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Abstract 

Crystallographic image processing (CIP) techniques may be utilized in scanning probe microscopy (SPM) to glean 
information that has been obscured by signals from multiple probe tips. This may be of particular importance for 
scanning tunneling microscopy (STM) and requires images from samples that are periodic in two dimensions (2D). 
The image-forming current for double-tips in STM is derived with a slight modification of the independent-orbital 
approximation (IOA) to allow for two or more tips. Our analysis clarifies why crystallographic averaging works well in 
removing the effects of a blunt STM tip (that consists of multiple mini-tips) from recorded 2D periodic images and 
also outlines the limitations of this image-processing technique for certain spatial separations of STM double-tips. 
Simulations of multiple mini-tip effects in STM images (that ignore electron interference effects) may be understood 
as modeling multiple mini-tip (or tip shape) effects in images that were recorded with other types of SPMs as long as 
the lateral sample feature sizes to be imaged are much larger than the effective scanning probe tip sizes.
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Background
Scanning probe microscopy (SPM) images are often 
degraded due to the effects of two (or more) protrusions 
on the probe tip (i.e. effective mini-tips on a blunt tip), as 
well as containing sample tilt errors, image bow and drift, 
and stepping errors that occur while scanning the tip in 
two dimensions (2D) over the sample surface. Averaging 
methods have long been used to remove scanning errors. 
There are also well-established techniques for straighten-
ing out keystone-shaped images that result from sample 
tilt and image drift, and for the removal of image bow by 
z-flattening using least-squares higher-order polynomi-
als to model this distortion [1–3]. Removing multiple-tip 
artifacts from SPM images has, however, only recently 
been accomplished through the adoption of crystallo-
graphic image processing (CIP) techniques [4–7], which 
one may consider as being a kind of a crystallographic 

averaging in reciprocal (Fourier) space of the intensity of 
symmetry-related features in direct space.

The transmission electron crystallography community 
developed CIP to enable the extraction of structure fac-
tor amplitudes and phase angles from (parallel illumina-
tion) high-resolution phase contrast images of crystalline 
materials within the weak phase object approximation 
[8, 9]. It has also been used for the correction of these 
images for the effects of the phase contrast transfer func-
tion, two-fold astigmatism, sample tilt away from low-
indexed zone axes, and beam tilt away from the optical 
axis of the microscope. The central ideas of this kind of 
2D crystallographic symmetry averaging have also been 
applied to scanning transmission electron microscopy 
(STEM) in order to increase the signal-to-noise ratio of 
Z-contrast imaging [10].

In the context of SPM, CIP addresses multiple scanning 
probe tip imaging artifacts effectively. This is an applica-
tion that is beyond its original conception by the electron 
crystallography community and also does not apply to 
Z-contrast STEM imaging.
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Since one may define 2D image-based crystallography 
independent of the source of the 2D patterns as being 
concerned with categorizing, specifying, and quantify-
ing 2D long-range ordered patterns [4], CIP is also a good 
term for procedures as applied to SPM images of 2D 
periodic objects.

This process consists in its simplest form in the appli-
cation of a Fourier transform to the 2D digitized image 
(called Fourier analysis), detection of the most likely 
plane symmetry in reciprocal space, enforcement of this 
symmetry by averaging of the symmetry related Fou-
rier coefficients to remove all kinds of degradations, and 
finally inverse-Fourier image reconstruction (called Fou-
rier synthesis into direct space). Irregularities in the 2D 
periodic array that is to be imaged, e.g. 2D periodic motif 
vacancies, are “averaged out” by CIP. For representative 
results, one should therefore aim for a ratio of regularly 
repeating features to irregularities of at least 50 (or better 
100) to one.

By means of CIP, one can also extract the prevailing 
point spread function1 of the SPM [4] and use it for the 
correction of subsequently recorded images [7]. One may 
refer to this function loosely as the “effective scanning 
probe tip” as it represents the convolution of the effects 
of the actual tip shape with all kinds of scanning and sig-
nal processing irregularities.

The symmetrizing is done in reciprocal space because 
of its computational efficiency. Since the Fourier coeffi-
cients were symmetrized, the CIP processed images are 
also symmetrized to the chosen 2D space group. The 2D 
space groups are also known as plane symmetry groups 
and combine 2D translations symmetries with 2D point 
symmetries, see “Appendix A”. We use the international 
(Hermann–Mauguin) notations for plane symmetry and 
2D point symmetry groups [11] throughout the paper. 
When compared to CIP, conventional Fourier filtering 
[12] of 2D periodic images leads to translation averaging 
only. This means that the latter technique does not take 
advantage of the site symmetries in the plane groups (so 
that pure translation averaging will be up to 12 times less 
effective than CIP).

