |x|r

∣

∣y
∣

∣

r
.

(1.7.3.1)|x|s = sup
n
{p−n(|xn|

′)s} ≤ sup
n
{p−ns/r(|xn|

′)s} = |x|s/rr .

(1.7.3.2)

{

limr→0+ |x|r = 1 (x0 �= 0)

lim supr→0+ |x|r ≤ p−1 (x0 = 0).

(1.7.4.1)
∣

∣xn − yn
∣

∣ ≤ cpn/r max{p−m/rǫ1/p
m
: m = 0, . . . , n}.
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Let x1, x2, . . . be a Cauchy sequence in Wr−(F), and write xi =
∑∞

n=0 p
n[xi,n]. Choose 

c such that |xi|r ≤ c for all i. Using (1.7.4.1), we see that for each n, the sequence xi,n is 
Cauchy and hence converges to a limit xn ∈ F . Put x =

∑∞
n=0 p

n[xn]; we see easily that 
|x|r ≤ c and hence x ∈ Wr−(F). It thus remains to check that x is a limit of x1, x2, . . .; this 
formally reduces to the case x = 0. For each δ > 0, by definition there exists N > 0 such 
that 

∣

∣xi − xj
∣

∣

r
≤ cδ for all i, j ≥ N . For each n, by (1.7.4.1) we have

since the sequence xi,n converges to 0 as i → ∞, we must also have

and so

As δ → 0, this upper bound tends to 0; this proves that xi → 0 as desired.�  �

Lemma 1.7.5  The ring W †(F) = ∪r>0W
r−(F)  is a local ring which is not complete 

but is henselian; that is, every finite étale F-algebra lifts uniquely to a finite étale W †(F)

-algebra.

Proof  We first check that W †(F) is local; it suffices to check that p belongs to the 
Jacobson radical, meaning that any x =

∑∞
n=0 p

n[xn] ∈ W †(F) with x0 = 1 is a unit. By 
(1.7.3.2), for r > 0 sufficiently small we have |x − 1|r < 1. By Lemma 1.7.4, the geometric 
series 

∑∞
i=0(1− x)i converges in Wr−(F) to a multiplicative inverse of x.

We next check that W †(F) is henselian. As described in [18, Remark  1.2.7] (see 
also [11, Theorem  5.11] and [20, Exposé XI, §2]), to check that W †(F) is hense-
lian, it suffices to check a special form of Hensel’s lemma: every monic polynomial 
P(T ) =

∑

i PiT
i ∈ W †(F)[T ] with P0 ∈ pW †(F), P1 /∈ pW †(F) has a root in pW †(F). By 

the previous paragraph, P1 ∈ W †(F)×. By (1.7.3.2), for r > 0 sufficiently small,

In particular, for x0 = −P0/P1, for r > 0 sufficiently small we have

so the usual Newton–Raphson iteration

converges to a root x of P(T) in Wr−(F). Since the iteration also converges p-adically, we 
must also have x ∈ pW (F); this proves the claim. � �

∣

∣xi,n − xj,n
∣

∣ ≤ c1/rpn/r max{p−m/rδ1/(p
mr) : m = 0, . . . , n};

∣

∣xi,n
∣

∣ ≤ c1/rpn/r max{p−m/rδ1/(p
mr) : m = 0, . . . , n}

|xi|r ≤ cmax{p−mδ1/p
m
: m = 0, 1, . . .}.

|P0/P1|r < 1,
∣

∣

∣Pi(P0/P1)
i
∣

∣

∣

r
< |P1|

2
r ,

∣

∣

∣Pi(P0/P1)
i−1

∣

∣

∣

r
< |P1|r (i ≥ 2).

∣

∣P′(x0)
∣

∣

r
< |P(x0)|

2
r ,

xn+1 = xn −
P(xn)

P′(xn)
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Exercise 1.7.6  We describe here a common variant of Wr−(F).

(a)		� For any z ∈ oF with |z|′ < 1, the ring W (oF )[[z]
−1] consists of those elements of 

W(F) with bounded Teichmüller coordinates.
(b)		� The completion of W (oF )[[z]

−1] under |•|r consists of those x =
∑∞

n=0 p
n[xn] for 

which limn→∞ p−n(|xn|
′)r = 0. In particular, these form a ring, denoted Wr(F).

(c)		� The ring Wr(F) is contained in Wr−(F) and contains Ws−(F) for all s > r. Conse-
quently, we also have W †(F) = ∪r>0W

r(F).
(d)		� The ring Wr(F) is complete with respect to |•|r.
The rings Wr(F) arise naturally in the geometric interpretation of p-adic Hodge theory 

given by Fargues and Fontaine [8]; this interpretation is facilitated by some useful 
noetherian properties of these rings, as described in [17].

Remark 1.7.7  Let ϕ denote the endomorphism of W(F) induced by the Frobenius map 
on F. For any r > 0, using the fact that W †(F) = ∪∞

n=0W
p−nr−(F) = ∪∞

n=0ϕ
−n(Wr−(F)),  

it can be shown that every finite étale F-algebra lifts uniquely to a finite étale Wr−(F)

-algebra. In case F = K ′ for some deeply ramified analytic field K of mixed characteris-
tics, the map � : W (oF ) → oK  extends to a homomorphism Wr−(F) → K  for any r > 1,  
and Theorem 1.5.6 is equivalent to the statement that every finite étale K-algebra lifts 
uniquely to Wr−(F). (If we replace Wr−(F) with the ring Wr(F) of Exercise 1.7.6, we may 
also take r = 1 in this last statement.)

2 � Galois representations and (ϕ,Ŵ)‑modules

Hypothesis 2.0.1  Throughout Sect. 2, let K denote a finite extension of Qp, and write 
GK  for the absolute Galois group of K.

