
Thayer et al. Adv Struct Chem Imag (2017) 3:3
DOI 10.1186/s40679-016-0037-7

METHODOLOGY

Data systems for the Linac coherent light
source
J. Thayer*, D. Damiani, C. Ford, M. Dubrovin, I. Gaponenko, C. P. O’Grady, W. Kroeger, J. Pines, T. J. Lane,
A. Salnikov, D. Schneider, T. Tookey, M. Weaver, C. H. Yoon and A. Perazzo

Abstract

The data systems for X-ray free-electron laser (FEL) experiments at the Linac coherent light source (LCLS) are
described. These systems are designed to acquire and to reliably transport shot-by-shot data at a peak throughput
of 5 GB/s to the offline data storage where experimental data and the relevant metadata are archived and made
available for user analysis. The analysis and monitoring implementation (AMI) and Photon Science ANAlysis (psana)
software packages are described. Psana is open source and freely available.

Keywords: Free-electron lasers, FELs, Serial femtosecond crystallography, Data acquisition systems,
Data management systems, Computer programs

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Background
Since the LCLS facility started operating in 2009, it has
accumulated many petabytes of complex data for analy-
sis, and the timely processing of this data has proven
to be a challenge for the community. At LCLS, this has
been made more difficult by the fact that experiments
and experimenters change from week-to-week, and the
fact that real-time feedback is often critical for making
decisions on how to run an experiment. Furthermore,
because of the intrinsic pulsed nature of the FEL source,
experimental solutions must acknowledge that every shot
is different and that a wide range of information needs to
be recorded to interpret a single-shot event. The LCLS
data systems must acquire all relevant shot-by-shot data
at the 120 Hz repetition rate of the LCLS light source,
provide user-friendly display and analysis of critical real-
time information, write multiple GB/s to storage, and
provide analysis software for the timely processing of
this large and complex dataset. Each of the seven LCLS
instruments [1, 2] offers unique capabilities to study
many different areas of science using the unique FEL
beam properties. Here, we describe the data acquisition

(DAQ) and data analysis systems developed for LCLS
and briefly describe a case study of the quasi-real-time
nanocrystallography pipeline as an example of LCLS
computing capabilities.

Methods
Data acquisition
The data acquisition system (DAQ) at LCLS is the set
of hardware and software responsible for correctly and
coherently transporting data from the instruments’
imaging detectors and diagnostic devices to a dedicated
file system. The DAQ is used to configure, calibrate,
and control both custom and commercial devices. Each
instrument has its own independent DAQ system of
hardware and software, allowing all instruments to be
run simultaneously.

Within each instrument, data are acquired for all
devices at the beam rate of 120 Hz, and UDP multicast
from readout nodes over a dedicated 10 Gb network to
several data cache nodes. The DAQ system performs
an event build, the real-time assembly of the data from
all devices into one object, called an event, tagged with
the fiducial from the timing system and a UNIX times-
tamp. The data cache nodes subscribe to the UDP mul-
ticasts from the readout nodes, aggregate all device data
associated with a single fiducial in an event, and append

Open Access

*Correspondence: jana@slac.stanford.edu
SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park,
CA 94025, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40679-016-0037-7&domain=pdf

Page 2 of 13Thayer et al. Adv Struct Chem Imag (2017) 3:3

these event data to a file in eXtended tagged container
(XTC) format [3]. The DAQ system is capable of read-
ing out 5 GB/s per instrument, with the exceptions of the
coherent X-ray imaging (CXI) instrument [4], which is
capable of running two independent experiments simul-
taneously and whose infrastructure is capable of read-
ing out 10 GB/s, and the matter in extreme conditions
(MEC) instrument [5], which is limited to 1 GB/s due to
its lower designed data rate.

By UDP multicasting the data for different events to
different multicast groups, it is possible to scale the num-
ber of data cache nodes appropriately to accommodate
large and small experiments. Multiple data files are writ-
ten in parallel per run, one file per each of the six data
cache node in a typical instrument. The multiple data
files are recorded for a period of time called a run where
an experiment has been taking data with a constant con-
figuration. A run typically lasts between 10 and 40 min.
Additionally, each of these files within a run is automati-
cally split into chunks to prevent any one file from getting
too large for the tape archiving system. The average file
depends on the length of the run and for cyrstallography
experiments it is typically 20 GB per file, six files per run.

Each hutch is equipped with dedicated monitoring
nodes that also subscribe to the multicasts to receive a
fixed fraction of all events where each event includes
all the detector and diagnostic data recorded from one
X-ray pulse. The monitoring nodes copy the data to
shared memory where the data are promptly available for
real-time analysis applications such as AMI or psana, as
described below.

The data that arrive at the data cache nodes are stored
in the SSDs while the transfer to the fast feedback (FFB)
storage layer, which is initiated immediately when a run
is started, completes. The transfer from data cache to
FFB happens in near real time, or with a very small delay.
The FFB layer can store 100–200 TB of data while await-
ing transfer to permanent offline storage. Data can be
accessed from disk, and custom analyses may be run on
the fast feedback queues in each experimental hall. This
method can provide quasi-real-time feedback within
about 5 min of data acquisition. Access to the FFB stor-
age layer is reserved to the running experiment.

From the FFB, the data are automatically copied to the
offline file system where files are made available to users
for analysis and for exporting to users’ institutions out-
side SLAC via the POSIX-compliant Lustre file system
[6]. The total data volume varies by experiment. Crystal-
lography experiments typically generate a few hundred
high-rate data bursts about 10 min in length over a 5-day
period. An overview of the movement of data through
the LCLS online and offline systems is shown in Fig. 1.

In 2015, the LCLS Data Management system was
expanded to include NERSC resources; after data
are copied to tape at SLAC, the files are also copied to
NERSC to create a second archive copy inAQ at NERSC.
Simultaneous data migrations for all LCLS instruments
are supported. The system maintains a central registry of
experiments and provides a reliable mechanism for stor-
ing the data and metadata at the various storage layers
of the LCLS computing infrastructure. Figure 2 shows a
logical diagram of the LCLS data management system.
Since 2014 [7], we have utilized the energy sciences net-
work (ESNet) [8] to transfer data to NERSC, with sus-
tained transfer rates of the order of 10 Gb/s. NERSC
provides the significant computing resources of the Cori
Phase I system [9]. Users may analyze the data at SLAC,
at NERSC, or copy the data to their home institution and
analyze it there.