Consider, for example, the image shown in Fig.  1a, 
whose p4-symmetry is “symmetrically perfect” because 
we imposed this symmetry on an experimental 

1  Reference [7] demonstrates, for example, the application of CIP to two 2D 
periodic images (that were recorded from the same commercial calibration 
sample with the same atomic force microscope) under (i) standard and (ii) 
non-standard imaging conditions, i.e. an open feed back loop. That calibra-
tion sample was designed to possess plane symmetry p4mm and its lateral 
2D periodic feature size were one order of magnitude larger than the nomi-
nal probe sizes. (The horizontal sample feature size was approximately a 
tenth of the nominal probe sizes.) The effective scanning probe tips were 
de-convoluted from these images and the one that corresponded to the 
standard imaging conditions was less than half of the size of its non-stand-
ard imaging conditions counterpart.

“nearly-p4” STM image [6, 13] using CIP. (Crystallo-
graphic notations such as p4 and basic 2D crystallogra-
phy are briefly discussed in “Appendix A”.) Using 
Photoshop,2 we have artificially constructed in Fig. 1b an 
image somewhat akin to what one would see with three 
SPM tips shifted laterally and vertically with respect to 
each other, simultaneously scanning the same surface, 
with signals beating against each other.

We note that both the unobscured image, Fig. 1a, and 
the obscured one, Fig.  1b, possess the same translation 
symmetry, which is that of the square 2D Bravais lat-
tice. It was noted in Ref. [14] that subsequently recorded 
images from the same 2D periodic array that possess 
variations in the motif but possess the same translation 
symmetry are the hallmarks of blunt scanning probe tips. 
While obscured images have typically been discarded in 
the past, CIP presents an alternative to recover infor-
mation from them. Figure 1c shows the inverse-Fourier 
image reconstruction after p4 symmetry enforcement 
in reciprocal space (following the guidelines in “Appen-
dix B”) of the fully obscured portion of Fig. 1b. One sees 
a quite faithful reproduction (apart from a decrease in 
contrast) of the one-tip image, Fig.  1a as the 2D point 
symmetry of the motif is restored to group 4.

In the case of images that were recorded with multiple 
mini-tips, the whole plane symmetry enforcing proce-
dure can, by virtue of the Fourier shift theorem [15], be 
thought of as aligning the 2D periodic motifs of all inde-
pendent SPM images from the multiple mini-tips on top 
of each other, thus enhancing the signal-to-noise ratio 
significantly when done correctly. Within this context, 
CIP can be understood as a “sharpening up” of the effec-
tive scanning probe tip.

The present work shows in detail why CIP works 
and builds upon prior work [4–7] that shows how it is 
done at a practical level. In order to show in detail why 
CIP works, we will modify a common approach for 
simplifying the details of the problem, the independ-
ent-orbital approximation (IOA) to allow for the beat-
ing of signals from multiple mini-tips in STM. That is, 
we explore how “scanning tunneling probe tip surface 
structures” add both linearly and quantum mechani-
cally to the recorded signal in convolution with the 
features of the “sample surface structure”.

Although the underlying physics of the IOA approach 
is specific to STM imaging, simulations of multiple-tip 
effects that ignore electron interference effects may be 

2  One duplicate of the p4 image was pasted on top of the p4 image and then 
shifted 3 pixels to the right and 15 pixels down, out of 550 pixels and a sec-
ond duplicate was shifted up 9 pixels and right 26 pixels. The three layers 
were then combined using Photoshop’s overlay blend mode, the formulas 
for which are given at http://www.stackoverflow.com/questions/5825149/
overlay-blend-mode-formula, with the opacity of the duplicate layers set at 
70 and 30 %, respectively.

http://www.stackoverflow.com/questions/5825149/overlay-blend-mode-formula
http://www.stackoverflow.com/questions/5825149/overlay-blend-mode-formula
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understood as modeling multiple mini-tip (or tip shape) 
effects in images that are recorded with other types of 
SPMs (where quantum mechanical interference effects 
can be safely ignored). It is well known that the nominal 
probe size is in STM imaging typically of the same 
(atomic or molecular) order of magnitude as the sample 
surface features that are to be imaged. For CIP to be 
applicable to images of 2D periodic arrays that were 
recorded with other types of SPMs (footnote 1), the effec-
tive probe size has to be much smaller than the lateral 
size of the features to be imaged. Although this require-
ment is trivial for any kind of meaningful imaging with 
SPMs (other than STMs, atomic or molecular resolution 
atomic force microscopes, and critical dimension SPMs3), 
it needs to be stated repeatedly as the literature abounds 
with conclusions that largely ignore it.

We first review the IOA, show how to modify it for 
two tips, and then trace back the resultant image to the 
salient details within its Fourier transform to show why 
CIP works. The changes wrought in the tunneling current 
by having two (or more) tips are outlined thereafter. The 
arrangements of multiple mini-tips in our analyses do 
not possess projected 3D point symmetries higher than 
1, i.e. 360 degree rotations about arbitrary axes.

We begin with a treatment of double-tips since one 
may consider it a worst-case scenario of multiple tips, as 
will be illustrated later in the paper. We also examine the 
effect of double-tip height variations on the images and 
on the applicability of CIP.

3  Critical dimension SPMs were developed specifically for the assessment of 
narrow and deep trenches as well as steep and high walls either as transients 
in the building-up of integrated circuits or in micro- and nano-electrome-
chanical systems.

