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METHODOLOGY
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Abstract 

The data systems for X-ray free-electron laser (FEL) experiments at the Linac coherent light source (LCLS) are 
described. These systems are designed to acquire and to reliably transport shot-by-shot data at a peak throughput 
of 5 GB/s to the offline data storage where experimental data and the relevant metadata are archived and made 
available for user analysis. The analysis and monitoring implementation (AMI) and Photon Science ANAlysis (psana) 
software packages are described. Psana is open source and freely available.
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Background
Since the LCLS facility started operating in 2009, it has 
accumulated many petabytes of complex data for analy-
sis, and the timely processing of this data has proven 
to be a challenge for the community. At LCLS, this has 
been made more difficult by the fact that experiments 
and experimenters change from week-to-week, and the 
fact that real-time feedback is often critical for making 
decisions on how to run an experiment. Furthermore, 
because of the intrinsic pulsed nature of the FEL source, 
experimental solutions must acknowledge that every shot 
is different and that a wide range of information needs to 
be recorded to interpret a single-shot event. The LCLS 
data systems must acquire all relevant shot-by-shot data 
at the 120  Hz repetition rate of the LCLS light source, 
provide user-friendly display and analysis of critical real-
time information, write multiple GB/s to storage, and 
provide analysis software for the timely processing of 
this large and complex dataset. Each of the seven LCLS 
instruments [1, 2] offers unique capabilities to study 
many different areas of science using the unique FEL 
beam properties. Here, we describe the data acquisition 

(DAQ) and data analysis systems developed for LCLS 
and briefly describe a case study of the quasi-real-time 
nanocrystallography pipeline as an example of LCLS 
computing capabilities.

Methods
Data acquisition
The data acquisition system (DAQ) at LCLS is the set 
of hardware and software responsible for correctly and 
coherently transporting data from the instruments’ 
imaging detectors and diagnostic devices to a dedicated 
file system. The DAQ is used to configure, calibrate, 
and control both custom and commercial devices. Each 
instrument has its own independent DAQ system of 
hardware and software, allowing all instruments to be 
run simultaneously.

Within each instrument, data are acquired for all 
devices at the beam rate of 120 Hz, and UDP multicast 
from readout nodes over a dedicated 10  Gb network to 
several data cache nodes. The DAQ system performs 
an event build, the real-time assembly of the data from 
all devices into one object, called an event, tagged with 
the fiducial from the timing system and a UNIX times-
tamp. The data cache nodes subscribe to the UDP mul-
ticasts from the readout nodes, aggregate all device data 
associated with a single fiducial in an event, and append 
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these event data to a file in eXtended tagged container 
(XTC) format [3]. The DAQ system is capable of read-
ing out 5 GB/s per instrument, with the exceptions of the 
coherent X-ray imaging (CXI) instrument [4], which is 
capable of running two independent experiments simul-
taneously and whose infrastructure is capable of read-
ing out 10  GB/s, and the matter in extreme conditions 
(MEC) instrument [5], which is limited to 1 GB/s due to 
its lower designed data rate.

By UDP multicasting the data for different events to 
different multicast groups, it is possible to scale the num-
ber of data cache nodes appropriately to accommodate 
large and small experiments. Multiple data files are writ-
ten in parallel per run, one file per each of the six data 
cache node in a typical instrument. The multiple data 
files are recorded for a period of time called a run where 
an experiment has been taking data with a constant con-
figuration. A run typically lasts between 10 and 40 min. 
Additionally, each of these files within a run is automati-
cally split into chunks to prevent any one file from getting 
too large for the tape archiving system. The average file 
depends on the length of the run and for cyrstallography 
experiments it is typically 20 GB per file, six files per run.

Each hutch is equipped with dedicated monitoring 
nodes that also subscribe to the multicasts to receive a 
fixed fraction of all events where each event includes 
all the detector and diagnostic data recorded from one 
X-ray pulse. The monitoring nodes copy the data to 
shared memory where the data are promptly available for 
real-time analysis applications such as AMI or psana, as 
described below.

The data that arrive at the data cache nodes are stored 
in the SSDs while the transfer to the fast feedback (FFB) 
storage layer, which is initiated immediately when a run 
is started, completes. The transfer from data cache to 
FFB happens in near real time, or with a very small delay. 
The FFB layer can store 100–200 TB of data while await-
ing transfer to permanent offline storage. Data can be 
accessed from disk, and custom analyses may be run on 
the fast feedback queues in each experimental hall. This 
method can provide quasi-real-time feedback within 
about 5 min of data acquisition. Access to the FFB stor-
age layer is reserved to the running experiment.

