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Abstract

We study the algebraic boundary of a convex semi-algebraic set via duality in convex
and algebraic geometry. We generalise the correspondence of facets of a polytope
with the vertices of the dual polytope to general semi-algebraic convex sets. In this
case, exceptional families of extreme points might exist and we characterise them
semi-algebraically. We also give a strategy for computing a complete list of exceptional
families, given the algebraic boundary of the dual convex set.
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Introduction
The algebraic boundary of a semi-algebraic set is the smallest algebraic variety contain-
ing its boundary in the Euclidean topology. For a full-dimensional polytope Rn, it is the
hyperplane arrangement associated to its facets which has been studied extensively in dis-
crete geometry and complexity theory in linear programming [4]. The algebraic boundary
of a convex set which is not a polytope has recently been considered in other special
cases, most notably the convex hull of a variety by Ranestad and Sturmfels, cf. [11] and
[12]. This class includes prominent families such as the moment matrices of probability
distributions and the highly symmetric orbitopes. It does not include examples such as
hyperbolicity cones and spectrahedra, which have received attention from applications of
semi-definite programming in polynomial optimisation, see [2] and [19], and statistics of
Gaussian graphical models, see [17].
First steps towards using the algebraic boundary of a spectrahedron for a complexity

analysis of semi-definite programming have been taken by Nie et al. [9]. For semi-definite
liftings of convex semi-algebraic sets via Lasserre relaxations or theta body construc-
tion, the singularities of the algebraic boundary on the convex set give obstructions,
cf. [6,8].
So algebraic boundaries are central objects in applications of algebraic geometry to con-

vex optimisation and statistics. In this paper, we want to consider the class of all convex
sets for which the algebraic boundary is an algebraic hypersurface: convex semi-algebraic
sets with non-empty interior. Our goal in this paper is to extend the study of the algebraic
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boundary of the convex hull of a variety started by Ranestad and Sturmfels in [11] and
[12] to general convex semi-algebraic sets. The most natural point of view in the general
setting is via convex duality and its algebraic counterpart in projective algebraic geome-
try. The first main theorem generalises and implies the correspondence between facets of
a polytope with vertices of its dual polytope.

Theorem (Corollary 3.4). Let C ⊂ Rn be a compact convex semi-algebraic set with
0 ∈ int(C). Let Z be an irreducible component of the Zariski closure of the set of extreme
points of its dual convex body. Then, the variety dual to Z is an irreducible component of
the algebraic boundary of C.

For polytopes, this theorem is the whole story. In the general semi-algebraic case, not
every irreducible component of the algebraic boundary of C arises in this way, as we will
see below. We study the exceptional cases and give a complete semi-algebraic description
of the exceptional families of extreme points in terms of convex duality (normal cones)
and a computational way of getting a list of potentially exceptional strata from the alge-
braic boundary of the dual. This proves an assertion made by Sturmfels and Uhler in [17]
Proposition 2.4.
The main techniques come from the duality theories in convex and projective algebraic

geometry. For an introduction to convex duality, we refer to Barvinok’s textbook [1]. The
duality theory for projective algebraic varieties is developed in several places, e.g. Harris
[7], Tevelev [18] or Gelfand-Kapranov-Zelevinsky [5].
This article is organised as follows: In Section ‘The algebraic boundary and convexity’,

we introduce the algebraic boundary of a semi-algebraic set and discuss some spe-
cial features of convex semi-algebraic sets coming from their algebraic boundary. The
section sets the technical foundation for Section ‘The algebraic boundary of convex
semi-algebraic sets’, where we prove the main results of this work.

The algebraic boundary and convexity
This section is supposed to be introductory. We will fix the notation and observe some
basic features of convex semi-algebraic sets, their algebraic boundary and some spe-
cial features relying on this algebraic structure. The main results will be proven in the
following section.

Definition 2.1. Let S ⊂ Rn be a semi-algebraic set. The algebraic boundary of S,
denoted as ∂aS, is the Zariski closure in An of the Euclidean boundary of S.

Remark 2.2. In this paper, we fix a subfield k of the complex numbers. Themost impor-
tant choices to have in mind are the reals, the complex numbers or the rationals. When
we say Zariski closure, we mean with respect to the k-Zariski topology, i.e. the topology
on Cn (resp. P(Cn+1)) whose closed sets are the algebraic sets defined by polynomi-
als (resp. homogeneous polynomials) with coefficients in k. The set Cn (resp. P(Cn+1))
equipped with the k-Zariski topology is usually denotedAn

k (resp. P
n
k ). We drop the field k

in our notation. The statements in this paper are true over any subfield k of the complex
numbers given that the semi-algebraic set in consideration can be defined by polynomial
inequalities with coefficients in k ∩ R.
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If we are interested in symbolic computation, we tend to consider semi-algebraic sets
defined by polynomial inequalities with coefficients in Q and take Zariski closures in the
Q-Zariski topology.

We first want to establish that the algebraic boundary of a convex body is a hypersurface.

Definition 2.3. A subset of Rn is called regular if it is contained in the closure (in the
Euclidean topology) of its interior.

Remark 2.4. Every convex semi-algebraic set with non-empty interior is regular, and
the complement of a convex semi-algebraic set is also regular.

Lemma 2.5. Let ∅ �= S ⊂ Rn be a regular semi-algebraic set and suppose that its com-
plementRn \ S is also regular and non-empty. Each irreducible component of the algebraic
boundary of S has codimension 1 in An, i.e. ∂aS is a hypersurface.

Proof. By Bochnak-Coste-Roy [3] Proposition 2.8.13, dim(∂S) ≤ n− 1. Conversely, we
prove that the boundary ∂S of S has local dimension n−1 at each point x ∈ ∂S: Let x ∈ ∂S
be a point and take ε > 0. Then, int(S) ∩ B(x, ε) and int(Rn \ S) ∩ B(x, ε) are non-empty,
because both S and Rn \ S are regular. Applying [3] Lemma 4.5.2 yields that

dim (∂S ∩ B(x, ε)) = dim
(
B (x, ε) \ (

int(S) ∪ (
Rn \ S))) ≥ n − 1

Therefore, all irreducible components of ∂aS = clZar(∂S) have dimension n − 1.

Example 2.6. The assumption of S being regular cannot be dropped in the above
lemma.Write h := x2+y2+z2−1 ∈ R[ x, y, z]. Let S be the union of the unit ball with the
first coordinate axis, i.e. S = {(x, y, z) ∈ R3 : y2h(x, y, z) ≤ 0, z2h(x, y, z) ≤ 0}. The alge-
braic boundary of S is the union of the sphere V(h) and the line V(y, z), which is a variety
of codimension 1 with a lower dimensional irreducible component.

