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Abstract

We prove new bounds on the average sensitivity of the indicator function of an

intersection of k halfspaces. In particular, we prove the optimal bound ofO
(√

n log(k)
)
.

This generalizes a result of Nazarov, who proved the analogous result in the Gaussian
case, and improves upon a result of Harsha, Klivans and Meka. Furthermore, our result
has implications for the runtime required to learn intersections of halfspaces.
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Background
One of the most important measures of the complexity of a Boolean function f : Rn →
{±1} is that of its average sensitivity, namely

AS( f ) := Ex∼u{±1}n
[
#{i : f (x) �= f (xi)}]

where xi above is x with the ith coordinate flipped. The average sensitivity and related
measures of noise sensitivity of a Boolean function have found several applications, per-
haps most notably to the area of machine learning (see for example [1]). It has thus
become important to understand how large the average sensitivity of functions in various
classes can be.
Of particular interest is the study of the sensitivity of certain classes of algebraically

defined functions. Gotsman and Linial [2] first studied the sensitivity of polynomial
threshold functions (i.e. functions of the form f (x) = sgn(p(x)) for p a polynomial of
bounded degree). They conjectured exact upper bounds on the sensitivity of polynomial
threshold functions of limited degree, but were unable to prove them except in the case
of linear threshold functions (when p is required to be degree 1). Since then, significant
progress has been made towards proving this Conjecture. The first non-trivial bounds for
large degree were proven in [3] by Diakonikolas et al. in 2010. Since then, progress has
been rapid. In [4], the Gaussian analogue of the Gotsman-Linial Conjecture was proved,
and in [5] the correct bound on average sensitivity was proved to within a polylogarithmic
factor.
Another potential generalization of the degree-1 case of the Gotsman-Linial Conjecture

(which bounds the sensitivity of the indicator function of a halfspace) would be to con-
sider the sensitivity of the indictor function of the intersection of a bounded number of
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halfspaces. TheGaussian analogue of this question has already been studied. In particular,
Nazarov has shown (see [6]) that the Gaussian surface area of an intersection of k halfs-
paces is at most O

(√
log k

)
. This suggests that the average sensitivity of such a function

should be bounded by O
(√

n log k
)
. Although this bound has been believed for some

time, attempts to prove it have been unsuccessful. Perhaps the closest attempt thus far
was by Harsha, Klivans and Meka who show in [7] that an intersection of k sufficiently
regular halfspaces has noise sensitivity with parameter ε at most log(k)O(1)ε1/6. In this
paper, we prove that the bound ofO

(√
n log(k)

)
is in face correct. In particular, we prove

the following Theorem:

Theorem 1. Let f be the indicator function of an intersection of k half spaces in n
variables, then

AS( f ) = O
(√

n log(k)
)
.

It should also be noted that Nazarov’s bound follows as a Corollary of Theorem 1, by
replacing Gaussian random variables with averages of Bernoulli random variables. It is
also not hard to show that this bound is tight up to constants. In particular:

Theorem 2. If k ≤ 2n, there exists a function f in n variables given by the intersection of
at most k half spaces so that

AS( f ) = �
(√

n log(k)
)
.

Our proof of Theorem 1 actually uses very little information about halfspaces. In par-
ticular, we use only the fact that linear threshold functions are monotonic in the following
sense:

Definition 1. We say that a function f : {±1}n → R is unate if for all i, f is either
increasing with respect to the ith coordinate or decreasing with respect to the ith coordinate.

We prove Theorem 1 by means of the following much more general statement:

Proposition 1. Let f1, . . . , fk : {±1}n → {0, 1}, be unate functions and let F : {±1}n →
{0, 1} be defined as F(x) = ∨k

i=1 fi(x). Then

AS(f ) = O
(√

n log(k)
)
.