From the FFB, the data are automatically copied to the 
offline file system where files are made available to users 
for analysis and for exporting to users’ institutions out-
side SLAC via the POSIX-compliant Lustre file system 
[6]. The total data volume varies by experiment. Crystal-
lography experiments typically generate a few hundred 
high-rate data bursts about 10 min in length over a 5-day 
period. An overview of the movement of data through 
the LCLS online and offline systems is shown in Fig. 1.

In 2015, the LCLS Data Management system was 
expanded to include NERSC resources; after data 
are copied to tape at SLAC, the files are also copied to 
NERSC to create a second archive copy inAQ at NERSC. 
Simultaneous data migrations for all LCLS instruments 
are supported. The system maintains a central registry of 
experiments and provides a reliable mechanism for stor-
ing the data and metadata at the various storage layers 
of the LCLS computing infrastructure. Figure 2 shows a 
logical diagram of the LCLS data management system. 
Since 2014 [7], we have utilized the energy sciences net-
work (ESNet) [8] to transfer data to NERSC, with sus-
tained transfer rates of the order of 10  Gb/s. NERSC 
provides the significant computing resources of the Cori 
Phase I system [9]. Users may analyze the data at SLAC, 
at NERSC, or copy the data to their home institution and 
analyze it there.

The ability to make informed decisions in response to 
real-time feedback is critical during an LCLS experiment. 
It is essential for tuning the performance of the X-ray 
source, the detectors, and other beamline components. 
LCLS provides two software frameworks for displaying 
and analyzing critical real-time information: a graphi-
cal online monitoring tool called the analysis monitor-
ing interface (AMI) and the software framework psana 
(Photon Science ANAlysis), a software package with user 
interfaces in both C++ and Python. All data generated 
by the DAQ can also be viewed and analyzed using this 
software.

Results and discussion
Data analysis using AMI
AMI runs alongside the data acquisition, is user-con-
figurable, and requires no user coding or preparation to 
produce an analysis. AMI actually refers to a collection of 
software implemented in C++ and QT consisting of (1) a 
shared memory server, a generic application that receives 
datagrams from the DAQ private network via UDP, builds 
them into events, and pushes them into shared memory, 
(2) a custom application that receives these events from 
shared memory, performs analyses, and exports viewable 
data such as plots, and (3) online_ami, the QT-based GUI 
that runs on the control room consoles and serves as a 
network client to the ami server, receiving users’ analysis 
configurations and displaying resulting plots.

At the start of a run, the monitoring automatically 
learns which detectors are available in the data and 
makes their raw data available to the user with the click 
of a button. AMI is the default tool for real-time online 
analysis and feedback.

Shared memory analysis takes advantage of the fact that 
the LCLS data acquisition system uses UDP multicasts to 
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simultaneously send data to the data cache nodes, that 
save data to disk, and to the monitoring nodes where data 
from the last 16–32 events are stored in a Unix shared 
memory buffer. The UDP multicasts are made pseudo-
reliable by enabling hardware-based Ethernet pause 
frames to create backpressure in the network if buffers 
become full. If the monitoring code is too slow to analyze 
the full event rate, the oldest events are discarded, ensur-
ing that the results are from the most recent data. Pro-
cesses running on multiple cores can connect to the same 
shared memory server, which distributes different events 
to the different processes on the node and serializes cli-
ent requests with datagram handling. The analysis results 
are then collected by a custom collection application 

and displayed to the operator by the online_ami client. 
AMI runs on an instrument’s monitoring nodes which 
typically contain over 40 CPU cores. There is one shared 
memory input per monitoring node, but multiple clients 
can coexist so that users may monitor the data on differ-
ent consoles and using different criteria. The process-
ing load is distributed across the monitoring nodes, but 
because each node receives complete events, it is capable 
of fully analyzing any given event.

Users primarily interact with the online_ami GUI and 
use it to display and analyze information on-the-fly. The 
GUI has a set of simple operations that can be cascaded 
to achieve a variety of monitoring measures. It can be 
used to perform many standard tasks such as displaying 

