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Abstract

In this paper we compute a q-hypergeometric expression for the cyclotomic expansion
of the colored Jones polynomial for the left-handed torus knot (2, 2t + 1). We use this
to define a family of q-series, the simplest case of which is the generating function for
strongly unimodal sequences. Special cases of these q-series are quantummodular
forms, and at roots of unity, these are dual to the generalized Kontsevich-Zagier series
introduced by the first author. This duality generalizes a result of Bryson, Pitman, Ono,
and Rhoades. We also compute Hecke-type expansions for our family of q-series.
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Introduction and statement of results
Several years ago, Zagier introduced quantum modular forms [30]. These are functions
defined for z ∈ Q (or equivalently, for q a root of unity, where q := e2π iz) which behave
like modular forms. For g(z) to be quantum modular means that instead of requiring that
g(z) − χ(γ ) (cz + d)−kg

(
az+b
cz+d

)
= 0 for γ = ( a b

c d
) ∈ SL2(Z) as with classical modular

forms, we only ask that g(z) − χ(γ ) (cz + d)−kg
(
az+b
cz+d

)
have ‘nice’ properties such as

continuity or analyticity. The word quantum refers to the fact that these functions have
‘the ‘feel’ of the objects in perturbative quantum field theory’ (p. 659 of [30]). A celebrated
example is the Kontsevich-Zagier series [29]

F(q) :=
∞∑
n=0

(q)n, (1.1)

where we use the standard notation,

(a)n := (1 − a)(1 − aq) · · · (1 − aqn−1) . (1.2)

Note that F(q) does not converge on any open subset of C, but it is well-defined at any
root of unity.
Bryson et al. [9] recently established a relationship between F(q) and the generating

function for strongly unimodal sequences,

U(x; q) :=
∞∑
n=0

(−x q)n
(−x−1 q

)
n qn+1. (1.3)
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Precisely, U(−1; q) is dual to F(q) at any root of unity ζN = e2π i/N ,

F
(
ζ −1
N

)
= U(−1; ζN ). (1.4)

Note that, contrary to the Kontsevich-Zagier series F(q), the functionU(x; q) converges
for generic |q| < 1. It should be remarked that the function U(−1; q) also plays a crucial
role in studying a radial limit of a mock theta function of Ramanujan [11].
For other recent studies and interesting examples of quantummodular forms in number

theory, combinatorics, knot theory, and Lie algebras, see e.g., [6-8,10,11,17,19,26,30].
This article is based on the observation that the identity (1.4) can be interpreted in terms

of quantum topology as follows. We use the N-colored Jones polynomial JN (K ; q) for a
knot K, which is based on the N-dimensional representation of Uq(s�2) (see e.g., [21]).
Throughout this article, we use a normalization JN (unknot; q) = 1. It is known that

JN
(
K ; q−1) = JN (K∗; q), (1.5)

whereK∗ is amirror image ofK. The colored Jones polynomial for the right-handed trefoil
T(2,3) and the left-handed trefoil T∗

(2,3) may be, respectively, written as (see e.g., [12,20,24])

JN (T(2,3); q) = q1−N
∞∑
n=0

q−nN (q1−N)
n , (1.6)

JN
(
T∗

(2,3); q
)

=
∞∑
n=0

qn
(
q1−N)

n
(
q1+N)

n . (1.7)

(Note that the series defining JN (T(2,3); q) and JN
(
T∗

(2,3); q
)
are in fact finite sums, ter-

minating at n = N). Letting q = ζN in (1.7) and q = ζ−1
N in (1.6) and appealing to (1.5),

one finds the duality in (1.4).
Based on the colored Jones polynomial for the torus knot T(2,2t+1) at roots of unity, the

first author [14] introduced a family of quantum modular forms generalizing F(q) (1.1),

Ft(q) := qt
∞∑

kt≥···≥k1≥0
(q)kt

t−1∏
i=1

qki(ki+1)
[
ki+1
ki

]
q
. (1.8)

Here
[
n
k

]
q
is the usual q-binomial coefficient,

[
n
k

]
q
:= (q)n

(q)n−k(q)k
. (1.9)

Note that when t = 1, we recover the Kontsevich-Zagier series, F1(q) = q F(q). Our
purpose in this article is to use the perspective of quantum invariants to generalizeU(x; q)
and (1.4). As a dual to Ft(q), we make the following definition.

Definition 1.1. The generalized U-function Ut(x; q) is defined by

Ut(x; q) := q−t
∑

kt≥···≥k1≥1
(−xq)kt−1(−x−1q)kt−1 qkt

t−1∏
i=1

qk
2
i

[
ki+1 + ki − i + 2

∑i−1
j=1 kj

ki+1 − ki

]
q
.

(1.10)
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This function is well-defined for |q| < 1. When x = −1, it is also defined when q is a
root of unity. Our first main result is the following generalization of (1.4).

Theorem 1.2.

Ft
(
ζ −1
N

)
= Ut(−1; ζN ). (1.11)

Our second main result is a Hecke-type expansion for Ut(x; q). (The case t = 1 and
x = −1 appears in [9].)