The ability to make informed decisions in response to
real-time feedback is critical during an LCLS experiment.
It is essential for tuning the performance of the X-ray
source, the detectors, and other beamline components.
LCLS provides two software frameworks for displaying
and analyzing critical real-time information: a graphi-
cal online monitoring tool called the analysis monitor-
ing interface (AMI) and the software framework psana
(Photon Science ANAlysis), a software package with user
interfaces in both C++ and Python. All data generated
by the DAQ can also be viewed and analyzed using this
software.

Results and discussion
Data analysis using AMI
AMI runs alongside the data acquisition, is user-con-
figurable, and requires no user coding or preparation to
produce an analysis. AMI actually refers to a collection of
software implemented in C++ and QT consisting of (1) a
shared memory server, a generic application that receives
datagrams from the DAQ private network via UDP, builds
them into events, and pushes them into shared memory,
(2) a custom application that receives these events from
shared memory, performs analyses, and exports viewable
data such as plots, and (3) online_ami, the QT-based GUI
that runs on the control room consoles and serves as a
network client to the ami server, receiving users’ analysis
configurations and displaying resulting plots.

At the start of a run, the monitoring automatically
learns which detectors are available in the data and
makes their raw data available to the user with the click
of a button. AMI is the default tool for real-time online
analysis and feedback.

Shared memory analysis takes advantage of the fact that
the LCLS data acquisition system uses UDP multicasts to

Page 3 of 13Thayer et al. Adv Struct Chem Imag (2017) 3:3

simultaneously send data to the data cache nodes, that
save data to disk, and to the monitoring nodes where data
from the last 16–32 events are stored in a Unix shared
memory buffer. The UDP multicasts are made pseudo-
reliable by enabling hardware-based Ethernet pause
frames to create backpressure in the network if buffers
become full. If the monitoring code is too slow to analyze
the full event rate, the oldest events are discarded, ensur-
ing that the results are from the most recent data. Pro-
cesses running on multiple cores can connect to the same
shared memory server, which distributes different events
to the different processes on the node and serializes cli-
ent requests with datagram handling. The analysis results
are then collected by a custom collection application

and displayed to the operator by the online_ami client.
AMI runs on an instrument’s monitoring nodes which
typically contain over 40 CPU cores. There is one shared
memory input per monitoring node, but multiple clients
can coexist so that users may monitor the data on differ-
ent consoles and using different criteria. The process-
ing load is distributed across the monitoring nodes, but
because each node receives complete events, it is capable
of fully analyzing any given event.

Users primarily interact with the online_ami GUI and
use it to display and analyze information on-the-fly. The
GUI has a set of simple operations that can be cascaded
to achieve a variety of monitoring measures. It can be
used to perform many standard tasks such as displaying

Fig. 1 LCLS data flow. The top half of the figure represents the Online system which includes the DAQ and the Fast Feedback Layer. There is one
Online system instance per instrument. The bottom half of the figure shows the Offline system which is shared across LCLS instruments. When the
DAQ begins a new run for recording, the data management system ensures that the new files are registered in the file catalog and launches an
automated process to immediately begin the transfer of data from the data cache nodes to the fast feedback (FFB) nodes as the raw data are being
written

Page 4 of 13Thayer et al. Adv Struct Chem Imag (2017) 3:3

detector images and waveforms, displaying data as his-
tograms, strip charts, scatter plots, etc., and perform-
ing averaging, filtering, and other generic manipulations
of the data including region of interest selection, mask-
ing, projections, integration, contrast calculation, and
hit finding. AMI can be used to view raw or corrected
detector images and perform tasks such as background
subtraction, detector correlations, and event filtering.
For example, the analysis may require that only events
in which the beam energy is above a certain threshold
and a laser is present should be plotted. The plot can be
further manipulated, overlayed on other plots, displayed
as a table, or saved to a text file or an image. All of the
scalar data such as the beam energy, beamline diode val-
ues, encoder readouts, and EPICS [10] data associated
with the event are also available and can be combined in
user-defined algebraic expressions. AMI supports sin-
gle-event waveform plots and image projections which
can be averaged, subtracted, and filtered. AMI has an
algorithm for simple edge finding using a constant frac-
tion discriminator. Displays of waveforms and images
can be manipulated by adding cursors and doing cur-
sor math or waveform shape matching. Users may also
integrate their own code to perform even more sophis-
ticated or device-specific processing, either by building a
C++ module plug-in for AMI, or writing Python code to
run in the psana framework. AMI algorithms are avail-
able from our Subversion repository, https://confluence.
slac.stanford.edu/display/PCDS/Software+Repository.

Instructions for code development are documented
here: https://confluence.slac.stanford.edu/display/PCDS/
AMI+Online+Monitoring.

AMI can be used both on live data from shared mem-
ory and offline data read from disk without any coding.
Figures 3 and 4 show examples of AMI waveform analy-
sis and image displays. AMI is a useful tool for generic
online analysis and feedback, but psana is a more com-
prehensive analysis tool available to support more experi-
ment-specific analyses.

Data analysis using psana
The software framework psana handles importing the
science data into memory (either staged from disk or
streamed directly from the detectors), calibration, dis-
tributing events to multiple nodes/cores for parallel
processing, and collecting the results and making them
persistent. The psana framework is responsible for load-
ing and initializing all user modules, loading one of the
input modules to read data from XTC or HDF5 [11] files,
calling appropriate methods of user modules based on
the data being processed, providing access to data as a set
of C++ classes and Python classes, and providing other
services, such as histogramming, to the user modules.

The core portion of psana is written largely in C++,
but psana supports both C++ and Python as user inter-
faces. Over time, it has become clear that Python is the
preferred user interface for several reasons. First, it is
possible to develop python analyses quickly, and short

Fig. 2 Logic diagram of the LCLS data management system. The blue arrows indicate data movement that is automatically handled by the DM sys-
tem; the red arrows indicate traffic that is handled by the users; the yellow arrows show traffic that is handled by the DM system upon users’ request

https://confluence.slac.stanford.edu/display/PCDS/Software%2bRepository
https://confluence.slac.stanford.edu/display/PCDS/Software%2bRepository
https://confluence.slac.stanford.edu/display/PCDS/AMI%2bOnline%2bMonitoring
https://confluence.slac.stanford.edu/display/PCDS/AMI%2bOnline%2bMonitoring

Page 5 of 13Thayer et al. Adv Struct Chem Imag (2017) 3:3

development times are a necessity given the frequent
rate-of-change of LCLS experiments and the chang-
ing analysis requirements during an experiment. Sec-
ond, C++ offers a steep learning curve for users. The
observed trend at US light-source facilities and free-
electron lasers around the world is to use Python and its
associated tools.