Fig. 1 LCLS data flow. The top half of the figure represents the Online system which includes the DAQ and the Fast Feedback Layer. There is one 
Online system instance per instrument. The bottom half of the figure shows the Offline system which is shared across LCLS instruments. When the 
DAQ begins a new run for recording, the data management system ensures that the new files are registered in the file catalog and launches an 
automated process to immediately begin the transfer of data from the data cache nodes to the fast feedback (FFB) nodes as the raw data are being 
written
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detector images and waveforms, displaying data as his-
tograms, strip charts, scatter plots, etc., and perform-
ing averaging, filtering, and other generic manipulations 
of the data including region of interest selection, mask-
ing, projections, integration, contrast calculation, and 
hit finding. AMI can be used to view raw or corrected 
detector images and perform tasks such as background 
subtraction, detector correlations, and event filtering. 
For example, the analysis may require that only events 
in which the beam energy is above a certain threshold 
and a laser is present should be plotted. The plot can be 
further manipulated, overlayed on other plots, displayed 
as a table, or saved to a text file or an image. All of the 
scalar data such as the beam energy, beamline diode val-
ues, encoder readouts, and EPICS [10] data associated 
with the event are also available and can be combined in 
user-defined algebraic expressions. AMI supports sin-
gle-event waveform plots and image projections which 
can be averaged, subtracted, and filtered. AMI has an 
algorithm for simple edge finding using a constant frac-
tion discriminator. Displays of waveforms and images 
can be manipulated by adding cursors and doing cur-
sor math or waveform shape matching. Users may also 
integrate their own code to perform even more sophis-
ticated or device-specific processing, either by building a 
C++ module plug-in for AMI, or writing Python code to 
run in the psana framework. AMI algorithms are avail-
able from our Subversion repository, https://confluence.
slac.stanford.edu/display/PCDS/Software+Repository. 

Instructions for code development are documented 
here: https://confluence.slac.stanford.edu/display/PCDS/
AMI+Online+Monitoring.

AMI can be used both on live data from shared mem-
ory and offline data read from disk without any coding. 
Figures 3 and 4 show examples of AMI waveform analy-
sis and image displays. AMI is a useful tool for generic 
online analysis and feedback, but psana is a more com-
prehensive analysis tool available to support more experi-
ment-specific analyses.

Data analysis using psana
The software framework psana handles importing the 
science data into memory (either staged from disk or 
streamed directly from the detectors), calibration, dis-
tributing events to multiple nodes/cores for parallel 
processing, and collecting the results and making them 
persistent. The psana framework is responsible for load-
ing and initializing all user modules, loading one of the 
input modules to read data from XTC or HDF5 [11] files, 
calling appropriate methods of user modules based on 
the data being processed, providing access to data as a set 
of C++ classes and Python classes, and providing other 
services, such as histogramming, to the user modules.

The core portion of psana is written largely in C++, 
but psana supports both C++ and Python as user inter-
faces. Over time, it has become clear that Python is the 
preferred user interface for several reasons. First, it is 
possible to develop python analyses quickly, and short 

Fig. 2 Logic diagram of the LCLS data management system. The blue arrows indicate data movement that is automatically handled by the DM sys-
tem; the red arrows indicate traffic that is handled by the users; the yellow arrows show traffic that is handled by the DM system upon users’ request

https://confluence.slac.stanford.edu/display/PCDS/Software%2bRepository
https://confluence.slac.stanford.edu/display/PCDS/Software%2bRepository
https://confluence.slac.stanford.edu/display/PCDS/AMI%2bOnline%2bMonitoring
https://confluence.slac.stanford.edu/display/PCDS/AMI%2bOnline%2bMonitoring


Page 5 of 13Thayer et al. Adv Struct Chem Imag  (2017) 3:3 

development times are a necessity given the frequent 
rate-of-change of LCLS experiments and the chang-
ing analysis requirements during an experiment. Sec-
ond, C++ offers a steep learning curve for users. The 
observed trend at US light-source facilities and free-
electron lasers around the world is to use Python and its 
associated tools.

In addition to providing data access, psana also pro-
vides simple python interfaces to complex algorithms. 
One commonly used example is the analysis code for 
the XTCAV detector [12] that is used to calculate lasing 
power as a function of time (on the femtosecond time 
scale) for each LCLS shot. Another example is the algo-
rithm which computes the time separation between a 
pump laser and the LCLS shot [13]. Users are able to put 
together short python building blocks to quickly express 
the complexity of their experiment. Many of these build-
ing blocks are publicly available on the web, and so can 
be reused at any facility. We hope to include algorithms 

that are not LCLS-specific in globally available photon 
science-specific python packages which can be reused 
across labs. One such candidate is the publicly available 
scikit-beam project [14]. Psana and all its algorithms are 
open source and freely available from our Subversion 
repository. Instructions for code development and col-
laborative tools are documented here: https://confluence.
slac.stanford.edu/display/PCDS/Software+Repository.