Theorem 1.3. We have

Ut (−x; q)

= −q−t/2−1/8 (xq)∞(q/x)∞
(q)2∞

(1.12)

×

⎛
⎜⎜⎝ ∑

r,s≥0
r �≡s (mod2)

−
∑
r,s<0

r �≡s (mod2)

⎞
⎟⎟⎠ (−1)

r−s−1
2 q

1
8 r

2+ 4t+3
4 rs+ 1

8 s
2+ 2+t

2 r+ t
2 s

1 − xq
r+s+1

2

= −q−t/2−1/8 (xq)∞(q/x)∞
(q)2∞

(1.13)

×

⎛
⎜⎜⎝ ∑

r,s,u≥0
r �≡s (mod2)

+
∑

r,s,u<0
r �≡s (mod2)

⎞
⎟⎟⎠ (−1)

r−s−1
2 xuq

1
8 r

2+ 4t+3
4 rs+ 1

8 s
2+ 2+t

2 r+ t
2 s+u r+s+1

2 .

The paper is constructed as follows. In the section ‘Bailey pairs and the colored Jones
polynomial’, we review Bailey pairs and their relation to the colored Jones polynomial.
In the section ‘The colored Jones polynomial for torus knots’, we study the colored Jones
polynomial for the torus knot T(2,2t+1). In particular, we use the Bailey pair machinery to
compute the coefficients of the cyclotomic expansion of JN

(
T∗

(2,2t+1); q
)
, which leads to

Theorem 1.2. In the section ‘Hecke-type formulae’, we prove Theorem 1.3, again by using
the Bailey machinery. In the section ‘The vector-valued case’, we extend Theorems 1.2
and 1.3 to the vector-valued setting. We close with some suggestions for future research
and an appendix containing some examples.

Bailey pairs and the colored Jones polynomial
In this section, we review facts about Bailey pairs and their relation to the colored Jones
polynomial.
First recall [2] that two sequences (αn,βn) form a Bailey pair relative to a if

βn =
n∑

j=0

αj

(q)n−j(aq)n+j
, (2.1)

or equivalently,

αn = 1 − aq2n

1 − a
(a)n
(q)n

(−1)nqn(n−1)/2
n∑

j=0
(q−n)j(aqn)jq jβj. (2.2)



Hikami and Lovejoy Research in theMathematical Sciences  (2015) 2:2 Page 4 of 15

The Bailey lemma [2] states that if (αn,βn) is a Bailey pair relative to a then so is
(
α′
n,β ′

n
)
,

where

α′
n = (b)n(c)n(aq/bc)n

(aq/b)n(aq/c)n
αn (2.3)

and

β ′
n =

n∑
k=0

(b)k(c)k(aq/bc)n−k(aq/bc)k

(aq/b)n(aq/c)n(q)n−k
βk . (2.4)

In particular, if b, c → ∞ then we have

α′
n = anqn

2
αn (2.5)

and

β ′
n =

n∑
k=0

akqk2

(q)n−k
βk . (2.6)

Inserting (2.3) and (2.4) back in Definition (2.1) and letting n → ∞, we have
∑
n≥0

(b)n(c)n(aq/bc)nβn = (aq/b)∞(aq/c)∞
(aq)∞(aq/bc)∞

∑
n≥0

(b)n(c)n(aq/bc)n

(aq/b)n(aq/c)n
αn. (2.7)

Next, recall the cyclotomic expansion of the colored Jones polynomial due to
Habiro [13]

JN (K ; q) =
∞∑
n=0

Cn(K ; q)
(
q1+N)

n
(
q1−N)

n , (2.8)

where we have

Cn(K ; q) ∈ Z
[
q, q−1] . (2.9)

The colored Jones polynomial JN (K ; q) and the coefficients Cn(K ; q) defined in (2.8)
can be regarded as a Bailey pair (αn,βn) relative to q2. Namely, comparing Equations (2.8)
and (2.2) we have (see also [13,16])

αn =
(
1 − qn+1) (1 − q2n+2)

(1 − q) (1 − q2)
(−1)n q

1
2n(n−1) Jn+1(K ; q),

βn = q−n Cn(K ; q).

(2.10)

Equation (2.1) gives the inverse transform

Cn(K ; q) = −qn+1
n+1∑
�=1

(1 − q�) (1 − q2�)
(q)n+1−� (q)n+1+�

(−1)� q
1
2 �(�−3) J�(K ; q). (2.11)

The colored Jones polynomial for torus knots
For some knots K, explicit forms of JN (K ; q) and/or CN (K ; q) are known in the literature.
For instance, when K is the right-handed torus knot T(s,t), where s and t are coprime
positive integers, the colored Jones polynomial is given by [25,27]

JN (T(s,t); q) = q
1
4 st(1−N2)

q
N
2 − q−N

2

N−1
2∑

j=−N−1
2

qstj
2
(
q−(s+t)j+ 1

2 − q−(s−t)j− 1
2
)
. (3.1)
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Using difference equations, the first author [14] constructed a q-hypergeometric
expression for JN