In addition to providing data access, psana also pro-
vides simple python interfaces to complex algorithms.
One commonly used example is the analysis code for
the XTCAV detector [12] that is used to calculate lasing
power as a function of time (on the femtosecond time
scale) for each LCLS shot. Another example is the algo-
rithm which computes the time separation between a
pump laser and the LCLS shot [13]. Users are able to put
together short python building blocks to quickly express
the complexity of their experiment. Many of these build-
ing blocks are publicly available on the web, and so can
be reused at any facility. We hope to include algorithms

that are not LCLS-specific in globally available photon
science-specific python packages which can be reused
across labs. One such candidate is the publicly available
scikit-beam project [14]. Psana and all its algorithms are
open source and freely available from our Subversion
repository. Instructions for code development and col-
laborative tools are documented here: https://confluence.
slac.stanford.edu/display/PCDS/Software+Repository.

For performance, we support running psana in paral-
lel using OpenMPI [15] through the python wrapper
MPI4Py [16]. Several other photon science analysis pack-
ages [17] reuse the psana code when running at LCLS:
OnDA [18], Hummingbird [19], cctbx.xfel, the Computa-
tion Crystallography Toolbox [20], the CrystFEL package
[21], and Cheetah [22].

Interfaces
The data acquisition system is obligated to record all
possible information to the data files, but the resulting

Fig. 3 Example of event waveform plots and cursor math in AMI. The top right image shows the raw waveform in blue with the averaged waveform
in red superimposed, and a baseline and threshold for the edge finding. The users have placed cursors on the image to select regions of interest.
The leftmost window shows which channel is selected, the positions of the cursors on the plot, and the expression derived from the waveform. The
plot in the bottom right corner is a 1D histogram expression derived from the waveform, histogramming the ratio of two areas selected by cursors

https://confluence.slac.stanford.edu/display/PCDS/Software%2bRepository
https://confluence.slac.stanford.edu/display/PCDS/Software%2bRepository

Page 6 of 13Thayer et al. Adv Struct Chem Imag (2017) 3:3

complexity makes navigating the data difficult for the
users. As a result, in addition to an interface that pro-
vides access to all data, we have found it useful to provide
an additional simpler interface that exposes only infor-
mation that most users typically access. We have also
used this interface to capture commonality among detec-
tors, e.g., all area detectors are transformed at a low level
into NumPy arrays, either two-dimensional for a stand-
ard camera, or three-dimensional for multi-panel cam-
eras. This is a powerful idea: metadata associated with a
detector, such as pedestals, masks, per-pixel gains, can be
given the same array shape as the real data, and then data

corrections become efficient single-line NumPy opera-
tions like addition, multiplication, etc.

For performance, it is important that Python is able to
call C++. For this, we have written Boost.Python (http://
www.boost.org) converter methods for a few high-level
classes that allow transfer of data between Python and
C++ without copying large data. Memory management
is done mostly in C++ using reference counts. We also
use Boost.Python wrappers to call C++ class methods
from Python. This allows for event analysis in a combina-
tion of C++ and Python, although the large majority of
users only see the simpler Python interface.

Fig. 4 AMI screen capture of CSPad image. Screen capture showing CSPad [40, 41] as it appears during an experiment

http://www.boost.org
http://www.boost.org

Page 7 of 13Thayer et al. Adv Struct Chem Imag (2017) 3:3

Random access and parallelization with psana
MPI is a world standard for scientific parallelization
across multiple nodes, with each node having many CPU
cores. For most LCLS analyses, events can be analyzed
in parallel, and I/O is a common bottleneck, which can
be addressed using multiple cores/nodes. Most LCLS
analyses parallelize trivially, with different cores process-
ing different events. The psana MPI process running on
a given core/node needs a way to jump to the events it
will process—that is it needs random access to the large
data rather than having to read through all the data. To
achieve this, the data acquisition system writes additional
small files called small-data XTC files where each piece
of large data (e.g., a camera) is replaced with a file-offset
into the full-data files. We maintain the same XTC for-
mat as the full data in these small-data files so that the
same tools can be used to read it. When running with
MPI, each core quickly reads these small-data files and
then jumps to the appropriate big data for events that it
should analyze by passing the big data file-offset to the
fseek subroutine. Currently, the threshold for deciding
which data is large or small defaults to 1 kB, but it can be
overridden on the command line of the data acquisition
software that records the data.

Further performance gains can be obtained from
this small-data approach. For example, when process-
ing an event, one can query beam quality (contained in
the small-data files) and if the X-ray shot power was too
low avoid spending the time to read the large data for
that event. Psana has been structured so this conditional
fetching can be done with a simple python “if” statement.

Psana also implements a user interface, based on ran-
dom access, which accepts an event identifier and imme-
diately returns the appropriate event. This identifier is
the Unix seconds/nanoseconds timestamp plus a 17-bit
360 Hz “fiducial” counter as described previously.

Real‑time analysis with psana
Prompt analysis of the data is critical for LCLS experi-
ments, because such information is required for impor-
tant decisions, e.g., beam tuning, moving detectors/
samples, and evaluating whether or not sufficient statis-
tics have been accumulated. It is possible to run psana
data analysis in real time in two different modes, a shared
memory interface, which receives DAQ network-multi-
cast data, or a live-file mode where the data are read from
the FFB storage layer:

1. In the shared memory mode, psana reads events
from a shared memory buffer on the monitoring
node and uses MPI to launch processes on the differ-
ent nodes for full 120 Hz analysis.

2. In the FFB mode, the data acquisition small-data
XTC files can be analyzed with MPI while the data
are being written. If the software catches up to the
end of the live file in this mode without seeing an
end-run message, it will briefly sleep and try to read
new data. If no new data appear within a timeout
period, the software assumes no more events will
appear and behaves as if the run had ended normally,
albeit with a warning message.