For performance, we support running psana in paral-
lel using OpenMPI [15] through the python wrapper 
MPI4Py [16]. Several other photon science analysis pack-
ages [17] reuse the psana code when running at LCLS: 
OnDA [18], Hummingbird [19], cctbx.xfel, the Computa-
tion Crystallography Toolbox [20], the CrystFEL package 
[21], and Cheetah [22].

Interfaces
The data acquisition system is obligated to record all 
possible information to the data files, but the resulting 

Fig. 3 Example of event waveform plots and cursor math in AMI. The top right image shows the raw waveform in blue with the averaged waveform 
in red superimposed, and a baseline and threshold for the edge finding. The users have placed cursors on the image to select regions of interest. 
The leftmost window shows which channel is selected, the positions of the cursors on the plot, and the expression derived from the waveform. The 
plot in the bottom right corner is a 1D histogram expression derived from the waveform, histogramming the ratio of two areas selected by cursors

https://confluence.slac.stanford.edu/display/PCDS/Software%2bRepository
https://confluence.slac.stanford.edu/display/PCDS/Software%2bRepository
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complexity makes navigating the data difficult for the 
users. As a result, in addition to an interface that pro-
vides access to all data, we have found it useful to provide 
an additional simpler interface that exposes only infor-
mation that most users typically access. We have also 
used this interface to capture commonality among detec-
tors, e.g., all area detectors are transformed at a low level 
into NumPy arrays, either two-dimensional for a stand-
ard camera, or three-dimensional for multi-panel cam-
eras. This is a powerful idea: metadata associated with a 
detector, such as pedestals, masks, per-pixel gains, can be 
given the same array shape as the real data, and then data 

corrections become efficient single-line NumPy opera-
tions like addition, multiplication, etc.

For performance, it is important that Python is able to 
call C++. For this, we have written Boost.Python (http://
www.boost.org) converter methods for a few high-level 
classes that allow transfer of data between Python and 
C++ without copying large data. Memory management 
is done mostly in C++ using reference counts. We also 
use Boost.Python wrappers to call C++ class methods 
from Python. This allows for event analysis in a combina-
tion of C++ and Python, although the large majority of 
users only see the simpler Python interface.

Fig. 4 AMI screen capture of CSPad image. Screen capture showing CSPad [40, 41] as it appears during an experiment

http://www.boost.org
http://www.boost.org
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Random access and parallelization with psana
MPI is a world standard for scientific parallelization 
across multiple nodes, with each node having many CPU 
cores. For most LCLS analyses, events can be analyzed 
in parallel, and I/O is a common bottleneck, which can 
be addressed using multiple cores/nodes. Most LCLS 
analyses parallelize trivially, with different cores process-
ing different events. The psana MPI process running on 
a given core/node needs a way to jump to the events it 
will process—that is it needs random access to the large 
data rather than having to read through all the data. To 
achieve this, the data acquisition system writes additional 
small files called small-data XTC files where each piece 
of large data (e.g., a camera) is replaced with a file-offset 
into the full-data files. We maintain the same XTC for-
mat as the full data in these small-data files so that the 
same tools can be used to read it. When running with 
MPI, each core quickly reads these small-data files and 
then jumps to the appropriate big data for events that it 
should analyze by passing the big data file-offset to the 
fseek subroutine. Currently, the threshold for deciding 
which data is large or small defaults to 1 kB, but it can be 
overridden on the command line of the data acquisition 
software that records the data.

Further performance gains can be obtained from 
this small-data approach. For example, when process-
ing an event, one can query beam quality (contained in 
the small-data files) and if the X-ray shot power was too 
low avoid spending the time to read the large data for 
that event. Psana has been structured so this conditional 
fetching can be done with a simple python “if” statement.

Psana also implements a user interface, based on ran-
dom access, which accepts an event identifier and imme-
diately returns the appropriate event. This identifier is 
the Unix seconds/nanoseconds timestamp plus a 17-bit 
360 Hz “fiducial” counter as described previously.

Real‑time analysis with psana
Prompt analysis of the data is critical for LCLS experi-
ments, because such information is required for impor-
tant decisions, e.g., beam tuning, moving detectors/
samples, and evaluating whether or not sufficient statis-
tics have been accumulated. It is possible to run psana 
data analysis in real time in two different modes, a shared 
memory interface, which receives DAQ network-multi-
cast data, or a live-file mode where the data are read from 
the FFB storage layer:

1. In the shared memory mode, psana reads events 
from a shared memory buffer on the monitoring 
node and uses MPI to launch processes on the differ-
ent nodes for full 120 Hz analysis.