(
T(s,t); q

)
when s = 2,

JN
(
T(2,2t+1); q

) = qt(1−N)
∞∑

kt≥···≥k1≥0

(
q1−N)

kt q
−Nkt

t−1∏
i=1

qki(ki+1−2N)

[
ki+1
ki

]
q
. (3.2)

(See [18] for similar expressions for some other torus knots.) Comparing this with the
generalized Kontsevich-Zagier series (1.8), we find that JN

(
T(2,2t+1); q

)
and Ft(q) agree at

roots of unity,

JN
(
T(2,2t+1); ζN

) = Ft(ζN ). (3.3)

With (1.5) and (2.8) in mind, we see that to discover Definition 1.1 and prove
Theorem 1.2, we need to compute the cyclotomic expansion of the colored Jones polyno-
mial of the left-handed torus knot T∗

(2,2t+1). Recalling that the colored Jones polynomial
for the mirror image K∗ is given from that for K (1.5), we find from (3.1) that

(
1 − qN

)
JN
(
T∗

(2,2t+1); q
)

= (−1)Nq−t+ 1
2N+ 2t+1

2 N2
N−1∑
k=−N

(−1)kq− 2t+1
2 k(k+1)+k . (3.4)

Then, the coefficients Cn in the cyclotomic expansion (2.8) are given from the inverse
transform (2.11) as

Cn−1
(
T∗

(2,2t+1); q
)

= −qn−t
n∑

�=0

1
(q)n−� (q)n+�

q(t+1)�2−�
(
1 − q2�

) �−1∑
k=−�

(−1)k q−(t+ 1
2
)
k2−(t− 1

2
)
k .

(3.5)

In the following proposition, we give a q-hypergeometric expression for the coefficients
Cn
(
T∗

(2,2t+1); q
)
. We use the usual characteristic function

χ(X) :=
{
1, when X is true,
0, when X is false.

Proposition 3.1. We have

− qt−n Cn−1
(
T∗

(2,2t+1); q
)

=
∑

n≥n2t−1≥···≥n1≥0

q
∑t−1

i=1 n
2
t+i+(nt2 )−

∑t−1
i=1 nini+1−∑t−2

i=1 ni(−1)nt
(
1 − qnt−χ(t≥2)nt−1

)
(q)n−n2t−1(q)n2t−1−n2t−2 · · · (q)n2−n1(q)n1

.

(3.6)

Proof. In light of Equations (3.5) and (2.1), we need to find β ′
n such that

(
α′
n,β ′

n
)
form a

Bailey pair relative to 1, where

α′
n = q(t+1)n2−n(1 − q2n)

n−1∑
j=−n

(−1)jq−((2t+1)j2+(2t−1)j)/2. (3.7)
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We require a result of the second author. Namely, in part (ii) of Theorem 1.1 of [23], let
k = K = t, � = t − 1, andm = 0. Then, (αn,βn) form a Bailey pair relative to 1, where

βn =
∑

n≥n2t−1≥···≥n1≥0

q
∑t−1

i=1 n
2
t+i+(nt+1

2 )−∑t−1
i=1 nini+1−∑t−1

i=1 ni(−1)nt
(q)n−n2t−1(q)n2t−1−n2t−2 · · · (q)n2−n1(q)n1

(3.8)

and

αn = q(t+1)n2+n
n∑

j=−n
(−1)jq−((2t+1)j2+(2t−1)j)/2

− χ(n �= 0)q(t+1)n2−n
n−1∑

j=−n+1
(−1)jq−((2t+1)j2+(2t−1)j)/2

= − q(t+1)n2−n(1 − q2n)
n−1∑
j=−n

(−1)jq−((2t+1)j2+(2t−1)j)/2 (3.9)

+
{
1, if n = 0,

(−1)nq
n2
2 +( 2t−3

2
)
n + (−1)nq

n2
2 −( 2t−3

2
)
n, if n ≥ 1.

(3.10)

Let αn = −α′
n +α′′

n = (3.9) + (3.10). To find β ′′
n , we start with Equations (3.9) and (3.10)

of [23], which state that

α∗
n =

{
1, if n = 0,
(−1)n

(
q(−(2k−1)n2−(2�+1)n)/2 + q(−(2k−1)n2+(2�+1)n)/2

)
, if n > 0,

(3.11)

and

β∗
n = βnk = (−1)nkq

−
(
nk + 1

2

) ∑
nk≥nk−1≥···≥n1≥0

q−∑k−1
i=1 nini+1−∑�

i=1 ni

(q)nk−nk−1 · · · (q)n2−n1(q)n1
, (3.12)

form a Bailey pair relative to 1. Using this Bailey pair with k = t and

� =
{
0, for t = 1,
t − 2, for t ≥ 2,

we iterate Equations (2.5) and (2.6) t times. Then, α∗
n becomes α′′

n and

β ′′
n =

∑
n≥n2t−1≥···≥n1≥0

q
∑t−1

i=1 n
2
t+i+(nt2 )−

∑t−1
i=1 nini+1−∑t−2

i=1 ni(−1)nt
(q)n−n2t−1(q)n2t−1−n2t−2 · · · (q)n2−n1(q)n1

. (3.13)

Taking β ′′
n − βn gives the expression for −qt−nCn−1

(
T∗

(2,2t+1)

)
.