Convention 2.0.2  When working with a matrix A over a ring carrying a norm |•|, we 
will write |A| for the supremum of the norms of the entries of A (rather than the operator 
norm or spectral radius).

Definition 2.0.3  Let FÉt(R) denote the category of finite étale algebras over a ring R. 
For R a field, these are just the direct sums of finite separable field extensions of R.

2.1 � Some period rings over Qp

We will consider four different rings which can classify GK-representations. We first 
introduce them all in the case K = Qp.

Definition 2.1.1  Let L be the completed perfect closure of Fp((π)), and put 
ÃQp = W (L). This defines a complete topological ring both for the p-adic topology and 
for the weak topology, under which a sequence converges if each sequence of Teichmül-
ler coordinates converges in the norm topology on L. (The restriction of the weak topol-
ogy to W (oL) coincides with the (p, [π ])-adic topology.) Let ϕ be the endomorphism of 
ÃQp induced by the Frobenius map on L.



Page 19 of 31Kedlaya ﻿Mathematical Sciences  (2015) 2:20 

Definition 2.1.2  Let AQp be the p-adic completion of Z((π)); it is a Cohen ring (a com-
plete discrete valuation ring with maximal ideal (p)) with AQp/(p)

∼= Fp((π)). We iden-
tify AQp with a subring of ÃQp in such a way that π corresponds to [1+ π ] − 1. Note that 
ϕ then acts on AQp as the Zp-linear substitution π �→ (1+ π)p − 1, and a sequence in 
AQp converges for the weak topology if and only if its image in AQp/(p

n) ∼= (Z/pnZ)((π)) 
converges π-adically for each positive integer n.

Definition 2.1.3  Put Ã†
Qp

= W †(L); by Lemma 1.7.5, this is an incomplete but hense-
lian local ring contained in W (L) = ÃQp. Note that ϕ acts bijectively on Ã†

Qp
. We equip 

Ã
†
Qp

 with the p-adic and weak topologies by restriction from ÃQp; we also define the LF 
topology, in which a sequence converges if and only if it converges in some Wr−(L). (LF 
is an abbreviation for limit of Fréchet.)

Definition 2.1.4  Put A†
Qp

= Ã
†
Qp

∩ AQp; since Zp[π
±] ⊂ A

†
Qp

, A†
Qp

 is again a henselian 
local ring with residue field Fp((π)) on which ϕ acts. It inherits p-adic, weak, and LF 
topologies. For a more concrete description of A†

Qp
, see Corollary 2.2.9.

Definition 2.1.5  For γ ∈ Ŵ = Z×
p , let γ : AQp → AQp be the Zp-linear substitution 

π �→ (1+ π)γ − 1, where (1+ π)γ is defined via its binomial expansion. The induced 
map on Fp((π)) extends to L and thus defines an action of Ŵ on ÃQp; Ŵ also acts on Ã†

Qp
 

and A†
Qp

. For ∗ ∈ {Ã,A, Ã†,A†}, the action of Ŵ on ∗Qp is continuous (meaning that the 
action map Ŵ × ∗Qp → ∗Qp is continuous) for the weak topology and (when available) 
the LF topology.

Exercise 2.1.6  In Definition  2.1.5, the action of Ŵ on ∗Qp is not continuous for the 
p-adic topology, even though the action of each individual element of Ŵ is a continuous 
map from ∗Qp to itself.

2.2 � Extensions of Qp

We extend the definition of the period rings to finite extensions of Qp using a refinement 
of Theorem 1.5.6.

Theorem 2.2.1  For ∗ ∈ {Ã,A, Ã†,A†}, the category FÉt(Qp) is equivalent to the cate-
gory of finite étale algebras over ∗Qp admitting an extension of the action of Ŵ. Moreover, 
this equivalence is compatible with the base extensions among different choices of ∗.

Proof  Put L = ÃQp/(p). Via Remark  1.2.3, Theorem  1.5.6, and the fact that the local 
rings Ã†

Qp
 and A†

Qp
 are both henselian, we see that the categories

are all equivalent, compatibly with base extensions among different choices of ∗. It thus 
suffices to consider ∗ = Ã in what follows.

From the explicit description given in Example  1.3.5, we see that the map 
� : W (oL) → Zp[µp∞] becomes Ŵ-equivariant if we identify Ŵ with Gal(Qp(µp∞)/Qp) 

FÉt(Qp(µp∞)),FÉt(L),FÉt(Fp((π))),FÉt(ÃQp),FÉt(AQp),FÉt(Ã
†
Qp
),FÉt(A†

Qp
)
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via the cyclotomic character. Consequently, for K ∈ FÉt(Qp), the object in FÉt(ÃQp) 
corresponding to K ⊗Qp Qp(µp∞) carries an action of Ŵ.

Conversely, suppose S ∈ FÉt(ÃQp) carries an action of Ŵ; then the corresponding 
object E of FÉt(Qp(µp∞)) also carries an action of Ŵ. We may realize E as the base exten-
sion of a finite étale algebra En over Qp(µpn) for some nonnegative integer n; by Artin’s 
lemma, En is fixed by a subgroup of Ŵ of finite index, which is necessarily open. By Galois 
descent, En descends to a finite étale algebra E over Qp, as desired.�  �

Definition 2.2.2  Let ÃK ,AK , Ã
†
K ,A

†
K  be the objects corresponding to K via 

Theorem  2.2.1. We may write ÃK = ⊕W (L̃), Ã†
K = ⊕W †(L̃) for L̃ running over the 

connected components of ÃK /(p) (which correspond to the connected components of 
K ⊗Qp Qp(µp∞)). We may thus equip ∗K  with a p-adic topology, a weak topology, and 
(for ∗ = Ã

†,A†) also an LF topology. Define the norm |•|′ on ÃK /(p) as the supremum 
over connected components; for r > 0, define |•|r on ÃK  as the supremum over con-
nected components.