2. In the FFB mode, the data acquisition small-data 
XTC files can be analyzed with MPI while the data 
are being written. If the software catches up to the 
end of the live file in this mode without seeing an 
end-run message, it will briefly sleep and try to read 
new data. If no new data appear within a timeout 
period, the software assumes no more events will 
appear and behaves as if the run had ended normally, 
albeit with a warning message.

The two online analysis approaches are complemen-
tary: FFB allows the user to analyze all events, at the risk 
of falling behind; shared memory has only a small buffer 
of events, meaning that the displayed data are always up 
to date, but there is no guarantee that all events will be 
seen by the analysis software, i.e., if the software is too 
slow, events will be dropped. Further, psana allows the 
user to run the same analysis code in online against the 
shared memory, quasi-real-time against the files on the 
FFB, and offline against data stored on disk.

Real‑time visualization with psana
In addition to the standard matplotlib [38] methods for 
visualization in Python, we have used PyQtGraph to 
support real-time visualization because it has excellent 
interactive manipulation tools for plots together with 
fast graphics performance. The Python interface of the 
ZeroMQ (ZMQ) package [23] is used to transport data 
between the analysis code and the display, which may 
be on a remote machine. We use the publish/subscribe 
mechanism of ZMQ so that many real-time copies of 
plots may be displayed on different computers. To open 
a display, the subscriber uses a one-line command, which 
specifies the publisher’s hostname and port number, as 
well as a list of plot names.

Users can also create a multiplot which guarantees that 
all plots within the multiplot display coherent informa-
tion, e.g., from the same LCLS events. In parallel jobs, 
typically one core is chosen to gather the results from the 
other cores via MPI and then publish the plots.

Build/release system
We use the SCons tool [24] to build all core Python/
C++ packages of psana. The RHEL 5/6/7 operating sys-
tems are currently supported. All psana core and external 
packages are distributed using a modified form of APT 
[25] that supports relocatable RPM files. The repositories 
are made world-readable via http, so any user can down-
load/run the APT code from the SLAC servers and quite 
easily install all psana binaries on a supported operating 
system. With the recent emphasis on Python-based anal-
ysis, we are considering a more Python-oriented release 
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system, such as Anaconda [26], which would allow easier 
inclusion of Python external packages.

Detector calibration
LCLS supports calibrations of several area detectors, 
many of which have multiple panels. These calibrations 
include pedestal subtraction, bad-pixel determination, 
and common-mode noise removal, where noise varies 
coherently in several channels of a detector in one event. 
All corrections are stored in a run-dependent manner, 
e.g., pedestal values, common-mode noise parameters. 
The calibration data are stored in a hierarchical directory 
structure: with an experiment containing several detec-
tors, each of which has several parameter types and run-
associated data files. We considered storage in a database, 
but felt that a simple directory structure would allow for 
easier portability of analysis to remote institutions. Most 
of the constants are stored in text files, but we anticipate 
storing future constants in hierarchical HDF5 files. The 
same file-based constants are used by both offline and 
online analysis, including the AMI tool.

Command line and GUI tools are provided to compute 
pedestals, noise values, and bad-pixel lists. The graphi-
cal interface allows users to take appropriate multi-panel 
unassembled detector data, e.g., powder-pattern diffrac-
tion-ring data and graphically adjust the positions/rota-
tions of the panels to create geometry constants. Optical 
measurements with a microscope and sophisticated 
crystallographic techniques [27] are used to more pre-
cisely determine geometry. The tools are used to deploy 
calibration constants that are valid for user-specified run 
ranges.

Geometry for multi-panel detectors is defined using 
a multi-level hierarchical approach as shown in Fig.  5; 
each component is positioned with parameters defining 
its rotation and translation in the parent frame. Multiple 
independent detectors can be placed in the correct posi-
tion relative to each other using this approach. In many 
experiments, the origin is defined as the interaction point 
between the sample being studied and the laser shot.

Data type and data format
The data acquisition system produces many data types, 
implemented as C++ classes, and often these data types 
change with time as improvements are made. These 
changes are handled by introducing a new type for each 
modification using a custom-built data definition lan-
guage (DDL) that allows us to represent the various data 
types in a language-independent manner. These descrip-
tions are then compiled into language-specific Python or 
C++ classes. The DDL files are shared in common with 
the data acquisition system software, which uses C++, 
to guarantee a consistent description of LCLS data types 
between online/offline Python/C++ code.

The LCLS data acquisition system saves data in XTC 
format which consists of a hierarchical set of small head-
ers that encapsulate larger data, where each container is 
mapped to a C++ class using an enumerated type. In the 
case of a dropped packet or missing data contribution, 
the header metadata associated with the event is anno-
tated appropriately. It is an append-only data format, and 
only supports little-endian machines.