While the above proposition does furnish an attractive q-hypergeometric expression for
Cn
(
T∗

(2,2t+1); q
)
, it is not apparent that these coefficients are Laurent polynomials in q, as

guaranteed by (2.9). This is made clear with the next proposition.
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Proposition 3.2. We have

Cn
(
T∗

(2,2t+1); q
)

= qn+1−t
∑

n+1=kt≥kt−1≥···≥k1≥1

t−1∏
a=1

qk
2
a

(
q1−a+∑a

i=1 2ki
)
ka+1−ka

(q)ka+1−ka
(3.14)

= qn+1−t
∑

n+1=kt≥kt−1≥···≥k1≥1

t−1∏
i=1

qk
2
i

[
ki+1+ki−i+2

∑i−1
j=1 kj

ki+1−ki

]
q
. (3.15)

Proof. We recall the classical q-binomial identity,

N∑
n=0

znq(
n
2)

[
N
n

]
q

= (z)N . (3.16)

Letting z = −zqa, N = b − a, and shifting n to n − a, we have the identity

b∑
n=a

q(
n
2) (−z)n

(q)b−n (q)n−a
= (−z)a q(

a
2)

(z qa)b−a
(q)b−a

. (3.17)

Using this identity, we also have, for arbitrary c,

b∑
n=a

(−1)n (1 − qn−c) q(
n
2)−an

(q)b−n (q)n−a
=
{

(−1)aq−(a+1
2 )(1 − qa−c), if a = b,

(−1)a+1 q−(a2)−c, otherwise.
(3.18)

We may use the two identities (3.17) and (3.18) to transform (3.6) into (3.14) as follows.
First, if nt+1 = nt−1 then the sum in (3.6) vanishes, so we may assume nt+1 > nt−1. The
sum over nt is

nt+1∑
nt=nt−1

(−1)nt q(
nt
2 )−nt−1nt (1 − qnt−nt−1)

(q)nt+1−nt (q)nt−nt−1
,

and the second part of identity (3.18) then enables us to evaluate this sum, giving

− qt−n−1Cn
(
T∗

(2,2t+1); q
)

=
∑

n+1≥n2t−1≥···≥nt+2≥nt+1>nt−1≥nt−2≥···≥n1≥0
(−1)1+nt−1q

∑t−1
i=1 n

2
t+i−

∑t−2
i=1 nini+1−∑t−1

i=1 ni

× q−(
nt−1
2 )

(q)n+1−n2t−1 · · · (q)nt+2−nt+1(q)nt−1−nt−2 · · · (q)n2−n1(q)n1
.

(3.19)

We then set nt+1 = nt−1 + k1, with k1 ≥ 1. The sum over nt−1 is

nt+2−k1∑
nt−1=nt−2

(−1)nt−1q(
nt−1
2 )−nt−2nt−1+2k1nt−1

(q)nt+2−k1−nt−1(q)nt−1−nt−2
,
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and (3.17) allows us to evaluate this sum, resulting in

qt−n−1Cn
(
T∗

(2,2t+1); q
)

=
∑

n+1≥n2t−1≥···≥nt+2≥nt−2+k1>nt−2≥···≥n1≥0
(−1)nt−2q

∑t−1
i=2 n

2
t+i−

∑t−3
i=1 nini+1−∑t−2

i=1 ni

× (q2k1)nt+2−nt−2−k1
(q)nt+2−nt−2−k1

· q−(
nt−2
2 )−nt−2+2k1nt−2+k 2

1

(q)n+1−n2t−1 · · · (q)nt+3−nt+2(q)nt−2−nt−3 · · · (q)n2−n1(q)n1
.

We continue in the same manner, next setting nt+2 = nt−2 + k2, with k2 ≥ k1, and we
may then take the sum over nt−2 using (3.17). Iterating this process (taking the sum over
nt−a after setting nt+a = nt−a + ka), we arrive at (3.14). The expression in Equation (3.15)
follows from the fact that[

n
k

]
q

=
(
qk+1)

n−k
(q)n−k

. (3.20)

We are now prepared to prove the duality in Theorem 1.2.

Proof of Theorem 1.2. Comparing Equations (3.14) and (1.10), we see that

Ut(x; q) =
∞∑
n=0

Cn
(
T∗

(2,2t+1); q
)

(−x q)n
(−x−1 q

)
n . (3.21)

Therefore, by (2.8), Ut(x; q) gives the colored Jones polynomial for T∗
(2,2t+1) when

x = qN ,

JN
(
T∗

(2,2t+1); q
)

= Ut
(−qN ; q

)
. (3.22)

Combining (3.22) with (3.3) and (1.5) gives the statement of the theorem. �

Hecke-type formulae
In this section, we prove Theorem 1.3 as well as a simpler formula when t = 1.