The actions of ϕ,Ŵ extend to ∗K ; the action of Ŵ is again continuous for the weak topol-
ogy and (when available) the LF topology. Note that Ŵ acts transitively on the L̃.

Exercise 2.2.3  Each of the topologies on ∗K  coincides with the one obtained by view-
ing ∗K  as a finite free module over ∗Qp and equipping the latter with the corresponding 
topology.

Remark 2.2.4  Each connected component L of AK /(p) is a finite separable extension of 
Fp((π)), and hence is itself isomorphic to a power series field in some variable πL over 
some finite extension Fq of Fp. In general, there is no distinguished choice of πL. One has 
similar (and similarly undistinguished) descriptions of AK  and A†

K ; see Lemma 2.2.6.

Exercise 2.2.5  In Remark  2.2.4, Fq coincides with the residue field of K (µp∞). Note 
that this may not equal the residue field of K.

Lemma 2.2.6  Keep notation as in Remark 2.2.4. Let R be the connected component of 
AK  with R/(p) = L, and choose πL ∈ R lifting πL. Then R is isomorphic to the p-adic com-
pletion of W (Fq)((πL)).

Proof  It suffices to observe that the latter ring is indeed a finite étale algebra over AQp 
whose reduction modulo p is isomorphic to L. � �

Exercise 2.2.7  In Lemma 2.2.6, the weak topology on R (obtained by restriction from 
AK) coincides with the weak topology on the p-adic completion of W (Fq)((πL)) (in 
which as in Definition 2.1.2, a sequence converges if and only if it converges πL-adically 
modulo each power of p).

Lemma 2.2.8  Keep notation as in Lemma 2.2.6, but assume further that πL ∈ R† for R† 
the connected component of A†

K  with R†/(p) = L. Then there exists r0 > 0 (depending on L 
and πL) with the following properties.
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(a)		 Every x ∈ R/(p) admits a lift x ∈ R† with |x − [x]|r < |x|r < +∞ for all r ∈ (0, r0].
(b)		 For r ∈ (0, r0], for x =

∑

n∈Z xnπ
n
L ∈ R with xn ∈ W (Fq), 

Proof  We have R† = R ∩W †(L) because both sides are subrings of R which are finite 
étale over A†

Qp
 and which surject onto R  /  (p). Consequently, πL ∈ Wr−(L) for some 

r > 0. By (1.7.3.2), we can choose r0 > 0 so that

We prove the claims for any such r0.
To prove (a), lift x =

∑

n∈Z xnπ
n
L ∈ R/(p) to x =

∑

n∈Z[xn]π
n
L ∈ R. This lift satisfies 

|x − [x]|r < (|x|′)r = |[x]|r = |x|r for all r ∈ (0, r0] thanks to (2.2.8.2).
To prove (b), first note that since |•|r is a norm, (2.2.8.2) implies

To finish, it is enough to establish by induction that for each nonnegative integer m, |x|r is 
at least the supremum of |xn|(|πL|

′)nr over indices n for which xn is not divisible by pm+1.  
This is clear for m = 0. If m > 0, there is nothing to check unless the supremum is only 
achieved in cases when xn is divisible by pm. In that case, lift the reduction x of x modulo 
p as in (a) to some y with 

∣

∣y− [x]
∣

∣

r
<

∣

∣y
∣

∣

r
 for r ∈ (0, r0]. For z = (x − y)/p =

∑

n znπ
n
L ,  

the supremum in question is also the supremum of p−1|zn|(|πL|
′)nr over indices n for 

which zn is not divisible by pm. By the induction hypothesis, this is at most

This completes the induction, yielding (b).�  �
This gives us a concrete description of R† in terms of the coefficients of a series 

representation.

Corollary 2.2.9  With notation as in Lemma  2.2.8, x ∈ R† if and only if there exists 
r > 0 such that supn{|xn|(|πL|

′)nr} < +∞.

Corollary 2.2.10  There exists r0 > 0 (depending on K) such that every x ∈ AK /(p) 
admits a lift x ∈ A

†
K  with |x − [x]|r < |x|r for all r ∈ (0, r0].

Proof  Apply Lemma 2.2.8(a) to each connected component of AK . � �

Exercise 2.2.11  With notation as in Lemma  2.2.8, one can choose r0 so that for 
r ∈ (0, r0], x ∈ Wr−(L) if and only if supn{|xn|(|πL|

′)nr} < +∞.

Remark 2.2.12  Beware that our notations do not agree with [4] or most other refer-
ences when K �= Qp. It is more customary to take AK to be the finite étale algebra over 
AQp corresponding to a connected component of K ⊗Qp Qp(µp∞), and similarly for the 
other period rings. These rings inherit an action of ϕ and of the subgroup ŴK of Ŵ fixing a 

(2.2.8.1)|x|r = sup
n
{|xn|(|πL|

′)nr}.

(2.2.8.2)|πL − [πL]|r < |πL|r = |[πL]|r (r ∈ (0, r0]).

|x|r ≤ sup
n
{|xn|(|πL|

′)nr}.

p−1|z|r = |pz|r ≤ max{|x|r ,
∣

∣y
∣

∣

r
} = |x|r .
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component of K∞; the action of Ŵ on AK acts transitively on connected components. Our 
point of view has the mild advantage of making the relationship between K and AK more 
uniform; for instance, for L a finite Galois extension of K, Gal(L/K ) acts on AL with fixed 
ring AK . We leave to the reader the easy task of translating back and forth between state-
ments in terms of the usual rings and the corresponding statements in our language.