All code for writing/reading XTC data is contained in a 
library called pdsdata which has minimal dependencies. 

Fig. 5 Hierarchical geometry description used by psana. Left one level in the hierarchical geometry description used by psana showing a child 
object in the parent coordinate frame. Right several panels of a multi-panel detector showing rotations and offsets. Although not shown in the 
diagram, the hierarchical geometry description allows these to be out-of-plane
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All data needed for analysis, including low-rate monitor-
ing data like temperatures/voltages, exist in the XTC files. 
Because there are multiple files per run, easy user analy-
sis requires a software framework like psana to manage 
the data reading. Psana presents the events from the mul-
tiple files to the user in time order, as well as doing offline 
event building when required. While the DAQ system 
performs real-time assembly of data from different detec-
tors belonging to the same FEL shot into an event such 
that each XTC file is typically a sequence of complete 
events, there are also detectors that are shared across 
multiple data acquisition systems, although not simulta-
neously, and their data files are recorded separately and 
not included in the online event building process. To 
make these detectors easily available to users’ analysis 
code, psana additionally performs an offline event build 
that associates these data with the data acquisition data 
using the same timestamp, but at the time when the data 
are being read for analysis.

Because some users prefer HDF5 for offline analysis, 
the system provides a user-selectable translation service 
that can be configured from the LCLS web portal applica-
tion to run automatically on the FFB queues and translate 
the raw XTC data to HDF5 as the data are being taken. 
The service produces raw or calibrated data organized 
into datasets based on each device rather than events. 
In addition, the data are self-describing with no software 
infrastructure required for analysis. The HDF5 data file 
has hierarchical organization consisting of the groups 
and dataset. Groups can contain other groups and data-
sets; datasets contain complex multi-dimensional data. 
This allows easy navigation from the “top” of the file to 
any object in that file, for example, /groupA/groupB/
dataset1.

Users can take the data files off-site and analyze them 
in MATLAB, Python, or any other system that reads 
HDF5. Users can also customize the output of the trans-
lator by providing a configuration file to specify which 
data types should be translated or by including code that 
generates n-dimensional arrays which will automatically 
be included by the translator in the output.

While users do not need a software framework to work 
with LCLS HDF5, they all need to write the same code to 
correlate data from different datasets. That is, they need 
to match timestamps from the different datasets that the 
translator writes. This is essentially the event building 
process that psana must do with certain detectors. It is 
anticipated that as part of the LCLS-II upgrade the data 
acquisition system will write HDF5 files directly, given a 
couple of new critical features in the HDF5 1.10.x series, 
namely the ability read while writing and the ability to 
write to multiple files in parallel and aggregate them into 
one virtual dataset.

Analysis computing resources
LCLS has accumulated 11  PB of data since start-up in 
2009, and 24% of these data are currently available on 
disk. Frequently, the data acquisition rate is more than 
1  GB/s. For analysis, we provide 80 nodes each with 2 
Xeon X5675 processors and 24  GB of memory. These 
nodes use a 40 Gb/s infiniband connection [28] to access 
data on Lustre file-systems [6] providing a total of 3.7 PB 
of offline storage. Additionally, running experiments have 
special priority access to 2 additional farms of 20 nodes, 
each with 2 Xeon E5-2640 processors and 128  GB of 
memory. These nodes are used for prompt data analysis 
against the FFB layer and are reserved for the running 
experiment using the standard SLAC batch system. These 
nodes can also be used for general lower-priority jobs, 
which are automatically suspended when the higher-pri-
ority jobs of the running experiment are submitted.

Case study: serial femtosecond crystallography
About one-third of beam time allocations at LCLS are 
currently awarded to serial femtosecond crystallography 
(SFX) experiments. With LCLS, it is possible to probe the 
sub-picosecond time domain, e.g., by triggering chemical 
changes with an optical pump/X-ray probe arrangement 
[29], or to observe sub-populations of conformational 
variation in the protein ensemble that are key to under-
standing enzyme mechanism and regulation [30].

The primary issue in XFEL crystallography processing 
pipelines is orchestrating movement of images through 
machine’s memory hierarchy as efficiently as possible 
while concurrently scheduling analysis tasks. This sec-
tion describes the SFX pipeline based on cctbx.xfel [20], 
the computation crystallography toolbox, but other tools, 
like the CrystFEL package [21], are also available to the 
LCLS users.