The application of Theorem 1 to machine learning is via a slightly different notion of
noise sensitivity than that of the average sensitivity. In particular, we define the noise
sensitivity as follows

Definition 2. Let f : {±1}n → {0, 1} be a Boolean function. For a parameter ε ∈ (0, 1)
we define the noise sensitivity of f with parameter ε to be

NSε(f ) := Pr(f (x) �= f (y))

where x and y are Bernoulli random variables where y is obtained from x by randomly and
independently flipping the sign of each coordinate with probability ε.
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Using this notation, we have that

Corollary 1. If f : {±1}n → {0, 1} is the indicator function of the intersection of k
halfspaces, and ε ∈ (0, 1) then

NSε(f ) = O
(√

ε log(k)
)
.

Remark 1. This is false in general for intersections of unate functions, since if f is the
tribes function on n variables (which is unate) then NSε( f ) = �(1) so long as ε =
�

(
log−1(n)

)
.

Finally, using the L1 polynomial regression algorithm of [1], we obtain the following:

Corollary 2. The concept class of intersections of k halfspaces with respect to the uniform
distribution on {±1}n is agnostically learnable with error opt + ε in time nO(log(k)ε−2).

Proofs of the sensitivity bounds
The proof of Proposition 1 follows by a fairly natural generalization of one of the standard
proofs for the case of a single unate function. In particular, if f : {±1}n → {0, 1} is unate,
we may assume without loss of generality that f is increasing in each coordinate. In such
a case, it is easy to show that

AS( f ) = E

[
f (x)

n∑
i=1

xi

]
≤ E

[
max

(
0,

n∑
i=1

xi

)]
= O

(√
n
)
.

In fact, this technique can be extended to prove bounds on the sensitivity of unate
functions with given expectation. In particular, Lemma 1 below provides an appropriate
bound. Our proof of Proposition 1 turns out to be a relatively straightforward general-
ization of this technique. In particular, we show that by adding the fi one at a time, the
change in sensitivity is bounded by a similar function of the change in total expectation.

Lemma 1. Let S : {±1}n → {0, 1} and let p = E [S(x)], then

E

[
S(x)

n∑
i=1

xi

]
= O

(
p
√
n log(1/p)

)
.

Proof. Note that:

E

[
S(x)

n∑
i=1

xi

]
≤

∫ ∞

0
Pr

(
S(x)

n∑
i=1

xi > y

)
dy

≤
∫ ∞

0
min

(
p, Pr

( n∑
i=1

xi > y

))
dy

≤
∫ ∞

0
min

(
p, exp

(−�
(
y2/n

)))
dy

≤ O
(∫ ∞

0
min

(
p, exp

(−z2/n
)
dz

))

≤ O

(∫ √
n log(1/p)

0
pdz +

∫ ∞
√

n log(1/p)
exp

(−z2/n
)
dz

)

≤ O(p
√
n log(1/p)).
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We now prove Proposition 1.

Proof. Let Fm = ∨m
i=1 fi(x). Let Sm(x) = Fm(x) − Fm−1(x). Let pm = E [Sm(x)]. Our

main goal will be to show that AS(Fm) ≤ AS(Fm−1) + O
(
pm

√
n log(pm)

)
, from which

our result follows easily.
ConsiderAS(Fm)−AS(Fm−1).We assumewithout loss of generality that fm is increasing

in every coordinate.

AS(Fm) − AS(Fm−1) =
n∑

i=1
E

[∣∣Fm(x) − Fm(xi)
∣∣ − ∣∣Fm−1(x) − Fm−1(xi)

∣∣] ,
where xi denotes x with the ith coordinate flipped. We make the following claim:

Claim. For each x, i,∣∣Fm(x) − Fm(xi)
∣∣ − ∣∣Fm−1(x) − Fm−1(xi)

∣∣
≤ xi

((
Fm(x) − Fm(xi)

) − (
Fm−1(x) − Fm−1(xi)

))
. (1)

Proof. Our proof is based on considering two different cases.