The two online analysis approaches are complemen-
tary: FFB allows the user to analyze all events, at the risk
of falling behind; shared memory has only a small buffer
of events, meaning that the displayed data are always up
to date, but there is no guarantee that all events will be
seen by the analysis software, i.e., if the software is too
slow, events will be dropped. Further, psana allows the
user to run the same analysis code in online against the
shared memory, quasi-real-time against the files on the
FFB, and offline against data stored on disk.

Real‑time visualization with psana
In addition to the standard matplotlib [38] methods for
visualization in Python, we have used PyQtGraph to
support real-time visualization because it has excellent
interactive manipulation tools for plots together with
fast graphics performance. The Python interface of the
ZeroMQ (ZMQ) package [23] is used to transport data
between the analysis code and the display, which may
be on a remote machine. We use the publish/subscribe
mechanism of ZMQ so that many real-time copies of
plots may be displayed on different computers. To open
a display, the subscriber uses a one-line command, which
specifies the publisher’s hostname and port number, as
well as a list of plot names.

Users can also create a multiplot which guarantees that
all plots within the multiplot display coherent informa-
tion, e.g., from the same LCLS events. In parallel jobs,
typically one core is chosen to gather the results from the
other cores via MPI and then publish the plots.

Build/release system
We use the SCons tool [24] to build all core Python/
C++ packages of psana. The RHEL 5/6/7 operating sys-
tems are currently supported. All psana core and external
packages are distributed using a modified form of APT
[25] that supports relocatable RPM files. The repositories
are made world-readable via http, so any user can down-
load/run the APT code from the SLAC servers and quite
easily install all psana binaries on a supported operating
system. With the recent emphasis on Python-based anal-
ysis, we are considering a more Python-oriented release

Page 8 of 13Thayer et al. Adv Struct Chem Imag (2017) 3:3

system, such as Anaconda [26], which would allow easier
inclusion of Python external packages.

Detector calibration
LCLS supports calibrations of several area detectors,
many of which have multiple panels. These calibrations
include pedestal subtraction, bad-pixel determination,
and common-mode noise removal, where noise varies
coherently in several channels of a detector in one event.
All corrections are stored in a run-dependent manner,
e.g., pedestal values, common-mode noise parameters.
The calibration data are stored in a hierarchical directory
structure: with an experiment containing several detec-
tors, each of which has several parameter types and run-
associated data files. We considered storage in a database,
but felt that a simple directory structure would allow for
easier portability of analysis to remote institutions. Most
of the constants are stored in text files, but we anticipate
storing future constants in hierarchical HDF5 files. The
same file-based constants are used by both offline and
online analysis, including the AMI tool.

Command line and GUI tools are provided to compute
pedestals, noise values, and bad-pixel lists. The graphi-
cal interface allows users to take appropriate multi-panel
unassembled detector data, e.g., powder-pattern diffrac-
tion-ring data and graphically adjust the positions/rota-
tions of the panels to create geometry constants. Optical
measurements with a microscope and sophisticated
crystallographic techniques [27] are used to more pre-
cisely determine geometry. The tools are used to deploy
calibration constants that are valid for user-specified run
ranges.

Geometry for multi-panel detectors is defined using
a multi-level hierarchical approach as shown in Fig. 5;
each component is positioned with parameters defining
its rotation and translation in the parent frame. Multiple
independent detectors can be placed in the correct posi-
tion relative to each other using this approach. In many
experiments, the origin is defined as the interaction point
between the sample being studied and the laser shot.

Data type and data format
The data acquisition system produces many data types,
implemented as C++ classes, and often these data types
change with time as improvements are made. These
changes are handled by introducing a new type for each
modification using a custom-built data definition lan-
guage (DDL) that allows us to represent the various data
types in a language-independent manner. These descrip-
tions are then compiled into language-specific Python or
C++ classes. The DDL files are shared in common with
the data acquisition system software, which uses C++,
to guarantee a consistent description of LCLS data types
between online/offline Python/C++ code.

The LCLS data acquisition system saves data in XTC
format which consists of a hierarchical set of small head-
ers that encapsulate larger data, where each container is
mapped to a C++ class using an enumerated type. In the
case of a dropped packet or missing data contribution,
the header metadata associated with the event is anno-
tated appropriately. It is an append-only data format, and
only supports little-endian machines.

All code for writing/reading XTC data is contained in a
library called pdsdata which has minimal dependencies.

Fig. 5 Hierarchical geometry description used by psana. Left one level in the hierarchical geometry description used by psana showing a child
object in the parent coordinate frame. Right several panels of a multi-panel detector showing rotations and offsets. Although not shown in the
diagram, the hierarchical geometry description allows these to be out-of-plane

Page 9 of 13Thayer et al. Adv Struct Chem Imag (2017) 3:3

All data needed for analysis, including low-rate monitor-
ing data like temperatures/voltages, exist in the XTC files.
Because there are multiple files per run, easy user analy-
sis requires a software framework like psana to manage
the data reading. Psana presents the events from the mul-
tiple files to the user in time order, as well as doing offline
event building when required. While the DAQ system
performs real-time assembly of data from different detec-
tors belonging to the same FEL shot into an event such
that each XTC file is typically a sequence of complete
events, there are also detectors that are shared across
multiple data acquisition systems, although not simulta-
neously, and their data files are recorded separately and
not included in the online event building process. To
make these detectors easily available to users’ analysis
code, psana additionally performs an offline event build
that associates these data with the data acquisition data
using the same timestamp, but at the time when the data
are being read for analysis.

Because some users prefer HDF5 for offline analysis,
the system provides a user-selectable translation service
that can be configured from the LCLS web portal applica-
tion to run automatically on the FFB queues and translate
the raw XTC data to HDF5 as the data are being taken.
The service produces raw or calibrated data organized
into datasets based on each device rather than events.
In addition, the data are self-describing with no software
infrastructure required for analysis. The HDF5 data file
has hierarchical organization consisting of the groups
and dataset. Groups can contain other groups and data-
sets; datasets contain complex multi-dimensional data.
This allows easy navigation from the “top” of the file to
any object in that file, for example, /groupA/groupB/
dataset1.