2.3 � Étale (ϕ,Ŵ)‑modules

Definition 2.3.1  Let R be any of ÃK ,AK , Ã
†
K ,A

†
K . Let M be a finite free R-module. A 

semilinear action of ϕ on M is an additive map ϕ : M → M for which ϕ(rm) = ϕ(r)ϕ(m) 
for all r ∈ R,m ∈ M. Such an action is étale if it takes some basis of M to another basis; 
the same is then true of any basis (by Remarks 2.3.2 or 2.3.3). An étale ϕ-module over R 
is a finite free R-module M equipped with an étale semilinear action of ϕ.

We similarly define semilinear actions of γ ∈ Ŵ. To define a semilinear action of Ŵ as 
a whole, we insist that the actions of individual elements compose: for all γ1, γ2 ∈ Ŵ and 
m ∈ M, we must have γ1(γ2(m)) = (γ1γ2)(m). We say an action of Ŵ is continuous if the 
action map Ŵ ×M → M is continuous for the weak topology and (when available) the 
LF topology. An étale (ϕ,Ŵ)-module over R is an étale ϕ-module M equipped with a con-
tinuous action of Ŵ commuting with ϕ. (The continuity condition can be omitted; see 
Exercise 2.4.6.)

Remark 2.3.2  Define ϕ∗M = R⊗R M as a left R-module where the left tensorand R is 
viewed as a left R-module in the usual way and as a right R-module via ϕ; that is, we have 
1⊗ rm = ϕ(r)⊗m and r(s⊗m) = rs⊗m. One may then view a semilinear action of ϕ 
as an R-linear map � : ϕ∗M → M; the action is étale if and only if � is an isomorphism.

Remark 2.3.3  A semilinear ϕ-action can be specified in terms of a basis e1, . . . , ed by 
exhibiting the matrix A for which ϕ(ej) =

∑

i Aijei (which we sometimes call the matrix 
of action of ϕ on the basis). If e′1, . . . , e

′
d is another basis, then there exists an invertible 

matrix U with e′j =
∑

i Uijei, and the matrix of action of ϕ on the new basis is U−1Aϕ(U).

The following lemma has its origins in a construction of Lang; see for example [12, 
Exposé XXII, Proposition 1.1].

Lemma 2.3.4   Let M be an étale (ϕ,Ŵ)-module over ÃK . Then for each positive integer n, 
there exists a finite extension L of K for which 

 is an isomorphism.

Proof  Let e1, . . . , ed be a basis of M, and define A ∈ GLd(ÃK ) by ϕ(ej) =
∑

i Aijei. For 
each γ ∈ Ŵ, define Gγ ∈ GLd(ÃK ) by γ (ej) =

∑

i Gγ ,ijei; then the fact that ϕ ◦ γ = γ ◦ ϕ 
implies that Aϕ(Gγ ) = Gγ γ (A). Put

(M ⊗
ÃK

ÃL/(p
n))ϕ,Ŵ ⊗Zp ÃL → M ⊗

ÃK
ÃL/(p

n)



Page 23 of 31Kedlaya ﻿Mathematical Sciences  (2015) 2:20 

where X denotes the matrix with Xij =
∑n−1

k=0 p
k [Xij,k ]. Note that Sn carries an action of Ŵ 

with γ ∈ Ŵ sending X to Gγ γ (X).
It can be shown that Sn is finite étale over ÃK /(p

n). In the case n = 1, this reduces to 
observing that

is étale because the derivative of ϕ is 0. For n > 1, an induction argument reduces one 
to checking that Artin-Schreier equations define finite étale algebras in characteristic p.

Thus via Theorem 2.2.1, Sn corresponds to a finite étale algebra over K, any connected 
component of which has the desired effect. � �

We now arrive at Fontaine’s original theorem on (ϕ,Ŵ)-modules [9].

Theorem 2.3.5  The following categories are equivalent.

(a)	The category of continuous representations of GKon finite free Zp-modules.
(b)	The category of étale (ϕ,Ŵ)-modules over ÃK .
(c)	The category of étale (ϕ,Ŵ)-modules over AK .

More precisely, the functor from (c) to (b) is base extension.

Proof  The functor from (a) to (c) is defined as follows. Let T be a finite free Zp-module, 
and let τ : GK → GL(T ) be a continuous homomorphism. For each positive integer n, 
the map GK → GL(T/pnT ) factors through GL/K  for some finite Galois extension L of 
K. Put

then ϕ and Ŵ act on AL/(p
n) and hence on Mn, and faithfully flat descent for modules (or 

a more elementary Galois descent) implies that

is an isomorphism. Hence M = lim
←−

Mn is an étale (ϕ,Ŵ)-module over AK .
The functor from (b) to (a) is defined as follows. Let M be an étale (ϕ,Ŵ)-module over 

ÃK . For each positive integer n, choose a finite Galois extension L of K as in Lemma 2.3.4 
so that

has the property that the natural map

Rn = (ÃK /(p))[X
p−∞

ij,k : i, j = 1, . . . , d; k = 0, . . . , n− 1]

Sn = W (Rn)/(p
n,ϕm(Aϕ(X)− X) (m ∈ Z)),

ÃK /(p)[Xij : i, j = 1, . . . , d]/(Aϕ(X)− X)

Mn = (T ⊗Zp AL/(p
n))GL/K ;

(2.3.5.1)Mn ⊗AK
AL → T ⊗Zp AL/(p

n)

Tn = (M ⊗
ÃK

ÃL/(p
n))ϕ,Ŵ

(2.3.5.2)Tn ⊗Zp ÃL → M ⊗
ÃK

ÃL/(p
n)
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is an isomorphism. Note that GL/K  acts on ÃL and hence on Tn; hence T = lim
←−

Tn is a 
continuous representation of GK .