Remark 2.7. In the above proof of Lemma 2.5, we argue over the field of real numbers.
The algebraic boundary of S, where the Zariski closure is taken with respect to the k-
Zariski topology for a different field k, is also a hypersurface. It is defined by the reduced
product of the Galois conjugates of the polynomial defining ∂aS overR, whose coefficients
are algebraic numbers over k.

Corollary 2.8. Let C ⊂ Rn be a compact semi-algebraic convex set with non-empty
interior. Its algebraic boundary is a hypersurface.

This property characterises the semi-algebraic compact convex sets.

Proposition 2.9. A compact convex set with non-empty interior is semi-algebraic if and
only if its algebraic boundary is a hypersurface.

Proof. The converse follows from results in semi-algebraic geometry. Namely if the
algebraic boundary ∂aC is an algebraic hypersurface, its complement Rn \ (∂aC)(R) is
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a semi-algebraic set and the closed convex set C is the closure of the union of finitely
many of its connected components. This is semi-algebraic by Bochnak-Coste-Roy [3]
Proposition 2.2.2 and Theorem 2.4.5.

By the construction of homogenisation in convexity, the algebraic boundary of a pointed
and closed convex cone relates to the algebraic boundary of a compact base via the notion
of affine cones in algebraic geometry.

Remark 2.10. LetC ⊂ Rn be a compact semi-algebraic convex set, and let co(C) ⊂ R×
Rn be the convex cone over C embedded at height 1, i.e. co(C) = {(λ, λx) : λ ≥ 0, x ∈ C}.
Since a point (1, x) lies in the boundary of co(C) if and only if x is a boundary point
of C, the affine cone {(λ, λx) : λ ∈ C, x ∈ ∂aC} over the algebraic boundary of C is a
constructible subset of the algebraic boundary of co(C). More precisely, we mean that
∂aco(C) = X̂, where X is the projective closure of ∂aC with respect to the embedding
An 
→ Pn, (x1, . . . , xn) 
→ (1 : x1 : . . . : xn) and X̂ is the cone over the projective variety
X, i.e. all points x ∈ An+1 such that the line through x and the origin is in X.

Recall that a closed convex cone C ⊂ Rn is called pointed if C ∩ (−C) = {0}, i.e. it does
not contain a line.

Corollary 2.11. Let C ⊂ Rn+1 be a pointed closed semi-algebraic convex cone. Its alge-
braic boundary is a hypersurface in An+1 and an algebraic cone. In particular, it is the
affine cone over its projectivisation in Pn, i.e.

P̂∂aC = ∂aC.

We will now take a look at convex duality for semi-algebraic sets. Given a compact
convex setC ⊂ Rn, we writeCo = {� ∈ (Rn)∗ : �(x) ≥ −1for allx ∈ C} for the dual convex
set. We use the notation Xreg for the set of all regular (or smooth) points of an algebraic
variety X.

Proposition 2.12. Let C ⊂ Rn be a compact semi-algebraic convex set with 0 ∈ int(C),
and set S := ∂Co ∩ Xreg (∂aCo). For every � ∈ S, the face supported by � is a point. The set
S is an open and dense (in the Euclidean topology) semi-algebraic subset of the set ∂Co of
all supporting hyperplanes to C.

Proof. Let � be in S and denote by evx the point evaluation of linear functionals at x ∈
Rn. Given x ∈ Rn such that evx defines a supporting hyperplane toCo at �, then �(x) = −1
and Co lies in one halfspace defined by evx. Therefore, (∂aCo) (R) lies locally around � in
one halfspace defined by evx and so evx defines the unique tangent hyperplane to ∂aCo

at �. Now, we show that x is an extreme point of C, exposed by �. Suppose x = 1
2 (y + z)

with y, z ∈ C, then �(y) = −1 and �(z) = −1. Since y and z are, by the same argument as
above, also normal vectors to the tangent hyperplane T�∂aCo, we conclude x = y = z.
The set S is open in ∂Co, because (∂aCo)reg(R) is open in the Euclidean topology. It is

also dense in ∂Co because for every � ∈ Co at least one irreducible component of ∂aCo

has full local dimension at �.
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The same statement is true for convex cones: We denote the dual convex cone to C ⊂
Rn+1 as C∨ = {

� ∈ (Rn+1)∗ : �(x) ≥ 0 for all x ∈ C
}
.

Corollary 2.13. Let C ⊂ Rn+1 be a pointed closed semi-algebraic convex cone with non-
empty interior and set S := ∂C∨ ∩ (

∂aC∨)
reg. For every � ∈ S, the face supported by � is

an extreme ray of C. The set S is open and dense (in the Euclidean topology) semi-algebraic
subset of ∂C∨.

Example 2.14. (a) In the case that C is a polytope, the set S of regular points of the alge-
braic boundary is exactly the set of linear functionals exposing extreme points. Indeed, in
this case the algebraic boundary of C is a union of affine hyperplanes, namely the affine
span of its facets. A point in ∂C is a regular point of the algebraic boundary ∂aC if and only
if it lies in the relative interior of a facet, cf. Barvinok [1] Theorem VI.1.3. These points
expose the vertices of Co.
(b) In general, a linear functional � ∈ ∂Co exposing an extreme point of C does not need

to be a regular point of the algebraic boundary of Co as the following example shows:
Let C be the convex set in the plane defined by the inequalities y ≥ (x + 1)2 − 3/2,
y ≥ (x − 1)2 − 3/2 and y ≤ 1, see Figure 1. Consider the extreme point x = (0,−1/2)
of C. The dual face is the line segment between the vectors (−2, 1) and (2, 1), the normal
vectors to the tangent lines to the curves defined by y− (x+ 1)2 + 3/2 and y− (x− 1)2 +
3/2, which meet transversally in x. Indeed, the linear functionals (−2, 1) and (2, 1) both
expose extreme points; but they are each intersection points of a line and a quadric in the
algebraic boundary of Co and so they are singular points of ∂aCo.
In this example, the set S = ∂Co ∩ (∂aCo)reg in the above corollary is the boundary of

Co except for the six intersection points of the irreducible components of ∂aCo on the
boundary of the dual convex set.

The extreme points (resp. rays) of a convex set play an important role for duality. They
will also be essential in a description of the algebraic boundary using the algebraic duality
theory. So, we fix the following notation:

Definition 2.15. (a) Let C ⊂ Rn be a convex semi-algebraic set. We denote by Exa(C)

the Zariski closure of the union of all extreme points of C in An.