Users can take the data files off-site and analyze them
in MATLAB, Python, or any other system that reads
HDF5. Users can also customize the output of the trans-
lator by providing a configuration file to specify which
data types should be translated or by including code that
generates n-dimensional arrays which will automatically
be included by the translator in the output.

While users do not need a software framework to work
with LCLS HDF5, they all need to write the same code to
correlate data from different datasets. That is, they need
to match timestamps from the different datasets that the
translator writes. This is essentially the event building
process that psana must do with certain detectors. It is
anticipated that as part of the LCLS-II upgrade the data
acquisition system will write HDF5 files directly, given a
couple of new critical features in the HDF5 1.10.x series,
namely the ability read while writing and the ability to
write to multiple files in parallel and aggregate them into
one virtual dataset.

Analysis computing resources
LCLS has accumulated 11 PB of data since start-up in
2009, and 24% of these data are currently available on
disk. Frequently, the data acquisition rate is more than
1 GB/s. For analysis, we provide 80 nodes each with 2
Xeon X5675 processors and 24 GB of memory. These
nodes use a 40 Gb/s infiniband connection [28] to access
data on Lustre file-systems [6] providing a total of 3.7 PB
of offline storage. Additionally, running experiments have
special priority access to 2 additional farms of 20 nodes,
each with 2 Xeon E5-2640 processors and 128 GB of
memory. These nodes are used for prompt data analysis
against the FFB layer and are reserved for the running
experiment using the standard SLAC batch system. These
nodes can also be used for general lower-priority jobs,
which are automatically suspended when the higher-pri-
ority jobs of the running experiment are submitted.

Case study: serial femtosecond crystallography
About one-third of beam time allocations at LCLS are
currently awarded to serial femtosecond crystallography
(SFX) experiments. With LCLS, it is possible to probe the
sub-picosecond time domain, e.g., by triggering chemical
changes with an optical pump/X-ray probe arrangement
[29], or to observe sub-populations of conformational
variation in the protein ensemble that are key to under-
standing enzyme mechanism and regulation [30].

The primary issue in XFEL crystallography processing
pipelines is orchestrating movement of images through
machine’s memory hierarchy as efficiently as possible
while concurrently scheduling analysis tasks. This sec-
tion describes the SFX pipeline based on cctbx.xfel [20],
the computation crystallography toolbox, but other tools,
like the CrystFEL package [21], are also available to the
LCLS users.

Raw data from the X-ray sensors and from various
diagnostic detectors are streamed at a sustained transfer
rate near 10 Gb/s. With present data rates (120 Hz repeti-
tion rate and average image size of 4.5 MB), steady-state
parallel analysis has been demonstrated, with the data
being processed at the same rate they are acquired, by
distributing the individual images to separate cores over
multiple nodes [31]. Structural information is derived
from the diffraction data collected from a stream of indi-
vidual crystals. The Bragg spot intensities on each diffrac-
tion pattern are measured using the program cctbx.xfel.
Four steps are executed in sequence: spotfinding (the
identification of bright X-ray diffraction spots), indexing
(the determination of the initial lattice model), refine-
ment (parameter optimization for the lattice model), and
integration (best-fit intensity modeling for individual
Bragg spots). Simple parallelism is achieved by allocating
each image to a different core. This level of parallelization

Page 10 of 13Thayer et al. Adv Struct Chem Imag (2017) 3:3

is sufficient to keep up with current data rates with cur-
rent analysis techniques, hence there is no present need
for intra-image parallelism.

The top-level data reduction code from cctbx is called
from within a psana script, which uses MPI to distribute
the data. Concurrent processing is performed on approx-
imately 1200 cores, corresponding to about 50 TFLOPs.
This basic algorithm in the feature extraction pipeline for
SFX image data from LCLS requires ~10 s/image single-
threaded on a Xeon processor. Each of the four steps in
the algorithm takes ~2.5 s to complete. The overall cycle
time from data acquisition to reduced data is about
10 min.

An alternative SFX pipeline using psocake for spotfind-
ing takes approximately 1.1 s/image to complete. Index-
ing and integration steps in CrystFEL take ~10 s/image;
however, 95% of this time is spent reading an input hdf5
file containing the detector images and the spotfinding
results suggesting huge gains can be achieved by bypass-
ing the filesystem.

The current algorithms for SFX use the coarse approxi-
mation that each Bragg spot is located at a discrete
mathematical point on an idealized lattice, with signal rep-
resented by summation of nearby pixel intensities. It has
been shown that more accurate analysis is possible with
protocols needing 100- to 1000-fold more CPU time [32].

Psocake
Since a typical LCLS experiment has millions of snap-
shots to choose from, it is critical to provide a means to
quickly select images of interest and set regions of inter-
est using masks. Included in psana is a graphical user
interface called psocake [33] for viewing Area Detector
images (CsPad, pnCCD, Opal, etc.) and that can be used
to tune peak finding parameters and more closely exam-
ine the data. For example, one can mouse over a detec-
tor pixel display and identify its x and y pixel position
and the ADU value. Regions of interest can be selected,
masks can be drawn and applied, and events can be
browsed using forward and back buttons. The user may
save any event displayed as a NumPy array and can load
and apply NumPy arrays to the image. For example, there
is an option to launch an MPI job that saves a virtual
powder pattern (mean, std, max) in a NumPy array. Users
can click a button to optimize hit finding parameters,
hit finding algorithms, and common-mode correction
parameter for their experiment. Psocake and the algo-
rithms are freely available from our Subversion reposi-
tory: http://java.freehep.org/svn/repos/psdm/list/.

From within psocake, the user can tune hit find-
ing parameters and launch peak finding jobs on multi-
ple runs. The results of these jobs, the number of peaks
found for each event, may be plotted (and refreshed)

within psocake while the jobs are still running. By click-
ing on the plot, one can jump to the corresponding event
and easily browse over the most interesting images based
on the number of peaks. Psocake will also assist the user
in doing crystal indexing using accurate detector geom-
etry. Figure 6 shows an example of the psocake tool being
used to inspect peaks found in an image.

Architectural choices
The main difference between our system and other com-
parable systems, especially those found in high-energy
physics (HEP) experiments, is the lack of a veto or trigger
system. While a veto mechanism is part of the design, it
was never deployed because of the following reasons:

 • Many LCLS experiments have hit rates close to 100%,
i.e., most pulses produce useful events. This is fun-
damentally different from most HEP experiments
where the rate of a specific physics process is limited
by the cross section of that process. This implies that
the LCLS DAQ system had to be designed to handle
the full machine rate.