Using the fact that (2.3.5.1) and (2.3.5.2) are isomorphisms, it is straightforward to 
check that composing around the circle always gives a functor naturally isomorphic to 
the identity functor at the starting point. This completes the proof. � �

2.4 � Overconvergence and (ϕ,Ŵ)‑modules, part 1

Remark 2.4.1  For ∗ ∈ {Ã,A, Ã†,A†}, for two étale ϕ-modules (resp. étale (ϕ,Ŵ)-mod-
ules) over ∗K , we may view Hom∗K (M,N ) naturally as an étale ϕ-module (resp. an étale 
(ϕ,Ŵ)-module) over ∗K  by imposing the conditions that

The morphisms M → N  of ϕ-modules (resp. of (ϕ,Ŵ)-modules) then are precisely the 
elements of Hom∗K (M,N ) fixed by ϕ (resp. fixed by ϕ and Ŵ).

Lemma 2.4.2  Base extension of étale ϕ-modules which are trivial modulo p from Ã†
K  to 

ÃK  is fully faithful.

Proof  By Remark 2.4.1, this reduces to checking that if M is an étale ϕ-module over Ã†
K  

which is trivial modulo p, then

Let e1, . . . , ed be a basis of M which is fixed modulo p. Let L be a connected component 
of ÃK /(p). Using Theorem 2.3.5, we can produce an analytic field L′ with an isometric 
embedding L →֒ L′ for which M ⊗

Ã
†
K
W (L′) admits a ϕ-invariant basis e′1, . . . , e

′
d.

Let A ∈ GLd(Ã
†
K ) be given by ϕ(ej) =

∑

i Aijei; then A− 1 is divisible by p. By 
(1.7.3.2), we can choose r > 0 so that |A− 1|r < p−1/2. Let U ∈ GLd(W (L)) be given 
by e′j =

∑

i Uijei. We claim that for each positive integer n, U is congruent modulo pn 
to some Vn ∈ GLd(W

pr−(L′)) with |Vn − 1|r , |Vn − 1|pr ≤ p−1/2. This is clear for n = 1 
by taking Vn = 1. Given the claim for some n, U is congruent modulo pn+1 to a matrix 
Vn + pnX in which each entry Xij is a Teichmüller lift. We have

which implies that 
∣

∣ϕ(Xij)− Xij

∣

∣

r
≤ pn−1/2. From this it follows in turn that

We may then take Vn+1 = Vn + pnX for the desired effect.
From the previous paragraph, it follows that e′1, . . . , e

′
d form a basis of M ⊗

Ã
†
K
W †(L′). 

By expressing a ϕ-invariant element of M using this basis and noting that

ϕ(f )(ϕ(e)) = ϕ(f (e)), γ (f )(γ (e)) = γ (f (e)) (γ ∈ Ŵ, f ∈ Hom∗K (M,N ), e ∈ M).

Mϕ = (M ⊗
Ã
†
K
ÃK )

ϕ .

ϕ(X)− X ≡ p−n(Vn − ϕ(Vn)− (A− 1)ϕ(Vn)) (mod p),

∣

∣Xij

∣

∣

pr
≤ pn−1/2.

W (L′)ϕ = W ((L′)ϕ) = Zp ⊆ W †(L′)ϕ ,
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we see that the image of (M ⊗
Ã
†
K
ÃK )

ϕ in M ⊗
Ã
†
K
W (L′) is contained in M ⊗

Ã
†
K
W †(L′).  

Because W (L) ∩W †(L′) = W †(L) and M is a free module, we may further conclude 
that the image lands in M ⊗

Ã
†
K
W †(L). Since this is true for each L, we deduce that 

(M ⊗
Ã
†
K
ÃK )

ϕ ⊆ M, as desired.�  �

Lemma 2.4.3  Let M† be an étale ϕ-module over Ã†
K  which is trivial modulo p , and 

suppose that M† ⊗
Ã
†
K
ÃK  carries a semilinear action of Ŵ which commutes with ϕ and is 

continuous for the weak topology. Then the action of Ŵ on M† provided by Lemma 2.4.2 is 
continuous for the LF topology.

Proof  Retain notation as in the proof of Lemma  2.4.2. Note that Ŵ acts 
on M† ⊗

Ã
†
K
W (L′) continuously for the weak topology. It thus acts on 

(M† ⊗
Ã
†
K
W (L′))ϕ = (M† ⊗

Ã
†
K
W †(L′))ϕ continuously for the weak topology. However, 

the latter is a finite free Zp-module on which the weak and LF topologies coincide. We 
thus obtain a continuous action of Ŵ on M† ⊗

Ã
†
K
W †(L′) for the LF topology. Since this is 

true for each L, the action of Ŵ on M† is continuous for the LF topology, as desired.�  �

Lemma 2.4.4   Let L be an analytic field which is perfect of characteristic p, with norm 
|•|′. Let M be a finite free W(L)-module equipped with an étale semilinear ϕ-action and 
admitting a basis which is fixed by ϕ modulo p. Then there exists a basis of W(L) on which 
ϕ acts via an invertible matrix over W †(L).

Proof  Let e1, . . . , ed be a basis of M which is fixed modulo p, and let F ∈ GLd(W (L)) be 
defined by ϕ(ej) =

∑

i Fijei. We construct sequences of matrices Fn,Gn such that F1 = F ,  
G1 = 1, Fn − 1 has entries in p W(L), Gn has entries in W 1−(L), |Gn − 1|1 < 1, and 
Xn = p−n(Fn − Gn) has entries in W(L). Given Fn and Gn, choose a nonnegative integer 
m for which 

∣

∣ϕ−m(Xn)
∣

∣

′
< pn/2, put Y n = −

∑m
h=1 ϕ

−h(Xn), and put

where the Teichmüller map is applied to matrices entry by entry. The product U1U2 · · · 
converges p-adically to a matrix U for which U−1Fϕd(U) is equal to the p-adic limit of 
the Gn, which is invertible over W 1−(L). Thus the vectors e′j =

∑

i Uijei form a basis of 
the desired form. � �

Theorem 2.4.5  Base extension of étale (ϕ,Ŵ)-modules from Ã†
K  to ÃK  is an equivalence 

of categories. Consequently (by Theorem 2.3.5), both categories are equivalent to the cat-
egory of continuous representations of GK  on finite free Zp-modules.