Figure 1 The intersection of two parabolas and the dual convex body, see Example 2.14(b).
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(b) Let C ⊂ Rn+1 be a semi-algebraic convex cone. We write Exra(C) for the Zariski
closure of the union of all extreme rays of C in An+1.

Remark 2.16. (a) Note that the union of all extreme points of a convex semi-algebraic
set is a semi-algebraic set by quantifier elimination because the definition is expressible as
a first-order formula in the language of ordered rings, cf. Bochnak-Coste-Roy [3] Propo-
sition 2.2.4. Therefore, its Zariski closure is an algebraic variety whose dimension is equal
to the dimension of Ex(C) as a semi-algebraic set, cf. Bochnak-Coste-Roy [3] Proposition
2.8.2. Of course, the same is true for convex cones and the Zariski closure of the union of
all extreme rays.
(b) Note that Exra(C) is an algebraic cone. In particular, we have

Exra(C) = ̂PExra(C).

Lemma 2.17. Let C ⊂ Rn be a compact semi-algebraic convex set with 0 ∈ int(C). For a
general extreme point x ∈ Exa(C), there is a supporting hyperplane �0 ∈ ∂Co exposing the
face x and a semi-algebraic neighbourhood U of �0 in ∂Co such that every � ∈ U supports
C in an extreme point x� and all x� lie on the same irreducible component of Exa(C) as x.

By general, we mean in this context that the statement is true for all points in a dense
(in the Zariski topology) semi-algebraic subset of Exa(C).

Proof. By Straszewicz’s Theorem (see Rockafellar [14] Theorem 18.6) and the Curve
Selection Lemma from semi-algebraic geometry (see Bochnak-Coste-Roy [3] Theorem
2.5.5), a general extreme point is exposed. Let y ∈ Ex(C) be an exposed extreme point
contained in a unique irreducible component Z of Exa(C) and denote by �y an exposing
linear functional. Let Z1, . . . ,Zr be the irreducible components of Exa(C) labelled such
that Z = Z1. Since the sets Zi ∩ ∂C ⊂ C are closed, they are compact. Now, �y is strictly
greater than −1 on Zi ∩ ∂C for i > 1 and therefore, there is a neighbourhood U in ∂Co

of �y such that every � ∈ U is still strictly greater than −1 on Zi ∩ ∂C. The intersection of
this neighbourhood with the semi-algebraic set S of linear functionals exposing extreme
points, which is open and dense in ∂Co in the Euclidean topology by Proposition 2.12, is
non-empty and open in ∂Co. Pick �0 from this open set, then the extreme point x exposed
by �0 has the claimed properties.

Example 2.18. (a) Again, the above lemma has a simple geometric meaning in the case
of polytopes: Every extreme point of the polytope is exposed exactly by the relative inte-
rior points of the facet of the dual polytope dual to it, again by Barvinok [1] Theorem
VI.1.3.
(b) In Example 2.14(b), the boundary of the convex set C consists of extreme points

and a single one-dimensional face. So the only linear functional not exposing an extreme
point of C is the dual face to the edge of C, which is (0,−1) ∈ Ex(Co). As seen in Figure 1,
the extreme points of Co that support C in an extreme point are the ones on the quadric
irreducible components with positive y coordinate. They come in two irreducible families
dual to the two parabolas in the algebraic boundary of C.
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By homogenisation, we can prove the analogous version of the above lemma for closed
and pointed convex cones.

Corollary 2.19. Let C ⊂ Rn+1 be a pointed closed semi-algebraic convex cone with non-
empty interior. Let F0 ⊂ C be an extreme ray of C such that the line [ F0] is a general point
of PExra(C). Let Z be the irreducible component of PExra(C) with [ F0]∈ Z. Then, there
is a supporting hyperplane �0 ∈ ∂C∨ exposing F0 and a semi-algebraic neighbourhood U
of �0 in ∂C∨ such that every � ∈ U supports C in an extreme ray F� of C contained in the
regular locus of Z, i.e. [ F�]∈ Zreg.

The above notion of the general now translates into the projective notion, i.e. the state-
ment is true for points in a dense semi-algebraic subset of the semi-algebraic set of
extreme rays as a subset of PExra(C) ⊂ Pn.

The algebraic boundary of convex semi-algebraic sets
In this section, we consider a full-dimensional closed semi-algebraic convex cone C ⊂
Rn+1 which is pointed, i.e. it does not contain a line. The algebraic boundary of C is an
algebraic cone. In particular, it is the affine cone over its projectivisation, i.e. ∂aC = P̂∂aC.
The dual convex cone is the set

C∨ = {� ∈ (Rn+1) : ∀ x ∈ C �(x) ≥ 0},

i.e. the set of all half spaces containing C. We write Exra(C) for the Zariski closure of
the union of all extreme rays of C in An+1. Again, this is an algebraic cone. This is the
technically more convenient language for the algebraic duality theory. We will deduce the
statements for convex bodies by homogenisation.
We now consider projective dual varieties: Given an algebraic variety X ⊂ Pn, the dual

variety X∗ ⊂ (Pn)∗ is the Zariski closure of the set of all hyperplanes [H]∈ (Pn)∗ such
that H contains the tangent space to X at some regular point x ∈ Xreg. For computational
aspects of projective duality, we refer to Ranestad-Sturmfels [11] and Rostalski-Sturmfels
[15].

Proposition 3.1. The dual variety to the algebraic boundary of C is contained in the
Zariski closure of the extreme rays of the dual convex cone, i.e.

(P∂aC)∗ ⊂ PExra
(
C∨)

.

Proof. Let Y ⊂ P∂aC be an irreducible component of the algebraic boundary of C. Let
x ∈ Ŷ ∩ ∂C be a general point and H ⊂ Rn+1 be a supporting hyperplane to C at x.
We argue similarly to the proof of Proposition 2.12: Since C lies in one half-space defined
by H, so does Ŷ locally around x. Therefore, H is the tangent hyperplane TxŶ . Now, the
tangent hyperplane to Ŷ at x is unique, because Ŷ has codimension 1. So the set of all
supporting hyperplanes to C at x is an extreme ray of the dual convex cone. Since Ŷ ∩ C
is Zariski dense in Ŷ , the hyperplanes tangent to Ŷ at points x ∈ Ŷ ∩ C are dense in the
dual variety to Y.
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Remark 3.2. Let Z ⊂ Exra(C) be an irreducible component. Then, the dual variety to
PZ ⊂ Pn is a hypersurface in (Pn)∗, which follows from the biduality theorem in projec-
tive algebraic geometry Tevelev [18] Theorem 1.12, because PZ cannot contain a dense
subset of projective linear spaces of dimension ≥ 1. Suppose PZ contained a dense sub-
set of projective linear spaces of dimension ≥ 1, then the set Z ∩ Exr(C), which is dense
in Z, would contain a Zariski dense subset of an affine linear space of dimension at least
2. This contradicts the fact that the set of extreme rays Exr(C) does not contain any line
segments other than those lying on the rays themselves.