Proof of Theorem 1.3. In Equations (2.5) and (2.6), we let a = 1, b = 1/c = x and apply
α′
n and β ′

n = −qt−nCn−1 from the proof of Proposition 3.1. Recalling (3.21), we obtain

Ut(−x; q) = −q−t(xq)∞(q/x)∞
(q)2∞

∑
n≥1

n−1∑
k=−n

(−1)kq(t+1)n2−(t+ 1
2
)
k2−(t− 1

2
)
k(1 − q2n)

(1 − xqn)(1 − qn/x)

= −q−t(xq)∞(q/x)∞
(q)2∞

∑
n≥1

n−1∑
k=−n

(−1)kq(t+1)n2−(t+ 1
2
)
k2−(t− 1

2
)
k

1 − xqn

+ −q−t(xq)∞(q/x)∞
(q)2∞

∑
n≥1

n−1∑
k=−n

(−1)kq(t+1)n2+n−(t+ 1
2
)
k2−(t− 1

2
)
k

x(1 − qn/x)

= −q−t(xq)∞(q/x)∞
(q)2∞

∑
n≥1

n−1∑
k=−n

(−1)kq(t+1)n2−(t+ 1
2
)
k2−(t− 1

2
)
k

1 − xqn

− −q−t(xq)∞(q/x)∞
(q)2∞

∑
n≤1

−n−1∑
k=n

(−1)kq(t+1)n2−(t+ 1
2 )k2−(t− 1

2
)
k

1 − xqn
.
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Letting n = (r + s + 1)/2 and k = (r − s − 1)/2 in each of the two final sums leads
to the expression in (1.12). The expression in (1.13) follows upon expanding the term
1/
(
1 − xq(r+s+1)/2) in (1.12) as a geometric series. �

When t = 1, we have the following Hecke-type double sum.

Theorem 4.1.

(1 − x)U1(−x; q) = 1
(q)∞

⎛
⎝∑

r,n≥0
−
∑
r,n<0

⎞
⎠ (−1)n+rx−rqn(3n+5)/2+2nr+r(r+3)/2. (4.1)

Proof. To see this, we use the Bailey pair relative to q (Lemma 6 of [3]),

αn = (−x)−nq(
n+1
2 )
(
1 − x2n+1)

and

βn = (x)n+1(q/x)n
(q2)2n

together with the fact that if (αn,βn) is a Bailey pair relative to a, then by Corollary 1.3 of
[22] we have

∑
n≥0

(aq)2nqnβn = 1
(q)∞

∑
r,n≥0

(−a)nq3n(n+1)/2+(2n+1)rαr . (4.2)

This gives
∑
n≥0

(x)n+1(q/x)nqn = 1
(q)∞

∑
r,n≥0

(−1)n+rx−rqn(3n+5)/2+2nr+r(r+3)/2 (1 − x2r+1) . (4.3)

Using
(
1 − x2r+1) to split the right-hand side into two sums and then replacing (r, n) by

(−r − 1,−n − 1) in the second sum yields the result.

The vector-valued case
The first author [15] introduced and studied the modular properties of a family of q-series
F(m)
t (q), defined for 1 ≤ m ≤ t by

F(m)
t (q) := qt

∞∑
k1,...,kt=0

(q)kt q
k 2
1 +···+k 2

t−1+km+···+kt−1
t−1∏
i=1

[
ki+1 + δi,m−1

ki

]
q
. (5.1)

The casem = 1 corresponds to (1.8), Ft(q) = F(1)
t (q).

He showed [15] that at the N-th root of unity we have

ζ
−t+ (2t+1−2m)2

8(2t+1)
N F(m)

t (ζN ) = (2t + 1)N
4(2t+1)N∑

k=1
χ

(m)
8t+4(k) ζ

k2
8(2t+1)

N B2

(
k

4(2t + 1)N

)
,

(5.2)

where the Bernoulli polynomial is B2(x) = x2 − x + 1
6 , and the periodic function is

χ
(m)
8t+4(k) :=

⎧⎪⎨
⎪⎩
1, when k = ±(2t + 1 − 2m) mod 8t + 4,
−1, when k = ±(2t + 1 + 2m) mod 8t + 4,
0, otherwise.