Case 1: fm(x) = fm(xi) = 0
In this case, Fm(x) = Fm−1(x) and Fm(xi) = Fm−1(xi), and thus both sides of Equation 1

are 0.
Case 2: fm(x) = 1 or fm(xi) = 1

Note that replacing x by xi leaves both sizes of Equation 1 the same. We may therefore
assume without loss of generality that xi = 1. Since fm is increasing with respect to the
ith coordinate, fm(x) ≥ fm(xi). Since at least one of them is 1, fm(x) = 1. Therefore,
Fm(x) = 1. Therefore, since

xi
(
Fm(x) − Fm(xi)

) ≥ ∣∣Fm(x) − Fm(xi)
∣∣ ,

and

−xi
(
Fm−1(x) − Fm−1(xi)

) ≥ − ∣∣Fm−1(x) − Fm−1(xi)
∣∣ ,

Equation 1 follows.

By the claim we have that

AS(Fm) − AS(Fm−1) ≤
n∑

i=1
E

[
xi

((
Fm(x) − Fm(xi)

) − (
Fm−1(x) − Fm−1(xi)

))]

=
n∑

i=1
E

[
xi

(
Sm(x) − Sm(xi)

)]

=
n∑

i=1
E [xiSm(x)] −

n∑
i=1

E
[
(−yi)Sm(y)

]

= 2E

[
Sm(x)

n∑
i=1

xi

]

= O(pm
√
n log(1/pm)).
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Where the on the third line above, we are letting y = xi, and the last line is by Lemma 1.
Hence, we have that

AS(F) =
k∑

m=1
AS(Fm) − AS(Fm−1)

= O

⎛
⎝√

n
k∑

m=1
pm

√
log(1/pm)

⎞
⎠ .

Let P = E[ F(x)]= ∑k
m=1 pm. By concavity of the function x

√
log(1/x) for x ∈ (0, 1),

we have that

AS(F) = O
(√

nP
√
log(k/P)

)
= O

(√
n log(k)

)
.

This completes our proof.

Theorem 1 follows from Proposition 1 upon noting that 1 − f is a disjunction of k
linear threshold functions, each of which is unate. Our proof of Theorem 1 shows that the
bound can be tight only if a large number of the halfspaces cut off an incremental volume
of roughly 1/k. It turns out that this bound can be achieved when we take a random
collection of halfspaces with such volumes. Before we begin to prove Theorem 2, we need
the following Lemma:

Lemma 2. For an integer n and 1/2 > ε > 2−n there exists a linear threshold function
f : {±1}n → {0, 1} so that

Ex
[
f (x)

] ≥ ε,

and

AS( f ) = �
(
Ex[ f (x)]

√
n log(1/ε)

)
.

Proof. This is easily seen to be the case if we let f (x) be the indicator function
of

∑n
i=1 xi > t for t as large as possible so that this event takes place with probability

at least ε.

Proof. We note that it suffices to show that there is such as f given as the indicator
function of a union of at most k half-spaces, as 1− f will have the same average sensitivity
and will be the indicator function of an intersection. Let ε = 1/k, and let f be the function
given to us in Lemma 2. We note that if E[ f (x)]> 1/4, then f is sufficient and we are
done. Otherwise letm = 
1/ (

4E[ f (x)]
)� ≤ k. For s ∈ {±1}n let fs(x) = f (s1x1, . . . , snxn).

We note for each s that fs(x) is a linear threshold function with E[ fs(x)]= E[ f (x)] and
AS( fs) = AS( f ).
Let

F(x) =
m∨
i=1

fsi(x)

for si independent random elements of {±1}n. We note that F(x) is always the indicator
of a union of at most k half-spaces, but we also claim that

Esi[AS(F)]= �
(√

n log(k)
)
.



Kane Research in theMathematical Sciences 2014, 1:13 Page 6 of 8
http://www.resmathsci.com/content/1/1/13

This would imply our result for appropriately chosen values of the si.
We note that AS(F) is 21−n times the number of pairs of adjacent elements x, y of the

hypercube so that F(x) = 1, F(y) = 0. This in turn is at least 21−n times the sum over
1 ≤ i ≤ m of the number of pairs of adjacent elements of the hypercube x, y so that
fsi(x) = 1, fsi(y) = 0 and so that fsj(x) = fsj(y) = 0 for all j �= i.
On the other hand, for each i, 21−n times the number of pairs of adjacent elements x, y

so that fsi(x) = 1, fsi(y) = 0 is

AS(fsi) = AS(f ) = �
(
E[ f (x)]

√
n log(k)

)
= �

(
m−1√n log(k)

)
.