In particular, we show that the 2D Fourier transform of 
the derived current resulting from two tips is comprised 
of the same Fourier coefficients as a single tip. The cur-
rents from the two tips differ in a phase term in reciprocal 
space [15] arising from the addition of complex numbers 
with different phases. These phase differences between 
two contributors may reduce the amplitudes (at a given 
reciprocal space point). CIP lessens this effect by averaging 
the Fourier coefficient amplitude and phase at such a point 
with amplitudes and phases at symmetry-related points.

We show the wide range of double-tip separations that 
are amenable to CIP. There are, however, certain dou-
ble-tip separations for which some of these phases take 
prominent Fourier coefficients to zero, thereby obscur-
ing the current map to the extent that even CIP cannot 
improve it.

Methods
The independent‑orbital approximation
We first sketch Chen’s derivation [16] of an STM image for 
a surface structure having plane symmetry p4mm (and, 
thus, a square lattice) using the IOA, in which the total tun-
neling current is approximated by the sum of the tunneling 
currents from independent atomic states. (The difference 
between lattices and structures is clarified in “Appendix A”.) 
Since a square lattice/structure combines two identical per-
pendicular one-dimensional lattices/structures, we find the 
total tunneling conductance to be of the form:

Fig. 1  Modeling the effects of a triple-SPM-tip on the image of a p4 source. a A 550 by 550 pixel image whose p4-symmetry is known by design. 
(Based on its “experimental counterparts” in refs. [6, 13], the area of this image corresponds to approximately 340 nm2). b A “hypothetical image” 
to model what a triple-SPM-tip would produce when imaging this “sample,” constructed in Photoshop by overlaying two copies of the p4 image, 
shifting them, and setting the blend mode to Overlay (footnote 2), with the opacity reduced for each to model different heights for the three tips. 
(A small ~15 by 26 pixel wide margin of the unobscured image is seen in the upper–left-hand corner behind the overlain image). c Crystallographi-
cally averaged p4 plane symmetry reconstruction of a 512 by 512 pixel fully obscured portion of this “sample.”
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where the conductance of the nth atom 
g(x − na, y − ma, z) is a function with periodicity a in 
both directions, yielding a discrete Fourier transform 
with identical primitive lattice vector lengths b = 2/a and 
Fourier coefficients,

Only the lowest five terms in the Fourier series contrib-
ute significantly to the STM image, due to the reflection 
symmetry of the conductance function g(r), G̃0(z) and 
G̃−1,0(z) = G̃1,0(z) = G̃0,−1(z) = G̃0,1(z) ≡ G̃1(z). Then 
the total conductance function to this order is

The topographic SPM image, due to ∆z(x) corrugation 
altering a smooth surface and representing a structure, is 
related to the current image by, [16]

To calculate the required Fourier coefficients, Chen 
notes that the term with the highest power of r domi-
nates the behavior of hydrogenic wavefunctions at 
low-energies (up to a few eV), so one can effectively 
approximate them with Slater orbitals [17, 18],

where, unlike hydrogen eigenstates, the principal 
quantum number is n ≥ 0. Here Ylm(θ ,ϕ) is the stand-
ard spherical harmonic function. These are convenient 
also because they may be calculated by taking deriva-
tives with respect to the orbital exponent λ (propor-
tional to the square root of the energy of the state) and 
to z of ψ000 ≡ Ce−�r

/

r (also recognized as the Yukawa 
potential).

The conductance distribution for an s sample state 
and an s tip state is e−2κr (see Chen’s Table  6.1 for 
other combinations, such as cos2 θe−2κr if either the 
sample or the tip is a pz state and the other is an s 
state). Then taking the derivative of an integral iden-
tity [19] gives,
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and the similarly derived,

where,

So the topographic image is given by,

for an s sample state and an s tip state, where,

If either the sample or the tip is a pz state and the other 
is an s state, the topographic image is given by,

and so on, with the corrugation (real-space lattice/struc-
ture) multiplied by a z-dependent amplitude.

Results
Two scanning probe tips
If one were imaging using an atomic state with two lobes 
aligned parallel to the x-axis, one could follow the proce-
dure Chen outlines [20] in which for a quantum mechan-
ical px tip state, say, one takes “derivatives of the sample 
wave function at the nucleus of the apex atom of the tip” 
with respect to x to get the tunneling matrix elements. 
This results in the current images from each sample atom 
being doubled, as pictured in his 1987 paper [21].

In many cases, however, an STM tip having a pair of 
mini-tips—due to manufacturing error, damage to the 
tip, or the originally atomically sharp tip having picked 
up some material from the sample or the surround-
ing—is likely to have them separated by a much larger 
distance than the lobes of an atomic orbital. Indeed 
the separation distance will likely be of the same order 
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as the inter-atomic or inter-molecular spacings of the 
sample.