In the language of cones, our first main theorem is the following.

Theorem 3.3. Let C ⊂ Rn+1 be a pointed closed semi-algebraic convex cone with non-
empty interior. The dual variety to the locus of extreme rays of C is contained in the
algebraic boundary of the dual convex cone C∨, i.e.

(PExra(C))∗ ⊂ P∂aC∨.

More precisely, the dual variety to every irreducible component of PExra(C) is an irre-
ducible component of P∂aC.

Proof. Let PZ ⊂ PExra(C) be an irreducible component of the locus of extreme rays of
C. By Corollary 2.19, a general extreme ray [F0]∈ PZ∩ (PExr(C)) is exposed by �0 ∈ ∂C∨

and there is a semi-algebraic neighbourhoodU of �0 in ∂C∨ such that every � ∈ U exposes
an extreme ray F� of C such that [ F�]∈ (PZ)reg. The hyperplane Pker(�) is tangent to PZ
at [ F�] because PZ is locally contained in C; so PU is a semi-algebraic subset of PZ∗ of
full dimension and the claim follows.

In the Section ‘Introduction’, we gave an affine version of the preceding theorem that
follows from it via homogenisation.

Corollary 3.4. Let C ⊂ Rn be a compact convex semi-algebraic set with 0 ∈ int(C).
Let Z be an irreducible component of the Zariski closure of the set of extreme points of its
dual convex body. Then, the variety dual to Z is an irreducible component of the algebraic
boundary of C. More precisely, the dual variety to the projective closure Z of Z with respect
to the embedding An → (Pn)∗, x 
→ (1 : x) is an irreducible component of the projective
closure of ∂aC with respect to An → Pn, x 
→ (1 : x).

Proof. We homogenise the convex body and its dual convex body by embedding
both at height 1 to get convex cones co(C) = {(λ, λx) : λ ≥ 0, x ∈ C} ⊂ R × Rn and
co(Co) = (co(C))∨ ⊂ R × (Rn)∗. The projective closure Z of the irreducible component
Z ⊂ Exa (Co) with respect to the embedding An → (Pn)∗, x 
→ (1 : x) is an irre-
ducible component of PExra(co(C)∨). By the above Theorem 3.3, the dual variety to Z is
an irreducible component of P(∂aco(C)), which is the projective closure of an irreducible
component of the algebraic boundary of C with respect to the embedding An → Pn,
x 
→ (1 : x).
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Corollary 3.5. Let C ⊂ Rn+1 be a pointed closed semi-algebraic convex cone with non-
empty interior. We have (P∂aC)∗ = PExra(C∨).

Remark 3.6. It does not follow from the biduality theorems in both theories that
(PExra(C∨))∗ = P∂aC simply because the biduality theorem in the algebraic context
does not in general apply to this situation, since the varieties in question tend to be
reducible. In fact, the mentioned equality does not hold in general, as the following exam-
ple shows: Let C ⊂ R2 be the convex set defined by the inequalities x2 + y2 − 1 ≤ 0
and x ≤ 3/5, see Figure 2. The dual convex body is the convex hull of the set {(x, y) ∈
R2 : x2 + y2 − 1 ≤ 0, x ≥ −3/5} and the point (−5/3, 0) (it cannot be defined by simulta-
neous polynomial inequalities, i.e. it is not a basic closed semi-algebraic set). Its algebraic
boundary has three components, namely the circle and the two lines y = 3/4x + 5/4 and
y = −3/4x− 5/4. The set of extreme points of C is

{
(x, y) : x2 + y2 − 1 = 0, x ≤ 3/5

}
. So,

Exa(C) = V
(
x2 + y2 − 1

)
and V

(
x2 + y2 − 1

)∗ = V
(
x2 + y2 − 1

)
� ∂aCo.

The following statement gives a complete semi-algebraic characterisation of the irre-
ducible subvarieties Y ⊂ Exra(C) with the property that Y ∗ is an irreducible component
of the algebraic boundary of C∨.

Theorem 3.7. Let C ⊂ Rn+1 be a pointed closed semi-algebraic convex cone. Let Z be an
irreducible algebraic cone contained in Exra(C) and suppose Z ∩ Exr(C) is Zariski dense
in Z. Then, the dual variety to PZ is an irreducible component of P∂aC∨ if and only if the
dimension of the normal cone to a general point x ∈ Z∩Exr(C) is equal to the codimension
of Z, i.e.

dim(Z) + dim(NC(R+x)) = n + 1.

Conversely, if Y is an irreducible component of the algebraic boundary of C∨, then the dual
variety to PY is an irreducible subvariety of PExra(C), the set (PY )∗ ∩ Exr(C) is Zariski
dense in (PY )∗ and the above condition on the normal cone is satisfied at a general extreme
ray for the affine cone over (PY )∗.

Figure 2 A circle cut by a halfspace and its dual convex body.
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To be clear, the normal cone is

NC (R+x) =
{
� ∈ (

Rn+1)∗ : ∀ y ∈ C �(y) ≥ �(x) = 0
}
.

Proof. Consider the semi-algebraic set � ⊂ ∂C × ∂C∨ ⊂ Rn+1 × (
Rn+1)∗ defined as

� =
{
(x, �) ∈ Rn+1 × (

Rn+1)∗ : x ∈ Xreg[Z]∩Exr(C), � ∈ C∨, �(x) = 0
}
.