Raw data from the X-ray sensors and from various 
diagnostic detectors are streamed at a sustained transfer 
rate near 10 Gb/s. With present data rates (120 Hz repeti-
tion rate and average image size of 4.5 MB), steady-state 
parallel analysis has been demonstrated, with the data 
being processed at the same rate they are acquired, by 
distributing the individual images to separate cores over 
multiple nodes [31]. Structural information is derived 
from the diffraction data collected from a stream of indi-
vidual crystals. The Bragg spot intensities on each diffrac-
tion pattern are measured using the program cctbx.xfel. 
Four steps are executed in sequence: spotfinding (the 
identification of bright X-ray diffraction spots), indexing 
(the determination of the initial lattice model), refine-
ment (parameter optimization for the lattice model), and 
integration (best-fit intensity modeling for individual 
Bragg spots). Simple parallelism is achieved by allocating 
each image to a different core. This level of parallelization 
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is sufficient to keep up with current data rates with cur-
rent analysis techniques, hence there is no present need 
for intra-image parallelism.

The top-level data reduction code from cctbx is called 
from within a psana script, which uses MPI to distribute 
the data. Concurrent processing is performed on approx-
imately 1200 cores, corresponding to about 50 TFLOPs. 
This basic algorithm in the feature extraction pipeline for 
SFX image data from LCLS requires ~10 s/image single-
threaded on a Xeon processor. Each of the four steps in 
the algorithm takes ~2.5 s to complete. The overall cycle 
time from data acquisition to reduced data is about 
10 min.

An alternative SFX pipeline using psocake for spotfind-
ing takes approximately 1.1 s/image to complete. Index-
ing and integration steps in CrystFEL take ~10 s/image; 
however, 95% of this time is spent reading an input hdf5 
file containing the detector images and the spotfinding 
results suggesting huge gains can be achieved by bypass-
ing the filesystem.

The current algorithms for SFX use the coarse approxi-
mation that each Bragg spot is located at a discrete 
mathematical point on an idealized lattice, with signal rep-
resented by summation of nearby pixel intensities. It has 
been shown that more accurate analysis is possible with 
protocols needing 100- to 1000-fold more CPU time [32].

Psocake
Since a typical LCLS experiment has millions of snap-
shots to choose from, it is critical to provide a means to 
quickly select images of interest and set regions of inter-
est using masks. Included in psana is a graphical user 
interface called psocake [33] for viewing Area Detector 
images (CsPad, pnCCD, Opal, etc.) and that can be used 
to tune peak finding parameters and more closely exam-
ine the data. For example, one can mouse over a detec-
tor pixel display and identify its x and y pixel position 
and the ADU value. Regions of interest can be selected, 
masks can be drawn and applied, and events can be 
browsed using forward and back buttons. The user may 
save any event displayed as a NumPy array and can load 
and apply NumPy arrays to the image. For example, there 
is an option to launch an MPI job that saves a virtual 
powder pattern (mean, std, max) in a NumPy array. Users 
can click a button to optimize hit finding parameters, 
hit finding algorithms, and common-mode correction 
parameter for their experiment. Psocake and the algo-
rithms are freely available from our Subversion reposi-
tory: http://java.freehep.org/svn/repos/psdm/list/.

From within psocake, the user can tune hit find-
ing parameters and launch peak finding jobs on multi-
ple runs. The results of these jobs, the number of peaks 
found for each event, may be plotted (and refreshed) 

within psocake while the jobs are still running. By click-
ing on the plot, one can jump to the corresponding event 
and easily browse over the most interesting images based 
on the number of peaks. Psocake will also assist the user 
in doing crystal indexing using accurate detector geom-
etry. Figure 6 shows an example of the psocake tool being 
used to inspect peaks found in an image.

Architectural choices
The main difference between our system and other com-
parable systems, especially those found in high-energy 
physics (HEP) experiments, is the lack of a veto or trigger 
system. While a veto mechanism is part of the design, it 
was never deployed because of the following reasons:

  • Many LCLS experiments have hit rates close to 100%, 
i.e., most pulses produce useful events. This is fun-
damentally different from most HEP experiments 
where the rate of a specific physics process is limited 
by the cross section of that process. This implies that 
the LCLS DAQ system had to be designed to handle 
the full machine rate.

  • Experiments change on weekly basis: these changes 
are often profound enough that adapting the veto/
trigger parameters and algorithms to each experi-
ment would represent a huge effort.

  • At the 120 Hz repetition rate of the source, and the 
average size and quantity of sensors, our current sys-
tem can sustainably read out all data from all sensors 
at the full rate without the need for a mechanism to 
reduce the data on the fly.