In such a case, we can treat such a doubled tip as two 
well-spaced s tips (keeping our s sample), for example, 
and rely upon the reciprocity principle: [22] by “inter-
changing the tip state and the sample state, the conduct-
ance distribution [and hence the image is] unchanged”. 
We saw above that a px tip state imaging a real-space 
structure would result in a current image having each 
sample atom (or molecule) doubled. One would get 
a similar looking current image using a single tip on a 
lattice/structure one has cloned, after shifting the sec-
ond lattice/structure’s origin along the x-axis by the dis-
tance between the lobes of the px tip. With a double-tip 
whose spacing is significantly larger, the same principle 
applies. We will see, however, that tip separations on a 
scale matching the sample lattice constant give the new 
possibility that the two currents will beat against each 
other.

As the pair of s tips (on a blunt scanning probe tip) is 
scanned over the surface, each tip would encounter the 
largest charge density in the x direction at different posi-
tions of the scanning head holding the two tips. If the tip 
separation w were precisely (an integer times) the perio-
dicity of the real-space lattice/structure, the conduction 
signal would simply be twice as large and the topographic 
image would be unchanged except for brightness from 
what a single tip would yield. If, on the other hand, the 
tips were separated by any other distance, the two tips 
would register different tunneling charge densities at 
each position of the scanning head, and the pair of con-
duction signals would beat against each other, altering 
the topographic image registered.

For our single-tip on a cloned lattice/structure, we 
still have atoms that are independent of each other 
so that they do not shift position when new neigh-
bors are slipped into the interstices by the duplication 
and shift process. This is a reasonable assumption if 
the spacing between atoms is (much) larger than the 
atomic extent.

The resulting topographic image would be given by,

where we have shifted the cloned lattice/structure by 
u = w/2 in the positive x direction and the original lat-
tice/structure by u in the negative x direction, as that 
simplifies the Fourier transform we will consider in a 
moment. The resultant topographic images at various 
tip separations are shown in Fig. 2 and we indeed do see 
increasing beating between the two signals as (b times) 

(12)
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(
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,

the tip separation approaches π/4 relative to the IOA 
p4mm surface wave functions having a period of 2π.

To see where this loss of periodicity in the horizontal 
direction is coming from, we take the Fourier transform 
of (12),

This transform confirms that the reciprocal lattice 
spacing is independent of the number of tips. This prop-
erty is a necessary condition for CIP to reconstruct a 
corrected image in real space. Reciprocal lattice vectors 
{H, K} are marked in Fig.  3a. “Appendix B” mentions a 
recently developed procedure to detect unambiguously 
the underlying 2D Bravais lattice of a 2D periodic surface 
structure [23] that aids the detection of multiple-tip arti-
facts in SPM images [24].

The transform (10) also reveals that suppression of 
Fourier components in the horizontal direction in recip-
rocal space by the phase terms Cos[n bu], seen in Fig. 3, 
is the cause of the significant change in the image regis-
tered by this model double STM tip in Fig. 2. In Fig. 3d, 
for π/4 − ε, this suppression becomes so severe that the 
character of the original image is entirely obscured for 
vanishing ε, see Fig. 2d.

Figure 4 shows the results of plane symmetry enforce-
ments of the underlying p4mm symmetry for the super-
position of IOA p4mm wave functions. This figure 
represents the final result of the CIP procedure on the 
images of Fig. 2. Even with significant suppression of spa-
tial frequency information due to rather wide double-tip 
separations, CIP still is able to recover sufficiently recon-
structed symmetrized “images” of the IOA p4mm wave 
functions, as seen for example in Fig. 4c, when compared 
with the single-tip image Fig. 2a.

For bu  =  0.77, Fig.  2d, we are beyond the limit at 
which one might confidently use CIP without a priori 
knowledge and/or an unambiguous determination of the 
underlying translation symmetry. With our prior knowl-
edge of the underlying plane symmetry of the sample 2D 
periodic array, and/or with our recently developed geo-
metric Akaike information criterion (AIC) for the unam-
biguous identification of 2D Bravais lattices [24] (see 
“Appendix B”), we can direct the popular CIP program 
CRISP [25] to produce a reconstruction, Fig.  4d, much 
more faithful to the IOA p4mm wave functions, Fig. 2 a 
than that contained in the two-tip image, Fig. 2d.

In the worst cases, e.g. for vanishing ε as extrapolated 
from Figs.  2d and 3d when even CIP cannot reliably 
reconstruct the correct images, they may be discarded.