This is the set of all tuples (x, �), where x spans an extreme ray of C and is a regular point
of Z and � is a supporting hyperplane to C at x, i.e. the fibre of the projection π1 onto the
first factor over a point x is the normal coneNC(R+x). Since a supporting hyperplane toC
at x is tangent to Z at x, this bihomogeneous semi-algebraic incidence correspondence is
naturally contained in the conormal variety CN(P)Z ⊂ Pn × (Pn)∗ of the projectivisation
of Z. Now, the image π2(�) is Zariski dense in PZ∗ if and only if PZ∗ is an irreducible
component of the projectivisation of the algebraic boundary of C∨. Indeed, π2(�) ⊂
PZ∗ ∩ P∂C∨ and so if it is dense in PZ∗, we immediately get that PZ∗ ⊂ P∂aC∨ is an
irreducible component, because PZ∗ is a hypersurface (cf. Remark 3.2(b)). Conversely, we
have seen in the proof of the above proposition that if PZ∗ ⊂ P∂aC∨ is an irreducible
component, the unique tangent hyperplane to a general point of PZ∗ ∩ P∂C∨ spans an
extreme ray of C, i.e. a general point of PZ∗ ∩ P∂C∨ is contained in π2(�).
This says that � is dense in CN(PZ), i.e. dim(�) = dim(CN(PZ)) + 2 = n + 1 if and

only if PZ∗ is an irreducible component of P∂aC∨.
On the other hand, counting dimensions of� as the sum of the dimensions of Z and the

dimension of the fibre over a general point inXreg[Z]∩Exr(C), we see that dim(�) = n+1
if and only if the claimed equality of dimensions

dim(Z) + dim (NC (R+x)) = n + 1

holds. The second part of the statement follows from the first by Proposition 3.1.

Remark 3.8. We want to compare this theorem to the result of Ranestad and Sturmfels
in [11]: They consider the convex hull of a smooth algebraic variety X ⊂ Pn and make
the technical assumption that only finitely many hyperplanes are tangent to the variety X
in infinitely many points, which is needed for a dimension count in the proof. We get rid
of this technical assumption in the above theorem. The assumption that the extreme rays
are Zariski dense in the variety Z in question compares best to the Ranestad-Sturmfels
assumption. It is semi-algebraic in nature. As an example, consider the cone of positive
semi-definite real symmetric 3 × 3 matrices: It is the convex hull of the rank 1 matrices,
which are the Veronese embeddingX = v2(P2) ⊂ P5. This cone is self-dual from the point
of convex geometry. In this case, there are infinitely many hyerplanes that are tangent to
X at infinitely many points, namely every rank 1 matrix is tangent to X along a conic,
when interpreted as a hyperplane via the trace inner product on the space of symmetric
matrices. To see that, note that the tangent space to X at xxt is the set of all matrices
of the form yxt + xyt for y ∈ P2 and a matrix A is perpendicular to that tangent space
with respect to the trace inner product if and only Ax = 0. So given that rk(A) = 1, the
hyperplane will be tangent to X along a plane conic, namely v2(ker(A)) ⊂ X. Our result
shows that the algebraic boundary of the dual convex cone is the dual variety to X, which
is the determinantal hypersurface.
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The corresponding affine statement to Theorem 3.7 is the following. We take projective
closures with respect to the same embeddings as in the affine version Corollary 3.4 of
Theorem 3.3 above.

Corollary 3.9. Let C ⊂ Rn be a compact convex semi-algebraic set with 0 ∈ int(C). Let
Z be an irreducible subvariety of Exa(C), and suppose Z ∩ Ex(C) is dense in Z. Then, the
dual variety to Z is an irreducible component of ∂aCo if and only if

dim(Z) + dim (NC({x})) = n

for a general extreme point x ∈ Z ∩ Ex(C). Conversely, if Y is an irreducible component of
∂aCo, then the dual variety to Y is an irreducible subvariety of Exa(C), the set Y ∗ ∩ Ex(C)

is dense in Y ∗ and the condition on the normal cone is satisfied at a general extreme point.

Proof. Again, the proof is simply by homogenising as above. Note that the dimension
of the normal cone does not change when homogenising.

In the following affine examples, we will drop the technical precision of taking pro-
jective closures and talk about the dual variety to an affine variety to make them more
readable.

Example 3.10. Let C = {
x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0

} ⊂ Rn be a basic closed
semi-algebraic convex set with non-empty interior defined by g1, . . . , gr ∈ R [x1, . . . , xn].
Then, the algebraic boundary ∂aC is contained in the variety V(g1)∪ . . .∪V(gr) = V(p1)∪
. . .V(ps), where p1, . . . , ps are the irreducible factors of the polynomials g1, . . . , gr . The
irreducible hypersurface V(pi) is an irreducible component of ∂aC if and only if V(pi)∩∂C
is a semi-algebraic set of codimension 1. By the above Corollary 3.9, we can equivalently
check the following conditions on the dual varieties Xi to the projective closure V (pi):

◦ The extreme points of the dual convex set are dense in Xi via Rn → (Pn)∗,
x 
→ (1 : x).

◦ A general extreme point of the dual convex set in Xi exposes a face of C of dimension
codim(Xi) − 1.

We consider the convex set shown in Figure 3, whose algebraic boundary is the cubic
curve X = V(y2 − (x + 1)(x − 1)2), with different descriptions as a basic closed semi-
algebraic set.
The dual convex body is the convex hull of a quartic curve. Its algebraic boundary is

V
(
4x4 + 32y4 + 13x2y2 − 4x3 + 18xy2 − 27y2

) ∪ V(x + 1).

Here, the line V(x + 1) is a bitangent to the quartic and the dual variety of the node (1, 0)
of the cubic and the quartic is the dual curve to the cubic. We define C using the cubic
inequality and additionally either one linear inequality or the two tangents to the branches
of X in (1, 0)

C = {
(x, y) ∈ R2 : y2 − (x + 1)(x − 1)2 ≤ 0, x ≤ 1

}
=

{
(x, y) ∈ R2 : y2 − (x + 1)(x − 1)2 ≤ 0, y ≥ √

2(x − 1), y ≤ −√
2(x − 1)

}
,
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Figure 3 A basic closed semi-algebraic set in the plane on the left and its dual convex set on the right.

and we see both conditions in action. First, the dual variety to the affine line x = 1 is
(−1, 0), which is not an extreme point of Co. The first condition mentioned above shows
that the line V(x − 1) corresponding to the second inequality in the first description is
not an irreducible component of ∂aC. In the second description, the dual variety to the
affine line y = √

2(x−1) is the point P =
(
−1, 1√

2

)
, which is an extreme point of Co. The

normal coneNCo({P}) is one-dimensional, because the supporting hyperplane is uniquely
determined - it is the bitangent V(x+1) to the quartic. So by the second condition above,
the line V(y − √

2(x − 1)) is not an irreducible component of ∂aC.