  • Finally, obtaining the buy-in and the collaboration of 
the various experimental groups in determining the 
right parameters and algorithms for selecting data on 
the fly proved very difficult.

Because of the cost of building and maintaining a large 
storage system, we encourage the users, through the 
retention policy, to keep only the useful data on disk. 
Data may be reduced in offline processing and selectively 
saved to disk, although a full copy of the raw data is still 
preserved on tape.

Another characteristic of the LCLS data system is the 
presence of multiple storage layers (data cache, fast feed-
back, and offline, as shown in Fig. 1). As discussed above, 
it is critical for the users to be able to perform prompt 
analysis on the data. While the separation between quasi-
real-time and offline processing resources can be handled 
relatively well via the enforcement of high- and low-pri-
ority processing queues, the storage aspect was best han-
dled by the introduction of dedicated resources for the 
running experiment. The separation between data cache 
and fast feedback is dictated by the need to separate the 

http://java.freehep.org/svn/repos/psdm/list/
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Fig. 6 Screenshot of psocake tool. At left is the raw image with found peaks shown in cyan. At right is a histogram and information panel showing 
details about the peaks found in the selected region of interest

Fig. 7 Evolution of the LCLS data systems architecture. The data management system will transparently integrate external supercomputers from 
facilities like NERSC
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DAQ writes from the user activities. We believe this 
separation will not be necessary in the future with the 
adoption of flash-based storage technologies that handle 
much better concurrent access from different sources.

Conclusions
The adoption of a language standard such as Python 
would allow scientists to move across facilities and 
reuse familiar low-level, publicly available tools. It is 
typically difficult to port large high-level frameworks to 
different facilities: it is easier to make low-level standard 
building blocks reusable. Examples of low-level, pub-
licly available Python tools that we currently reuse that 
are useful for photon science include h5py [34], PyQt-
Graph [35], SciPy [36], NumPy [37], matplotlib [38], 
and MPI4py [39].

In order to enable faster feedback for experiments, we 
hope to explore graphical options, similar to the tech-
niques used in the current C++-based LCLS online AMI 
GUI package, but implemented in Python for increased 
flexibility and decreased development time.

The upcoming LCLS-II upgrade with its 1  MHz 
repetition rate and potentially very high throughput 
(>100 GB/s) will necessitate an upgrade of the data acqui-
sition and data processing capabilities. In general terms, 
the main challenge for the offline computing infrastruc-
ture will be developing high-throughput, high-density, 
peta-scale storage systems that allow concurrent access 
from thousands of jobs.

In the high-throughput regime, unlike in LCLS-I, it will 
be necessary to reduce the data prior to writing it to per-
sistent storage. We are investigating the possibility of a 
data reduction mechanism through lossy compression to 
extract the key features from the data thus reducing the 
overall throughput. Note that a veto system alone will not 
be enough to reduce the data, since, like in LCLS-I, many 
experiments are expected to have close to 100% hit rate. 
Also, to participate in the veto system, sensors would 
need to provide a signal to the timing system which 
requires a custom interface that, although possible for 
custom-built sensors, would potentially make impractical 
the adoption of detectors developed elsewhere.

We plan to leverage DOE supercomputer facilities by 
offloading experiments with the highest processing needs 
(>10 PFLOPS) to NERSC. Expanding the existing col-
laboration with NERSC will avoid the need to scale the 
high-performance computing (HPC) capabilities at SLAC 
to the highest demand experiments, 10–1000 PFLOPS 
scale, while maintaining critical capabilities at SLAC. Fig-
ure 7 shows how the LCLS data systems architecture will 
evolve to integrate external computing facilities.

While we believe that well-scheduled intense bursts 
of computing power, well-coordinated over power-
ful networks, significantly expand the possibilities of 
fast feedback analysis for FELs, we face key challenges 
to our ability to run the LCLS analysis on NERSC 
supercomputers:

  • The throughput of the required WLAN connection 
will be at the technological limits of what will be 
available in the LCLS-II timescale.

  • Methods for data reduction or compression must be 
included. We anticipate that some analysis stages, 
especially data reduction stages that are not compute 
intensive, may be best placed close to the detectors.

  • The extreme burstiness of the data creates new 
scheduling and data management challenges not 
common in supercomputers.

  • Because one of the key goals is fast feedback, inter-
faces and components for in  situ visualization of 
results will be key. For debugging, it will be necessary 
to be able to attach visualization and feedback com-
ponents to any stage of the pipeline.

  • The psana code will need to scale from the current 
hundreds of cores to hundreds of thousands.
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