 • Experiments change on weekly basis: these changes
are often profound enough that adapting the veto/
trigger parameters and algorithms to each experi-
ment would represent a huge effort.

 • At the 120 Hz repetition rate of the source, and the
average size and quantity of sensors, our current sys-
tem can sustainably read out all data from all sensors
at the full rate without the need for a mechanism to
reduce the data on the fly.

 • Finally, obtaining the buy-in and the collaboration of
the various experimental groups in determining the
right parameters and algorithms for selecting data on
the fly proved very difficult.

Because of the cost of building and maintaining a large
storage system, we encourage the users, through the
retention policy, to keep only the useful data on disk.
Data may be reduced in offline processing and selectively
saved to disk, although a full copy of the raw data is still
preserved on tape.

Another characteristic of the LCLS data system is the
presence of multiple storage layers (data cache, fast feed-
back, and offline, as shown in Fig. 1). As discussed above,
it is critical for the users to be able to perform prompt
analysis on the data. While the separation between quasi-
real-time and offline processing resources can be handled
relatively well via the enforcement of high- and low-pri-
ority processing queues, the storage aspect was best han-
dled by the introduction of dedicated resources for the
running experiment. The separation between data cache
and fast feedback is dictated by the need to separate the

http://java.freehep.org/svn/repos/psdm/list/

Page 11 of 13Thayer et al. Adv Struct Chem Imag (2017) 3:3

Fig. 6 Screenshot of psocake tool. At left is the raw image with found peaks shown in cyan. At right is a histogram and information panel showing
details about the peaks found in the selected region of interest

Fig. 7 Evolution of the LCLS data systems architecture. The data management system will transparently integrate external supercomputers from
facilities like NERSC

Page 12 of 13Thayer et al. Adv Struct Chem Imag (2017) 3:3

DAQ writes from the user activities. We believe this
separation will not be necessary in the future with the
adoption of flash-based storage technologies that handle
much better concurrent access from different sources.

Conclusions
The adoption of a language standard such as Python
would allow scientists to move across facilities and
reuse familiar low-level, publicly available tools. It is
typically difficult to port large high-level frameworks to
different facilities: it is easier to make low-level standard
building blocks reusable. Examples of low-level, pub-
licly available Python tools that we currently reuse that
are useful for photon science include h5py [34], PyQt-
Graph [35], SciPy [36], NumPy [37], matplotlib [38],
and MPI4py [39].

In order to enable faster feedback for experiments, we
hope to explore graphical options, similar to the tech-
niques used in the current C++-based LCLS online AMI
GUI package, but implemented in Python for increased
flexibility and decreased development time.

The upcoming LCLS-II upgrade with its 1 MHz
repetition rate and potentially very high throughput
(>100 GB/s) will necessitate an upgrade of the data acqui-
sition and data processing capabilities. In general terms,
the main challenge for the offline computing infrastruc-
ture will be developing high-throughput, high-density,
peta-scale storage systems that allow concurrent access
from thousands of jobs.

In the high-throughput regime, unlike in LCLS-I, it will
be necessary to reduce the data prior to writing it to per-
sistent storage. We are investigating the possibility of a
data reduction mechanism through lossy compression to
extract the key features from the data thus reducing the
overall throughput. Note that a veto system alone will not
be enough to reduce the data, since, like in LCLS-I, many
experiments are expected to have close to 100% hit rate.
Also, to participate in the veto system, sensors would
need to provide a signal to the timing system which
requires a custom interface that, although possible for
custom-built sensors, would potentially make impractical
the adoption of detectors developed elsewhere.

We plan to leverage DOE supercomputer facilities by
offloading experiments with the highest processing needs
(>10 PFLOPS) to NERSC. Expanding the existing col-
laboration with NERSC will avoid the need to scale the
high-performance computing (HPC) capabilities at SLAC
to the highest demand experiments, 10–1000 PFLOPS
scale, while maintaining critical capabilities at SLAC. Fig-
ure 7 shows how the LCLS data systems architecture will
evolve to integrate external computing facilities.

While we believe that well-scheduled intense bursts
of computing power, well-coordinated over power-
ful networks, significantly expand the possibilities of
fast feedback analysis for FELs, we face key challenges
to our ability to run the LCLS analysis on NERSC
supercomputers:

 • The throughput of the required WLAN connection
will be at the technological limits of what will be
available in the LCLS-II timescale.

 • Methods for data reduction or compression must be
included. We anticipate that some analysis stages,
especially data reduction stages that are not compute
intensive, may be best placed close to the detectors.

 • The extreme burstiness of the data creates new
scheduling and data management challenges not
common in supercomputers.

 • Because one of the key goals is fast feedback, inter-
faces and components for in situ visualization of
results will be key. For debugging, it will be necessary
to be able to attach visualization and feedback com-
ponents to any stage of the pipeline.

 • The psana code will need to scale from the current
hundreds of cores to hundreds of thousands.

Abbreviations
ADU: analogue digital unit; AMI: analysis and monitoring implementation;
APT: advanced packaging tool; CPU: central processing unit; CXI: coherent
X-ray imaging; DAQ: data acquisition; DDL: data definition language; EPICS:
experimental physics and industrial control system; ESNet: energy sciences
network; FEL: free-electron laser; FFB: fast feedback; GB: gigabyte; Gb: gigabit;
GUI: graphical user interface; HDF: hierarchical data format; HEP: high-energy
physics; HPC: high-performance computing; LCLS: Linac coherent light source;
MEC: matter in extreme conditions; MPI: message passing interface; NERSC:
National Energy Research Scientific Computing Center; PSANA: photon sci-
ence analysis software; PFLOPS: petaflops; RPM: RPM Package Manager; SFX:
serial femtosecond crystallography; SSD: solid-state drive; TB: terabyte; UDP:
user datagram protocol; XTC: eXtended tagged container; XTCAV: X-band
radio-frequency transverse cavity; ZMQ: ZeroMQ, a high-performance asyn-
chronous messaging library.