Proof  We first check that the base extension functor is fully faithful. Again by 
Remark 2.4.1, this reduces to checking that if M is an étale (ϕ,Ŵ)-module over Ã†

K , then

By Theorem 2.3.5, M ⊗
Ã
†
K
ÃK  corresponds to a continuous representation of GK  on a 

finite free Zp-module T. We can then find a finite extension L of K such that GL acts 

Un = 1+ pn[Y n], Fn+1 = U−1
n Fnϕ

d(Un), Gn+1 = Gn + pn[ϕ−m(Xn)],

Mϕ,Ŵ = (M ⊗
Ã
†
K
ÃK )

ϕ,Ŵ .
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trivially on T / pT; this means that M/pM ⊗
Ã
†
K /(p)

Ã
†
L/(p) admits a basis fixed by both ϕ 

and Ŵ. By Lemma 2.4.2,

However, within ÃL we have

and likewise after tensoring with the finite free module M. Hence (M ⊗
Ã
†
K
ÃK )

ϕ,Ŵ ⊆ Mϕ,Ŵ 
as desired.

It remains to check that the base extension functor is essentially surjective. For a given 
étale (ϕ,Ŵ)-module M over ÃK , to show that M descends to Ã†

K , it is enough to check 
that it descends to Ã†

L for some finite Galois extension L of K (as then Lemma  2.4.2 
provides the data needed to perform Galois descent back to K). Consequently, using 
Theorem 2.3.5, we may again reduce to the case where M admits a basis e1, . . . , ed which 
is fixed by ϕ and Ŵ modulo p.

By Lemma 2.4.4 applied to each component of ÃK /(p), we obtain an étale ϕ-module 
M† over Ã†

K  and an isomorphism M† ⊗
Ã
†
K
ÃK

∼= M of ϕ-modules. By Lemmas 2.4.2 and 
2.4.3, the action of Ŵ on M induces an action on M† which is continuous for the weak 
and LF topologies. This yields the desired result. � �

Exercise 2.4.6  One can omit the requirement of continuity of the action of Ŵ in the 
definition of an étale (ϕ,Ŵ)-module, as it is implied by the other properties. (Hint: first 
do the case over ÃK , which implies the case over AK . Then use Theorem 2.4.5 to deduce 
the case over Ã†

K , which implies the case over A†
K .)

2.5 � More on the action of Ŵ

We have seen that descent of étale (ϕ,Ŵ)-modules from ÃK  to Ã†
K  can be achieved mainly 

using the bijectivity of ϕ. To make a similar passage from AK  to A†
K , we trade the failure 

of this bijectivity for better control of the action of Ŵ.

Lemma 2.5.1  There exists c > 0 such that for x ∈ AK /(p), for n a positive integer, for 
γ ∈ 1+ pnZp ⊆ Ŵ,

Proof  For K = Qp, for x = π ,

is divisible by πpn, so |(γ − 1)(π)|′ ≤ (|π |′)p
n
= p−pn+1/(p−1)|π |′. This implies the general 

result for K = Qp with c = 1.
For general K, it is similarly sufficient to check the claim for x = πL a uniformizer of a 

connected component L of AK /(p). Let P(T ) =
∑

i PiT
i be the minimal polynomial of 

πL over Fp((π)), and put Q(T ) = P(T + πL) =
∑

i>0QiT
i with Q1 �= 0. Then

(M ⊗
Ã
†
K
ÃK )

ϕ,Ŵ ⊆ (M ⊗
Ã
†
K
ÃL)

ϕ,Ŵ = (M ⊗
Ã
†
K
Ã
†
L)

ϕ,Ŵ .

Ã
†
L ∩ ÃK = Ã

†
K

|(γ − 1)(x)|′ ≤ cp−pn+1/(p−1)|x|′.

(γ − 1)(π) = (γ − 1)(1+ π) = (1+ π)((1+ π)γ−1 − 1)
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Since γ acts continuously on AK /(p), |(γ − 1)(πL)|
′ → 0 as n → ∞; hence for large n, 

|Q(γ (πL)− πL)|
′ = |Q1|

′|(γ − 1)(πL)|
′. It follows that for large n,

this implies the desired result.�  �

Remark 2.5.2  Note that Lemma  2.5.1 is a far cry from what happens over ÃK /(p):  
one cannot establish an inequality of the form |(γ − 1)(x)|′ ≤ c|x|′ uniformly over 
x ∈ ÃK /(p) for even a single choice of γ ∈ Ŵ − {1} and c < 1. Namely, if one had such 
an inequality, then substituting x1/p in place of x would immediately imply the same 
inequality with c replaced by cp, which would ultimately force |(γ − 1)(x)|′ = 0 for all x. 
This issue is closely related to the question of identifying locally analytic vectors within 
(ϕ,Ŵ)-modules and their generalizations [2].

Lemma 2.5.3  There exists c > 0 (depending on K) such that for any positive integer m 
and any x =

∑pm−1
e=0 (1+ π)e/p

m
xe/pm with xe/pm ∈ AK /(p),

Proof  We first produce c0 ≥ 1 that satisfies the claim for m = 1. To do this, note that |x|′ 
and maxe{

∣

∣xe/p
∣

∣

′
} both define norms on the finite-dimensional vector space ϕ−1(AK /(p)) 

over Fp((π)). The claim then follows from the fact that any two norms on a finite-dimen-
sional vector space over a complete field are equivalent (e.g., see [14, Theorem 1.3.6]).