Corollary 3.11. [to Corollary 3.9] Let C ⊂ Rn be a compact semi-algebraic set with
0 ∈ int(C). Let Y ⊂ ∂aCo be an irreducible component such that Y ∗ ⊂ Exa(C) is not an
irreducible component. If Y ∗ is contained in a bigger irreducible subvariety Z ⊂ Exa(C)

such that Z ∩ Ex(C) is dense in Z, then

◦ Y ∗ ⊂ Zsing[Z] or
◦ Y ∗ is contained in the algebraic boundary of the semi-algebraic subset Ex(C)∩Z of Z.

Proof. Let Z ⊂ Exa(C) be an irreducible subvariety. If � ∈ (Rn)∗ defines a supporting
hyperplane to an extreme point x ∈ Ex(C) that is an interior point of the semi-algebraic
set Ex(C)∩Z as a subset of Z and (1 : x) ∈ Zreg, then the variety Z lies locally in one of the
half spaces defined by (1 : �) and therefore (1 : �) is tangent to Z at (1 : x). In particular,
the dimension of the normal cone NC({x}) is bounded by the local codimension of Z at
(1 : x). Now if Y ∗ is strictly contained in Z, it cannot contain (1 : x) by Corollary 3.9
because dim

(
Y ∗)

< dim(Z).

The set Z ∩ Ex(C) in the above corollary does not need to be a regular semi-algebraic
set. So the second condition can also occur in the following way.

Example 3.12. Consider the convex hull C of the half ball
{
(x, y, z) ∈ R3 : x2 + y2 +

z2 ≤ 1, x ≥ 0
}
and the circle X = {

(x, y, z) ∈ R3 : x2 + y2 ≤ 1, z = 0
}
. The Zariski clo-

sure of the extreme points of C is the sphere S2. Every point of the circle X is a regular
point of S2 and X is contained in the algebraic boundary of Ex(C) ∩ S2 ⊂ S2, because
the semi-algebraic set Ex(C) ∩ S2 does not have local dimension 2 at the extreme points
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(x, y, 0) ∈ X ∩ Ex(C) where x < 0. The algebraic boundary of the dual convex set has
three irreducible components, namely the sphere S2 and the dual varieties to the two irre-
ducible components X and V

(
y2 + z2 − 1, x

)
of ∂a

(
Ex(C) ∩ S2

) ⊂ S2. Note that X and
V

(
y2 + z2 − 1, x

)
are not irreducible components of Exa(C) = S2, so that we are looking

at varieties of the second type in the above Corollary. The reader may find a picture of C
and its polar on the author’s website, see [16].

The following examples show how the statement of the corollary can be used to
determine the algebraic boundary in concrete cases.

Example 3.13. Consider the spectrahedron P = {(x, y, z) ∈ R3 : Q(x, y, z) ≥ 0} where
Q is the symmetric matrix

Q =

⎛
⎜⎜⎜⎝

1 x 0 x
x 1 y 0
0 y 1 z
x 0 z 1

⎞
⎟⎟⎟⎠ ,

studied by Rostalski and Sturmfels in ([15], Section 1.1) and called pillow. The Zariski
closure of the set of extreme points of P is defined by the equation det(Q) = 0, where

det(Q) = x2(y − z)2 − 2x2 − y2 − z2 + 1.

The algebraic boundary of the dual convex body Po is the hypersurface

∂aPo = V(b2 + 2bc + c2 − a2b2 − a2c2 − b4 − 2b2c2 − 2bc3 − c4 − 2b3c) ∪
V(2 − a2 + 2ab − b2 + 2bc − c2 − 2ac) ∪
V(2 − a2 − 2ab − b2 + 2bc − c2 + 2ac),

computed in Rostalski-Sturmfels [15] Section 1.1, Equations 1.7 and 1.8. The first quartic
is the dual variety to the quartic V(det(Q)). The two quadric hypersurfaces are products
of linear forms over R, and they are the dual varieties to the four corners of the pillow,
namely 1√

2 (1, 1,−1), 1√
2 (−1,−1, 1), 1√

2 (1,−1, 1) and 1√
2 (−1, 1,−1). These four points

are extreme points of P and singular points of V(det(Q)).

Another interesting consequence of Corollary 3.9 concerns the semi-algebraic set
Ex(C).

Corollary 3.14. Let C ⊂ Rn be a compact semi-algebraic convex set with 0 ∈ int(C).
Every extreme point x of C is a central point of the dual variety Y ∗ of at least one irreducible
component Y of ∂aCo via An → Pn, x 
→ (1 : x).

A point x on a real algebraic variety X ⊂ Pn is called central if X(R) has full local
dimension around x. Equivalently, x ∈ X is central if it is the limit of a sequence regular
real points of X, cf. Bochnak-Coste-Roy [3] Section 7.6 and Proposition 10.2.4.

Proof. By Straszewicz’s Theorem [14], Theorem 18.6, it suffices to prove that the
statement holds for exposed extreme points because every extreme point is the
limit of an exposed one. So, let x be an exposed extreme point of C and let Fx = {� ∈
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Co : �(x) = −1} be the dual face. Because x is exposed, the normal coneNCo(Fx) = R+x is
one-dimensional. Fix a relative interior point � ∈ Fx. Let Y be an irreducible component
of ∂aCo on which � is a central point, and let (�j)j∈N ⊂ Yreg(R) be a sequence of regular
real points converging to � in the Euclidean topology. For each j, there is a unique (up to
scaling) linear functional minimising in �j over Co, namely yj ∈ ∂C with �j(yj) = −1 and
αj(yj) = −1 for all α ∈ T�jY . Since (yj) is a sequence in a compact set, there exists a con-
verging subsequence; without loss of generality, we assume that (yj)j∈N converges and we
call the limit y. Note that y represents a central point of Y ∗, because the yj are central on
Y ∗ as they are tangent to a regular real point �j of Y . We know y ∈ ∂C and

�(y) = lim
j→∞ �j(y) = lim

j→∞ �j

(
lim
k→∞

yk
)

= −1,

so y exposes the face Fx of Co and is therefore equal to x by NCo(Fx) = R+x.

We take a short look at implications of this corollary to hyperbolicity cones.