(13)

F [�z2(r)] =
32πκ

γ 2
e
−βz(Cos[bu](δ[−b + H]

+ δ[b + H])δ[K] + δ[H](δ[−b + K] + δ[b + K])).
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Different heights for the two tips
We assumed a worst-case scenario in Eq.  (12) in which 
the two tips were at precisely the same distance z above 
the surface structure. If one of the two tips is closer to 

the sample, its current will dominate the current from 
the higher tip, thereby exponentially reducing the obscu-
ration of the image. In Sect. “Results”, above, we rep-
resented a double-tip by a single tip above a cloned 

Fig. 2  Topographic images due to various tip separations. Superpositions of the two IOA current sources with (b times) an STM tip half-separation 
a bu = 0, b bu = 0.6, c bu = 0.74, and d bu = 0.77 = π/4 − ε units in the horizontal direction, relative to the IOA p4mm surface wave functions hav-
ing a period of 2π. A unit cell is inset in each case

Fig. 3  Fourier components at these tip separations. Fourier transforms of IOA p4mm wave functions with (b times) an STM tip half-separation a 
bu = 0, b bu = 0.6, c bu = 0.74, and d bu = 0.77 = π/4 − ε units in the horizontal direction, relative to the IOA p4mm surface wave functions hav-
ing a period of 2π. Reciprocal lattice vectors {1,0} and {0,1} (= {H,K}) are marked in (a)

Fig. 4  Plane symmetry enforcement at these tip separations. Plane symmetry enforcement of the underlying p4mm symmetry for the superposi-
tion of IOA p4mm wave functions with (b times) an STM tip half-separation of Fig. 2. a bu = 0, b bu = 0.6, c bu = 0.74, and d bu = 0.77 = π/4 − ε 
units in the horizontal direction, relative to the IOA p4mm surface wave functions having a period of 2π
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lattice/structure, having shifted the clone one way along 
the x-axis and the original the other way by the same 
amount. In modeling two tips at different heights in 
such an approach, one could also raise the cloned lattice/
structure higher than the original to yield the exponen-
tial dominance of the current from that original lattice/
structure.

Tsukada, Kobayashi, and Ohnishi [26] found a reduc-
tion in interference with tip-elevation angle in their cal-
culations using an antibonding H2 orbital model for a tip 
on graphite. By the time they reached a 0.26 rad elevation 
difference, the interference was much reduced.

Let us examine an STM tip separation that caused 
severe image artifacts, bu = 0.77 = π/4 − ε. We see from 
Fig. 5b that when one tip is at z = 1 Å from the surface 
and the second is raised to z = 1.2 Å, the obscurations in 
the image are much reduced. When the second is raised 
to z  =  1.5 Å in Fig.  5c, the current dominated by the 
closer tip is not distinguishable from a single tip, Fig. 3a. 
This result is in agreement with the textbook statement 
that the exponential decay of the tunneling current with 
height over the sample ensures often sufficiently clear 
images even if there is more than one scanning probe tip.

Multiple tips
The final case to explore is the effect of multiple tips on 
image obscuration. Consider the two-tip separation that 
is the most problematic, with bu = 0.77 = π/4 − ε units 
in the horizontal direction, Fig. 3d. Suppose we add a sec-
ond pair of tips separated by, say, one-third of that value, 
or bu =  0.26. We see in Fig.  6b that this addition does 
ameliorate the obscuration. (One gets a similar result if 
one makes the second pair of tips nonsymmetrical with 
respect to the origin, so that one is at bu = 0.26 and the 
second at bu = −0.15.) In Fig. 6c we add a third pair of 
tips at one-fifth of the separation of the first pair, with 

bu = 0.15. One sees that with six rather than two tips, the 
resultant image is hardly distinguishable from a single tip, 
Fig. 2a.

Thus we see that the double-tip case is indeed some 
kind of a worst case. Additional tips provide nonzero 
contributions to the reciprocal space amplitudes at spa-
tial frequencies that would otherwise be completely sup-
pressed. This facilitates the application of CIP to bring 
out even more underlying information in the “sample”. 
So we expect that crystallographic averaging would work 
well in removing the effects of a blunt STM tip, consist-
ing of multiple mini-tips.

Summary and conclusions
CIP may often be used to remove multiple-tip artifacts 
from SPM images. Alternatively, one can think of the 
application of CIP as being analog to the “sharpening up” 
of a blunt tip to enhance the signal-to-noise level.

We have modified the independent-orbital approxi-
mation (IOA) to account for the beating of signals from 
two tips. Tracing back the resultant image to the salient 
details within its Fourier transform shows why CIP is 
effective. The tunneling currents from the two tips differ 
in a phase term in reciprocal space that may reduce the 
Fourier amplitudes (and hence, the real-space modula-
tion) at a given reciprocal space point. We show that CIP 
lessens this effect by averaging the amplitude and phase 
at such a point with amplitudes and phases at symmetry-
related points.

We have also shown that the existence of more than 
two tips at random separations will tend to ameliorate 
pair-wise destructive beating of signals at a given recip-
rocal space point, providing additional amplitude at 
that Fourier point to restore some real-space modula-
tion. Finally, we have recovered textbook knowledge that 
tip height variations will ameliorate image degradations 

Fig. 5  The effect of uneven tip height on Topographic images. Superpositions of the two IOA current sources with (b times) an STM tip half-separa-
tion bu = 0.77 = π/4 − ε units in the horizontal direction, relative to the IOA p4mm surface wave functions having a period of 2π. In a both tips are 
at the same height. In b one tip is 20 % higher from the surface than the other, and c 50 % higher
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because of the exponential falloff of the signal with the 
tip-surface distance.