(5.3)
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This is a limiting value of the Eichler integral of a vector-valued modular form 

(m)
t (τ )

with weight 1/2,



(m)
t (τ ) :=

∞∑
n=0

χ
(m)
8t+4(n) q

1
8(2t+1)n

2

= q
(2t+1−2m)2

8(2t+1)
(
qm, q2t+1−m, q2t+1; q2t+1)

∞ ,

(5.4)

where as usual q = e2π iτ and (a, b, · · · ; q)∞ = (a)∞(b)∞ · · · . Note that these q-series
appeared in the Andrews-Gordon identities [1], the t = 2 case of which corresponds to
the Rogers-Ramanujan identities. The quantum modularity of F(m)

t (q) is given by

φ
(m)
t (z) + 1

(i z)
3
2

t∑
m′=1

2√
2t + 1

(−1)t+1+m+m′
sin
(
2mm′

2t + 1
π

)
φ

(m′)
t (−1/z)

=
√

(2t + 1)i
2π

∫ i∞

0



(m)
t (w)

(w − z)
3
2
dw,

(5.5)

where z ∈ Q and φ
(m)
t (τ ) := q−t+ (2t+1−2m)2

8(2t+1) F(m)
t (q). See [15] for details.

In this section, we define q-series U(m)
t (q) so that F(m)

t

(
ζ −1
N

)
= U(m)

t (−1; ζN ) (see

Theorem 5.5) and we find the Hecke-type formulae for U(m)
t (q) (see Theorem 5.6). We

begin by defining an analogue of the colored Jones polynomial,

(
1 − qN

)
J(t,m)
N (q) := (−1)N q−t+N

2 + 2t+1
2 N2

N−1∑
k=−N

(−1)k q− 2t+1
2 k(k+1)+mk . (5.6)

When m = 1, this coincides with the colored Jones polynomial J(t,1)N (q) =
JN
(
T∗

(2,2t+1); q
)
.

Proposition 5.1.

J(t,m)
N (ζN ) = F(m)

t

(
ζ −1
N

)
. (5.7)

Proof. The function J(t,m)
N (q) is also written by use of the periodic function (5.3) as

(
1 − qN

)
J(t,m)
N (q) = (−1)N q−t+ 1

2N+ 2t+1
2 N2

2(2t+1)N∑
k=1

χ
(m)
8t+4(k) q

− k2−(2t+1−2m)2
8(2t+1) .

At q → ζN , we have

ζ
t− (2t+1−2m)2

8(2t+1)
N J(t,m)

N (ζN ) = − lim
q→ζN

1
1 − qN

2(2t+1)N∑
k=1

χ
(m)
8t+4(k) q

− k2
8(2t+1)

= − 1
8(2t + 1)N

2(2t+1)N∑
k=1

k2 χ
(m)
8t+4(k) ζ

− k2
8(2t+1)

N .

Using (5.3), the sum
∑2(2t+1)N

k=0 may be replaced with 1
2
∑2(2t+1)N

k=−2(2t+1)N . Then the right-
hand side is written as

− 1
16(2t + 1)N

4(2t+1)N∑
�=0

(� − 2(2t + 1)N)2 χ
(m)
8t+4(� − 2(2t + 1)N) ζ

− (�−2(2t+1)N)2
8(2t+1)

N .
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Since χ
(m)
8t+4(k − 2(2t + 1)) = −χ

(m)
8t+4(k), we obtain

ζ
t− (2t+1−2m)2

8(2t+1)
N J(t,m)

N (ζN ) = (2t + 1)N
4(2t+1)N∑

k=1
χ

(m)
8t+4(k) ζ

− k2
8(2t+1)

N B2

(
k

4(2t + 1)N

)
.

(5.8)

Recalling (5.2), the statement follows.

Next, we study a cyclotomic expansion for J(t,m)
N (q),

J(t,m)
N (q) =

∞∑
n=0

C(t,m)
n (q) (q1+N )n (q1−N )n. (5.9)

Equation (2.11) shows that we have

C(t,m)
n−1 (q) = −qn−t

n∑
�=0

1
(q)n−�(q)n+�

q(t+1)�2−� (1 − q2�)
�−1∑
k=−�

(−1)kq− 2t+1
2 k(k+1)+mk .

(5.10)

We note that C(t,1)
n (q) = Cn

(
T∗

(2,2t+1); q
)
.

The next two propositions are generalizations of Propositions 3.1 and 3.2, respectively.

Proposition 5.2. We have

−qt−nC(t,m)
n−1 =

∑
n≥n2t−1≥···≥n1≥0

q
∑t−1

i=1n
2
t+i+(nt2 )−

∑t−1
i=1nini+1−∑t−m−1

i=1 ni(−1)nt (1−qnt−χ(t>m)nt−m)

(q)n−n2t−1 · · · (q)n2−n1(q)n1
.

(5.11)

Proof. In light of Equation (5.10) and the definition of a Bailey pair (2.1), we need to find
β ′
n such that

α′
n = q(t+1)n2−n (1 − q2n

) n−1∑
k=−n

(−1)kq−(2t+1)k2/2−(2t−(2m−1))k/2. (5.12)

The proof of this Bailey pair is exactly as in the proof of Proposition 3.1 but with � =
t − m instead of t − 1.