We next show by induction on m that for any nonnegative integer m and any 
x =

∑pm−1
e=0 (1+ π)e/p

m
xe/pm with xe/pm ∈ AK /(p),

This is vacuously true for m = 0. For m > 0, if the claim is known for m− 1, then by 

the previous paragraph we can write xp
m−1

=
∑p−1

f=0(1+ π)f /pyf /p with yf /p ∈ AK /(p) 

and maxf

{

∣

∣

∣yf /p

∣

∣

∣

′
}

≤ c0

∣

∣

∣xp
m−1

∣

∣

∣

′
. By the induction hypothesis, we can then write 

y
p−m+1

f /p =
∑pm−1−1

g=0 (1+ π)g/p
m−1

zf /p,g/pm−1 with zf /p,g/pm−1 ∈ AK /(p) and

0 = γ (P(πL)) = (γ − 1)(P)(γ (πL))+ P(γ (πL))

=
∑

i

(γ − 1)(Pi)γ (πL)
i + Q(γ (πL)− πL).

|(γ − 1)(πL)|
′ =

∣

∣

∣
Q−1
1

∣

∣

∣

′
∣

∣

∣

∣

∣

∑

i

(γ − 1)(Pi)γ (x)
i

∣

∣

∣

∣

∣

′

≤ p−pn+1/(p−1)
∣

∣

∣Q
−1
1

∣

∣

∣

′
max

i

{

|Pi|
′
∣

∣

∣π
i
L

∣

∣

∣

′
}

;

max
e

{

∣

∣xe/pm
∣

∣

′
}

≤ c|x|′.

max
e

{

∣

∣xe/pm
∣

∣

′
}

≤ c
1+1/p+···+1/pm−1

0 |x|′.

max
g

{

∣

∣

∣zf /p,g/pm−1

∣

∣

∣

′
}

≤ c
1+1/p+···+1/pm−2

0

∣

∣

∣y
p−m+1

f /p

∣

∣

∣

′

.
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For e = 0, . . . , pm − 1, write e = pm−1f + g with f ∈ {0, . . . , p− 1} and 
g ∈ {0, . . . , pm−1 − 1} and set xe/pm = zf /p,g/pm−1; then x =

∑pm−1
e=0 (1+ π)e/p

m
xe/pm and

This completes the induction; we may now take

and deduce the desired result.�  �

Corollary 2.5.4  Let T ⊂ ÃK /(p) be the closure of the subgroup generated by 
(1+ π)eAK /(p) for all e ∈ Z[p−1] ∩ (0, 1). Then the natural map AK /(p)⊕ T → ÃK /(p) 
is an isomorphism of Banach spaces over Fp((π)).

Lemma 2.5.5  For T  as in Corollary 2.5.4, for any γ ∈ Ŵ − {1}, the map γ − 1 : T → T  
is bijective with bounded inverse.

Proof  By Lemma 2.5.3, it is sufficient to check that for each e ∈ Z[p−1] ∩ (0, 1), γ − 1 is 
bijective on (1+ π)eAK /(p) with the inverse bounded uniformly in e. Using the identity

we may reduce the claim for γ to the claim for γm for any convenient posi-
tive integer m (chosen uniformly in e). Consequently, we may assume that 
γ ∈ (1+ pnZp)− (1+ pn+1Zp) for n large enough that there exists a value c as in 
Lemma 2.5.1 which is less than ppn.

For x ∈ AK /(p) we may write

By Lemma  2.5.1, |(γ − 1)(x)|′ ≤ cp−pn+1/(p−1)|x|′. On the other hand, 
since e ∈ Z[p−1] ∩ (0, 1), (γ − 1)e has p-adic valuation at most n− 1, so 
∣

∣(1+ π)(γ−1)e − 1
∣

∣

′
≥ (|π |′)p

n−1
= p−pn/(p−1). Since cp−pn+1/(p−1) < p−pn/(p−1) by our 

choice of n, the operator

on AK /(p) is equal to the identity map plus the operator

whose norm is less than 1. Therefore, (2.5.5.1) is an invertible operator whose inverse has 
norm 1. This proves the claim. � �

Corollary 2.5.6  For T  as in Corollary 2.5.4 and γ ∈ Ŵ − {1}, every x ∈ ÃK /(p) can be 
written uniquely as y+ (γ − 1)(z) with y ∈ AK /(p), z ∈ T . Moreover,

max
e

{

∣

∣xe/pm
∣

∣

′
}

≤ c
1+1/p+···+1/pm−2

0 max
f

{

∣

∣

∣y
p−m+1

f /p

∣

∣

∣

′
}

≤ c
1+1/p+···+1/pm−1

0 |x|′.

c = c
1+1/p+1/p2+···
0 = c

p/(p−1)
0

(γ − 1)−1 = (1+ γ + · · · + γm−1)(γm − 1)−1,

(γ − 1)((1+ π)ex) = (γ − 1)((1+ π)e)x + γ ((1+ π)e)(γ − 1)(x)

= (1+ π)e((1+ π)(γ−1)e − 1)x + (1+ π)γ e(γ − 1)(x).

(2.5.5.1)x �→ (1+ π)−e((1+ π)(γ−1)e − 1)−1(γ − 1)((1+ π)ex)

x �→ (1+ π)(γ−1)e((1+ π)(γ−1)e − 1)−1(γ − 1)(x)
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for some constant c (depending on K and γ but not on x).