In particular, we have shown that the 2D Fourier trans-
form of the derived tunneling current resulting from two 
tips is comprised of the same Fourier coefficients as a sin-
gle tip. We show the wide range of double-tip separations 
that are amenable to CIP. There are, however, certain 
double-tip separations for which some of these phases 
take prominent Fourier coefficients to zero, thereby 
obscuring the current map to the extent that even CIP 
cannot improve it.
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Appendix A: Brief introduction to 2D space 
and point symmetries
A lattice is the array of all points (lattice points) in a pat-
tern with identical surroundings. That is to say, a pattern 
will look the same from one lattice point as it does from 
any other lattice point (if the pattern extends to infin-
ity). The lattice is therefore not a physical entity, but an 
abstract mathematical construct that is useful for dealing 
with translation symmetry. In a two-dimensional (2D) 
periodic pattern, translation symmetry is conveniently 
represented by a lattice vector t(s1, s2) = s1a1 + s2a2 with 
components of two linearly independent unit transla-
tion vectors a1 and a2 (basis vectors of the primitive unit 
cell of the lattice) and s1 and s2 integers. That is to say, 
shifting a 2D periodic pattern along any lattice vector 
that possess these unit vectors as (integer) components 
leaves the pattern invariant when translation symmetry 
is present. Mathematically exact 2D translation sym-
metry (and the 2D crystallography that builds on it) 
requires patterns that are infinite in extent and perfect, 
but the concepts are also useful as approximations for 
periodic patterns of finite size and patterns where a few 
individual array members are missing or misplaced, i.e. 
typical SPM images. A lattice can, therefore, be assigned 
to finite periodic structures that consist of atoms or 
molecules.

Fig. 6  The effect of tip multiplicity on Topographic images. a Superpositions of the two IOA current sources with (b times) an STM tip half-sepa-
ration bu = 0.77 = π/4 − ε units in the horizontal direction, with b a second pair of tips separated by one-third of that value, or bu = 0.26, and c a 
third pair of tips separated by one-fifth of the separation of the first pair, with bu = 0.15

http://dx.doi.org/10.1186/s40679-015-0014-6
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Only five types of lattices are compatible with the 10 
crystallographic point symmetry types in 2D. The former 
are known as the 2D Bravais lattices, typically referred to 
as oblique, rectangular primitive (rectangular), rectan-
gular centered (centered), square, and hexagonal lattices. 
A 2D crystallographic point group is a group of symme-
try operations (e.g. a combination of the identity, rota-
tions, and reflections) that leaves at least one point of a 
plane object invariant, and contains only those rotations 
that are considered crystallographic rotation operations 
because of their compatibility with the five 2D Bravais 
lattices. There are only 10 such symmetry groups (1, 2, m, 
2mm, 4, 4mm, 3, 3m, 6, and 6mm) in 2D.

The leading number in the point group symbol denotes 
the highest-order rotational symmetry operation about 
a point in the plane. The one or two m’s in the symbol 
denote the presence of one or more mirror (reflection) 
symmetry operations. The normals of these mirror lines 
are within the plane of the figure. The 2D crystallographic 
point groups possess subgroup-supergroup relations 
(inclusion relations), where a supergroup contains all of 
the symmetry operations of a corresponding subgroup, 
plus some additional symmetry operation(s). (In math-
ematical terms, one often speaks of non-disjoint entities 
and inclusion relations when there are subgroups-super-
group relations in a general sense.)

By combinations of the five translation symmetry types 
(Bravais lattices) with the ten crystallographic point sym-
metry types, a finite set of 2D space symmetry types is 
obtained. Each of the 17 plane symmetry groups in this set 
tiles 2D space in a long-range ordered manner with no 
gaps. Any 2D periodic pattern that tiles 2D space must 
have the symmetry of one of these 17 groups. The leading 
letters p (for primitive) and c (for centered) in all plane 
symmetry group symbols, i.e. p1, p2, pm, pg, cm, p2mm, 
p2mg, p2gg, c2mm, p4, p4mm, p4gm, p3, p3mL, p31m, p6, 
and p6mm refer to the lattice type. There are, thus, 15 
plane symmetries group on the basis of primitive lattices 
and two on the basis of centered lattices.

The 2D crystallographic space groups possess sub-
group-supergroup relations as well. A distinction is made 
between so called translationengleiche (type I) and klas-
sengleiche (type II) subgroup-supergroup relations. In this 
paper, we are only concerned with the maximal and mini-
mal type I subgroup-supergroup relations, which are based 
on unit cells of the same size (area). Maximal and minimal 
mean in this context that there is no other group between 
a subgroup and its supergroup and vice versa. The hier-
archy of the 17 plane symmetry groups, along with their 
(maximal and minimal type I) inclusion relations and Bra-
vais lattices is illustrated in Additional file 1: Figure S1.

The nomenclature of the plane symmetry groups might 
seem dauntingly complex to the novice, while it relies in 

fact on only a few rules. In this paper, we use the Her-
mann–Mauguin symbols [11] as they provide deeper 
insight into the orientation and mutual arrangement of 
symmetry operations.