Proposition 5.3. We have

C(t,m)
n (q) = qn+1−t

∑
n+1=kt≥kt−1≥···≥k1≥0

km≥1

t−1∏
a=1

qk
2
a

(
q1−a+∑a

i=1(2ki+χ(m>i))
)
ka+1−ka

(q)ka+1−ka
(5.13)

= qn+1−t
∑

n+1=kt≥kt−1≥···≥k1≥0
km≥1

t−1∏
i=1

qk
2
i

⎡
⎢⎢⎣ki+1−ki−i+

i∑
j=1

(
2kj+χ(m> j)

)
ki+1 − ki

⎤
⎥⎥⎦
q

. (5.14)
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Proof. The proof is similar to that of Proposition 3.2. We begin by treating the sum over
nt , which is

nt+1∑
nt=nt−1

(−1)nt q(
nt
2 )−nt−1nt (1 − qnt−χ(t>m)nt−m)

(q)nt+1−nt (q)nt−nt−1
. (5.15)

Assuming for the moment that nt+1 > nt−1, the second part of identity (3.18) enables
us to evaluate this sum, giving

− qt−n−1C(t,m)
n (q)

=
∑

n+1≥n2t−1≥···≥nt+2≥nt+1>nt−1≥nt−2≥···≥n1≥0
(−1)1+nt−1q

∑t−1
i=1 n

2
t+i−

∑t−2
i=1 nini+1−∑t−m

i=1 ni

× q−(
nt−1
2 )

(q)n+1−n2t−1 · · · (q)nt+2−nt+1(q)nt−1−nt−2 · · · (q)n2−n1(q)n1
.

(5.16)

The rest of the proof is the same as the proof of Proposition 3.2. The only difference
between Equations (3.19) and (5.16) is that the latter contains the term q−∑t−m

i=1 ni instead
of the term q−∑t−1

i=1 ni , which results in (5.13) instead of (3.14).
Now, suppose that nt+1 = nt−1. The sum (5.15) on nt is trivial and reduces to

(−1)nt−1q−(
nt−1+1

2 )
(
1 − qnt−1−χ(t>m)nt−m

)
. (5.17)

This corresponds to k1 = 0, and the sum on nt−1 is then

nt+2∑
nt−1=nt−2

(−1)nt−1q(
nt−1
2 )−nt−2nt−1

(
1 − qnt−1−χ(t>m)nt−m

)
(q)nt+2−nt−1(q)nt−1−nt−2

. (5.18)

If nt−2 = nt+2 then we collapse the sum again and obtain k2 = 0, continuing in this way
until nt+a > nt−a, and then applying (3.17) and arguing as usual. Note that if nt+m = nt−m
then the sum vanishes, so we have km ≥ 1.

Using the expression for C(t,m)
n (q), we are now prepared to generalize Definition 1.1.

Definition 5.4. The generalized U-function U(m)
t (x; q) is defined by

U(m)
t (x; q) :=

∞∑
n=0

C(t,m)
n (q) (−x q)n (−x−1q)n

= q−t
∑

kt≥···≥k1≥0
km≥1

(−xq)kt−1 (−x−1q)kt−1 qkt

×
t−1∏
i=1

qk
2
i

⎡
⎢⎢⎣ki+1 − ki − i +

i∑
j=1

(
2kj + χ(m > j)

)
ki+1 − ki

⎤
⎥⎥⎦
q

.

(5.19)

By construction, U(m)
t (−1; q) is dual to F(m)

t (q) as follows.
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Theorem 5.5.

F(m)
t

(
ζ −1
N

)
= U(m)

t (−1; ζN ). (5.20)

Proof. We have J(t,m)
N (q) = U(m)

t (−qN ; q) from (5.9); thus, we get

J(t,m)
N (ζN ) = U(m)

t (−1; ζN ). (5.21)

With the help of (5.7), we get (5.20).

We end this section with the Hecke-type formula for U(m)
t (x; q). These follow just as

those for Ut(x; q) in Theorem 1.3, using the Bailey pair in Proposition 5.2 in place of the
Bailey pair in Proposition 3.1.

Theorem 5.6.

U(m)
t (−x; q) = −q− t

2−m
2 + 3

8
(xq)∞(q/x)∞

(q)2∞
(5.22)

×

⎛
⎜⎜⎝ ∑

r,s≥0
r �≡s (mod 2)

−
∑
r,s<0

r �≡s (mod 2)

⎞
⎟⎟⎠ (−1)

r−s−1
2 q

1
8 r

2+ 4t+3
4 rs+ 1

8 s
2+ 1+m+t

2 r+ 1−m+t
2 s

1 − xq
r+s+1

2

= −q− t
2−m

2 + 3
8
(xq)∞(q/x)∞

(q)2∞
(5.23)

×

⎛
⎜⎜⎝ ∑

r,s,u≥0
r �≡s (mod 2)

+
∑

r,s,u<0
r �≡s (mod 2)

⎞
⎟⎟⎠(−1)

r−s−1
2 xuq

1
8 r

2+4t+3
4 rs+1

8 s
2+ 1+m+t

2 r+1−m+t
2 s+ur+s+1

2 .