For each of these pairs, we consider the probability over the choice of sj that fsj (x) = 1
or fsj(y) = 1 for some j �= i. We note that for each fixed x and j that

Prsj
(
fsj(x) = 1

) = Esj
[
fsj (x)

] = Esj
[
fx(sj)

] = Ez
[
f (z)

] ≤ 1
4m

.

Thus, by the union bound, the probability that either fsj(x) = 1 or fsj (y) = 1 for some
j �= i is at most 1/2. Therefore, the expected number of adjacent pairs x, y with fsi(x) = 1,
fsi(y) = 0 and fsj(x) = fsj(y) = 0 for all j �= i is at least AS(fsj )/2. Therefore,

Esi [AS(F)] ≥
m∑
i=1

AS( f )/2 = m�
(
m−1√n log(k)

)
= �

(√
n log(k)

)
,

as desired. This completes our proof.

Learning theory application
The proofs of Corollaries 1 and 2 are by what are now fairly standard techniques, but are
included here for completeness. The proof of Corollary 1 is by a technique of Diakonikolas
et al. in [8] for bounding the noise sensitivity in terms of the average sensitivity.

Proof. As the noise sensitivity is an increasing function of ε for ε < 1/2, we may round
ε down to 1/�ε−1, and thus it suffices to consider ε = 1/m for some integerm. We note
that the pair of random variables x, y used to define the noise sensitivity with parameter
ε can be generated in the following way:

1. Randomly divide the n coordinates intom bins.
2. Randomly assign each coordinate a value in {±1} to obtain z.
3. For each bin randomly pick bi ∈ {±1}. Obtain x from z by multiplying all

coordinates in the ith bin by bi for each i.
4. Obtain y from x by flipping the sign of all coordinates in a randomly chosen bin.

We note that this produces the same distribution on x and y since x is clearly a uniform
element of {±1}n and the ith coordinate of y differs from the corresponding coordinate of
x if and only if i lies in the bin selected in step 4. This happens independently and with
probability 1/m for each coordinate.
Next let f be the indicator function of an intersection of at most k halfspaces. Note that

after the bins and z are picked in steps 1 and 2 above that f (x) is given by g(b) where g
is the indicator function of an intersection of at most k halfspaces in m variables. In the
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same notation, f (y) = g(b′) where b′ is obtained from b by flipping the sign of a single
random coordinate. Thus, by definition, Pr

(
g(b) �= g(b′)

) = 1
mAS(g). Hence,

NSε( f ) = Eg

[
AS(g)
m

]
≤

O
(√

log(k)m
)

m
=

√
log(k)
m

= √
ε log(k).

This completes our proof.

Corollary 2 will now follow by using this bound to bound the weight of the higher degree
Fourier coefficients of such an f and then using the L1 polynomial regression algorithm
of [1].

Proof. Let f be the indicator function of an intersection of k halfspaces. Let f have
Fourier transform given by

f =
∑
S⊂[n]

χS f̂ (S).

It is well known that for ρ ∈ (0, 1) that

NSρ( f ) = 2
∑
S⊂[n]

(
1 − (1 − 2ρ)|S|

) ∣∣∣ f̂ (S)∣∣∣2 .
Therefore, we have that

NSρ( f ) �
∑

|S|>1/ρ

∣∣∣ f̂ (S)∣∣∣2 .
By Corollary 1, this tells us that

∑
|S|>1/ρ

∣∣∣ f̂ (S)∣∣∣2 = O
(√

ρ log(k)
)
.

Setting ρ = ε2/(C log(k)) for sufficiently large values of C yields

∑
|S|>C log(k)ε−2

∣∣∣ f̂ (S)∣∣∣2 < ε.

Our claim now follows from [1] Remark 4.
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