As mentioned above, the leading letters in the symbols 
of plane symmetry groups refers to the type of lattice: p 
for primitive (i.e. containing one lattice point) and c for 
centered (i.e. containing two lattice points). If the p or c 
is followed by a number, it refers to the highest rotation 
symmetry about a point in the plane. When one views a 
2D plane symmetry group as an orthogonal projection of 
a 3D space group, these rotation points are projections 
of rotation axes that are oriented perpendicular to the 
plane.

If the second entry in the plane symmetry group sym-
bol is an m or g and there is no third and fourth symbol, 
these letters refer to a mirror or glide line perpendicular 
to one of the coordinate axes. This is typically the x-axis 
(parallel to unit translation a1), but there can be different 
settings. The full Hermann–Mauguin symbols for these 
three plane symmetry groups are: p1m1, p1g1, and c1m1, 
whereby the first and last numbers signify that there are 
only identity (360º) rotations about the projected z-axis 
and the y-axis (parallel to unit translation a2), respec-
tively. The underlying projected z (1st), x (2nd), and y 
(3rd) axis sequence is typical for plane symmetry group 
names that are based on the two rectangular Bravais lat-
tices. As there are no perpendicular x and y axes in the 
oblique Bravais lattice, the short Hermann–Mauguin 
symbol of p1 and p2 is indistinguishable from the full 
(four-entry) symbol.

For the square and hexagonal Bravais lattices, the first 
symbol after the leading p designation for the lattice type 
in a plane symmetry group symbol refers to the projected 
z-axis direction. For both 2D lattice types, the 3rd and 
4th symbols in a full (and short) Hermann–Mauguin 
plane symmetry group symbol refer to symmetries along 
the x-axis and the 

〈

11̄
〉

 directions. While rotation axes 
are oriented parallel to these directions, mirror and glide 
lines are represented by their normals, which are ori-
ented perpendicular to these directions.

Plane symmetry groups that contain a c or g in their 
symbol are either centered or non-symmorphic. This 
results in the necessity of certain Fourier coefficients 
being zero. This is analogous to 3D X-ray crystallography, 
where centered and non-symmorphic space groups result 
in “systematically absent” or in other words “extinct” 
reflections.

The Bravais lattices possess the holohedral (highest) 
plane symmetries, i.e. p2, p2mm, c2mm, p4mm, p6mm, 
within each type I subgroup-supergroup tree. Point sym-
metries within a plane symmetry are referred to as site 
symmetries. The point positions with the lowest Wyckoff 
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letter and multiplicity possess point symmetries 2, 2, 4, 
and 6mm in the four primitive Bravais lattices. These are 
the positions of the (one) lattice point that defines the 
primitive unit cell of the 2D periodic pattern over the 
application of the unit translations. In the unit cell of the 
rectangular centered Bravais lattice, there are two lattice 
points and both possess point symmetry 2mm. This lat-
tice possesses a primitive sub-lattice, which contains only 
one lattice point (just as all of the primitive Bravais lat-
tices do). The size of the unit cell of the primitive sub-lat-
tice is one half of the size of the rectangular centered cell. 
This sub-unit cell is characterized by unit translations 
of equal magnitude that can be oriented with respect to 
each other at any angle other than 60º, 90º, or 120º.

The primitive unit cells possess the shapes of a par-
allelogram, a rectangle, a square, and a hexagon. The 
primitive sub-unit of the rectangular centered unit cell 
possesses the shape of a rhombus. The convention for the 
Bravais lattice unit cells is that the x-axis is taken down-
wards from the upper left vertex with direct space coor-
dinates (0,0) and the y-axis is taken to the right, leading to 
the coordinates (1,0) for the lower left vertex and (0,1) for 
the upper right vertex. Ref. [28] provides a concise and 
elementary introduction to crystallography in general, 
and covers all of the material above in considerably more 
detail. In addition, there is a plethora of other introduc-
tory texts and information online readily available if the 
reader desires a better understanding of 2D crystallogra-
phy. Ref. [29] is the definitive crystallographic standard 
and covers the direct space aspects of all 17 plane (and 
230 space) symmetry groups comprehensively. Ref. [11] 
is the “brief teaching edition” that complements Ref. [29].

Quasicrystallinity in 2D, i.e. non-periodic long-range 
order coupled with non-crystallographic point symme-
tries has been observed recently [30, 31], but is beyond 
the scope of CIP as described in this paper.

Appendix B: Decisions as to which plane group 
to enforce
In order to determine the plane symmetry to which an 
image most likely belongs, the traditional approach is 
to use Fourier coefficient (FC) amplitude (RA % or Ares) 
and phase angle (φRes or φres) residuals [4, 8, 9, 23, 24]. 
These kinds of residuals are used as figures of merit for 
determining which plane symmetry group best models 
the image (or the sample surface structure having been 
imaged). As a general heuristic, smaller residuals indicate 
a closer match between the experimental image and an 
ideal plane symmetry model. Amplitudes are generally 
less reliable than phases so that a small FC phase angle 
residual has traditionally been more useful for identifying 
plane symmetries.