Corollary 2.5.7  Let T ⊂ ÃK  be the closure for the weak topology of the subgroup gen-
erated by (1+ π)eAK  for all e ∈ Z[p−1] ∩ (0, 1). For γ ∈ Ŵ − {1}, every x ∈ ÃK  can be 
written uniquely as y+ (γ − 1)(z) with y ∈ AK , z ∈ T . Moreover, there exist c, r0 > 0 
(depending on K and γ) such that

Proof  Combine Corollary 2.5.6 with Corollary 2.2.10. � �

2.6 � Overconvergence and (ϕ,Ŵ)‑modules, part 2: the theorem of Cherbonnier‑Colmez

We start with the following analogue of Lemma 2.4.2.

Lemma 2.6.1  Base extension of étale ϕ-modules which are trivial modulo p from A†
K  to 

AK  is fully faithful.

Proof  Again by Remark 2.4.1, this reduces to checking that if M is an étale ϕ-module 
over A†

K  which is trivial modulo p, then

By Lemma 2.4.2, we already have

Since M is a free module, within M ⊗
A
†
K
ÃK  we have

yielding the desired result. � �

Theorem  2.6.2  (Cherbonnier–Colmez) Base extension of étale (ϕ,Ŵ)-modules from 
A
†
K  to AK  is an equivalence of categories. Consequently (by Theorem 2.3.5), both catego-

ries are equivalent to the category of continuous representations of GK  on finite free Zp

-modules.

Proof  By Theorem 2.3.5 and Theorem 2.4.5, it is equivalent to show that base extension 
of étale (ϕ,Ŵ)-modules from A†

K  to Ã†
K  is an equivalence of categories. As in the proof of 

Theorem 2.4.5 (but now using Lemma 2.6.1 instead of Lemma 2.4.2), it is sufficient to 
check that any étale (ϕ,Ŵ)-module M over Ã†

K
 admitting a basis e1, . . . , ed fixed by ϕ and 

Ŵ modulo p descends to A†
K .

max{
∣

∣y
∣

∣

′
, |z|′} ≤ c|x|′

max{
∣

∣y
∣

∣

r
, |z|r} ≤ cr |x|r (r ∈ (0, r0]).

Mϕ = (M ⊗
A
†
K
AK )

ϕ .

(M ⊗
A
†
K
AK )

ϕ ⊆ (M ⊗
A
†
K
ÃK )

ϕ = (M ⊗
A
†
K
Ã
†
K )

ϕ .

(M ⊗
A
†
K
AK ) ∩ (M ⊗

A
†
K
Ã
†
K ) = M,
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Put γ = 1+ p2 ∈ Ŵ. Define T , c, r0 as in Corollary 2.5.7. Let G ∈ GLd(Ã
†
K )

 be given by 
γ (ej) =

∑

i Gijei, so that G − 1 is divisible by p. By (1.7.3.2), we can choose r ∈ (0, r0] so 
that ǫ = |G − 1|

1/3
r < min{c−r , 1}.

We define a sequence of invertible matrices U0,U1, . . . over Ã†
K  congruent to 1 modulo 

p with the property that Gl = U−1
l Gγ (Ul) can be written as 1+ Xl + (γ − 1)(Yl) with Xl 

having entries in A†
K , Yl having entries in T, and

To begin with, put U0 = 1 and apply Corollary 2.5.7 to construct X0,Y0 of the desired 
form with |X0|r , |Y0|r ≤ cr |G − 1|r ≤ ǫ2. Given Ul, set Ul+1 = Ul(1− Yl) and write

with |El |r ≤ ǫ2l+4. Note that YlXl − Xlγ (Yl) has entries in T and |YlXl − Xlγ (Yl)|r ≤ ǫl+4.  
Apply Corollary  2.5.7 to split YlXl − Xlγ (Yl)+ El as Al + (γ − 1)(Bl) with Al having 
entries in A†

K , Bl having entries in T, and |Al |r , |Bl |r ≤ crǫl+4 ≤ ǫl+3. Set Xl+1 = Xl + Al,  
Yl+1 = Bl and continue.

The product U = U0U1 · · · converges to an invertible matrix U over Ã†
K . Define the 

basis e′1, . . . , e
′
d of M by e′j =

∑

i Uijei. Define the matrices A,  H by ϕ(e′j) =
∑

i Aijei, 
γ (e′j) =

∑

i Hijei. By construction, H has entries in A†
K  and is congruent to 1 modulo 

p. Since ϕ and γ commute, Aϕ(H) = Hγ (A). Apply Corollary 2.5.7 to write A = B+ C 
with B having entries in A†

K  and C having entries in T; then

If C is nonzero, then there is a largest nonnegative integer m such that C is divis-
ible by pm. However, since H ≡ 1 (mod p), H−1Cϕ(H)− C is divisible by pm+1 while 
(γ − 1)(C) is not, a contradiction. Hence C = 0 and A = B has entries in A†

K .
Let M† be the A†

K-span of e′1, . . . , e
′
d; it is an étale ϕ-module over A†

K  such that 
M† ⊗

A
†
K
Ã
†
K
∼= M. By Lemma 2.6.1, the action of Ŵ descends to M†; it is automatically 

continuous because A†
K  and Ã†

K  carry the same topologies. This proves the desired result. 
� �

Remark 2.6.3  In [5] and elsewhere, Theorem 2.6.2 is described as the statement that 
p-adic Galois representations are overconvergent. This term refers to the distinction 
between AQp and A†

Qp
. Recall that AQp consists of formal Laurent series in π with coef-

ficients in Zp such that the coefficient of πn converges p-adically to 0 as n → −∞ (with 
no restriction as n → +∞. That is, the negative part of the series converges on the disc 
∣

∣π−1
∣

∣ ≤ 1. By contrast, by Corollary 2.2.9 such a series belongs to A†
Qp

 if and only if the 
p-adic valuation of the coefficient of πn grows at least linearly in −n as n → −∞; that 
is, the negative part of the series converges on a disc of the form 

∣

∣π−1
∣

∣ ≤ 1+ ǫ for some 
ǫ > 0.
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