Authors’ contributions
MW, CO, CF, JP, and AP are the architects of the data acquisition software. IG
and WK defined the data management system. TL, AS, CO, CY, and DS are
authors of psana and its supporting infrastructure. JT, CPO, and AP wrote the
manuscript with contributions from CY. All authors read and approved the
final manuscript.

Acknowledgements
Use of LCLS, SLAC National Accelerator Laboratory, is supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences under
contract number DE-AC02-76SF00515.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The source code and algorithms described in this article are available
in the repository https://confluence.slac.stanford.edu/display/PCDS/
Software+Repository.

https://confluence.slac.stanford.edu/display/PCDS/Software%2bRepository
https://confluence.slac.stanford.edu/display/PCDS/Software%2bRepository

Page 13 of 13Thayer et al. Adv Struct Chem Imag (2017) 3:3

Funding
LCLS and SLAC are supported by the U.S. Department of Energy, Office
of Science, Office of Basic Energy Sciences under Contract Number
DE-AC02-76SF00515.

Received: 17 August 2016 Accepted: 28 December 2016

References
 1. White, W.E., Robert, A., Dunne, M.: The Linac coherent light source. J.

Synchrotron Radiat. 22, 471B (2015)
 2. Boutet, S., Cohen, A.E., Wakatsuki, S.: The new macromolecular femtosec-

ond crystallography (MFX) instrument at LCLS. Synchrotron Radiat. News
(2016). doi:10.1080/08940886.2016.1124681

 3. Aubert, B., et al.: The BaBar detector: upgrades, operation and perfor-
mance. Nucl. Instrum. Methods Phys. Res. Sect. A 729, 615–701 (2013)

 4. Liang, M., et al.: The coherent x-ray imaging instrument at the Linac
coherent light source. J. Synchrotron Radiat. 22, 514–519 (2015).
doi:10.1107/S160057751500449X

 5. Nagler, B., et al.: The matter in extreme conditions instrument at the
Linac coherent light source. J. Synchrotron Radiat. 22, 520–525 (2015).
doi:10.1107/S1600577515004865

 6. Lustre FileSystem. http://opensfs.org/lustre (2016). Accessed 16 Aug 2016
 7. Kern, J., et al.: Taking snapshots of photosynthetic water oxidation using

femtosecond x-ray diffraction and spectroscopy. Nat. Commun. 5, 4371
(2014). doi:10.1038/ncomms5371

 8. ESNet: Energy Sciences Network. https://www.es.net (2016). Accessed 16
Aug 2016

 9. NERSC Annual Report 2014, pp. 30. http://www.nersc.gov/assets/
Uploads/2014NERSCAnnualReport.pdf (2014). Accessed 16 Aug 2016

 10. EPICS: Experimental Physics and Industrial Control System R3.14. http://
www.aps.anl.gov/epics/docs/ (1993). Accessed 16 Aug 2016

 11. The HDF Group: Hierarchical Data Format, version 5. http://www.hdf-
group.org/HDF5/ (1997). Accessed 16 Aug 2016

 12. Behrens, C., Decker, F.J., Ding, Y., Dolgashev, V.A., Frisch, J., Huang, Z.,
Krejcik, P., Loos, H., Lutman, A., Maxwell, T.J., Turner, J., Wang, J., Wang, M.H.,
Welch, J., Wu, J.: Few-femtosecond time-resolved measurements of x-ray
free-electron lasers. Nat. Commun. (2014). doi:10.1038/ncomms4762

 13. Bionta, M.R., Hartmann, N., Weaver, M., French, D., Nicholson, D.J., Cryan,
J.P., Glownia, J.M., Baker, K., Bostedt, C., Chollet, M., Ding, Y., Fritz, D.M., Fry,
A.R., Kane, D.J., Krzywinski, J., Lemke, H.T., Messerschmidt, M., Schorb, S.,
Zhu, D., White, W.E., Coffee, R.N.: Spectral encoding method for measuring
the relative arrival time between x-ray/optical pulses. Rev. Sci. Instrum.
85, 083116 (2014). doi:10.1063/1.4893657

 14. GitHub: scikit-beam. https://github.com/scikit-beam/scikit-beam (2016).
Accessed 16 Aug 2016

 15. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: goals, concept, and design of a next
generation MPI implementation. In: Proceedings, 11th European PVM/
MPI Users Group Meeting, Budapest, Hungary, pp. 97–104. (2004)

 16. Dalcin, L.D., Kler, P.A., Paz, R.R., Cosimo, A.: Parallel distributed computing
using Python. Adv. Water Resour. 34(9), 1124–1139 (2011)

 17. Hattne, J., Echols, N., Tran, R., Kern, J., Gildea, R.J., Brewster, A.S., Alonso-
Mori, R., Glöckner, C., Hellmich, J., Laksmono, H., Sierra, R.G., Lassalle-
Kaiser, B., Lampe, A., Han, G., Gul, S., Difiore, D., Milathianaki, D., Fry, A.R.,
Miahnahri, A., White, W.E., Schafer, D.W., Seibert, M.M., Koglin, J.E., Sokaras,
D., Weng, T.C., Sellberg, J., Latimer, M.J., Glatzel, P., Zwart, P.H., Grosse-
Kunstleve, R.W., Bogan, M.J., Messerschmidt, M., Williams, G.J., Boutet, S.,
Messinger, J., Zouni, A., Yano, J., Bergmann, U., Yachandra, V.K., Adams, P.D.,
Sauter, N.K.: Accurate macromolecular structures using minimal measure-
ments from x-ray free-electron lasers. Nat. Methods 11, 545–548 (2014).
doi:10.1038/nmeth.2887

 18. Mariani, V., Morgan, A., Yoon, C.H., Lane, T.J., White, T.A., O’Grady, P.C., Kuhn,
M., Aplin, S., Koglin, J., Barty, A., Chapman, H.N.: OnDA: online data analysis
and feedback for serial x-ray imaging. J. Appl. Crystallogr. 49, 1356–1362
(2016)

 19. Daurer, B.J., Hantke, M.F., Nettelblad, C., Maia, F.R.N.C.: Hummingbird:
monitoring and analyzing flash x-ray imaging experiments in real time. J.
Appl. Crystallogr. 49, 1042–1047 (2016)

 20. Grosse-Kunstleve, R.W., Sauter, N.K., Moriarity, N.W., Adams, P.D.: The
computational crystallography toolbox: crystallographic algorithms in
a reusable software framework. J. Appl. Crystallogr. 35, 126–136 (2002).
doi:10.1107/S0021889801017824