Concluding remarks
In this paper, we have studied a family of quantum modular forms Ut(−1; q) based on
the colored Jones polynomial for the torus knot T(2,2t+1). We have extended the duality
between U1(−1; q) and F1(q) to general t and determined a Hecke-type expansion for
Ut(x; q). We have further generalized these results to the vector-valued setting.
We close with two remarks.
First, in [4,9] the modular transformation formula was given for U1(−1; q) for a generic

q, based on an expression for U1(x; q) in terms of the Appell-Lerch series in [4]. The
expression in terms of the Appell-Lerch series also shows that U1(x; q) is a mixed mock-
modular form for generic roots of unity x �= −1 and a mock theta function when x = ±i.
Similar results may hold in the general case, and it is to be hoped that the Hecke series
expansions established in this paper will turn out to be useful for determining modular
transformation formulae for U(m)

t (x; q) for a generic q and for x a root of unity. For now,
we only know that by Theorem 5.5, U(m)

t (−1; q) fulfills (5.5) when q is a root of unity.
Second, both U1(x; q) and F1(q) are interesting combinatorial generating functions.

The two-variable function U1(x; q) can be interpreted in terms of strongly unimodal
sequences and their ranks [7,9], while F1(1− q) is the generating function for certain lin-
earized chord diagrams [29] (as well as a number of other objects - see A022493 of [28] for
an overview with references.) Moreover, there are many nice congruences for the coeffi-
cients of F1(1 − q) [5] and U1(1; q) [9]. The generalized U(m)

t (x; q) and F(m)
t (1 − q) may

have interesting combinatorial interpretations and congruence properties as well.
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Appendix
A Examples: t = 2 and 3
Here, we record the set of generalized Kontsevich-Zagier series F(m)

t (q) and generalized
U-functions U(m)

t (x; q) for t = 2 and 3.
When t = 2, the set of generalized Kontsevich-Zagier series is

F(1)
2 (q) = q2

∞∑
n=0

(q)n
n∑

k=0
qk(k+1)

[
n
k

]
q
, (A.1)

F(2)
2 (q) = q2

∞∑
n=1

(q)n−1

n∑
k=0

qk
2
[
n
k

]
q
. (A.2)

The dual U-functions, satisfying F(m)
2

(
ζ −1
N

)
= U(m)

2 (−1; ζN ), are given by

U(1)
2 (x; q) =

∞∑
n=0

(−xq)n
(−x−1q

)
n q

n−1
n+1∑
k=1

qk
2
[
n + k
2k − 1

]
q

= 1 + q + (
x+2+x−1) q2 + (

2x+3+2x−1) q3 + (
3x+6+3x−1) q4 + · · ·

(A.3)

U(2)
2 (x; q) =

∞∑
n=0

(−xq)n
(−x−1q

)
n qn−1

n+1∑
k=0

qk
2
[
n + k + 1

2k

]
q

= q−1 + 2 + (
x+2+x−1) q + (

2x+4+2x−1) q2 + (
4x+6+4x−1) q3 + · · ·

(A.4)

When t = 3, the set of generalized Kontsevich-Zagier series is

F(1)
3 (q) = q3

∞∑
n=0

(q)n
n∑

k=0
qk(k+1)

[
n
k

]
q

k∑
j=0

qj(j+1)
[
k
j

]
q
, (A.5)

F(2)
3 (q) = q3

∞∑
n=0

(q)n
n+1∑
k=1

qk(k−1)
[

n
k − 1

]
q

k∑
j=0

qj
2
[
k
j

]
q
, (A.6)

F(3)
3 (q) = q3

∞∑
n=1

(q)n−1

n∑
k=0

qk
2
[
n
k

]
q

k∑
j=0

qj
2
[
k
j

]
q
. (A.7)

The dual U-functions, satisfying F(m)
3

(
ζ −1
N

)
= U(m)

3 (−1; ζN ), are given by

U(1)
3 (x; q) =

∞∑
n=0

(−xq)n
(−x−1q

)
n q

n−2
n+1∑
k=1

qk
2
[
n+k−1
2k−1

]
q

k∑
j=1

q j2
[
n+k+2j−1
2k+2j−2

]
q

= 1+q+(x+2+x−1) q2+(2x+4+2x−1) q3+(4x+7+ 4x−1) q4+ · · ·

(A.8)

U(2)
3 (x; q) =

∞∑
n=0

(−xq)n
(−x−1q

)
n q

n−2
n+1∑
k=1

qk
2
[
n+k
2k

]
q

k∑
j=0

q j2
[
n + k + 2j
2k + 2j − 1

]
q

= q−1+2+(x+3+x−1) q+(3x+5+3x−1) q2+(5x+10+5x−1) q3+ · · ·

(A.9)

U(3)
3 (x; q) =

∞∑
n=0

(−xq)n
(−x−1q

)
n q

n−2
n+1∑
k=0

qk
2
[
n+k
2k

]
q

k∑
j=0

q j2
[
n+k+2j+1

2k+2j

]
q

= q−2+2q−1+(x+3+x−1)+(2x+5+2x−1) q+(5x+8+5x−1) q2+ · · ·

(A.10)
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