Example 3.15. A homogeneous polynomial p ∈ R[ x0, . . . , xn] of degree d is called
hyperbolic with respect to e ∈ Rn+1 if p(e) �= 0 and the univariate polynomial p(te− x) ∈
R[ t] has only real roots for every x ∈ Rn+1. We consider the set

Cp(e) = {
x ∈ Rn+1 : all roots of p(te − x) are non-negative

}
,

which is called the hyperbolicity cone of p (with respect to e). It turns out to be a convex
cone, cf. [13]. Assume that all non-zero points in the boundary of Cp(e) are regular points
of V(p). Then by Corollary 3.11, the algebraic boundary of the dual convex cone is the
dual variety to V(q) where q is the unique irreducible factor of p which vanishes on ∂Cp.
The assumption on the hyperbolicity cone being smooth is essential: Consider the

hyperbolicity cone of p = y2z − (x + z)(x − z)2 ∈ R[ x, y, z] with respect to (0, 0, 1). The
cubic V(p) ⊂ R3 is singular along the line R(1, 0, 1) and the algebraic boundary of the
dual convex cone has an additional irreducible component, namely the hyperplane dual
to this line because the normal cone has dimension 2 at this extreme ray, see Figure 3.
Let now Cp(e) be any hyperbolicity cone and decompose ∂aCp(e) = X1∪ . . .∪Xr into its

irreducible components X1, . . . ,Xr . The dual convex cone Cp(e)∨ is the conic hull of the
regular real points of the dual varieties of the irreducible components Xi up to closure, i.e.

Cp(e)∨ = cl
(
co

([
(X∗

1 )reg(R) ∩ H+
] ∪ . . . ∪ [

(X∗
r )reg(R) ∩ H+

]))
,

whereH+ is the half space {� ∈ (Rn+1)∗ : �(e) ≥ 0}. This adjustment is necessary, because
the X∗

i are algebraic cones. Indeed, the right hand side contains every central point of
every variety X∗

i and by Corollary 3.14, this gives one inclusion. Conversely, let � be a
general real point of X∗

i for any i. Then � is tangent to Xi in a regular real point of ∂aCp(e)
and by hyperbolicity of p, the linear functional has constant sign on the hyperbolicity
cone Cp(e) because every line through the hyperbolicity cone intersects every regular real
point of ∂aCp(e) with multiplicity ≤ 1, cf. Plaumann-Vinzant [10] Lemma 2.4.

How can we compute these exceptional varieties of extreme points? Given the algebraic
boundary of the dual convex set, the following theorem gives an answer. In its statement,
we use an iterated singular locus: The kth iterated singular locus of a variety X, denoted



Sinn Research in theMathematical Sciences  (2015) 2:3 Page 15 of 18

by Xk,sing, is the singular locus of the (k − 1) iterated singular locus. The first iterated
singular locus is the usual singular locus of X.

Theorem 3.16. Let C ⊂ Rn be a compact semi-algebraic convex set with 0 ∈ int(C),
and suppose that every point � ∈ ∂Co is a regular point on every irreducible compo-
nent of ∂aCo containing it. Let Z ⊂ Exa(Co) be an irreducible subvariety such that Z∗

is an irreducible component of ∂aC. If codim(Z) = 1, then Z is an irreducible com-
ponent of ∂aCo. If codim(Z) = c > 1, then Z is an irreducible component of an
iterated singular locus, namely it is an irreducible component of one of the varieties
(∂aCo)sing, (∂aCo)2,sing , . . . , (∂aCo)c−1,sing.

Proof. Assume codim(Z) = c > 1, and let � ∈ Z ∩ Ex(Co) be a general point. Since
Whitney’s condition (a) is satisfied for (Xreg,Z) at � for every irreducible component X ⊂
∂aCo with Z ⊂ X by Bochnak-Coste-Roy [3] Theorem 9.7.5, every extreme ray R+x of
NCo({�}) is tangent to Z at � by Corollary 3.14. Since the extreme rays of the normal cone
NCo({�}) span the smallest linear space containing it, the dimension of Z is bounded from
above by codim (NCo({�})). The assumption that Z∗ is an irreducible component of ∂aC
implies dim(Z) = codim(NCo({�})) by Corollary 3.9. It follows that the tangent space
T�Z is the lineality space of the convex cone NCo({�})∨. To show that Z is an irreducible
component of (∂aCo)j,sing, suppose Y ⊂ (∂aCo)k,sing is an irreducible component with
Z � Y and Yreg ∩ Z �= ∅ and let � ∈ Z ∩ Ex(Co) be a general point with � ∈ Yreg. Then,
T�Z � T�Y and there is an extreme ray R+x of NCo(�) with x ∈ Ex(C) and x|T�Y �= 0. By
Corollary 3.14, there is an irreducible component X ⊂ ∂aCo such that x is a central point
of X∗. So by assumption, � ∈ Xreg and x ∈ (T�X)⊥. Since x|T�Y �= 0, the varieties Y and
X intersect transverally at �. So, Z ⊂ Y ∩ X � Y and Y ∩ X ⊂ (∂aCo)j,sing are irreducible
components for some j > k because the multiplicity of a point in Y ∩ X in ∂aCo is higher
than the multiplicity of a general point on Y. Induction on the codimension of Z proves
the theorem.

Remark 3.17. (a) This theorem gives a computational way to get a list of candidates
for the dual varieties to irreducible components of the algebraic boundary of C, given
the algebraic boundary of Co. Certain of these candidates may fail to contribute an irre-
ducible component due to semi-algebraic constraints. For illustration, we will apply it to
two examples.
(b) The assumption that all irreducible components of ∂aCo are smooth along the

boundary of Co is used to show that the stratification into iterated singular loci is suf-
ficient in this case. In general, it may be necessary to refine this stratification such that
Whitney’s condition (a) is satisfied for all adjacent strata, see Example 3.20.

Example 3.18 (cf. Remark 3.6). We consider the convex setC ⊂ R2 in the plane defined
by the two inequalities x2 + y2 ≤ 1 and x ≤ 3/5, see Figure 2. Its algebraic boundary is the
plane curve V((x2 + y2 − 1)(x− 3/5)). The dual convex body is the convex hull of the set
{(X,Y ) ∈ R2 : X2 + Y 2 ≤ 1,X ≥ −3/5} and the point (−5/3, 0). Its algebraic boundary
is the curve ∂aCo = V((X2 + Y 2 − 1)(4Y − 3X − 5)(4Y + 3X + 5)). Its three irreducible
components are smooth, and its singular locus consists of three points, namely (−5/3, 0)
and (−3/5,±4/5). By the above theorem, a complete list of candidates for the algebraic
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boundary of C are the dual varieties to the circle V(X2 +Y 2 −1) and the irreducible com-
ponents of the first iterated singular locus, i.e. the lines dual to the points (−5/3, 0) and
(−3/5,±4/5). In fact, the last two points do not contribute an irreducible component to
∂aC, because the normal cone to Co at these points is one-dimensional, cf. Corollary 3.9.
We can also look at it dually and compute the algebraic boundary ∂aCo from the sin-

gularities of the algebraic boundary of C: The curve ∂aC is reducible, all components are
smooth and its singular locus consists of two points, namely (3/5,±4/5). Both of these
points dualize to irreducible components of ∂aCo.