In addition, one traditionally utilizes the so called Ao/Ae 
ratio [4, 8, 9] for those six plane symmetry groups that 
possess systematic absences [11]. This ratio is defined 
as the amplitude sum of the Fourier coefficients that are 
forbidden by the plane symmetry but were nevertheless 
observed (Ao) divided by the amplitude sum of all other 
observed Fourier coefficients that are allowed (Ae) by the 
plane symmetry. For the six plane groups to which this 
ratio is applicable, a large ratio makes it more unlikely 
that the respective group is the right plane symmetry 
group.

There is, however, currently no fully objective way to 
use these traditional residuals to assign the correct plane 
symmetry group. The reason for this is type I subgroup 
and supergroup relations [11] between many of the 16 
higher symmetric plane symmetry groups [23]. When-
ever the FC phase and amplitude residuals of an image 
are not significantly larger for a higher symmetric plane 
symmetry group than for its respective type I subgroups, 
and the Ao/Ae ratio is not too high, one would generally 
conclude that this particular group is the more likely 
plane group, in comparison to other groups in its sub-
group/supergroup tree. As implicitly mentioned above, 
there is currently no objective criterion on what “not sig-
nificantly larger and not too high” may mean in numeri-
cal terms.

Given the subjectivity inherent in the use of the three 
traditional plane symmetry deviation quantifiers, there 
has been a need for a statistics-rooted measure that 
quantifies deviations from 2D translation symmetries (in 
reciprocal and direct space). Such a measure has been 
recently developed and allows the 2D Bravais lattice to 
be unambiguously identified because it is based on a geo-
metric Akaike information criterion (AIC). Geometric 
AICs have been successfully used in a wide range of clas-
sification schemes involving non-disjoint models [32, 33].

In brief, the new assessment method involves the posi-
tion of the (1,0), (0,1) and (1,1) FC peaks in a 2D Fourier 
transform amplitude map relative to the (0,0) FC peak of 
an experimental or simulated image. These positions are 
directly related to the reciprocal and direct lattice param-
eters of a 2D periodic image, and thereby to the shape of 
the 2D primitive unit cell (or sub-unit cell in case of the 
rectangular centered 2D Bravais lattice in direct space).

Residuals J are defined as the sums of squared distances 
from the vertices of the reciprocal space unit cell of a 2D 
periodic image to the corresponding vertices of the quad-
rilaterals that represent the shapes of the unit cells of the 
2D Bravais lattices (in reciprocal space). As the conver-
sion to direct space is straightforward, one can obtain 
from these kinds of residuals as well how much the shape 
of the direct space unit cell of 2D periodic data differs 
from the shapes of the quadrilaterals that represent the 
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unit cell of the four primitive 2D Bravais lattices and the 
unit sub-unit cell of the rectangular centered lattice.

Assuming that deviations from the translation sym-
metry in the 2D periodic image are only due to ran-
dom errors with a Gaussian distribution of mean zero, 
a geometric AIC is applicable as described in refs. [23, 
24]. This allows for unambiguous identifications of the 
prevalent translation symmetry (2D Bravais lattice) and 
restricts the plane symmetry group an image may possess 
to those that are compatible with this particular transla-
tion symmetry.

For example, we obtain for both bu = 0.6, Fig. 2b, and 
bu = 0.74, Fig. 2c, a square unit cell as underlying trans-
lation symmetry from the application of our geometric 
AIC procedure. This is as expected, because we showed in 
the main text of this paper that the underlying translation 
symmetry cannot be affected by double-tips (and, thus, 
cannot vary with their separation). Our new procedure 
is, thus, optimal for detecting blunt tip artifacts in SPM 
images.

Our identification of square lattices justifies the 
enforcement of plane symmetry group p4mm on the 
basis of the three traditional figures of merit for plane 
symmetry group determinations for both bu =  0.6 and 
0.74 (Figs. 2b, c, resulting in the plane symmetry enforced 
reconstructions of Figs.  4b, c). Note that there are only 
two other plane symmetry groups, i.e. p4 and p4gm, that 
are compatible with a square lattice, see Fig. A1. (While 
p4 is a maximal type I subgroup of p4mm, the plane sym-
metry groups p4gm and p4mm are disjoint.)

For bu = 0.77 = π
4 − ε, Fig.  2d, we obtain again a 

square unit cell from the application of our geometric 
AIC procedure, while CRISP [25] determines a rectangu-
lar unit cell and suggests p2 mg as most likely plane sym-
metry group. Note that even the extreme banding as seen 
in Fig. 2d can be corrected by CIP because we were able 
to identify the correct translation symmetry with the help 
of our geometric AIC procedure (and had prior knowl-
edge on this anyway). Indeed, the enforcement of p4mm 
symmetry does give a recognizable reconstruction of the 
sample image in Fig.  4d, although the motif of the unit 
cell is now somewhat “squarish” rather than “rounded”.
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