 21. White, T.A., Kirian, R.A., Martin, A.V., Aquila, A., Nass, K., Barty, A., Chapman,
H.N.: CrystFEL: a software suite for snapshot serial crystallography. J. Appl.
Crystallogr. 45, 335–341 (2012). doi:10.1107/S0021889812002312

 22. Barty, A., Kirian, R.A., Maia, F.R.N.C., Hantke, M., Yoon, C.H., White, T.A., Chap-
man, H.N.: Cheetah: software for high-throughput reduction and analysis
of serial femtosecond x-ray diffraction data. J. Appl. Crystallogr. 47(3),
1118–1131 (2014). doi:10.1107/S1600576714007626

 23. ZMQ: distributed messaging. http://www.zeromq.org (2016). Accessed 16
Aug 2016

 24. Knight, S.: Building software with SCons. Comput. Sci. Eng. 7(1), 79–88
(2005)

 25. APT-RPM. http://apt-rpm.org (2008). Accessed 16 Aug 2016
 26. Continuum analytics. https://www.continuum.io (2016). Accessed 16 Aug

2016
 27. Yefanov, O., Mariani, V., Gati, C., White, T.A., Chapman, H.N., Barty, A.: Accu-

rate determination of segmented x-ray detector geometry. Opt. Express
23(22), 28459–28470 (2015)

 28. InfiniBand Trade Association. http://www.infinibandta.org (2016).
Accessed 16 Aug 2016

 29. Pande, K., et al.: Femtosecond structural dynamics drives the trans/
cis isomerization in photoactive yellow protein. Science 352, 725–729
(2016). doi:10.1126/science.aad5081

 30. Keedy, D.A., et al.: Mapping the conformational landscape of a dynamic
enzyme by multitemperature and XFEL crystallography. eLIFE 4, e07574
(2015). doi:10.7554/eLife.07574

 31. Sauter, N.K., et al.: Robust indexing for automatic data collection. J. Appl.
Crystallogr. 37, 399–409 (2004)

 32. Lyubimov, A.Y., Uervirojnangkoorn, M., Zeldin, O.B., Brewster, A.S., Sauter,
N.K., Berger, J.M., Weis, S.I., Brunger, A.T.: IOTA: integration optimization,
triage and analysis tool for the processing of XFEL diffraction images. J.
Appl. Crystallogr. 49, 1057–1064 (2016). doi:10.1107/S1600576716006683

 33. Psocake SFX tutorial. https://confluence.slac.stanford.edu/display/PSDM/
Psocake+SFX+tutorial (2016). Accessed 16 Aug 2016

 34. HDF5 for Python. http://www.h5py.org (2016). Accessed 16 Aug 2016
 35. PyQtGraph: Scientific Graphics and GUI Library for Python. http://www.

pyqtgraph.org (2016). Accessed 16 Aug 2016
 36. SciPy.org. http://www.scipy.org (2016). Accessed 16 Aug 2016
 37. NumPy. http://www.numpy.org (2016). Accessed 16 Aug 2016
 38. matplotlib. http://www.matplotlib.org (2016). Accessed 16 Aug 2016
 39. MPI for python. http://pythonhosted.org/mpi4py (2016). Accessed 16

Aug 2016
 40. Koerner, L.J., Philipp, H.T., Hromalik, M.S., Tate, M.W., Gruner, S.M.: X-ray

tests of a pixel array detector for coherent x-ray imaging at the Linac
coherent light source. J. Instrum. 4, P03001 (2009)

 41. Blaj, G., Caragiulo, P., Carini, G., Carron, S., Dragone, A., Freytag, D., Haller,
G., Hart, P., Hasi, J., Herbst, R., Herrmann, S., Kenney, C., Markovic, B.,
Nishimura, K., Osier, S., Pines, J., Reese, B., Tomada, A., Weaver, M.: X-ray
detectors at the Linac coherent light source. J. Synchrotron Radiat. 22,
577–583 (2015). doi:10.1107/S160057751500531

http://dx.doi.org/10.1080/08940886.2016.1124681
http://dx.doi.org/10.1107/S160057751500449X
http://dx.doi.org/10.1107/S1600577515004865
http://opensfs.org/lustre
http://dx.doi.org/10.1038/ncomms5371
https://www.es.net
http://www.nersc.gov/assets/Uploads/2014NERSCAnnualReport.pdf
http://www.nersc.gov/assets/Uploads/2014NERSCAnnualReport.pdf
http://www.aps.anl.gov/epics/docs/
http://www.aps.anl.gov/epics/docs/
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
http://dx.doi.org/10.1038/ncomms4762
http://dx.doi.org/10.1063/1.4893657
https://github.com/scikit-beam/scikit-beam
http://dx.doi.org/10.1038/nmeth.2887
http://dx.doi.org/10.1107/S0021889801017824
http://dx.doi.org/10.1107/S0021889812002312
http://dx.doi.org/10.1107/S1600576714007626
http://www.zeromq.org
http://apt-rpm.org
https://www.continuum.io
http://www.infinibandta.org
http://dx.doi.org/10.1126/science.aad5081
http://dx.doi.org/10.7554/eLife.07574
http://dx.doi.org/10.1107/S1600576716006683
https://confluence.slac.stanford.edu/display/PSDM/Psocake%2bSFX%2btutorial
https://confluence.slac.stanford.edu/display/PSDM/Psocake%2bSFX%2btutorial
http://www.h5py.org
http://www.pyqtgraph.org
http://www.pyqtgraph.org
http://www.scipy.org
http://www.numpy.org
http://www.matplotlib.org
http://pythonhosted.org/mpi4py
http://dx.doi.org/10.1107/S160057751500531

	Data systems for the Linac coherent light source
	Abstract
	Background
	Methods
	Data acquisition

	Results and discussion
	Data analysis using AMI
	Data analysis using psana
	Interfaces
	Random access and parallelization with psana
	Real-time analysis with psana
	Real-time visualization with psana
	Buildrelease system

	Detector calibration
	Data type and data format
	Analysis computing resources
	Case study: serial femtosecond crystallography
	Psocake

	Architectural choices

	Conclusions
	Authors’ contributions
	References