Example 3.19. As an example in 3 space, consider the convex set C defined as the
intersection of two affinely smooth cylinders given by the inequalities x2 + y2 ≤ 1 and
3y2 + 4z2 − 4y ≤ 4, see the author’s website [16] for pictures. The algebraic bound-
ary of C is the (reducible) surface V((x2 + y2 − 1)(3y2 + 4z2 − 4y − 4)), whose singular
locus is a smooth curve of degree 4, namely the intersection of the two cylinders. Since
the dual varieties to the cylinders are curves and the iterated singular loci of ∂aC are this
smooth curve of degree 4 or empty, the algebraic boundary of the dual convex body is, by
Theorem 3.16, the dual variety of this curve, which is a surface of degree 8 defined by the
polynomial

− 240X8 − 608X6Y 2 − 240X4Y 4 + 384X2Y 6 + 256Y 8 + 840X6Z2

+ 696X4Y 2Z2 − 192X2Y 4Z2 + 384Y 6Z2 − 1215X4Z4 + 696X2Y 2Z4

− 240Y 4Z4 + 840X2Z6 − 608Y 2Z6 − 240Z8 − 896X6Y − 2304X4Y 3

− 1920X2Y 5 − 512Y 7 + 1152X4YZ2 + 192X2Y 3Z2 + 768Y 5Z2 − 1848X2YZ4

+ 2784Y 3Z4 + 1504YZ6 + 832X6 + 1312X4Y 2 − 160X2Y 4 − 640Y 6 − 984X4Z2

− 4144X2Y 2Z2 − 3520Y 4Z2 − 234X2Z4 − 2504Y 2Z4 + 232Z6

+ 2176X4Y + 3584X2Y 3 + 1408Y 5 + 2048X2YZ2 + 576Y 3Z2 − 1640YZ4

− 800X4 − 288X2Y 2 + 656Y 4 − 424X2Z2 + 2808Y 2Z2 + 313Z4 − 1664X2Y

− 1280Y 3 − 128YZ2 + 64X2 − 416Y 2 − 456Z2 + 384Y + 144.

Viewed dually, this example is more complicated. The algebraic boundary of Co is the
surface of degree 8 defined by the above polynomial, which has singularities along the
boundary of Co. So the above theorem is not applicable in this case but the conclusion is
still true and we compute the iterated singular loci for demonstration. In conclusion, we
will find the dual varieties of the cylinders, which are circles, as irreducible components
of the singular locus of ∂aC0. They are the two irreducible components of Exa(Co):
The singular locus of the surface has 4 irreducible components: the dual varieties to the

cylinders, which are circles, namely V(Z,X2 + Y 2 − 1) and V(X, 4Y 2 + 4Z2 − 4Y − 3), a
complex conjugate pair of quadrics V(2Y 2−Y+2, 4X2−3Z2−2YZ2+8Y−4), and a curve
of degree 12, which we denote by X12. The second iterated singular locus, which is the
singular locus of the union of these four irreducible curves, consists of 24 points. Sixteen
of them are the singular points of X12, and the other eight points are intersection points of
X12 with the complex conjugate pair of quadricsV(2Y 2−Y+2, 4X2−3Z2−2YZ2+8Y−4).
The two circles dual to the cylinders intersect the curve X12 only in singular points
of the latter. There are no other intersection points of the irreducible components of
(∂aCo)sing . Of these 24 points in (∂aCo)2,sing, only four are real. They are (±√

5/9, 2/3, 0)
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and (0,−1/6,±√
5/9). Now, the difficult job is to exclude those varieties that do not con-

tribute irreducible components to the algebraic boundary of C. The dual variety to ∂aCo

is only a curve, so it cannot be an irreducible component of ∂aC. Next, we discuss the
irreducible components of (∂aCo)sing : The dual varieties to the complex conjugate pair of
quadrics cannot be an irreducible component of ∂aC either, because the real points will
not be dense in this hypersurface. Why the dual variety to the curve X12 is not an irre-
ducible component of ∂aC is not obvious. Of the irreducible components of (∂aCo)2,sing,
the four real points must be considered as potential candidates for dual varieties to
irreducible components of ∂aC.

To close, we want to consider an example of a convex set whose algebraic bound-
ary is not smooth along its Euclidean boundary and for which the conclusion of the
Theorem 3.16 is false. As remarked above, the stratification into iterated singular loci
must be refined to a stratification that is Whitney (a)-regular.

Example 3.20. Consider the surface in A3 defined by

f = (z2 + y2 − (x + 1)(x − 1)2)(y − 5(x − 1))(y + 5(x − 1)),

which is the union of an irreducible cubic and two hyperplanes meeting along the line
V(x−1, y), see the author’s website [16] for pictures. The cubic surface is a rotation of the
nodal curve shown in Figure 3 on the left along the x-axis, so the convex set C bounded
by the cubic looks like a teardrop. We consider the extreme point p = (1, 0, 0) of C: The
normal cone is three-dimensional and so the dual hyperplane p⊥ is an irreducible com-
ponent of the algebraic boundary of Co. Indeed, the point p is a singular point of the cubic
that lies on the line V(x−1, y), which is an irreducible component of the singular locus of
the reducible surface V(f ), so p cannot be found by computing the iterated singular loci
of V(f ). We make this discussion relevant by perturbing the above polynomial f in such a
way that it becomes irreducible and shows the same behaviour: Consider the polynomial

g = f + 1
10

(x − 1)yz2,

which is irreducible over Q. The surface V(g) ⊂ A3 is the algebraic boundary of a convex
set C′, a perturbation of the teardrop C. Convexity of C′ can be checked by writing z as
a function of x and y and checking its convexity resp. concavity using its Hessian matrix
(note that z only occurs to the power of 2 in g). The point p is also an extreme point of
C′, and the normal cone at p relative to C′ is still three-dimensional. Yet, the algebraic
boundary of C′ is only singular along the line V(x − 1, y), which is a smooth curve. So we
do not find {p} as an irreducible component of an iterated singular locus of ∂aC′ = V(g).
Note that Whitney’s condition (a) for (V(g),V(x − 1, y)) is not satisfied at p because a

hyperplane that is in limiting position for supporting hyperplanes to the teardrop C′ does
not contain the line V(x − 1, y). Refining the stratification of iterated singular loci into a
Whitney (a)-regular stratification would detect this special extreme point.
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